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1. Introduction

The aim of this paper is the study of a.p. (almost periodic) solutions of neutral delay equations
of the following form:

D1L
(
x(t − r), x(t − 2r), x′(t − r), x′(t − 2r), t − r

)
+D2L

(
x(t), x(t − r), x′(t), x′(t − r), t

)

=
d

dt

[
D3L

(
x(t − r), x(t − 2r), x′(t−r), x′(t − 2r), t − r

)
+D4L

(
x(t), x(t − r), x′(t), x′(t − r), t

)]
,

(1.1)

where L : (Rn)4 × R→R is a differentiable function Dj denotes the partial differential with
respect to the jth vector variable, and r ∈ (0,∞) is fixed.Wewill consider the almost periodicity
in the sense of Corduneau [1], and in the sense of Besicovitch [2].

A special case of (1.1) is the following forced neutral delay equation:

D1K
(
x(t − r), x(t − 2r), x′(t − r), x′(t − 2r)

)
+D2K

(
x(t), x(t − r), x′(t), x′(t − r)

)

− d

dt

[
D3K

(
x(t − r), x(t − 2r), x′(t − r), x′(t − 2r)

)
+D4K

(
x(t), x(t − r), x′(t), x′(t − r)

)]
= b(t),

(1.2)
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where K : (Rn)4 →R is a differentiable function, and b : R→R
n is an a.p. forcing term. To see

(1.2) as a special case of (1.1), it suffices to take

L
(
x1, x2, x3, x4, t

)
:= K

(
x1, x2, x3, x4

)
− x1·b(t + r), (1.3)

where the point denotes the usual inner product in R
n.

Another special case of (1.1) is the following forced second-order neutral delay equation:

x′′(t − r) +D1F
(
x(t − r), x(t − 2r)

)
+D2F

(
x(t), x(t − r)

)
= b(t), (1.4)

where b : R
n→R and F : (Rn)2→R. To see that this last equation is a special case of (1.1), it

suffices to take L(x1, x2, x3, x4, t) := (1/2)‖x3‖2 − F(x1, x2) + x1·b(t + r), where the norm is the
usual Euclidian norm of R

n. In their work [3], Shu and Xu study the periodic solutions of this
last equation by using a variational method. We want to extend such a view point to the study
of the a.p. solutions.

And so our approach to the study of the a.p. solutions of (1.1) consists to search critical
points of a functional Φ defined on suitable Banach spaces of a.p. functions by

Φ(x) := lim
T→+∞

1
2T

∫T

−T
L
(
x(t), x(t − r), x′(t), x′(t − r), t

)
dt. (1.5)

At this time, we give some historical elements. Recall that the work [4] of Elsgolc treats the
calculus of variations with a retarded argument on a bounded real interval. This work was
followed by these ones of Hughes [5] and Sabbagh [6]. Since the variational problems can
be seen as optimal control problems, recall also the existence of the theory of the periodic
optimal control with retarded argument as developed by Colonius [7]. For instance, we con-
sider a periodic optimal control problem with a criterion of the form (1/T)

∫T
0 g(x(t), u(t), t)dt

and with an equation of motion of the form x′(t) = f(x(t), x(t − r), u(t), t), where x(t) is the
state variable and u(t) the control variable. In the special case, where f(x(t), x(t − r), u(t), t) =
f1(x(t), x(t − r), t) + u(t), the previous optimal control problem can be transformed into a cal-
culus of variations problem with the criterion (1/T)

∫T
0 g(x(t), f1(x(t), x(t − r), t) − x

′(t), t)dt,
which is a special case of (1.5). Note that the Euler-Lagrange equation of such a variational
problem is a special case of (1.1).

On another hand, calculus of variations in mean time was developed to study the a.p.
solutions of some (nonretarded) differential equations [8–13]. Here, we extend this approach
to treat equation like (1.1).

Now we describe the contents of this paper. In Section 2, we precise the notations about
the function spaces used later. In Section 3, we establish a variational formalism suitable to the
Bohr a.p. solutions; we give a variational principle and a result on the structure of the set of
the a.p. solutions of (1.1) in the convex case. In Section 4, we establish a variational formalism
suitable to the Besicovitch a.p. solutions, we give a variational principle, results of existence,
and a result of density for the a.p. forced equations.

2. Notations

AP0(Rn) is the space of the Bohr almost periodic (Bohr a.p.) functions from R in R
n; endowed

with the supremum ‖·‖∞, it is a Banach space [1].
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AP1(Rn) := {x ∈ C1(R,Rn) ∩ AP0(Rn) : x′ ∈ AP0(Rn)}; endowed with the norm ‖x‖C1 :=
‖x‖∞ + ‖x′‖∞, it is a Banach space.

When k ∈ N
∗ ∪ {∞}, APk(Rn) := {x ∈ Ck(R,Rn) : ∀j ≤ k, djx/dtj ∈ AP0(Rn)}.

