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1. Introduction

Let Bn be the unit ball of C
n, ∂Bn the unit sphere of C

n, H(Bn) the space of all holomorphic
functions in Bn, and H∞ the space of all bounded holomorphic functions on Bn. For f ∈
H(Bn), let

Rf(z) =
n∑

j=1

zj
∂f

∂zj
(z) (1.1)

denote the radial derivative of f ∈ H(Bn).
A positive continuous function μ on the interval [0, 1) is called normal if there is δ ∈

[0, 1) and s and t, 0 < s < t such that

μ(r)
(1 − r)s

is decreasing on [δ, 1), lim
r→ 1

μ(r)
(1 − r)s

= 0,

μ(r)

(1 − r)t
is increasing on [δ, 1), lim

r→ 1

μ(r)

(1 − r)t
= ∞.

(1.2)

If we say that μ : Bn → [0,∞) is normal we will also assume that μ(z) = μ(|z|), z ∈ Bn.
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Let μ : Bn → [0,∞) be normal. The Bloch-type space Bμ = Bμ(Bn) is the space of all
functions f ∈ H(Bn) such that

bμ
(
f
)
= sup

z∈Bn

μ(z)
∣∣Rf(z)

∣∣ < ∞. (1.3)

Bμ is Banach space with the norm ‖f‖Bμ
= |f(0)| + bμ(f). The little Bloch-type space Bμ,0 =

Bμ,0(Bn) consists of all f ∈ H(Bn) such that

lim
|z|→ 1

μ(z)
∣∣Rf(z)

∣∣ = 0. (1.4)

It is easy to see that Bμ,0 is a closed subspace of Bμ. When μ(r) = (1 − r2)α, α ∈ (0,∞), we
obtain so-called α-Bloch spaces and little α-Bloch spaces, respectively, which for α = 1 are
reduced to classical Bloch spaces (see, e.g., [1–4] and the references therein). When μ(r) =
(1 − r2)ln(e/(1 − r2)), we obtain the logarithmic Bloch space LB = LB(Bn) and the little
logarithmic Bloch space LB0 = LB0(Bn), respectively, (see [5]). It was shown that f is a
multiplier of B if and only if f ∈ H∞ and f ∈ LB in [6].

An f ∈ H(Bn) is said to belong to the logarithmic-type space H∞
log, if

∥∥f
∥∥
H∞

log
= sup

z∈Bn

∣∣f(z)
∣∣

ln
(
e/

(
1 − |z|2

)) < ∞. (1.5)

It is easy to see that H∞
log becomes a Banach space under the norm ‖ · ‖H∞

log
, and that the

inclusions H∞ ⊂ B ⊂ H∞
log, hold. For some information of the space H∞

log see [7, 8].
Let g ∈ H(Bn). The extended Cesàro operator on H(Bn) is defined by

Tgf(z) =
∫1

0
f(tz)Rg(tz)

dt

t
, f ∈ H(Bn), z ∈ Bn. (1.6)

This operator is a natural extension of a one-dimensional operator defined in [9]. Some other
results on the one-dimensional operator can be found, for example, in [10, 11] (see also
the references therein). For some extensions of operator (1.6) on the unit disk see [12–16].
On related operators on the unit polydisk see, for example, [17–21] and references therein.
The boundedness and compactness of operator (1.6) between various spaces of holomorphic
functions has been extensively studied recently, see, [17, 22–36]. For some integral operators
on spaces of harmonic functions see, for example, [37] as well as the references therein. A
new extension of operator (1.6) in the unit ball case have been recently introduced by Stević
in [38] (see also [5, 39]).

In this paper, we study the extended Cesàro operator from H∞
log to Bloch-type spaces

Bμ and Bμ,0. Sufficient and necessary conditions for the extended Cesàro operator Tg to be
bounded and compact are given.

Throughout the paper, constants are denoted by C, they are positive and may not be
the same in every occurrence.
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2. Main Results and Proofs

In this section, we give our main results and their proofs. Before stating these results, we need
some auxiliary results, which are incorporated in the lemmas which follows.

