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1. Introduction

In the recent years, dynamics of the Cohen-Grossberg neural networks (CGNNs) [1] has
been extensively studied because of their immense potentials of application perspective
in different areas such as pattern recognition, parallel computing, associative memory,
combinational optimization, and signal and image processing [2–6]. The authors of [7–11]
have studied the stability of equilibrium point or periodic solution of CGNNs with time-
varying delays due to the transmission delays during the communication between neurons
which will affect the dynamical behavior of neural networks. Considering the distant past
also has influence on the recent behavior of the state, the authors of [12] investigated the
stability of equilibrium point for CGNNs with continuously distributed delays. Impulsive
effects are also likely to exist in the neural networks, that is, the state of the networks is subject
to instantaneous perturbations and experiences abrupt change at certain moments. Authors
of [13–16] have studied the stability of equilibrium point for impulsive delay CGNNs.
However, the activation functions of CGNNs in [12–16] are bounded, and the restrictions
on impulses in [13, 17] are very strong, which limit CGNNs’ applications [7].
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In theory and applications, global stability of periodic solution of CGNNs is of great
importance since the global stability of equilibrium points can be considered as a special
case of periodic solution with random period. Moreover, CGNNs model is one of the most
popular and typical neural network models. Some other models, such as Hopfield-type
neural networks, cellular neural networks, and bidirectional associative memory neural
networks, are special cases of the model [14]. To our best knowledge, few authors have
considered the existence and global exponential stability of periodic solutions for CGNNs
with mixed delays and impulses. Therefore, it is necessary to consider the existence and
global exponential stability of periodic solution for impulsive CGNNs with mixed delays.

The main methods used in this paper are Leray-Schauder’s fixed point theorem, differ-
ential inequality techniques, and Lyapunov functional. Several new sufficient conditions are
obtained for the existence and global exponential stability of periodic solution for impulsive
CGNNs with mixed delays. Moreover, we discharge some restrictive conditions on the
activation functions of the neurons, such as boundedness, monotonicity, and differentiable,
we offer the precise convergence index, and give the weak conditions on impulses.

The rest of this paper is organized as follows. In Section 2, we introduce some notations
and definitions and state some preliminary results needed in later sections. We then study, in
Section 3, the existence of periodic solutions of impulsive CGNNs with mixed delays by using
Leray-Schauder’s fixed point theorem. In Section 4, with the help of Lyapunov functional, we
will derive sufficient conditions for the global exponential stability of the periodic solution. At
last, an example and its numerical simulations are employed to illustrate the feasible results
of this paper.

2. Preliminaries

Consider the following CGNNs with mixed delays and impulses:

u′i(t) = −ai
(
ui(t)

)
{

bi
(
ui(t)

)
−

n∑

j=1

[
bij(t)fj

(
uj
(
t − τij(t)

))

+ cij(t)
∫ t

−∞
kij(t − s)gj

(
uj(s)

)
ds

]
+ Ii(t)

}

, t /= tk,

Δui
(
tk
)
= ui

(
t+k
)
− ui

(
t−k
)
= γikui

(
tk
)
, i = 1, 2, . . . , n,

(2.1)

where Δui(tk) (i = 1, 2, . . . , n) are the impulses at moments tk, ui(t) is left continuous at time
tk, and the right limit exists at tk, that is, ui(tk) = ui(t−k) and ui(t+k) exist and 0 < t1 < t2 < · · · is
a strictly increasing sequence such that limk→+∞tk = +∞; ui(t) is the state of neuron; ai(ui(t))
and bi(ui(t)) represent an amplification function at time t and an appropriately behaved
function at time t, respectively; B = (bij(t))n×n and C = (cij(t))n×n are connection matrices;
I(t) = (I1(t), I2(t), . . . , In(t))

T is the input function; and g(u) = (g1(u1), g2(u2), . . . , gn(un))
T

are the activation functions of the neurons.
Throughout this paper, we assume that

(H1) bij(t), cij(t), τij(t) ≥ 0, Ii(t) are continuous ω-periodic functions, ω > 0 is a constant,
i, j = 1, 2, . . . , n;

(H2) ai(u) is continuous and there exist positive constants ai and ai such that 0 < ai ≤
ai(u) ≤ ai, u ∈ R, i = 1, 2, . . . , n;
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(H3) there is a positive constant li such that b′i(u) ≥ li, b′i(u) denotes the derivative of
bi(u), u ∈ R, and bi(0) = 0, i = 1, 2, . . . , n;

