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1. Introduction

In this paper we study the average reward optimality problem for continuous-time jump
Markov decision processes (MDPs) in general state and action spaces. The corresponding
transition rates are allowed to be unbounded, and the reward rates may have neither upper nor
lower bounds. Here, the approach to deal with this problem is by means of the well-known
policy iteration algorithm (PIA)—also known as Howard’s policy improvement algorithm.

As is well known, the PIA was originally introduced by Howard (1960) in [1] for
finite MDPs (i.e., the state and action spaces are both finite). By using the monotonicity of the
sequence of iterated average rewards, he showed that the PIA convergedwith a finite number
of steps. But, when a state space is not finite, there are well-known counterexamples to show
that the PIA does not converge even though the action space is compact (see [2–4], e.g.,).
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Thus, an interesting problem is to find conditions to ensure that the PIA converges. To do this,
extensive literature has been presented; for instance, see [1, 5–14] and the references therein.
However, most of those references above are concentrated on the case of discrete-time MDPs;
for instance, see [1, 5, 11] for finite discrete-time MDPs, [10, 15] for discrete-time MDPs with
a finite state space and a compact action set, [13] for denumerable discrete-time MDPs, and
[8, 9, 12] for discrete-time MDPs in Borel spaces. For the case of continuous-time models,
to the best of our knowledge, only Guo and Hernández-Lerma [6], Guo and Cao [7], and
Zhu [14] have addressed this issue. In [6, 7, 14], the authors established the average reward
optimality equation and the existence of average optimal stationary policies. However, the
treatments in [6, 7] are restricted to only a denumerable state space. In [14]we used the policy
iteration approach to study the average reward optimality problem for the case of continuous-
time jumpMDPs in general state and action spaces. One of the main contributions in [14] is to
prove the existence of the average reward optimality equation and average optimal stationary
policies. But the PIA is not stated explicitly in [14], and so the value of the average optimal
reward value function and an average optimal stationary policy are also not be computed
in [14]. In this paper we further study the average reward optimality problem for such a
class of continuous-time jump MDPs in general state and action spaces. Our main objective
is to use the PIA to compute or at least approximate (when the PIA takes infinitely many
steps to converge) the value of the average optimal reward value function and an average
optimal stationary policy. To do this, we first use the so-called “drift” condition, the standard
continuity-compactness hypotheses, and the irreducible and uniform exponential ergodicity
condition to establish the average reward optimality equation and present the PIA. Then
under two differently extra conditions we show that the PIA yields the optimal (maximum)
reward, an average optimal stationary policy, and a solution to the average reward optimality
equation. A key feature of this paper is that the PIA provides an approach to compute or at
least approximate (when the PIA takes infinitely many steps to converge) the value of the
average optimal reward value function and an average optimal stationary policy.

The remainder of this paper is organized as follows. In Section 2, we introduce the
control model and the optimal control problem that we are concerned with. After our
optimality conditions and some technical preliminaries as well as the PIA stated in Section 3,
we show that the PIA yields the optimal (maximum) reward, an average optimal stationary
policy, and a solution to the average reward optimality equation in Section 4. Finally, we
conclude in Section 5 with some general remarks.

Notation 1. If X is a Polish space (i.e., a complete and separable metric space), we denote by
B(X) the Borel σ-algebra.

2. The Optimal Control Problem

Thematerial in this section is quite standard (see [14, 16, 17] e.g.,), andwe shall state it briefly.
The control model that we are interested in is continuous-time jumpMDPswith the following
form:

{
S, (A(x) ⊂ A, x ∈ S), q(· | x, a), r(x, a)}, (2.1)

where one has the following.

(i) S is a state space and it is supposed to be a Polish space.
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(ii) A is an action space, which is also supposed to be a Polish space, andA(x) is a Borel
set which denotes the set of available actions at state x ∈ S. The set K := {(x, a) :
x ∈ S, a ∈ A(x)} is assumed to be a Borel subset of S ×A.

(iii) q(· | x, a) denotes the transition rates, and they are supposed to satisfy the following
properties: for each (x, a) ∈ K and D ∈ B(S),

(Q1) D �→ q(D | x, a) is a signed measure on B(S), and (x, a) �→ q(D | x, a) is Borel
measurable on K;

(Q2) 0 ≤ q(D | x, a) < ∞, for all x /∈D ∈ B(S);
(Q3) q(S | x, a) = 0, 0 ≤ −q(x | x, a) < ∞;
(Q4) q(x) := supa∈A(x)(−q(x | x, a)) < ∞, for all x ∈ S.