When x ∈ AP0(Rn), its mean value is

M
{
x(t)

}
t := lim

T→+∞

1
2T

∫T

−T
x(t)dt exists in R

n. (2.1)

The Fourier-Bohr coefficients of x ∈ AP0(Rn) are the complex vectors

a(x;λ) := lim
T→+∞

1
2T

∫T

−T
e−iλtx(t)dt (2.2)

and Λ(x) := {λ ∈ R : a(x, λ)/= 0}.
When p ∈ [1,∞), Bp(Rn) is the completion of AP0(Rn) (in Lploc(R,R

n))with respect to the
norm ‖u‖p := M{|u|p}1/p. When p = 2, B2(Rn) is a Hilbert spaces and its norm ‖·‖2 is associated
to the inner product (u | v) := M{u·v} [2]. The elements of these spaces Bp(Rn) are called
Besicovitch almost periodic (Besicovitch a.p.) functions.

Recall the useful following fact: if (um)m is a sequence in AP0(Rn) and if u ∈ L
p

loc(R,R
n)

(Lebesgue space), which satisfy

M
{∥∥um − u

∥∥p}1/p =
(
lim sup
T→∞

1
2T

∫T

−T

∥∥um − u
∥∥pdt

)1/p

−→ 0 (m −→ 0) (2.3)

then u ∈ Bp(Rn) and we have ‖um − u‖p→ 0 (m→ 0).
We use the generalized derivative∇u ∈ B2(Rn) of u ∈ B2(Rn) (when it exists) defined by

‖∇u − (1/s)(u(· + s) − u)‖2 → 0(s→ 0), and we define B1,2(Rn) := {u ∈ B2(Rn) : ∇u ∈ B2(Rn)};
endowed with the inner product 〈u | v〉 := (u | v) + (∇u | ∇v), B1,2(Rn) is a Hilbert space
[11, 13].

If E and F are two finite-dimensional-normed spaces, APU(E×R, F) stands for the space
of the functions f : E × R→F, (x, t) �→ f(x, t), which are almost periodic in t uniformly with
respect to x in the classical sense given in [14].

To make the writing less heavy, we sometimes use the notations

u(t) :=
(
u(t), u(t − r),∇u(t),∇u(t − r)

)
, (2.4)

when u ∈ B1,2(Rn), and

x(t) :=
(
x(t), x(t − r), x′(t), x′(t − r)

)
, (2.5)

when x ∈ AP1(Rn).

3. A variational setting for the Bohr a.p. functions

We consider the following condition:

L ∈ APU
(
(Rn)4 × R,R

)
, for all (X, t) ∈

(
R
n
)4 × R,

the partial differential DXL(X, t) exists, and
DXL ∈ APU

((
R
n
)4 × R, L

((
R
n
)4
,R

))
.

(3.1)



4 Abstract and Applied Analysis

Lemma 3.1. Under [9] the functional Φ : AP1(Rn)→R defined by (1.5) which is of class C1, and for
all x, h ∈ AP1(Rn), then

DΦ(x)·h = M
{
D1L

(
x(t), t

)
·h(t) +D2L

(
x(t), t

)
·h(t − r)

+D3L
(
x(t), t

)
·h′(t) +D4L

(
x(t), t

)
·h′(t − r)

}
t.

(3.2)

Proof. We introduce the linear operator T : AP1(Rn)→ (AP0(Rn))
4
by setting T(x)(t) := x(t).

The four components of T are continuous linear operators that imply the continuity of T, and
therefore T is of class C1, and for all x, h ∈ AP1(Rn) we have DT(x)·h = T(h).

Under (3.1), the Nemytski operatorNL : (AP0(Rn))4→AP0(Rn), defined byNL(X)(t) :=
L(X(t), t), is of class C1 (cf. [15, Lemma 7]) and we have, for all X,H ∈ AP0(Rn)4,
(DNL(X)·H)(t) = DXL(X(t), t)·H(t).

The linear functional M : AP0(Rn)→R is continuous, therefore it is of class C1 and we
have, for all φ, ψ ∈ AP0(Rn), DM{φ}·ψ = M{ψ}.

And so Φ = M◦NL ◦ T is of class C1. Furthermore, we have

DΦ(x)·h = DM
(
NL ◦ T(x)

)
◦DNL

(
T(x)

)
◦DT(x)·h

= M
{
DNL

(
T(x)

)
·T(h)

}

= M
{
DXL

(
x(t), t

)
·h(t)

}
t

(3.3)

and expressing DXL in terms of DjL, we obtain the announced formula.

Note that in the case without delay, when L is autonomous, that is, L(X, t) = L(X), in
[9], it is established that the functional x �→ M{L(x, x′)} is of class C1 when L is of class C1. In
[16], we can find a proof of the differentiability of the Nemytski operator on AP0(Rn)which is
different to this one of [9].

Theorem 3.2 (variational principle). Under (3.1), for x ∈ AP1(Rn), the following two assertions are
equivalent.

(i) DΦ(x) = 0, that is, x is a critical point of Φ in AP1(Rn).

