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1. Introduction and preliminaries

Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which
he discussed a number of unsolved problems, containing the stability problem of ho-
momorphisms. Hyers [2] proved the stability problem of additive mappings in Banach
spaces. Rassias [3] provided a generalization of Hyers’ theorem which allows the Cauchy
difference to be unbounded: Let f : E — E’ be a mapping from a normed vector space E
into a Banach space E’ subject to the inequality

fGe+y) = fx) = fDIl < e(llxl? + Ml ylI7) (L.1)

for all x, y € E, where € and p are constants with € >0 and p < 1. The inequality (1.1)
that was introduced by Rassias [3] provided a lot of influence in the development of a
generalization of the Hyers-Ulam stability concept. This new concept is known as Hyers-
Ulam-Rassias stability of functional equations. Gavruta [4] provided a further general-
ization of Th. M. Rassias’ theorem. Several mathematicians have contributed works on
these subjects (see [4-14]).

Rassias [15] provided an alternative generalization of Hyers’ stability theorem which
allows the Cauchy difference to be unbounded, as follows.
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TaEOREM 1.1. Let f : E — E' be a mapping from a normed vector space E into a Banach
space E' subject to the inequality

f et y) = f) = fFOIl < ellxlIPll 1P (1.2)

forall x,y € E, where € and p are constants with € >0 and 0 < p < 1/2. Then the limit

L(x) = lim L:x) (1.3)

n—oo 2
exists for all x € E and L : E — E' is the unique additive mapping which satisfies

€

2p 1.4
ST, Il (1.4)

1 () = L)l =

forall x € E. If p <0, then inequality (1.2) holds for x,y # 0, and (1.4) forx # 0. If p > 1/2,
then inequality (1.2) holds for all x, y € E, and the limit

Alx) = ,lil?oz”f(%) (1.5)

exists for all x € E and A : E — E’ is the unique additive mapping which satisfies

€

T [l x12P (1.6)

[1f(x) = Al <

forall x € E.

In 1982-1994, a generalization of this result was established by J. M. Rassias with a
weaker (unbounded) condition controlled by (or involving) a product of different pow-
ers of norms. However, there was a singular case. Then for this singularity, a counterex-
ample was given by Gavruta [16]. The above-mentioned stability involving a product of
different powers of norms is called Ulam-Gavruta-Rassias stability by Sibaha et al. [17]
and Ravi and Arunkumar[18]. This stability is called Hyers-Ulam-Rassias stability in-
volving a product of different powers of norms by Park [10]. Note that both Ulam stabil-
ities specifically called: “Ulam-Gavruta-Rassias stability of mappings” and “Hyers-Ulam-
Rassias stability of mappings involving a product of powers of norms are identical in
meaning stability notions. Besides Euler-Lagrange quadratic mappings were introduced
by Rassias [19], motivated from the pertinent algebraic quadratic equation. Thus he in-
troduced and investigated the relative quadratic functional equation [20, 21]. In addition,
he generalized and investigated the general pertinent Euler-Lagrange quadratic mappings
[22]. Analogous quadratic mappings were introduced and investigated by the same au-
thor [23, 24]. Therefore, this introduction of Euler-Lagrange mappings and equations
in functional equations and inequalities provided an interesting cornerstone in analy-
sis, because this kind of Euler-Lagrange-Rassias mappings (resp., Euler-Lagrange-Rassias
equations) is of particular interest in probability theory and stochastic analysis by marry-
ing these fields of research results to functional equations and inequalities via the intro-
duction of new Euler-Lagrange-Rassias quadratic weighted means and Euler-Lagrange-
Rassias fundamental mean equations [21, 22, 25]. For further research developments in
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stability of functional equations, the readers are referred to the works of Park [6-13], Ras-
sias [15, 19-24, 26-36], J. M. Rassias and M. J. Rassias [25, 37—-39], Rassias [40—43], Skof
[44], and the references cited therein.

Gilanyi [45] showed that if f satisfies the functional inequality

12f () +2f(y) = flx= I < || fx+ )], (1.7)

then f satisfies the Jordan-von Neumann functional inequality

2f()+2f(y) = fx+y)+ flx—y) (1.8)

(see also [46]). Fechner [47] and Gilanyi [48] proved the Hyers-Ulam-Rassias stability
of the functional inequality (1.7). Park et al.[11] proved the Hyers-Ulam-Rassias stability
of functional inequalities associated with Jordan-von Neumann-type additive functional
equations.