It should be noted that the property (Q3) shows that the model is conservative, and the
property (Q4) implies that the model is stable.

(iv) r(x, a) denotes the reward rate and it is assumed to be measurable on K. (As r(x, a)
is allowed to take positive and negative values; it can also be interpreted as a cost
rate.)

To introduce the optimal control problem that we are interested in, we need to
introduce the classes of admissible control policies.

Let Πm be the family of function πt(B | x) such that

(i) for each x ∈ S and t ≥ 0, B → πt(B | x) is a probability measure on B(A(x)),

(ii) for each x ∈ S and B ∈ B(A(x)), t → πt(B | x) is a Borel measurable function on
[0,∞).

Definition 2.1. A family π = (πt, t ≥ 0) ∈ Πm is said to be a randomized Markov policy. In
particular, if there exists a measurable function f on S with f(x) ∈ A(x) for all x ∈ S, such
that πt({f(x)} | x) ≡ 1 for all t ≥ 0 and x ∈ S, then π is called a (deterministic) stationary
policy and it is identified with f . The set of all stationary policies is denoted by F.

For each π = (πt, t ≥ 0) ∈ Πm, we define the associated transition rates q(D | x, πt) and
the reward rates r(x, πt), respectively, as follows.

For each x ∈ S, D ∈ B(S) and t ≥ 0,

q(D | x, πt) :=
∫

A(x)
q(D | x, a)πt(da | x),

r(x, πt) :=
∫

A(x)
r(x, a)πt(da | x).

(2.2)

In particular, we will write q(D | x, πt) and r(x, πt) as q(D | x, f) and r(x, f), respectively,
when π := f ∈ F.

Definition 2.2. A randomized Markov policy is said to be admissible if q(D | x, πt) is
continuous in t ≥ 0, for all D ∈ B(S) and x ∈ S.

The family of all such policies is denoted by Π. Obviously, Π ⊇ F and so that
Π is nonempty. Moreover, for each π ∈ Π, Lemma 2.1 in [16] ensures that there exists
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a Q-process—that is, a possibly substochastic and nonhomogeneous transition function
Pπ(s, x, t,D) with transition rates q(D | x, πt). As is well known, such a Q-process is not
necessarily regular; that is, we might have Pπ(s, x, t, S) < 1 for some state x ∈ S and t ≥ s ≥ 0.
To ensure the regularity of aQ-process, we shall use the following so-called “drift” condition,
which is taken from [14, 16–18].

Assumption A. There exist a (measurable) function w1 ≥ 1 on S and constants b1 ≥ 0, c1 > 0,
M1 > 0 andM > 0 such that

(1)
∫
Sw1(y)q(dy | x, a) ≤ −c1w1(x) + b1 for all (x, a) ∈ K;

(2) q(x) ≤ M1w1(x) for all x ∈ S, with q(x) as in (Q4);

(3) |r(x, a)| ≤ Mw1(x) for all (x, a) ∈ K.

Remark 2.1 in [16] gives a discussion of Assumption A. In fact, Assumption A(1)
is similar to conditions in the previous literature (see [19, equation (2.4)] e.g.,), and it is
together with Assumption A(3) used to ensure the finiteness of the average expected reward
criterion (2.5) below. In particular, Assumption A(2) is not required when the transition rate
is uniformly bounded, that is, supx∈Sq(x) < ∞.

For each initial state x ∈ S at time s ≥ 0 and π ∈ Π, we denote by Pπ
s,x and Eπ

s,x the
probability measure determined by Pπ(s, x, t,D) and the corresponding expectation operator,
respectively. Thus, for each π ∈ Π by [20, pages 107–109] there exists a Borel measureMarkov
process {xπ

t } (we shall denote {xπ
t } by {xt} for simplicity when there is no risk of confusion)

with value in S and the transition function Pπ(s, x, t,D), which is completely determined by
the transition rates q(D | x, πt). In particular, if s = 0, we write Eπ

0,x and Pπ
0,x as Eπ

x and Pπ
x ,

respectively.
If Assumption A holds, then from [17, Lemma 3.1] we have the following facts.