(ii) x is a Bohr a.p. solution of (1.1).

Proof. First we assume (i). Since the mean value is translation invariant, we have

M
{
D2L

(
x(t), t

)
·h(t − r)

}
t = M

{
D2L

(
x(t + r

)
, t + r

)
·h(t)

}
t,

M
{
D4L

(
x(t), t

)
·h′(t − r)

}
t = M

{
D4L

(
x(t + r

)
, t + r

)
·h′(t)

}
t,

(3.4)

and so by using Lemma 3.1 we obtain, for all h ∈ AP1(Rn),

0 = M
{(
D1L(x(t), t

)
+D2L

(
x(t + r), t + r)

)
·h(t)

}
t

+M
{(
D3L(x(t), t

)
+D4L

(
x(t + r), t + r)

)
·h′(t)

}
t.

(3.5)

Setting q(t) := D1L(x(t), t) + D2L(x(t + r), t + r), denoting by qk(t) its coordinates for
k = 1, . . . , n, setting p(t) := D3L(x(t), t)+D4L(x(t+r), t+r), and denoting by qk(t) its coordinates
for k = 1, . . . , n, we deduce from the previous equality that, for all φ ∈ AP∞(R), we have
M{qk(t)·φ(t)}t = −M{pk(t)·φ′(t)}t. Then by reasoning like in the proof of Theorem 1 in [8], we
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obtain that Dpk = qk in the sense of the a.p. distributions of Schwartz [17], and by using the
proposition of the Fourier-Bohr series, we obtain that pk is C

1 and that p′
k
= qk in the ordinary

sense. From this, we obtain that p(· − r) is C
1 and that p′(t − r) = q(t − r)which is exactly (ii).

Conversely by using the formula M{l·y′} = −M{l′·y}, for all l ∈ AP1(L(Rn,R)) and
y ∈ AP1(Rn), and by translating the time, we obtain from (ii), for all h ∈ AP1(Rn), the following
relation:

0 = M
{(
D1L

(
x(t), t

)
+D2L

(
x(t + r), t + r

))
·h(t) +

(
D3L

(
x(t), t

)
+D4L

(
x(t + r), t + r

))
·h′(t)

}
t

= M
{
D1L

(
x(t), t

)
h(t) +D2L

(
x(t), t

))
·h(t − r) +D3L

(
x(t), t

)
h′(t) +D4L

(
x(t), t

)
·h′(t − r)

}
t

= DΦ(x)·h,
(3.6)

and so we have (i).

Theorem 3.2 is an extension to the nonautonomous case in presence of a delay of [8,
Theorem 1]. Now we use Theorem 3.2 to provide some results on the structure of the set of the
Bohr a.p. solutions of (1.1) in the case, where L is autonomous and convex.

Theorem 3.3 (structure result). Assume that L ∈ C1((Rn)4,R), and that L is convex. Then the
following assertions hold.

(i) The set of the Bohr a.p. solutions of (1.1) is a closed convex subset of AP1(Rn).

(ii) If x1 is a T1-periodic nonconstant solution of (1.1), if x2 is a T2-periodic nonconstant solution of
(1.1), and if T1/T2 is no rational, then (1−θ)x1+θx2 is a Bohr a.p. nonperiodic solution of (1.1),
for all θ ∈ (0, 1).

(iii) If x is a Bohr a.p. solution of (1.1), then M{x} is a constant solution of (1.1).

(iv) If x is a Bohr a.p. solution of (1.1), if T ∈ (0,∞) is such that a(x, 2π/T)/= 0, then there exists a
nonconstant T -periodic solution of (1.1).

Proof. Since L is convex, the functional Φ of (1.5) is also convex on AP1(Rn). Since L is au-
tonomous and of class C1, L satisfies (3.1), and so Φ is of class C1. Therefore, we have
{x : Φ(x) = infΦ} = {x : DΦ(x) = 0} which is closed and convex, and (i) becomes a con-
sequence of Theorem 3.2. The assertion (ii) is a straightforward consequence of (i).

We introduce CT,ν(x)(t) := (1/ν)
∑ ν−1

k=0x(t + kT), when x is a Bohr a.p. solution of (1.1),
for all ν ∈ N

∗. By using a theorem of Besicovitch (see [2, page 144]), there exists a T -periodic
continuous function, denoted by xT , such that lim ν→∞‖CT,ν(x) − xT‖∞ = 0.

We easily verify that limν→∞‖CT,ν(x) − xT‖C1 = 0.
Since L is autonomous, t �→ x(t + kT) is a Bohr a.p. solution of (1.1). Since CT,ν(x) is a

convex combination of Bohr a.p. solutions of (1.1),CT,ν(x) is a Bohr a.p. solution of (1.1), and xT

also by using the closeness of the set of Bohr a.p. solutions. And so xT is a T -periodic solution
of (1.1). By using a straightforward calculation, we see that a(CT,ν(x), 2π/T) = a(x, 2π/T) and
consequently a(xT , 2π/T) = a(x, 2π/T). When a(x, 2π/T)/= 0, then xT is not constant that
proves (iv).