Lemma 2.1. Assume that g ∈ H(Bn) and μ : Bn → [0,∞) are normal. Then Tg : H∞
log → Bμ

is compact if and only if Tg : H∞
log → Bμ is bounded and for any bounded sequence (fk)k∈N

in H∞
log

which converges to zero uniformly on compact subsets of Bn as k → ∞, one has ‖Tgfk‖Bμ
→ 0 as

k → ∞.

The proof of Lemma 2.1 follows by standard arguments (see, e.g., Lemmas 3 in [20, 21,
29]). Hence, we omit the details.

Lemma 2.2. Assume that μ : Bn → [0,∞) is normal. A closed set K in Bμ,0 is compact if and only
if it is bounded and satisfies

lim
|z|→ 1

sup
f∈K

μ(z)
∣∣Rf(z)

∣∣ = 0. (2.1)

This lemma can be found in [5], and its proof is similar to the proof of Lemma 1 in
[40]. Hence, it will be omitted.

The following result was proved in [8].

Lemma 2.3. There exist two functions f1, f2 ∈ H∞
log(B1) such that

∣∣f1(z)
∣∣ +

∣∣f2(z)
∣∣ ≥ ln

1
1 − |z| , z ∈ B1. (2.2)

Now we are in a position to state and prove our main results.

Theorem 2.4. Assume that g ∈ H(Bn) and μ : Bn → [0,∞) is normal. Then Tg : H∞
log → Bμ is

bounded if and only if

M = sup
z∈Bn

μ(z)
∣∣Rg(z)

∣∣ ln
e

1 − |z|2
< ∞. (2.3)

Moreover, if Tg : H∞
log → Bμ is bounded then the following asymptotic relation holds

∥∥Tg
∥∥
H∞

log →Bμ
� sup

z∈Bn

μ(z)
∣∣Rg(z)

∣∣ ln
e

1 − |z|2
< ∞. (2.4)

Proof. Assume that (2.3) holds. Then, for any f ∈ H∞
log, we have

μ(z)
∣∣R

(
Tgf

)
(z)

∣∣ = μ(z)
∣∣Rg(z)

∣∣∣∣f(z)
∣∣ ≤ μ(z)

∣∣Rg(z)
∣∣
(
ln

e

1 − |z|2
)
∥∥f

∥∥
H∞

log
. (2.5)
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In addition, it is easy to see that Tgf(0) = 0. Therefore we have

∥∥Tgf
∥∥
Bμ

= sup
z∈Bn

μ(z)
∣∣R

(
Tgf

)
(z)

∣∣ ≤ M
∥∥f

∥∥
H∞

log
(2.6)

as desired.
Conversely, assume that Tg : H∞

log → Bμ is bounded. For a ∈ Bn, set

fa(z) = ln
e

1 − 〈z, a〉 . (2.7)

It is easy to see that fa ∈ H∞
log and supa∈Bn

‖fa‖H∞
log

< ∞.

For any b ∈ Bn, we have

∞ >
∥∥Tgfb

∥∥
Bμ

= sup
z∈Bn

μ(z)
∣∣R

(
Tgfb

)
(z)

∣∣

= sup
z∈Bn

μ(z)
∣∣Rg(z)

∣∣∣∣fb(z)
∣∣

≥ μ(b)
∣∣Rg(b)

∣∣ln
e

1 − |b|2
,

(2.8)

from which (2.3) follows, moreover

sup
z∈Bn

μ(z)
∣∣Rg(z)

∣∣ln
e

1 − |z|2
≤ C

∥∥Tg
∥∥
H∞

log →Bμ
. (2.9)

From (2.6) and (2.9), we see that (2.4) holds. The proof is completed.