Lemma 2.3. Suppose that Assumption A holds. Then the following statements hold.

(a) For each x ∈ S, π ∈ Π and t ≥ 0,

Eπ
x [w1(xt)] ≤ e−c1tw1(x) +

b1
c1

, (2.3)

where the function w1 and constants b1 and c1 are as in Assumption A.

(b) For each u ∈ Bw1(S), x ∈ S and π ∈ Π,

lim
t→∞

Eπ
x [u(xt)]

t
= 0. (2.4)

For each x ∈ S and π ∈ Π, the expected average reward V (x, π) as well as the
corresponding optimal reward value functions V ∗(x) are defined as

V (x, π) := lim inf
T →∞

∫T
0 [E

π
x r(xt, πt)]dt

T
, V ∗(x) := sup

π∈Π
V (x, π). (2.5)

As a consequence of Assumption A(3) and Lemma 2.3(a), the expected average
reward V (x, π) is well defined.
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Definition 2.4. A policy π∗ ∈ Π is said to be average optimal if V (x, π∗) = V ∗(x) for all x ∈ S.

The main goal of this paper is to give conditions for ensuring that the policy iteration
algorithm converges.

3. Optimality Conditions and Preliminaries

In this section we state conditions for ensuring that the policy iteration algorithm (PIA)
converges and give some preliminary lemmas that are needed to prove our main results.

To guarantee that the PIA converges, we need to establish the average reward
optimality equation. To do this, in addition to Assumption A, we also need two more
assumptions. The first one is the following so-called standard continuity-compactness
hypotheses, which is taken from [14, 16–18]. Moreover, it is similar to the version for discrete-
timeMDPs; see, for instance, [3, 8, 21–23] and their references. In particular, Assumption B(3)
is not required when the transition rate is uniformly bounded, since it is only used to ensure
the applying of the Dynkin formula.

Assumption B. For each x ∈ S,

(1) A(x) is compact;

(2) r(x, a) is continuous in a ∈ A(x), and the function
∫
Su(y)q(dy | x, a) is continuous

in a ∈ A(x) for each bounded measurable function u on S, and also for u := w1 as
in Assumption A;

(3) there exist a nonnegative measurable functionw2 on S, and constants b2 ≥ 0, c2 > 0
andM2 > 0 such that

q(x)w1(x) ≤ M2w2(x),
∫

S

w2
(
y
)
q
(
dy | x, a) ≤ c2w2(x) + b2 (3.1)

for all (x, a) ∈ K.

The second one is the irreducible and uniform exponential ergodicity condition. To state
this condition, we need to introduce the concept of the weighted norm used in [8, 14, 22]. For
the function w1 ≥ 1 in Assumption A, we define the weighted supremum norm ‖ · ‖w1

for
real-valued functions u on S by

‖u‖w1
:= sup

x∈S

[
w1(x)−1|u(x)|

]
(3.2)

and the Banach space

Bw1(S) :=
{
u : ‖u‖w1

< ∞}
. (3.3)

Definition 3.1. For each f ∈ F, the Markov process {xt}, with transition rates q(· | x, f), is said
to be uniform w1-exponentially ergodic if there exists an invariant probability measure μf on S
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such that

sup
f∈F

∣
∣
∣E

f
x[u(xt)] − μf(u)

∣
∣
∣ ≤ Re−ρt‖u‖w1

w1(x) (3.4)

for all x ∈ S, u ∈ Bw1(S) and t ≥ 0, where the positive constants R and ρ do not depend on f ,
and where μf(u) :=

∫
Su(y)μf(dy).

Assumption C. For each f ∈ F, the Markov process {xt}, with transition rates q(· | x, f), is
uniform w1-exponentially ergodic and λ-irreducible, where λ is a nontrivial σ-finite measure
on B(S) independent of f .