(H4) {γik} and {tk} are ω-periodic sequence, that is, there exists a positive constant p
such that t(k+p) = tk +ω, γi(k+p) = γik, i = 1, 2, . . . , n;

(H5) fj , gj ∈ C(R,R), there are positive constants Lfj > 0, Lgj > 0, such that |gj(x)−gj(y)| ≤
L
g

j |x − y|, |fj(x) − fj(y)| ≤ L
f

j |x − y| ∀x, y ∈ R, j = 1, 2, . . . , n;

(H6) the delay kernels kij : [0,+∞) → R are continuous, integrable and there exist
positive constants βij such that

∫+∞

0

∣
∣kij(s)

∣
∣ds ≤ βij , i, j = 1, 2, . . . , n; (2.2)

(H7)

max
1≤i≤n

sup
0≤t≤ω

{∑n
j=1aj

[∣∣bij(t)
∣∣L

f

j +
∣∣cij(t)

∣∣L
g

j βij
]

qi

}

= θ < 1,

max
1≤i≤n

{

θ +
ai

a i
(
1 − e−qiω

)
p∑

k=1

∣∣bik
∣∣
}

< 1,

(2.3)

where qi = aili;

(H8) there exists a constant α0 > 0 such that

∫+∞

0

∣∣kij(s)
∣∣eα0sds < +∞, i, j = 1, 2, . . . , n. (2.4)

From (H2), the antiderivative of 1/ai(ui) exists. We choose an antiderivative hi(ui) of
1/ai(ui) that satisfies hi(0) = 0. Obviously, (d/dui)hi(ui) = 1/ai(ui). By ai(ui) > 0, we obtain
that hi(ui) is strictly monotone increasing about ui. In view of derivative theorem for inverse
function, the inverse function h−1

i (ui) of hi(ui) is differential and (d/dui)h−1
i (ui) = ai(ui). By

(H3), composition function bi(h−1
i (z)) is differential. Denote xi(t) = hi(ui(t)), it is easy to see

that x′i(t) = u′i(t)/ai(ui(t)) and ui(t) = h−1
i (xi(t)). Substituting these equalities into system

(2.1), we get

x′i(t) = −bi
(
h−1
i

(
xi(t)

))

+
n∑

j=1

[
bij(t)fj

(
h−1
j

(
xj
(
t − τij(t)

)))

+ cij(t)
∫ t

−∞
kij(t − s)gj

(
h−1
j

(
xj(s)

))
ds

]
− Ii(t), t /= tk,

Δxi
(
tk
)
= hi

((
1 + γik

)
h−1
i

(
xi
(
tk
)))
− xi

(
tk
) .= ri

(
xi
(
tk
))
, i = 1, 2, . . . , n,

(2.5)
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which can be rewritten as

x′i(t) = −di
(
xi(t)

)
xi(t) +

n∑

j=1

[
bij(t)fj

(
h−1
j

(
xj
(
t − τij(t)

)))

+ cij(t)
∫ t

−∞
kij(t − s)gj

(
h−1
j

(
xj(s)

))
ds

]
− Ii(t), t /= tk,

Δxi
(
tk
)
= ri

(
xi
(
tk
))
, i = 1, 2, . . . , n,

(2.6)

where di(xi(t)) � bi(h−1
i (z))′|z=ξi , bi(h−1

i (z))′|z=ξi denote the derivative of bi(h−1
i (z)) at point

z = ξi, z ∈ R, ξi is between 0 and xi(t).
The existence and global exponential stability of periodic solution for system (2.1) are

equivalent to the existence and global exponential stability of periodic solution for system
(2.5) or (2.6). So, we investigate the the existence and global exponential stability of periodic
solution for system (2.6).

From the definition of h−1
i (u), using Lagrange mean value theorem, one gets

∣∣h−1
i (x) − h−1

i (y)
∣∣ =

∣∣(h−1
i

)′(ξ)(x − y)
∣∣ ≤ ai|x − y|, ∀x, y ∈ R, (2.7)

where ξ is between x and y. Moreover, we have

∣∣ri
(
xi
(
tk
))∣∣ ≤ 1

ai

∣∣(1 + γik
)
h−1
i

(
xi
(
tk
))
− ui

(
tk
)∣∣

=

∣∣γik
∣∣

ai

∣∣h−1
i

(
xi
(
tk
))∣∣ ≤ ai

a i

∣∣γik
∣∣∣∣xi

(
tk
)∣∣.