Theorem 2.5. Assume that g ∈ H(Bn) and μ : Bn → [0,∞) is normal. Then Tg : H∞
log → Bμ is

compact if and only if

lim
|z|→ 1

μ(z)
∣∣Rg(z)

∣∣ ln
e

1 − |z|2
= 0. (2.10)

Proof. Suppose that Tg : H∞
log → Bμ is compact. Let (zk)k∈N

be a sequence in Bn such that
limk⇀∞|zk| = 1. Set

fk(z) =
(
ln

e

1 − 〈z, zk〉
)2

(
ln

e

1 − |zk|2
)−1

, k ∈ N. (2.11)
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It is easy to see that supk∈N
‖fk‖H∞

log
< ∞. Moreover fk → 0 uniformly on compact subsets of

Bn as k → ∞. By Lemma 2.1,

lim
k→∞

∥∥Tgfk
∥∥
Bμ

= 0. (2.12)

In addition,

∥∥Tgfk
∥∥
Bμ

= sup
z∈Bn

μ(z)
∣∣Rg(z)fk(z)

∣∣ ≥ μ(zk)
∣∣Rg(zk)

∣∣ln
e

1 − |zk|2
, (2.13)

which together with (2.12) implies that

lim
k→∞

μ(zk)
∣∣Rg(zk)

∣∣ln
e

1 − |zk|2
= 0. (2.14)

From the above inequality we see that (2.10) holds.
Conversely, assume that (2.10) holds. From Theorem 2.4 we see that Tg : H∞

log → Bμ

is bounded. In order to prove that Tg : H∞
log → Bμ is compact, according to Lemma 2.1, it

suffices to show that if (fk)k∈N
is a bounded sequence in H∞

log converging to 0 uniformly on
compact subsets of Bn, then

lim
k→∞

∥∥Tgfk
∥∥
Bμ

= 0. (2.15)

Let (fk)k∈N
be a bounded sequence in H∞

log such that fk → 0 uniformly on compact
subsets of Bn as k → ∞. By (2.10) we have that for any ε > 0, there is a constant δ ∈ (0, 1),
such that

μ(z)
∣∣Rg(z)

∣∣ln
e

1 − |zk|2
< ε (2.16)

whenever δ < |z| < 1. Let K = {z ∈ Bn : |z| ≤ δ}. From (2.10) we see that g ∈ Bμ. Equality
(2.16) along with the fact that g ∈ Bμ implies

∥∥Tgfk
∥∥
Bμ

= sup
z∈Bn

μ(z)
∣∣R

(
Tgfk

)
(z)

∣∣

= sup
z∈Bn

μ(z)
∣∣Rg(z)fk(z)

∣∣

≤
(

sup
{z∈Bn:|z|≤δ}

+ sup
{z∈Bn:δ≤|z|<1}

)
μ(z)

∣∣Rg(z)
∣∣∣∣fk(z)

∣∣

≤ ∥∥g
∥∥
Bμ
sup
z∈K

∣∣fk(z)
∣∣ + sup

{z∈Bn:δ≤|z|<1}
μ(z)

∣∣g(z)
∣∣
(
ln

e

1 − |z|2
)
∥∥fk

∥∥
H∞

log

≤ ∥∥g
∥∥
Bμ
sup
z∈K

∣∣fk(z)
∣∣ + Cε.

(2.17)
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Observe that K is a compact subset of Bn, so that

lim
k→∞

sup
z∈K

∣∣fk(z)
∣∣ = 0. (2.18)

Therefore

lim sup
k→∞

∥∥Tgfk
∥∥
Bμ

≤ Cε. (2.19)

Since ε > 0 is an arbitrary positive number it follows that the last limit is equal to zero.
Therefore, Tg : H∞

log → Bμ is compact. The proof is completed.

Remark 2.6. From [24] and Theorems 2.4 and 2.5, we see that Tg : H∞
log → B is bounded if

and only if Tg : B → B is bounded; Tg : H∞
log → B is compact if and only if Tg : B → B is

compact.