Remark 3.2. (a)Assumption C is taken from [14] and it is used to establish the average reward
optimality equation. (b) Assumption C is similar to the uniform w1-exponentially ergodic
hypothesis for discrete-time MDPs; see [8, 22], for instance. (c) Some sufficient conditions as
well as examples in [6, 16, 19] are given to verify Assumption C. (d) Under Assumptions A,
B, and C, for each f ∈ F, the Markov process {xt}, with the transition rate q(· | x, f), has a
unique invariant probability measure μf such that

∫

S

μf(dx)q
(
D | x, f) = 0 for each D ∈ B(S). (3.5)

(e) As in [9], for any given stationary policy f ∈ F, we shall also consider two functions
in Bw1(S) to be equivalent and do not distinguish between equivalent functions, if they are
equal μf -almost everywhere (a.e.). In particular, if u (x) = 0 μf -a.e. holds for all x ∈ S, then
the function u will be taken to be identically zero.

Under Assumptions A, B, and C, we can obtain several lemmas, which are needed to
prove our main results.

Lemma 3.3. Suppose that Assumptions A, B, and C hold, and let f ∈ F be any stationary policy.
Then one has the following facts.

(a) For each x ∈ S, the function

hf(x) :=
∫∞

0

[
E
f
x

(
r
(
xt, f

)) − g
(
f
)]
dt (3.6)

belongs to Bw1(S), where g(f) :=
∫
Sr(y, f)μf(dy) and w1 is as in Assumption A.

(b) (g(f), hf) satisfies the Poisson equation

g
(
f
)
= r

(
x, f

)
+
∫

S

hf

(
y
)
q
(
dy | x, f) ∀x ∈ S, (3.7)

for which the μf -expectation of hf is zero, that is,

μf

(
hf

)
:=

∫

S

hf

(
y
)
μf

(
dy

)
= 0. (3.8)
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(c) For all x ∈ S, |V (x, f)| ≤ Mb1/c1.

(d) For all x ∈ S, |g(f)| = |V (x, f)| ≤ Mb1/c1.

Proof. Obviously, the proofs of parts (a) and (b) are from [14, Lemma 3.2]. We now prove (c).
In fact, from the definition of V (x, f) in (2.5), Assumption A(3), and Lemma 2.3(a) we have

∣
∣V

(
x, f

)∣∣ ≤ lim inf
T →∞

∫T
0M

[
e−c1tw1(x) + b1/c1

]
dt

T
=

Mb1
c1

, (3.9)

which gives (c). Finally, we verify part (d). Obviously, by Assumption A(3) and Assumption
C we can easily obtain g(f) = V (x, f) for all x ∈ S, which together with part (c) yields the
desired result.

The next result establishes the average reward optimality equation. For the proof, see [14,
Theorem 4.1].

Theorem 3.4. Under Assumptions A, B, and C, the following statements hold.

(a) There exist a unique constant g∗, a function h∗ ∈ Bw1(S), and a stationary policy f∗ ∈ F
satisfying the average reward optimality equation

g∗ = max
a∈A(x)

{
r(x, a) +

∫

S

h∗(y
)
q
(
dy | x, a)

}
(3.10)

= r
(
x, f∗) +

∫

S

h∗(y
)
q
(
dy | x, f∗) ∀x ∈ S. (3.11)

(b) g∗ = supπ∈ΠV (x, π) for all x ∈ S.

(c) Any stationary policy f ∈ F realizing the maximum of (3.10) is average optimal, and so
f∗ in (3.11) is average optimal.

Then, under Assumptions A, B, and C we shall present the PIA that we are concerned
with. To do this, we first give the following definition.

For any real-valued function u on S, we define the dynamic programming operator T
as follows:

Tu(x) := max
a∈A(x)

{
r(x, a) +

∫

S

u
(
y
)
q
(
dy | x, a)

}
∀x ∈ S. (3.12)

Algorithm A (policy iteration).

Step 1 (initialization). Take n = 0 and choose a stationary policy fn ∈ F.