(2.8)

For convenience, we denote τ = max{τij(t) : t ∈ [0, ω], i, j = 1, 2, . . . , n}, x =
(x1, x2, . . . , xn)

T to be a column vector, in which the symbol (T ) denotes the transpose of a
vector.

Definition 2.1. A function x ∈ (R,Rn) is said to be a solution of (2.6) if the following conditions
are satisfied.

(i) x(t) is absolutely continuous on each (tk, tk+1), k ∈N.

(ii) For each k ∈N, x(t+
k
) and x(t−

k
) exist and x(tk) = x(t−k).

(iii) x(t) satisfies (2.6) for almost everywhere and at impulsive points, tk may have
discontinuity of the first kind.

The initial condition φ = (φ1, . . . , φn)
T of (2.6) is of the form

xi(s) = φi(s), s ∈ (−∞, 0], i = 1, . . . , n, (2.9)

where φi(s), i = 1, 2, . . . , n are continuous functions.



Xinsong Yang et al. 5

Definition 2.2. Let x∗(t) be an ω-periodic solution of (2.6) with initial value φ∗ =
(φ∗1, . . . , φ

∗
n)
T ∈ C((−∞, 0];Rn). If there exist constants α > 0, M ≥ 1 such that for every

solution x(t) of (2.6) with initial value φ ∈ C((−∞, 0];Rn),

∣
∣xi(t) − x∗i (t)

∣
∣ ≤M

∥
∥φ − φ∗

∥
∥e−αt, ∀t > 0, i = 1, 2, . . . , n, (2.10)

where ‖φ−φ∗‖ = sups≤0max1≤i≤n|φi(s)−φ∗i (s)|. Then, x∗(t) is said to be globally exponentially
stable.

Lemma 2.3 (Leray-Schauder). Let E be a Banach space, and let the operator A : E → E be
completely continuous. If the set {‖x‖ | x ∈ E, x = λAx, 0 < λ < 1} is bounded, then A has a
fixed point in T , where

T =
{
x | x ∈ E, ‖x‖ ≤ R

}
, R = sup

{
‖x‖ | x = λAx, 0 < λ < 1

}
. (2.11)

3. Existence of periodic solutions

Lemma 3.1. Suppose that (H1)–(H5) hold and let x(t) be an ω-periodic solution of system (2.6).
Then,

xi(t) =
∫ω

0
wx
i (t, s)

[
n∑

j=1

[
bij(s)fj

(
h−1
j

(
xj
(
s − τij(s)

)))

+ cij(s)
∫ s

−∞
kij(s − v)gj

(
h−1
j

(
xj(v)

))
dv

]
− Ii(s)

]

ds

+
p∑

k=1

wx
i

(
t, tk

)
ri
(
xi
(
tk
))
, t ∈ [0, ω], i = 1, 2, . . . , n,

(3.1)

where

wx
i (t, s) =

1

1 − e−
∫ω

0 di(xi(v))dv

{
e−

∫ t
s di(xi(v))dv, 0 ≤ s ≤ t ≤ ω,

e−(
∫ω

0 di(xi(v))dv−
∫s
t di(xi(v))dv), 0 ≤ t < s ≤ ω.

(3.2)

Proof. Let tq ≤ t < tq+1, q ≤ p. From the first expression of (2.6), we have

(
xi(t)e

∫ t
0 di(xi(s))ds

)′
=

{
n∑

j=1

[
bij(t)fj

(
h−1
j

(
xj
(
t − τij(t)

)))

+ cij(t)
∫ t

−∞
kij(t − s)gj

(
h−1
j

(
xj(s)

))
ds

]
− Ii(t)

}

e
∫ t

0 di(xi(s))ds.

(3.3)
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Integrating (3.3) on intervals (0, t−1 ), (t
+
1 , t
−
2 ), . . . , (t

+
q , t) and adding all of them, by the second

formula of (2.6), we have

xi(t) = e−
∫ t

0 di(xi(s))dsxi(0) +
q∑

k=1

e
−
∫ t
tk
di(xi(s))dsri

(
xi
(
tk
))

+
∫ t

0

{
n∑

j=1

[
bij(s)fj

(
h−1
j

(
xj
(
s − τij(s)

)))

+ cij(s)
∫ s

−∞
kij(s − v)gj

(
h−1
j

(
xj(v)

))
dv

]
− Ii(s)

}

e−
∫ t
s di(xi(v))dvds.