To prove (iii) it suffices to choose T1 ∈ (0,∞) such that (2π/T1)(Z − {0}) ∩Λ(x) = 0, and
then all the Fourier-Bohr coefficients of xT

1
are zero except (perhaps) the mean value of xT

1

which is equal to M{x}.



6 Abstract and Applied Analysis

The assertions (i) and (ii) are extensions of [8, Theorems 3 and 4]; the assertions (iii) and
(iv) are extension to neutral delay equations of [10, Theorem 2].

The space (AP1(Rn), ‖·‖C1) does not possess good topological properties like to be a re-
flexive space. It is why in the following section we extend our variational formalism to the
Hilbert space B1,2(Rn).

4. A variational setting for the Besicovitch a.p. functions

E and F are Euclidean finite-dimensional spaces.

Lemma 4.1. Let g ∈ APU(E × R, F) be a function which satisfies the following Hölder condition:

∃α ∈ (0,∞), ∃a ∈ [0,∞), ∀t ∈ R, ∀z,w ∈ E,
∣
∣g(z, t) − g(w, t)

∣∣ ≤ a·|z −w|α. (4.1)

Let p, q ∈ [1,∞) be such that p = αq.
Then the following two assertions hold.

(i) If u ∈ Bp(E), then t �→ g(u(t), t) ∈ Bq(F).
(ii) The Nemytski operator on g, Ng : Bp(E)→Bq(F) defined by Ngu(t) := g(u(t), t) satisfies

‖Ngu −Ngv‖q ≤ a·‖u − v‖αp, for all u, v ∈ Bp(E).

Proof. We set b(t) := g(0, t), and so we have b ∈ AP0(R) and the Hölder assumption implies
|g(x, t)| ≤ a·|z|α+b(t), for all z ∈ E, t ∈ R. If u ∈ Bp(E), then we have |g(u(t), t)| ≤ a·|u(t)|α+b(t),
for all t ∈ R, and since b is continuous, we have b ∈ Lqloc(R,R) (the Lebesgue space), and since
(|u(t)|α)q = |u(t)|p, we have |u|α ∈ L

q

loc(R,R). Since u ∈ Bp(E), there exists a sequence (uj)j in

AP0(E) such that lim j→∞‖u − uj‖p = 0. By using [14, Theorem 2.7, page 16], setting ϕj(t) :=

g(uj(t), t), we have ϕj ∈ AP0(F), and a straightforward calculation gives us the following
inequality:

M
{∣∣g

(
u(t), t

)
− ϕj(t)

∣∣q}1/q ≤ a·M
{∣∣u − uj

∣∣p}1/q = a
∥∥u − uj

∥∥α
p
, (4.2)

and consequently we obtain

lim
j→∞

M
{∣∣g(u(t), t) − ϕj(t)

∣∣p}1/q = 0 (4.3)

that implies t �→ g(u(t), t) ∈ Bq(F), and so (i) is proven; moreover the last inequality becomes
the one of (ii) when we replace ϕj(t) by g(v(t), t).

This lemma is an extension to the nonautonomous case of [13, Theorem 1].

Lemma 4.2. Let f ∈ APU(E × R, F) be a function such that the partial differential D1f(z, t) exists,
for all (z, t) ∈ E × R, such that D1f ∈ APU(E × R,L(E, F)). We assume the following condition
fulfilled.

(C) There exist a1 ∈ [0,∞), such that, for all z,w ∈ E, and for all t ∈ R, |D1f(z, t) −D1f(w, t)| ≤
a1·|z −w|.
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Then the Nemytski operator Nf : B2(E)→B1(F), defined by Nf(u)(t) := f(u(t), t), is of class
C1 and, for all u, h ∈ B2(E),

(
DNf(u)·h

)
(t) = D1f

(
u(t), t

)
·h(t). (4.4)

Proof
First step: we show that there exist a0 ∈ [0,∞), b ∈ B1(E), such that, for all (z, t) ∈ E × R,
|f(z, t)| ≤ a0|z|2 + b(t). The following hold:

|D1f(z, t) −D1f(0, t)| ≤ a1·|z|

=⇒
∣
∣D1f(z, t)

∣
∣ ≤

∣
∣D1f(z, t) −D1f(0, t)

∣
∣ +

∣
∣D1f(0, t)

∣
∣

≤ a1·|z| +
∣
∣D1f(0, t)

∣
∣.