Step 2 (policy evaluation). Find a constant g(fn) and a real-valued function hfn on Ssatisfying
the Poisson equation (3.7), that is,

g
(
fn
)
= r

(
x, fn

)
+
∫

S

hfn

(
y
)
q
(
dy | x, fn

) ∀x ∈ S. (3.13)
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Obviously, by (3.12) and (3.13)we have

g
(
fn
) ≤ Thfn(x) = max

a∈A(x)

{
r(x, a) +

∫

S

hfn

(
y
)
q
(
dy | x, a)

}
∀x ∈ S. (3.14)

Step 3 (policy improvement). Set fn+1(x) := fn(x) for all x ∈ S for which

r
(
x, fn

)
+
∫

S

hfn

(
y
)
q
(
dy | x, fn

)
= Thfn(x); (3.15)

otherwise (i.e., when (3.15) does not hold), choose fn+1(x) ∈ A(x) such that

r
(
x, fn+1

)
+
∫

S

hfn

(
y
)
q
(
dy | x, fn+1

)
= Thfn(x). (3.16)

Step 4. If fn+1 satisfies (3.15) for all x ∈ S, then stop (because, from Proposition 4.1 below, fn+1
is average optimal); otherwise, replace fn with fn+1 and go back to Step 2.

Definition 3.5. The policy iteration Algorithm A is said to converge if the sequence {g(fn)}
converges to the average optimal reward value function in (2.5), that is,

lim
n→∞

g
(
fn
)
= V ∗(x) = g∗ ∀x ∈ S, (3.17)

where g∗ is as in Theorem 3.4.

Obviously, under Assumptions A, B, and C from Proposition 4.1 we see that the
sequence {g(fn)} is nondecreasing; that is, g(fn) ≤ g(fn+1) holds for all n ≥ 1. On the other
hand, by Lemma 3.3(d) we see that {g(fn)} is bounded. Therefore, there exists a constant g
such that

lim
n→∞

g
(
fn
)
= g. (3.18)

Noting that, in general, we have g ≤ g∗. In order to ensure that the policy iteration Algorithm
A converges, that is, g = g∗, in addition to Assumptions A, B, and C, we need an additional
condition (Assumption D (or D′) below).

Assumption D. There exist a subsequence {hfm} of {hfn} and a measurable function h on S
such that

lim
m→∞

hfm(x) = h(x) ∀x ∈ S. (3.19)

Remark 3.6. (a) Assumption D is the same as the hypothesis H1 in [9], and Remark 4.6 in [9]
gives a detailed discussion of Assumption D. (b) In particular, Assumption D trivially holds
when the state space S is a countable set (with the discrete topology). (c)When the state space
S is not countable, if the sequence {hfn} is equicontinuous, Assumption D also holds.
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Assumption D’. There exists a stationary policy f∗ ∈ F such that

lim
n→∞

fn(x) = f∗(x) ∀x ∈ S. (3.20)

Remark 3.7. Assumption D′ is the same as the hypothesis H2 in [9]. Obviously, Assumption
D′ trivially holds when the state space S is a countable set (with the discrete topology) and
A(x) is compact for all x ∈ S.

Finally, we present a lemma (Lemma 3.8) to conclude this section, which is needed to
prove our Theorem 4.2. For a proof, see [24, Proposition 12.2], for instance.

Lemma 3.8. Suppose thatA(x) is compact for all x ∈ S, and let {fn} be a stationary policy sequence
in F. Then there exists a stationary policy f ∈ F such that f(x) ∈ A(x) is an accumulation point of
{fn(x)} for each x ∈ S.

4. Main Results

In this section we will present our main results, Theorems 4.2-4.3. Before stating them, we
first give the following proposition, which is needed to prove our main results.

Proposition 4.1. Suppose that Assumptions A, B, and C hold, and let f ∈ F be an arbitrary
stationary policy. If any policy f ∈ F such that

Thf(x) = r
(
x, f

)
+
∫

S

hf

(
y
)
q
(
dy | x, f

)
∀x ∈ S, (4.1)

then (a)

g
(
f
) ≤ g

(
f
)
; (4.2)

(b) if g(f) = g(f), then

hf(·) = hf(·) + k for some constant k; (4.3)

(c) if f is average optimal, then

hf(·) = h∗(·) + k′ for some constant k′, (4.4)

where h∗ is as in Theorem 3.4;

(d) if g(f) = g(f), then (g(f), hf) satisfies the average reward optimality equation (3.10),
and so f is average optimal.
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Proof. (a) Combining (3.7) and (4.1)we have

g
(
f
) ≤ r

(
x, f

)
+
∫

S

hf

(
y
)
q
(
dy | x, f

)
∀x ∈ S. (4.5)

Obviously, taking the integration on both sides of (4.5) with respect to μf and by
Remark 3.2(d) we obtain the desired result.