Theorem 2.7. Assume that g ∈ H(Bn) and μ : Bn → [0,∞) is normal. Then the following
statements are equivalent:

(a) Tg : H∞
log → Bμ,0 is bounded;

(b) Tg : H∞
log → Bμ,0 is compact;

(c)

lim
|z|→ 1

μ(z)
∣∣Rg(z)

∣∣ ln
e

1 − |z|2
= 0. (2.20)

Proof. (b)⇒(a). This implication is obvious.
(a)⇒(c). Assume that Tg : H∞

log → Bμ,0 is bounded. Now we prove that (2.20) holds.
Note that (2.20) is equivalent with

lim
|z|→ 1

μ(z)
∣∣Rg(z)

∣∣ln
1

1 − |z| = 0. (2.21)

Hence we only need to show that (2.21) holds. This can be done by contradiction. Now
assume that the condition (2.21) does not hold. If it was, then it would exist ε0 > 0 and a
sequence (z(j))j∈N

∈ Bn, such that z(j) → ∂Bn, and

μ
(
z(j)

)∣∣∣Rg
(
z(j)

)∣∣∣ln
1

1 − ∣∣z(j)
∣∣ ≥ ε0 > 0 (2.22)

for sufficiently large j. We may assume that limj→∞z(j) = (1, 0, . . . , 0) and also

1 −
∣∣∣z(j)

∣∣∣ >
1 −

∣∣∣z(j)1

∣∣∣

2
, j ∈ N. (2.23)
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According to Lemma 2.3 we know that there exist two functions h1, h2 ∈ H∞
log(B1) such that

|h1(z1)| + |h2(z1)| ≥ ln
1

1 − |z1| , z1 ∈ B1. (2.24)

Let

F1(z) = h1(z1), F2(z) = h2(z1), z = (z1, . . . , zn) ∈ Bn. (2.25)

Then clearly F1, F2 ∈ H∞
log. By the boundedness of Tg : H∞

log → Bμ,0 we have

TgF1, TgF2 ∈ Bμ,0. (2.26)

On the other hand,

μ
(
z(j)

)(∣∣∣R
(
TgF1

)(
z(j)

)∣∣∣ +
∣∣∣R

(
TgF2

)(
z(j)

)∣∣∣
)

= μ
(
z(j)

)∣∣∣Rg
(
z(j)

)∣∣∣
(∣∣∣F1

(
z(j)

)∣∣∣ +
∣∣∣F2

(
z(j)

)∣∣∣
)

= μ
(
z(j)

)∣∣∣Rg
(
z(j)

)∣∣∣
(∣∣∣h1

(
z
(j)
1

)∣∣∣ +
∣∣∣h2

(
z
(j)
1

)∣∣∣
)

≥ μ
(
z(j)

)∣∣∣Rg
(
z(j)

)∣∣∣ln
1

1 −
∣∣∣z(j)1

∣∣∣

≥ Cμ
(
z(j)

)∣∣∣Rg
(
z(j)

)∣∣∣ln
1

1 − ∣∣z(j)
∣∣

≥ Cε0 > 0

(2.27)

for sufficiently large j. Since z(j) → ∂Bn, from the above inequality we obtain that
TgF1, TgF2 /∈Bμ,0, which is a contradiction.

(c)⇒(b). From (1.5) we have that

μ(z)
∣∣R

(
Tgf

)
(z)

∣∣ ≤ μ(z)
∣∣Rg(z)

∣∣
(
ln

e

1 − |z|2
)
∥∥f

∥∥
H∞

log
. (2.28)

Taking the supremum in the above inequality over all f ∈ H∞
log such that ‖f‖H∞

log
≤ 1, then

letting |z| → 1, by (2.20)we arrive at

lim
|z|→ 1

sup
‖f‖H∞

log
≤1
μ(z)

∣∣R
(
Tg

(
f
))
(z)

∣∣ = 0. (2.29)

From this and by employing Lemma 2.2, we see that Tg : H∞
log → Bμ,0 is compact. The proof

is completed.
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From Theorems 2.4, 2.5, and 2.7, we have the following corollary.

Corollary 2.8. Let g ∈ H(Bn). Then

(1) Tg : H∞
log → LB is bounded if and only if

sup
z∈Bn

(
1 − |z|2

)∣∣Rg(z)
∣∣
(
ln

e

1 − |z|2
)2

< ∞. (2.30)

(2) Tg : H∞
log → LB is compact if and only if Tg : H∞

log → LB0 is bounded if and only if
Tg : H∞

log → LB0 is compact if and only if

lim
|z|→ 1

(
1 − |z|2

)∣∣Rg(z)
∣∣
(
ln

e

1 − |z|2
)2

= 0. (2.31)
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