(4.5)

By using the mean value theorem (see [18, page 144]), we have, for all (z, t) ∈ E × R,
∣∣f(z, t)

∣∣ ≤
∣∣f(z, t) − f(0, t)

∣∣ +
∣∣f(0, t)

∣∣

≤ sup
ξ∈]0,z[

∣∣D1f(ξ, t)
∣∣·|z − 0| +

∣∣f(0, t)
∣∣

≤ sup
ξ∈]0,z[

(
a1·|ξ| +

∣∣D1f(0, t)
∣∣)·|z| +

∣∣f(0, t)
∣∣

=
(
a1·|z| +

∣
∣D1f(0, t)

∣
∣)·|z| +

∣
∣f(0, t)

∣
∣

= a1·|z|2 +
∣∣D1f(0, t)

∣∣·|z| +
∣∣f(0, t)

∣∣

≤ a1·|z|2 +
1
2
∣∣D1f(0, t)

∣∣2 +
1
2
|z|2 +

∣∣f(0, t)
∣∣

=
(
a1 +

1
2

)
·|z|2 + 1

2
∣∣D1f(0, t)

∣∣2 +
∣∣f(0, t)

∣∣.

(4.6)

Setting b(t) := (1/2)|D1f(0, t)|2 + |f(0, t)|, then a0 := a1 + 1/2. Since f ∈ APU(E × R, F), and
D1f ∈ APU(E × R,L(E, F)), we have b ∈ AP0(E) ⊂ B1(E).

Second step: we show that t �→ f(u(t), t) ∈ B1(F) when u ∈ B2(E).
Let u ∈ B2(E). Then the inequality |f(u(t), t)| ≤ a0|u(t)|2 + b(t) implies that

t �−→ f
(
u(t), t

)
∈ L1

loc(R, F). (4.7)

By using Lemma 4.1 with p = 2, q = 2, α = 1, and g = D1f , we have t �→ D1f(u(t), t) ∈
B2(L(E, F)). Let (um)m be a sequence in AP0(E) such that ‖u − um‖2→ 0 (m→∞). By using the
mean value theorem (see [18, page 144]), we have, for all t ∈ R,

∣∣f
(
um(t), t

)
− f

(
u(t), t

)
−D1f

(
u(t), t

)
·
(
um(t) − u(t)

)∣∣

≤
(

sup
ξ∈]u(t),um(t)[

∣∣D1f(ξ, t) −D1f
(
u(t), t

)∣∣
)

·
∣∣(um(t) − u(t)

)∣∣

≤ a1· sup
ξ∈]u(t),um(t)[

∣∣ξ − u(t)
∣∣·
∣∣um(t) − u(t)

∣∣ ≤ a1·
∣∣um(t) − u(t)

∣∣2,

(4.8)

and consequently we obtain

M
{∣∣f

(
um(t), t

)
− f

(
u(t), t

)
−D1f

(
u(t), t

)
·
(
um(t) − u(t)

)∣∣}
t ≤ a1·

∥∥um − u
∥∥2
2. (4.9)
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Since t �→ D1f(u(t), t) ∈ B2(L(E, F)) and since um − u ∈ B2(E), we have

t �−→ D1f
(
u(t), t

)
·
(
um(t) − u(t)

)
∈ B1(F). (4.10)

By using (see [14, Theorem 2.7, page 16]), we have

t �−→ f
(
um(t), t

)
∈ AP0(F) ⊂ B1(F), (4.11)

and so, by setting

ψm(t) := f
(
um(t), t

)
−D1f

(
um(t), t

)
·
(
um(t) − u(t)

)
, (4.12)

we have ψm ∈ B1(F). The last inequality implies

lim
n→∞

M
{∣∣f

(
u(t), t

)
− ψm(t)

∣
∣}

t
= 0, (4.13)

and therefore we have t �→ f(u(t), t) ∈ B1(F).

Third step: we show that, for all u ∈ B2(E), the operator L(u) : B2 →B1(R), defined by (L(u)·
h)(t) := D1f(u(t), t)·h(t), is linear continuous. We have yet seen that t �→ D1f(u(t), t)·h(t) ∈
B1(F). The linearity of L(u) is easy to verify. By using a Cauchy-Schwartz-Bunyakovsky in-
equality, we have

M
{∣∣D1f

(
u(t), t

)
·h(t)

∣∣}
t ≤ M

{∣∣D1f
(
u(t), t

)∣∣·
∣∣h(t)

∣∣}
t

≤ M
{∣∣D1f

(
u(t), t

)∣∣2}1/2·M
{
|h|2

}1/2 (4.14)

that proves the continuity of L(u).

Fourth step: we show the differentiability ofNf .
Let u ∈ B2(E) and h ∈ B2(E). By using the mean value inequality (see [18, page 144]),

we have, for all t ∈ R,
∣∣f

(
u(t) + h(t), t

)
− f

(
u(t), t

)
−D1f

(
u(t), t

)
·h(t)

∣∣

≤ sup
ξ∈]u(t),u(t)+h(t)[

∣∣D1f(ξ, t) −D1f(u(t), t)
∣∣·
∣∣h(t)

∣∣ ≤ a1‖h‖2, (4.15)

and by using the monotonicity ofM, we obtain

M
{∣∣f

(
u(t) + h(t), t

)
− f

(
u(t), t

)
−D1f

(
u(t), t

)
·h(t)

∣∣}
t ≤ a1‖h‖

2
2, (4.16)

that is,
∥∥Nf(u + h) −Nf(u) − L(u)·h

∥∥
1 ≤ a1‖h‖

2
2 (4.17)

that implies thatNf is differentiable at u and that DNf(u) = L(u).