(b) If g(f) = g(f), we may rewrite the Poisson equation for f as

g
(
f
)
= r

(
x, f

)
+
∫

S

hf

(
y
)
q
(
dy | x, f

)
∀x ∈ S. (4.6)

Then, combining (4.5) and (4.6) we obtain

∫

S

[
hf

(
y
) − hf

(
y
)]
q
(
dy | x, f

)
≥ 0 ∀x ∈ S. (4.7)

Thus, from (4.7) and using the Dynkin formula we get

E
f
x

[
hf(xt) − hf(xt)

]
≥ hf(x) − hf(x) ∀x ∈ S. (4.8)

Letting t → ∞ in (4.8) and by Assumption C we have

μf

(
hf − hf

)
≥ hf(x) − hf(x) ∀x ∈ S. (4.9)

Now take k := supx∈S[hf(x) − hf(x)]. Then take the supremum over x ∈ S in (4.9) to obtain

k ≥ μf

(
hf − hf

)
≥ k, (4.10)

and so

μf

(
hf − hf

)
= k, (4.11)

which implies

hf(·) = hf(·) + k μf -a.e. (4.12)

Hence, from Remark 3.2(e) and (4.12) we obtain (4.3).
(c) Since f is average optimal, by Definition 2.4 and Theorem 3.4(b)we have

g
(
f
)
= g∗ = sup

π∈Π
V (x, π) ∀x ∈ S. (4.13)
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Hence, the Poisson equation (3.7) for f becomes

g∗ = r
(
x, f

)
+
∫

S

hf

(
y
)
q
(
dy | x, f) ∀x ∈ S. (4.14)

On the other hand, by (3.10)we obtain

g∗ = max
a∈A(x)

{
r(x, a) +

∫

S

h∗(y
)
q
(
dy | x, a)

}

≥ r
(
x, f

)
+
∫

S

h∗(y
)
q
(
dy | x, f) ∀x ∈ S,

(4.15)

which together with (4.14) gives

∫

S

[
hf

(
y
) − h∗(y

)]
q
(
dy | x, f) ≥ 0 ∀x ∈ S. (4.16)

Thus, as in the proof of part (b), from (4.16)we see that (4.4) holds with k′ := supx∈S[hf(x) −
h∗(x)].

(d) By (3.7), (4.1), (4.3), and Q3 we have

g
(
f
) ≤ Thf(x)

= r
(
x, f

)
+
∫

S

[
hf

(
y
)
+ k

]
q
(
dy | x, f

)

= r
(
x, f

)
+
∫

S

hf

(
y
)
q
(
dy | x, f

)

= g
(
f
)
= g

(
f
) ∀x ∈ S,

(4.17)

which gives

g
(
f
)
= Thf(x) ∀x ∈ S, (4.18)

that is,

g
(
f
)
= max

a∈A(x)

{
r(x, a) +

∫

S

hf

(
y
)
q
(
dy | x, a)

}
∀x ∈ S. (4.19)

Thus, as in the proof of Theorem 4.1 in [14], from Lemma 2.3(b), (3.7), and (4.19) we show
that f is average optimal, that is, g(f) = g∗. Hence, we may rewrite (4.19) as

g∗ = max
a∈A(x)

{
r(x, a) +

∫

S

hf

(
y
)
q
(
dy | x, a)

}
∀x ∈ S. (4.20)

Thus, from (4.20) and part (c) we obtain the desired conclusion.
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Theorem 4.2. Suppose that Assumptions A, B, C, and D hold, then the policy iteration Algorithm A
converges.

Proof. From Lemma 3.3(a) we see that the function hfn in (3.13) belongs to Bw1(S), and so
the function h in (3.19) also belongs to Bw1(S). Now let {hfn} be as in Assumption D, and let
{hfm} be the corresponding subsequence of {hfn}. Then by Assumption D we have

lim
m→∞

hfm(x) = h(x) ∀x ∈ S. (4.21)

Moreover, from Lemma 3.8 there is a stationary policy f ∈ F such that f(x) ∈ A(x) is an
accumulation point of {fm(x)} for each x ∈ S; that is, for each x ∈ S there exists a subsequence
{mi} (depending on the state x) such that

lim
i→∞

fmi(x) = f(x) ∀x ∈ S. (4.22)