(3.4)

Since xi(ω) = xi(0), from (3.4), we obtain

xi(0) =
1

1 − e−
∫ω

0 di(xi(v))dv

{
p∑

k=1

e
−
∫ω
tk
di(xi(s))dsri

(
xi
(
tk
))

+
∫ω

0

{
n∑

j=1

[
bij(s)fj

(
h−1
j

(
xj
(
s − τij(s)

)))

+ cij(s)
∫s

−∞
kij(s − v)gj

(
h−1
j

(
xj(v)

))
dv

]
− Ii(s)

}

× e−
∫ω
s di(xi(v))dvds

}

.

(3.5)

Substituting (3.5) into (3.4), we obtain (3.1). This completes the proof.

In order to use Lemma 2.3, we take PC(J, Rn) = {x(t) | x : J = [0, ω] → Rn as
piecewise continuous periodic solution at t /= tk, and x(t+k), x(t

−
k) = x(tk) exist at t = tk, k =

1, 2, . . . , p}. Then, PC(J, Rn) is a Banach space with the norm

‖x‖ = max
1≤i≤n

{∣∣xi
∣∣

0

}
,

∣∣xi
∣∣

0 = sup
0≤t≤ω

∣∣xi(t)
∣∣, i = 1, 2, . . . , n. (3.6)

Set a mapping Φ : PC(J, Rn) → PC(J, Rn) by setting

(Φx)(t) = x(t), t ∈ J = [0, ω], (3.7)

where

(Φx)i(t) =
∫ω

0
wx
i (t, s)

[
n∑

j=1

[
bij(s)fj

(
h−1
j

(
xj
(
s − τij(s)

)))

+ cij(s)
∫s

−∞
kij(s − v)gj

(
h−1
j

(
xj(v)

))
dv

]
− Ii(s)

]

ds

+
p∑

k=1

wx
i

(
t, tk

)
ri
(
xi
(
tk
))
.

(3.8)
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It is easy to know the fact that the existence ofω-periodic solution of (2.6) is equivalent
to the existence of fixed point of the mapping Φ in PC(J, Rn).

Lemma 3.2. Suppose that (H1)–(H7) hold. Then, Φ : PC(J, Rn) → PC(J, Rn) is completely
continuous.

Proof. First, we show that Φ : PC(J, Rn) → PC(J, Rn) is continuous. For any ε > 0, we take
0 < δ < ε/max1≤i≤n{θ +

∑p

k=1ηik/(1 − e
−qiω)}, where ηik = (ai/a i)|1 + γik| + 1. Then, for all

x, y ∈ PC(J, Rn) and ‖x − y‖ < δ, we have

‖Φx −Φy‖ = max
1≤i≤n

sup
0≤t≤ω

{∣
∣
∣
∣
∣

∫ω

0
wx
i (t, s)

×
n∑

j=1

[
bij(s)

[
fj
(
h−1
j

(
xj
(
s − τij(s)

)))
− fj

(
h−1
j

(
yj
(
s − τij(s)

)))]

+cij(s)
∫ s

−∞
kij(s−v)

[
gj
(
h−1
j

(
xj(v)

))
−gj

(
h−1
j

(
yj(v)

))]
dv

]
ds

+
p∑

k=1

wx
i

(
t, tk

)[
ri
(
xi
(
tk
))
− ri

(
yi
(
tk
))]

∣∣∣∣∣

}

≤ max
1≤i≤n

sup
0≤t≤ω

{∫ω

0
wx
i (t, s)qiθ ds +

p∑

k=1

ηik
1 − e−qiω

}

‖x − y‖

< max
1≤i≤n

{

θ +

∑p

k=1ηik

1 − e−qiω

}

δ < ε.

(3.9)

Hence, Φ is continuous.
Next, we show Φ maps bounded set into bounded set. For any x ∈ PC(J, Rn) with

‖x‖ < D, where D is some positive constant, we have

‖Φx‖ = max
1≤i≤n

sup
0≤t≤ω

{∣∣∣∣∣

∫ω

0
wx
i (t, s)

×
[

n∑

j=1

[
bij(s)fj

(
h−1
j

(
xj
(
s − τij(s)

)))

+ cij(s)
∫s

−∞
kij(s − v)gj

(
h−1
j

(
xj(v)

))
dv

]
− Ii(s)