Fifth step: we show thatNf is of class C1.
Let u, v ∈ B2(E). By using (C), for all h ∈ B2(E), such that ‖h‖2 ≤ 1, for all t ∈ R, we have
∣∣(D1f

(
u(t), t

)
−D1f

(
v(t), t)

)
·h(t)

∣∣ ≤
∣∣D1f

(
u(t), t

)
−D1f

(
v(t), t

)∣∣·
∣∣h(t)

∣∣

≤ a1·
∣∣u(t) − v(t)

∣∣·
∣∣h(t)

∣∣.
(4.18)

That implies, by using the Cauchy-Schwartz-Bunyakovsky inequality, the following majoriza-
tion holds:

M
{∣∣(D1f(u(t), t

)
−D1f(v(t), t)

)
·h(t)

∣∣}
t

≤ a1M
{∣∣u(t) − v(t)

∣∣·
∣∣h(t)

∣∣}
t ≤ a1

∥∥u − v
∥∥
2·‖h‖2 ≤ a1

∥∥u − v
∥∥
2.

(4.19)

Therefore we have ‖DNf(u) −DNf(v)‖L ≤ a1‖u − v‖2 that implies the continuity ofDNf .
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Note that Lemma 4.2 is an extension to the nonautonomous case of [13, Theorem 2].

Theorem 4.3 (variational principle). Let L : (Rn)4 × R→R,

(X, t) =
(
x1, x1, x1, x1, t

)
�−→ L(X, t) = L

(
x1, x1, x1, x1, t

)
, (4.20)

be a function and let r ∈ (0,∞). Assume the following conditions fulfilled:

L ∈ APU
((

R
n
)4 × R,R

)
, the partial differentials DkL

(
x1, x1, x1, x1, t

)

exist, for all
(
x1, x1, x1, x1, t

)
∈
(
R
n
)4 × R

and for k = 1, . . . , 4, DkL ∈ APU
((

R
n
)4 × R,L

(
R
n,R

))
;

there exists a1 ∈ [0,∞) such that
∣∣LX(X, t) − LX(Y, t)| ≤ a1

∣∣X − Y |,
for all X,Y ∈

(
R
n
)4
, for all t ∈ R, where LX is the partial differential

with respect to X ∈
(
R
n
)4
.

(4.21)

Then the functional J : B1,2(Rn)→R, defined by

J(u) = M
{
L
(
u(t), u(t − r),∇u(t),∇u(t − r), t

)}
t, (4.22)

is of class C1, and the two following assertions are equivalent.

(i) DJ(u) = 0, that is, u is a critical point of J .

(ii) D1L(u(t− r), u(t− 2r),∇u(t− r),∇u(t− 2r), t− r) +D2L(u(t), u(t− r),∇u(t), ∇u(t− r), t) =
∇[D3L(u(t − r), u(t − 2r),∇u(t − r),∇u(t − 2r), t − r)+ D4L(u(t), u(t − r),∇u(t),∇u(t −
r), t)] (equality in B2(L(Rn,R))).

Definition 4.4. When u ∈ B1,2(Rn) satisfies the equation of (ii) in Theorem 4.3, we say that u is a
weak Besicovitch a.p. solution of (1.1).

Proof. We consider the operator L : B1,2(Rn)→B2(Rn)4 ≡ B2((Rn)4), defined by (L(u))(t) :=
(u(t), u(t − r),∇u(t),∇u(t − r)). L is clearly linear continuous, therefore L is of class C1 and we
have DL(u)·h = L(h).

We consider the Nemytski operator

NL : B2((
R
n)4) −→ B1(R),

(
NL(u)

)
(t) := L

(
u(t), t

)
. (4.23)

By using Lemma 4.2, NL is of class C1 and, for allU,H ∈ B1,2((Rn)4),we have

(
DNL(U)·H

)
(t) = LX

(
U(t), t

)
·H(t)

=
4∑

k=1

DkL
(
u1(t), u2(t), u3(t), u4(t), t

)
·hk(t).

(4.24)

The mean valueM : B1(R)→R is linear continuous, therefore it is of class C1, andDM{φ}·ψ =
M{ψ}, for all φ, ψ ∈ B1(R).

