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1. Introduction and Results

The Bernoulli polynomials B(k)
n (x) of order k, for any integer k, may be defined by (see [1–5])
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The numbers B
(k)
n = B

(k)
n (0) are the Bernoulli numbers of order k, B(1)

n = Bn are the
ordinary Bernoulli numbers (see [2, 6, 7]). By (1.1), we can get (see [4, page 145])
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where n ∈ N, with N being the set of positive integers.
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The numbers B(n)
n are called the Nörlund numbers (see [4, 8]). A generating function

for the Nörlund numbers B(n)
n is (see [4, page 150])
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The D numbers D(k)
2n may be defined by (see [4, 5])
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, |t| < π. (1.6)

By (1.1), (1.6), and note that csc t = 2i/(eit − e−it ) (where i2 = −1), we can get
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Taking k = 1, 2 in (1.7), and note that B(1)
2n (1/2) = (21−2n − 1)B2n, B

(2)
2n (1) = (1 − 2n)B2n

(see [4, pages 22 and 145]), we have
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The numbers D
(2n)
2n are called the D-Nörlund numbers. These numbers D

(2n)
2n and

D
(2n−1)
2n have many important applications. For example (see [4, page 246])
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We now turn to the central factorial numbers t(n, k) of the first kind, which are usually
defined by (see [9–12])
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or by means of the following generating function:
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It follows from (1.11) or (1.12) that

t(n, k) = t(n − 2, k − 2) − 1
4
(n − 2)2t(n − 2, k), (1.13)

and that

t(n, 0) = δn,0 (n ∈ N0 := N ∪ {0}), t(n, n) = 1 (n ∈ N),

t(n, k) = 0 (n + k odd), t(n, k) = 0 (k > n or k < 0),
(1.14)

where δm,n denotes the Kronecker symbol.
By (1.13), we have
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The main purpose of this paper is to prove some identities involving D numbers,
Bernoulli numbers, and central factorial numbers of the first kind and obtain a generating
function and several computational formulas for the D-Nörlund numbers. That is, we will
prove the following main conclusion.

Theorem 1.1. Let n ∈ N, k ∈ N \ {1}. Then
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Remark 1.2. By (1.18), we may immediately deduce the following (see [4, page 147]:
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Theorem 1.3. Let n ≥ k (n, k ∈ N0). Then
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Remark 1.4. By (1.20) and (1.17), we may immediately deduce the following:
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Theorem 1.5. Let n ∈ N0. Then
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so one finds D(0)
0 = 1, D(2)

2 = −2/3, D(4)
4 = 88/15, D(6)

6 = −3056/21, D(8)
8 = 319616/45, D(10)

10 =
−18940160/33, . . . .

By (1.23), and note that
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one may immediately deduce the following Corollary 1.6.

Corollary 1.6. Let n ∈ N0. Then
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Theorem 1.7. Let n ∈ N. Then
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2. Proof of the Theorems

Proof of Theorem 1.1. By (1.4) and (1.3), we have
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By (2.2) and (1.7), we immediately obtain (1.18). This completes the proof of Theorem 1.1.
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Proof of Theorem 1.3. By the usage of Theorem 1.1 and (1.13).

Proof of Theorem 1.5. Note the identity (see [4, page 203])
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By (2.7) and (1.19), we immediately obtain (1.23). This completes the proof of Theorem 1.5.

Proof of Theorem 1.7. By (1.6), we have
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Setting k = 2n + 1, l = 1 in (2.8), and note that D(1)
0 = 1, we have
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By (2.9), (1.19), (1.8), and (1.21), we immediately obtain (1.26).
Setting k = 2n + 2, l = 2 in (2.8), and note that D(2)
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By (2.10), (1.19), (1.8), and (1.21), we immediately obtain (1.27).
Setting k = 2n, l = −1 in (2.8), and note that (1.20) and D

(−1)
2j = 1/(2j + 1), we

immediately obtain (1.18). This completes the proof of Theorem 1.7.

Proof of Theorem 1.8. Setting k = 2n + 2, l = 1 in (2.8), and note (1.19), (1.20), and (1.8), we
immediately obtain (1.29).

Setting k = 2n + 3, l = 2 in (2.8), and note (1.22), (1.20), and (1.8), we immediately
obtain (1.30). This completes the proof of Theorem 1.8.
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