]

ds

+
p∑

k=1

wx
i

(
t, tk

)
ri
(
xi
(
tk
))
∣∣∣∣∣

}

< max
1≤i≤n

{

θ +
ai

a i
(
1 − e−qiω

)
p∑

k=1

∣∣γik
∣∣
}

D

+ max
1≤i≤n

{
1
qi

[
n∑

j=1

[
bij

∣∣fj(0)
∣∣ + cijβij

∣∣gj(0)
∣∣] + Ii

]}

,

(3.10)
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where bij = maxt∈[0,ω]|bij(t)|, cij = maxt∈[0,ω]|cij(t)|, Ii = maxt∈[0,ω]|Ii(t)|. Equation (3.10)
implies that ‖Φx‖ is uniformly bounded for any ‖x‖ < D. Hence, {Φx | x ∈ PC(J, Rn)} is a
family of uniformly bounded and equicontinuous functions on R. By using the Arzela-Ascoli
theorem, Φ : PC(J, Rn) → PC(J, Rn) is compact. Therefore, Φ : PC(J, Rn) → PC(J, Rn) is
completely continuous. This completes the proof.

Theorem 3.3. Suppose that (H1)–(H7) hold. Then, system (2.6) has an ω-periodic solution.

Proof. Let x ∈ PC(J, Rn), t ∈ J . We consider the operator equation

x = λΦx, λ ∈ (0, 1). (3.11)

If x is a solution of (3.11), for t ∈ J , we obtain

‖x‖ ≤ ‖Φx‖ ≤ max
1≤i≤n

{

θ +
ai

a i
(
1 − e−qiω

)
p∑

k=1

∣∣γik
∣∣
}

‖x‖

+ max
1≤i≤n

{
1
qi

[
n∑

j=1

[
bij

∣∣fj(0)
∣∣ + cijβij

∣∣gj(0)
∣∣] + Ii

]}

,

(3.12)

where this and max1≤i≤n{θ + (ai/a i(1 − e−qiω))
∑p

k=1|γik|} < 1 imply that

‖x‖ ≤
max1≤i≤n

{(
1/qi

)[∑n
j=1

[
bij

∣∣fj(0)
∣∣ + cijβij

∣∣gj(0)
∣∣] + Ii

]}

1 −max1≤i≤n
{
θ +

(
ai/a i

(
1 − e−qiω

))∑p

k=1

∣∣γik
∣∣}

� R. (3.13)

This shows that ‖x‖ of (3.11) is bounded, which is independent of λ ∈ (0, 1). In view of
Lemma 2.3, we obtain that Φ has a fixed point. Hence, system (2.6) has one ω-periodic
solution with ‖x‖ ≤ R. This completes the proof.

4. Global exponential stability of periodic solution

In this section, we will construct some suitable Lyapunov functionals to derive sufficient
conditions which ensure that (2.6) has a unique ω-periodic solution, and all solutions of (2.6)
exponentially converge to its unique ω-periodic solution.

Theorem 4.1. Assume that (H1)–(H8) hold and

(H9) lnMk/(tk − tk−1) ≤ η < α, where Mk = max1≤i≤n{(ai/a i)|1 + γik|, 1}, η is a positive
constant, α is given in the proof of this theorem, t0 = tp −ω.

Then, system (2.6) has exactly one ω-periodic solution, which is globally exponentially stable with the
convergence index α − η.

Proof. By Theorem 3.3, there exists an ω-periodic solution x∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
n(t))

T of
(2.6) with initial value φ∗ = (φ∗1, . . . , φ

∗
n)
T . Suppose that x(t) is an arbitrary solution of system
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(2.6) with initial value φ = (φ1, . . . , φn)
T . Set z(t) = (z1(t), z2(t), . . . , zn(t))

T = x(t)−x∗(t), then,
from system (2.5), we have

z′i(t) = −
[
bi
(
h−1
i

(
xi(t)

))
− bi

(
h−1
i

(
x∗i (t)

))]

+
n∑

j=1

[
bij(t)

[
fj
(
h−1
j

(
xj
(
t − τij(t)

)))
− fj

(
h−1
j

(
x∗j
(
t − τij(t)

)))
]

+ cij(t)
∫ t

−∞
kij(t − s)

[
gj
(
h−1
j

(
xj(s)

))
− gj

(
h−1
j

(
x∗j (s)

))]
ds

]
, t /= tk,

zi
(
t+k
)
= hi

((
1 + bik

)
h−1
i

(
xi
(
tk
)))
− hi

((
1 + bik

)
h−1
i

(
x∗i
(
tk
)))

, i = 1, 2, . . . , n.