Consequently J=M◦NL ◦L is of class C1 as a composition of three mappings of class C1.
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Let u ∈ B1,2(Rn). If (i) is true then, for all h ∈ B1,2(Rn), we have

0 = DJ(u)·h = DM
{
NL ◦ L(u)

}
◦DNL

(
L(u)

)
◦DL(u)·h

= M
{
DNL

(
L(u)

)
·L(h)

}

= M
{
D1L

(
u(t), t

)
·h(t) +D2L

(
u(t), t

)
·h(t − r)

+D3L
(
u(t), t

)
·∇h(t) +D4L

(
u(t), t

)
·∇h(t − r)

}
t

= M
{(
D1L

(
u(t), t

)
+D2L

(
u(t + r), t + r)

)
·h(t)

}
t

+M
{(
D3L

(
u(t), t

)
+D4L

(
u(t + r), t + r)

)
·∇h(t)

}
t

(4.25)

and then we obtain (ii) by using [13, Proposition 10].
Conversely, if (ii) is true, then t �→ D3NL(u(t), t) +D4NL(u(t + r), t + r) ∈ B1,2(Rn), and

for all h ∈ AP1(Rn),we have

M
{(
D1L

(
u(t), t

)
+D2L

(
u(t + r), t + r

))
·h(t)

}
t,

−M
{
∇
(
D3L

(
u(t), t

)
+D4L

(
u(t + r), t + r

))
·h(t)

}
t = 0,

(4.26)

therefore by using [13, Proposition 9], we obtain

0 = M
{(
D1L

(
u(t), t

)
+D2L

(
u(t + r), t + r

))
·h(t)

+
(
D3L

(
u(t), t

)
+D4L

(
u(t + r), t + r

))
·h′(t)

}
t

= M
{(
D1L

(
u(t), t

)
·h(t) +D2L

(
u(t), t

))
·h(t − r)

+
(
D3L

(
u(t), t

)
h′(t) +D4L

(
u(t), t

))
·h′(t − r)

}
t

= DJ(u)·h.

(4.27)

Since AP1(Rn) is dense in B1,2(Rn), we have DJ(u)·h = 0, for all h ∈ B1,2(Rn), therefore
DJ(u) = 0.

Note that the Theorem 4.3 is an extension to the nonautonomous case of [13, Theorem 4].

Theorem 4.5 (existence, uniqueness). Let L : (Rn
)4 × R→R be a function which satisfies (4.21)

and also satisfies the following two conditions:

L(·, t) :
(
R
n)4 −→ R is convex, for all t ∈ R; (4.28)

there exist j ∈ {1, 2}, k ∈ {3, 4}, c ∈ (0,∞)

such that, for all
(
x1, x2, x3, x4, t

)
∈
(
R
n)4 × R,

we have L
(
x1, x2, x3, x4, t

)
≥ c

(∣∣xj
∣∣2 +

∣∣xk
∣∣2).

(4.29)

Then there exists a function u ∈ B1,2(Rn) which is a weak Besicovitch a.p. solution of (1.1).
Moreover, if in addition the following condition fulfilled:

there exist i ∈ {1, 2}, l ∈ {3, 4}, c1 ∈ (0,∞)
such that the function M :

(
R
n
)4 × R −→ R, defined by

M
(
x1, x2, x3, x4, t

)
:= L

(
x1, x2, x3, x4, t

)
− c1

2
∣∣xi

∣∣2 − c1
2
∣∣xl

∣∣2,

is convex with respect to
(
x1, x2, x3, x4, t

)
, for all t ∈ R,

(4.30)

then the weakBesicovitch a.p. solution of (1.1) is unique.
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Proof. By using Theorem 4.3, the functional J is of class C1 and, by using (4.28), J is a convex
functional. Assumption (4.29) ensures that, for all u ∈ B1,2(Rn), we have

J(u) ≥ c
(
M

{
|u|2

}
+M

{∣∣∇u
∣∣2}) = c·‖u‖21,2. (4.31)

Since themean value is translation invariant, consequently J is coercive on B1,2(Rn), and so (see
[19, page 46]) there exists u ∈ B1,2(Rn) such that J(u) = inf J . Therefore we haveDJ(u) = 0 and
by using Theorem 4.3, u is a weak Besicovitch a.p. solution of (1.1). The existence is proven.

To treat the uniqueness, we note that, under (4.30), the functional I : B1,2(Rn)→R, de-
fined by I(u) := J(u)− (c1/2)M{|u|2}− (c1/2)M{|∇u|2}, is convex and since J is of class C1, I is
also of class C1. Note that we haveDI(u) = DJ(u)− c1〈u | ·〉. By using the Minty monotonicity
of the differential of a convex functional, for all u, v ∈ B1,2(Rn),we have

0 ≤
〈
DI(u) −DI(v), u − v

〉
=
〈
DJ(u) −DJ(v), u − v

〉
− c1

〈
u − v | u − v

〉

=⇒
〈
DJ(u) −DJ(v), u − v

〉
≥ c1

∥∥u − v
∥∥2
1,2.

(4.32)

Now if u and v are two weak Besicovitch a.p. solutions of (1.1), by using Theorem 4.3 we have
DJ(u) = DJ(v) = 0, and consequently c1‖u − v‖21,2 = 0, therefore u = v.