Also, by (3.13)we get

g
(
fmi

)
= r

(
x, fmi

)
+
∫

S

hfmi

(
y
)
q
(
dy | x, fmi

) ∀x ∈ S. (4.23)

On the other hand, take any real-valued measurable functionm on S such thatm(x) > q(x) ≥
0 for all x ∈ S. Then, for each x ∈ S and a ∈ A(x), by the properties (Q1)–(Q3) we can define
P(· | x, a) as follows:

P(D | x, a) := q(D | x, a)
m(x)

+ ID(x) ∀D ∈ B(S). (4.24)

Obviously, P(· | x, a) is a probability measure on S. Thus, combining (4.23) and (4.24) we
have

g
(
fmi

)
= r

(
x, fmi

)
+
∫

S

hfmi

(
y
)
P
(
dy | x, fmi

) ∀x ∈ S. (4.25)

Letting i → ∞ in (4.25), then by (3.18), (4.21), and (4.22) as well as the “extension of Fatou’s
lemma” 8.3.7 in [8]we obtain

g = r
(
x, f

)
+
∫

S

h
(
y
)
q
(
dy | x, f) ∀x ∈ S. (4.26)

To complete the proof of Theorem 4.2, by Proposition 4.1(d)we only need to prove that g, h,
and f satisfy the average reward optimality equation (3.10) and (3.11), that is,

g = Th(x) = r
(
x, f

)
+
∫

S

h
(
y
)
q
(
dy | x, f) ∀x ∈ S. (4.27)
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Obviously, from (4.26), and the definition of T in (3.12)we obtain

g ≤ Th(x) ∀x ∈ S. (4.28)

The rest is to prove the reverse inequality, that is,

g ≥ Th(x) ∀x ∈ S. (4.29)

Obviously, by (3.19) we have

lim
i→∞

[
hfmi

(x) − hfmi−1 (x)
]
= 0 ∀x ∈ S. (4.30)

Moreover, from Lemma 3.3(a) again we see that there exists a constant k such that

∥∥hfn

∥∥
w1

≤ k ∀n ≥ 1, (4.31)

which gives

∥∥∥hfmi
− hfmi−1

∥∥∥
w1

≤
∥∥∥hfmi

∥∥∥
w1

+
∥∥∥hfmi−1

∥∥∥
w1

≤ 2k. (4.32)

Thus, by (4.24), (4.31), (4.32) and the “extension of Fatou’s lemma” 8.3.7 in [8] we obtain

lim
i→∞

∫

S

[
hfmi

(
y
) − hfmi−1

(
y
)]
P
(
dy | x, fmi

)
= 0 ∀x ∈ S, (4.33)

which implies

lim
i→∞

∫

S

[
hfmi

(
y
) − hfmi−1

(
y
)]
q
(
dy | x, fmi

)
= 0 ∀x ∈ S. (4.34)

Also, from (3.7), (3.16), and the definition of T in (3.12)we get

g
(
fmi

)
= r

(
x, fmi

)
+
∫

S

hfmi

(
y
)
q
(
dy | x, fmi

)

= Thfmi−1 (x) +
∫

S

[
hfmi

(
y
) − hfmi−1

(
y
)]
q
(
dy | x, fmi

)

≥ r(x, a) +
∫

S

hfmi−1

(
y
)
q
(
dy | x, a)

+
∫

S

[
hfmi

(
y
) − hfmi−1

(
y
)]
q
(
dy | x, fmi

) ∀x ∈ S, a ∈ A(x).

(4.35)
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Letting i → ∞ in (4.35), then by (3.18), (4.21), (4.22), (4.34), and the “extension of Fatou’s
lemma 8.3.7” in [8]we obtain

g ≥ r(x, a) +
∫

S

h
(
y
)
q
(
dy | x, a) ∀x ∈ S, a ∈ A(x), (4.36)

which gives

g ≥ max
a∈A(x)

{
r(x, a) +

∫

S

h
(
y
)
q
(
dy | x, a)

}
= Th(x) ∀x ∈ S. (4.37)

This completes the proof of Theorem 4.2.

Theorem 4.3. Suppose that Assumptions A, B, C, and D′ hold, then the policy iteration Algorithm
A converges.