(4.1)

By θ < 1, we have

−qi +
n∑

j=1

aj
[∣∣bij(t)

∣∣L
f

j +
∣∣cij(t)

∣∣L
g

j βij
]
< 0, i = 1, 2, . . . , n. (4.2)

Set

hi(λ) = λ − qi +
n∑

j=1

aj

[∣∣bij(t)
∣∣L

f

j e
λτ +

∣∣cij(t)
∣∣L

g

j

∫+∞

0

∣∣kij(s)
∣∣eλsds

]
, i = 1, 2, . . . , n. (4.3)

Clearly, hi(λ), i = 1, 2, . . . , n are continuous functions on R. Since

hi(0) ≤ −qi +
n∑

j=1

aj
[∣∣bij(t)

∣∣L
f

j +
∣∣cij(t)

∣∣L
g

j βij
]
< 0,

dhi(λ)
dλ

= 1 +
n∑

j=1

aj

[
τ
∣∣bij(t)

∣∣L
f

j e
λτ +

∣∣cij(t)
∣∣L

g

j

∫+∞

0

∣∣kij(s)
∣∣seλsds

]
> 0,

(4.4)

and hi(+∞) = +∞, hence hi(λ), i = 1, 2, . . . , n are strictly monotone increasing functions.
Therefore, for any i ∈ {1, 2, . . . , n} and t ≥ 0, there is a unique λ(t) such that

λ(t) − qi +
n∑

j=1

aj

[∣∣bij(t)
∣∣L

f

j e
λ(t)τ +

∣∣cij(t)
∣∣L

g

j

∫+∞

0

∣∣kij(s)
∣∣eλ(t)sds

]
= 0. (4.5)

Let λ∗i = inft≥0{λ(t) | λ(t) − qi +
∑n

j=1aj[|bij(t)|L
f

j e
λ(t)τ + |cij(t)|L

g

j

∫+∞
0 |kij(s)|eλ(t)sds] = 0}.

Obviously, λ∗i ≥ 0, i = 1, 2, . . . , n. Now, we will prove that λ∗i > 0, i = 1, 2, . . . , n. Suppose this
is not true, from (4.2), there exists a positive constant η such that

inf
t≥0, 1≤i≤n

{
qi −

∑n
j=1aj

[∣∣bij(t)
∣∣L

f

j +
∣∣cij(t)

∣∣L
g

j βij
]

1 +
∑n

j=1aj
[
1.5τ

∣∣bij(t)
∣∣L

f

j +
∣∣cij(t)

∣∣L
g

j βij
]

}

≥ η. (4.6)



10 Abstract and Applied Analysis

Pick small ε > 0, then there exists ti ≥ 0 such that

0 < λ∗i
(
ti
)
< ε < η,

∫+∞

0

∣
∣kij(s)

∣
∣eεsds < βij + η. (4.7)

Let us recall the inequality ex < 1 + 1.5x for sufficiently small x > 0, then, we obtain

0 = λ∗i
(
ti
)
− qi +

n∑

j=1

aj

[∣
∣bij

(
ti
)∣∣L

f

j e
λ∗i (t

i)τ +
∣
∣cij

(
ti
)∣∣L

g

j

∫+∞

0

∣
∣kij(s)

∣
∣eλ

∗
i (t

i)sds
]

< η − qi +
n∑

j=1

aj
[∣∣bij

(
ti
)∣∣L

f

j (1 + 1.5ητ) +
∣
∣cij

(
ti
)∣∣L

g

j

(
βij + η

)]

≤ −qi +
n∑

j=1

aj
[∣∣bij

(
ti
)∣∣L

f

j +
∣∣cij

(
ti
)∣∣L

g

j βij
]

+
qi −

∑n
j=1aj

[∣∣bij
(
ti
)∣∣L

f

j +
∣∣cij

(
ti
)∣∣L

g

j βij
]

1 +
∑n

j=1aj
[
1.5τ

∣∣bij
(
ti
)∣∣L

f

j +
∣∣cij

(
ti
)∣∣L

g

j βij
]

×
{

1 +
n∑

j=1

aj
[
1.5τ

∣∣bij
(
ti
)∣∣L

f

j +
∣∣cij

(
ti
)∣∣L

g

j βij
]
}

= 0,

(4.8)

which is a contradiction, and hence, λ∗i > 0, i = 1, 2, . . . , n.
Let α = min{λ∗1, λ