Theorem 4.6 (existence and density). LetK ∈ C2((Rn)4,R) be a function which satisfies the follow-
ing conditions:

there exists a0 ∈ [0,∞) such that
∣∣K(x)

∣∣ ≤ a0|X|2,
for all X ∈

(
R
n
)4
, the following holds:

there exist j ∈ {1, 2}, k ∈ {3, 4}, c ∈ (0,∞)
such that the function G : (Rn)4 −→ R, defined by

G
(
x1, x2, x3, x4

)
:= K

(
x1, x2, x3, x4

)
− c

2
∣∣xj

∣∣2 − c

2
∣∣xk

∣∣2,

is convex and nonnegative on
(
R
n
)4
.

The differential DK is Lipschitzian on
(
R
n
)4
.

(4.33)

Then the following conclusions hold.

(i) For all b ∈ B2(Rn), there exists a unique u ∈ B1,2(Rn) which is a weak Besicovitch a.p. solution of
(1.2).

(ii) The set of the b ∈ AP0(Rn) for which there exists a Bohr a.p. solution of (1.2) is dense inAP0(Rn)
with respect to the norm

‖b‖∗ := sup
{
M{b·h} : h ∈ B1,2(

R
n), ‖h‖1,2 ≤ 1}. (4.34)

Proof. We introduce the functionals E and E1 from B1,2(Rn) in R setting E(u) := M{K(u(t))}t
and E1(u) := M{G(u(t))}t. They are special cases of the functional J of the Theorem 4.3, and
consequently they are of class C1. Note that E1(u) = E(u) − (c/2)‖u‖21,2. By using the F. Riesz
isomorphism j : B1,2(Rn)→B1,2(Rn)∗, 〈j(u), v〉 = 〈u, v〉, for all u, v ∈ B1,2(Rn), we can define
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the gradients gradE(u) := j−1(DE(u)) and gradE1(u) := j−1(DE1(u)). By using the Minty-
monotonicity of gradE1 (due to the convexity of E1)we have, for all u, v ∈ B1,2(Rn),

0 ≤
〈
gradE1(u) − gradE1(v) | u − v

〉
= 〈gradE(u) − gradE(v) | u − v

〉
− c·‖u − v‖21,2, (4.35)

that implies that gradE is strongly monotone and consequently (see [20, page 100]) the fol-
lowing property holds:

gradE is a homeomorphism from B1,2(
R
n) on B1,2(

R
n). (4.36)

From each b ∈ B2(Rn) we define the linear functional b# ∈ B1,2(Rn)∗ by setting 〈b#, h〉 :=
M{b(t + r)·h(t)}t.

Therefore we have j−1(b#) ∈ B1,2(Rn) and by using (4.36), there exists u ∈ B1,2(Rn) such
that gradE(u) = j−1(b#), that is, DE(u) = b# which means that, for all h ∈ B1,2(Rn),

M
{
DK

(
u(t)

)
·h(t)

}
t = M

{
b(t + r)·h(t)

}
t, that is,

M
{[
D1K

(
u(t)

)
+D2K

(
u(t + r)

)
− b(t + r)

]
·h(t)

+
[
D3K

(
u(t)

)
+D4K

(
u(t + r)

)
− b(t + r)

]
·∇h(t)

}
t = 0

(4.37)

and by using [13, Proposition 10], we obtain that u is a weak Besicovitch a.p. solution of (1.2).
About the uniqueness, note that if v is a weak Besicovitch a.p. solution of (1.2), then

we verify that M{DK(v(t))·h(t)}t = M{b(t + r)·h(t)}t, for all h ∈ B1,2(Rn), and consequently
DE(v) = b#, that is, gradE(v) = j−1(b#) = gradE(u), and by using (4.36), we have u = v. And
so (i) is proven.

Now we introduce the nonlinear unbounded operator

K : Dom (K) ⊂ B1,2(
R
n) −→ B2(

R
n) (4.38)

defined by

(
K(u)

)
(t) := D1K

(
u(t − r)

)
+D2K

(
u(t)

)
− ∇

[
D3K

(
u(t − r)

)
+D4K

(
u(t)

)]
. (4.39)

And soK(u) = bmeans that u is a weak Besicovitch a.p. solution of (1.2). By using the assertion
(i), K is bijective. We verify that

∥∥K(u) −K(v)
∥∥
∗ =

∥∥gradE(u) − gradE(v)
∥∥
1,2, (4.40)

for all u, v ∈ Dom (K), and by using (4.36)we see thatK is a homeomorphism from Dom (K)
on B2(Rn). Since AP2(Rn) is dense in B1,2(Rn), K(AP2(Rn)) is dense in B2(Rn) with respect to
the norm ‖·‖∗, and since K(AP2(Rn)) ⊂ AP0(Rn) ⊂ B2(Rn), we have proven (ii).

This result is an extension to the neutral delay equations of [13, Theorem 5].
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[11] J. Blot, “Une méthode hilbertienne pour les trajectoires presque-périodiques,” Comptes Rendus de

l’Académie des Sciences. Série I, vol. 313, no. 8, pp. 487–490, 1991.
[12] J. Blot, “Almost-periodic solutions of forced second order Hamiltonian systems,” Annales de la Faculté
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