Proof. To prove Theorem 4.3, from the proof of Theorem 4.2 we only need to verify that (4.26)
and (4.27) hold true for f∗ as in Assumption D′ and some function h in Bw1(S). To do this, we
first define two functions h, h′ in Bw1(S) as follows:

h(x) := lim sup
n→∞

hfn(x), h′(x) := lim inf
n→∞

hfn(x) ∀x ∈ S. (4.38)

Then by (3.7)we get

g
(
fn
)
= r

(
x, fn

)
+
∫

S

hfn

(
y
)
q
(
dy | x, fn

) ∀x ∈ S, (4.39)

which together with (4.24) yields

g
(
fn
)
= r

(
x, fn

)
+
∫

S

hfn

(
y
)
P
(
dy | x, fn

) ∀x ∈ S. (4.40)

Applying the “extension of Fatou’s Lemma 8.3.7” in [8] and letting n → ∞ in (4.40), then by
(3.18), (4.38) and Assumption D′ we obtain

g ≤ r
(
x, f∗) +

∫

S

h
(
y
)
P
(
dyx, f∗) ∀x ∈ S,

g ≥ r
(
x, f∗) +

∫

S

h′(y
)
P
(
dy | x, f∗) ∀x ∈ S,

(4.41)
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which implies

g ≤ r
(
x, f∗) +

∫

S

h
(
y
)
q
(
dy | x, f∗) ∀x ∈ S, (4.42)

g ≥ r
(
x, f∗) +

∫

S

h′(y
)
q
(
dy | x, f∗) ∀x ∈ S. (4.43)

Thus, combining (4.42) and (4.43)we get

∫

S

[
h
(
y
) − h′(y

)]
q
(
dy | x, f∗) ≥ 0 ∀x ∈ S. (4.44)

Then, from the proof of Proposition 4.1(b) and (4.44) we have

h(·) = h′(·) + k′′ for some constant k′′, (4.45)

which together with (4.42), (4.43), and the definition of T in (3.12) gives

g = r
(
x, f∗) +

∫

S

h
(
y
)
q
(
dy | x, f∗) ≤ Th(x) ∀x ∈ S. (4.46)

The remainder is to prove the reverse inequality, that is,

g ≥ Th(x) = max
a∈A(x)

{
r(x, a) +

∫

S

h
(
y
)
q
(
dy | x, a)

}
∀x ∈ S. (4.47)

Obviously, by (3.16) and (4.24)we get

r
(
x, fn+1

)

m(x)
+
∫

S

hfn

(
y
)
P
(
dy | x, fn+1

) ≥ r(x, a)
m(x)

+
∫

S

hfn

(
y
)
P
(
dy | x, a) ∀x ∈ S, a ∈ A(x).

(4.48)

Then, letting n → ∞ in (4.48), by (4.38), Assumption D′, and the “extension of Fatou’s
Lemma 8.3.7” in [8], we obtain

r
(
x, f∗)

m(x)
+
∫

S

h
(
y
)
P
(
dy | x, f∗) ≥ r(x, a)

m(x)
+
∫

S

h
(
y
)
P
(
dy | x, a) ∀x ∈ S, a ∈ A(x),

(4.49)

which implies

r
(
x, f∗) +

∫

S

h
(
y
)
q
(
dy | x, f∗) ≥ r(x, a) +

∫

S

h
(
y
)
q
(
dy | x, a) ∀x ∈ S, a ∈ A(x), (4.50)
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and so

r
(
x, f∗) +

∫

S

h
(
y
)
q
(
dy | x, f∗) ≥ max

a∈A(x)

{
r(x, a) +

∫

S

h
(
y
)
q
(
dy | x, a)

}
∀x ∈ S. (4.51)

Thus, combining (4.46) and (4.51)we see that (4.47) holds. And so Theorem 4.3 follows.

5. Concluding Remarks

In the previous sections we have studied the policy iteration algorithm (PIA) for average
reward continuous-time jump MDPs in Polish spaces. Under two slightly different sets of
conditions we have shown that the PIA yields the optimal (maximum) reward, an average
optimal stationary policy, and a solution to the average reward optimality equation. It should
be mentioned that the approach presented here is different from the policy iteration approach
used in [14] because the PIA in this paper provides an approach to compute or at least
approximate (when the PIA takes infinitely many steps to converge) the value of the average
optimal reward value function and an average optimal stationary policy.
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