∗
2, . . . , λ

∗
n}. Obviously, for all t ≥ 0, we have

hi(α) = α − qi +
n∑

j=1

aj

[∣∣bij(t)
∣∣L

f

j e
ατ +

∣∣cij(t)
∣∣L

g

j

∫+∞

0

∣∣kij(s)
∣∣eαsds

]
≤ 0, i = 1, 2, . . . , n. (4.9)

It is obvious that

∣∣zi(t)
∣∣ ≤

∥∥φ − φ∗
∥∥ ≤

∥∥φ − φ∗
∥∥e−αt, for t ∈ (−∞, 0], i = 1, 2, . . . , n, (4.10)

where ‖φ − φ∗‖ is defined as that in Definition 2.2.
Define the Lyapunov functional V = (V1, V2, . . . , Vn)

T by Vi = eαt|zi(t)|, i = 1, 2, . . . , n.
In view of (4.1), for t /= tk, k = 1, 2, . . . , we obtain

d+Vi(t)
dt

≤ eαt
{
(
α − qi

)∣∣zi(t)
∣∣ +

n∑

j=1

[∣∣bij(t)
∣∣L

f

j aj
∣∣zj

(
t − τij(t)

)∣∣

+
∣∣cij(t)

∣∣
∫ t

−∞

∣∣kij(t − s)
∣∣L

g

j aj
∣∣zj(s)

∣∣ds
]}

≤
(
α − qi

)
Vi(t) +

n∑

j=1

aj

[∣∣bij(t)
∣∣eατL

f

j Vj
(
t − τij(t)

)

+
∣∣cij(t)

∣∣L
g

j

∫ t

−∞

∣∣kij(t − s)
∣∣eα(t−s)Vj(s)ds

]
.

(4.11)
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We claim that

Vi(t) =
∣
∣zi(t)

∣
∣eαt ≤

∥
∥φ − φ∗

∥
∥, i = 1, 2, . . . , n, ∀t ∈

[
0, t1

)
. (4.12)

Contrarily, there must exist i0 ∈ {1, 2, . . . , n} and 0 < t̃ < t1 such that

Vi0
(
t̃
)
=
∥
∥φ − φ∗

∥
∥,

d+Vi0
(
t̃
)

dt
> 0, Vi(t) ≤

∥
∥φ − φ∗

∥
∥, ∀t ∈ (−∞, t̃], i = 1, 2, . . . , n. (4.13)

Together with (4.11) and (4.13), we obtain

0 <
d+Vi0( t̃ )

dt

≤
∥∥φ − φ∗

∥∥
{

α − qi0 +
n∑

j=1

aj

[∣∣bi0j
(
t̃
)∣∣eατL

f

j +
∣∣ci0j

(
t̃
)∣∣L

g

j

∫+∞

0

∣∣ki0j(s)
∣∣eαsds

]}

.
(4.14)

Hence,

0 < α − qi0 +
n∑

j=1

aj

[∣∣bi0j
(
t̃
)∣∣eατL

f

j +
∣∣ci0j

(
t̃
)∣∣L

g

j

∫+∞

0

∣∣ki0j(s)
∣∣eαsds

]
, (4.15)

which contradicts (4.9). Hence, (4.12) holds. It follows that

∣∣zi(t)
∣∣ ≤

∥∥φ − φ∗
∥∥e−αt, ∀t ∈

[
0, t1

)
, i = 1, 2, . . . , n. (4.16)

When t = t1, from the second expression of (4.1), we have

∣∣zi
(
t+1
)∣∣ ≤ ai

a i

∣∣1 + γi1
∣∣∣∣zi

(
t1
)∣∣ ≤M1 lim

t→ t−1

∣∣zi
(
t1
)∣∣

≤M1
∥∥φ − φ∗

∥∥e−αt1 , i = 1, 2, . . . , n.
(4.17)

Similar to the steps of (4.9)–(4.16), we can also prove that

∣∣zi(t)
∣∣ ≤M1

∥∥φ − φ∗
∥∥e−αt, t ∈

[
t1, t2

)
, i = 1, 2, . . . , n. (4.18)

When t = t2, again, from the second expression of (4.1), we have

∣∣zi
(
t+2
)∣∣ ≤ ai

a i

∣∣1 + bi2
∣∣∣∣zi

(
t2
)∣∣ ≤M1M2

∥∥φ − φ∗
∥∥e−αt2 , i = 1, 2, . . . , n. (4.19)

By repeating the same procedure, we can deduce the following general result:

∣∣zi(t)
∣∣ ≤M1M2 · · ·Mk

∥∥φ − φ∗
∥∥e−αt, t ∈

[
tk, tk+1

)
, i = 1, 2, . . . , n. (4.20)
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By (H9), we have Mk ≤ eη(tk−tk−1), which implies that

M1M2 · · ·Mk ≤ eη(t1−t0)eη(t2−t1), . . . , eη(tk−tk−1) ≤ eη(ω−tp)eηt, t ∈
[
tk, tk+1

)
. (4.21)

So, in light of (4.20) and (4.21), we have

∣
∣xi(t) − x∗i (t)

∣
∣ =

∣
∣zi(t)

∣
∣ ≤ eη(ω−tp)

∥
∥φ − φ∗

∥
∥e−(α−η)t, ∀t > 0, i = 1, 2, . . . , n. (4.22)

In view of Definition 2.2, the ω-periodic solution x∗(t) of system (2.6) is globally
exponentially stable with the convergence index α − η. This completes the proof.

Remark 4.2. Note that we have dropped the restriction: the activation functions are bounded
and |1 + γik| ≤ 1, which is indispensable in [13, 17].

Remark 4.3. To the best of our knowledge, most of the existing research papers only give
the existence of the convergence index, while we offer the precise convergence index in
Theorem 4.1.

5. Application

In this section, we give an example to illustrate that our results are feasible. Consider the
following Cohen-Grossberg neural networks with mixed delays and impulses:

u′i(t) = −ai
(
ui(t)

)
{

bi
(
ui(t)

)
−

2∑

j=1

[
bij(t)fj

(
uj
(
t − τij(t)

))

+ cij(t)
∫ t

−∞
kij(t − s)gj

(
uj(s)

)
ds

]
+ Ii(t)

}

, t /= tk,

Δui
(
tk
)
= ui

(
t+k
)
− ui

(
t−k
)
= 0.02ui

(
tk
)
, i = 1, 2, tk = k − 0.5, k = 1, 2, . . . ,

(5.1)

where f1(u) = f2(u) = g1(u) = g2(u) = |u + 1|, a1(u) = 3 + sinu, a2(u) = 3 − cosu, b1(u) =
5u + sinu, b2(u) = 5u − cosu, Ii(t) = sinπt, τij(t) = (cosπt)2, kij = sin(t − s)e−2(t−s), i, j = 1, 2:

(
b11 b12

b21 b22

)
=

⎛

⎜⎜⎜
⎝

1
6

sin
πt

2
1
6

cos
πt

2

1
10

sin
πt

2
1
8

cos
πt

2

⎞

⎟⎟⎟
⎠
,

(
c11 c12

c21 c22

)
=

⎛

⎜⎜⎜
⎝

1
6

cos
πt

2
1
6

sin
πt

2

1
10

sin
πt

2
1

12
cos

πt

2

⎞

⎟⎟⎟
⎠
. (5.2)

We have ω = 4, Lf1 = Lf2 = Lg1 = Lg2 = 1, a1 = a2 = 4, a 1 = a 2 = 2, l1 = l2 = 4, βij = 1/2:

θ ≈ 0.1863 < 1, max
1≤i≤2

{

θ +
ai

a i
(
1 − e−qiω

)
p∑

k=1

∣∣bik
∣∣
}

≈ 0.3463 < 1, (5.3)
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Figure 1: (a) The trajectory of h1(λ). (b) The trajectory of h2(λ). (c) Numeric simulation of (u1, u2). (d)
Numeric simulation of (u1, u2) without impulses. (e) Numeric simulation of (u1, u2) with impulses. (f)
Numeric simulation of (u1, u2) without impulses. (g) Numeric simulation of (u1, u2) with impulses.

lnMk/(tk − tk−1) = ln 2.04 = 0.7129 < 1. Submitting λ = 1 into (4.9), we have h1(λ) < −3.9 < 0,
h2(λ) < −4.9 < 0, (see Figures 1(a) and 1(b)). This implies that ln 2.04 < 1 < α. Hence, all
the conditions needed in Theorem 4.1 are satisfied. Therefore, system (5.1) has a unique 4-
periodic solution, which is globally exponentially stable (see Figures 1(c)–1(g)).

Remark 5.1. System (5.1) is a simple CGNNs with time-varying coefficients, mixed
delays, and impulses. In system (5.1), the activation functions are all unbounded and
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|1 + bik| = 1.02 > 1, i = 1, 2. Thus, none of the results in [13–17] can be applied to (5.1). This
implies that the results of this paper are new and complement previously known results.
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