Jordan observed that £(#) is a (nonassociative) algebra via the anticommutator prod-
uct x o y:= (xy+ yx)/2. A commutative algebra X with product x o y is called a Jor-
dan algebra. A Jordan C*-subalgebra of a C*-algebra, endowed with the anticommu-
tator product, is called a JC*-algebra. A C*-algebra €, endowed with the Lie product
[x,y] = (xy — yx)/2 on €, is called a Lie C*-algebra (see [6, 7, 13]).

This paper is organized as follows. In Section 2, we investigate isomorphisms and
derivations in C*-algebras associated with the Cauchy-Jensen functional equation. In
Section 3, we investigate isomorphisms and derivations in Lie C*-algebras associated
with the Cauchy-Jensen functional equation. In Section 4, we investigate isomorphisms
and derivations in JC*-algebras associated with the Cauchy-Jensen functional equation.

2. Isomorphisms and derivations in C*-algebras

Throughout this section, assume that A is a C*-algebra with norm || - |4, and that Bis a
C*-algebra with norm || - [|5.

LEmmMa 2.1 [11]. Let f : A — B be a mapping such that

(2.1)

F@+ o) +27@lls < [2r (52 +2)

B
forallx,y,z € A. Then f is Cauchy additive, that is, f(x+y) = f(x)+ f(y).

In this section, we investigate C*-algebra isomorphisms between C*-algebras and lin-
ear derivations on C* -algebras associated with the Cauchy-Jensen functional equation.

THEOREM 2.2. Letr > 1 and 0 be nonnegative real numbers, and let f : A — B be a bijective
mapping such that

luf)+ f)+2f @Iy = for (52 +2))| 22)

I1fCey) = F)f g < 0UxNZ + 1y1IT), (2.3)
If(x*) = fx)*||5 < 0(lxlly + lxy) (2.4)
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for all yu e TL:={AeC| Al =1} and all X, ¥,z € A. Then the mapping f :A— Bisa
C*-algebra isomorphism.

Proof. Let y =1 in (2.2). By Lemma 2.1, the mapping f : A — B is Cauchy additive. So
f(0) =0and f(x) =lim,_ 2" f(x/2") for all x € A.
Letting y = —ux and z = 0, we get

[lf G) + f (=)l < [[2 (O)]|p = 0 (2.5)

forall x € Aand all y € T'.So

uf(x) = fux) =pf(x)+ f(—px) =0 (2.6)

for all x € A and all u € T'. Hence f(ux) = uf(x) for all x € A and all y € T'. By the
same reasoning as in the proof of [8, Theorem 2.1], the mapping f : A — B is C-linear.
It follows from (2.3) that

- soron -t (525) - (2)r(2)

B
(2.7)
470
< lim o (el + 1) =
for all x,y € A. Thus
flxy)=fx)f(y) (2.8)
forall x,y € A.
It follows from (2.4) that
x* x\*
£ (x*) = f()*][p = Jim 2" f<27>—f(27>
B
(2.9)
.. 2"8
< lim S (el + ;) = 0
for all x € A. Thus
f&x*) = flx)* (2.10)

for all x € A. Hence the bijective mapping f : A — B is a C*-algebra isomorphism.  [J
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THEOREM 2.3. Let r < 1 and 0 be nonnegative real numbers, and let f : A — B be a bijective
mapping satisfying (2.2), (2.3), and (2.4). Then the mapping f : A — B is a C*-algebra
isomorphism.

Proof. The proof is similar to the proof of Theorem 2.2. O

THEOREM 2.4. Letr > 1 and 0 be nonnegative real numbers, and let f : A — A be a mapping
satisfying (2.2) such that

1fCey) = fx)y =xf (D], < O + 1y I1) (2.11)

forall x,y € A.Then the mapping f : A — A is a linear derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping [ : A — A is
C-linear.
It follows from (2.11) that

o sor-ssot- e ()55 512

O RT)!
<lim 2% (el + Iy 13) = 0
forall x,y € A. So
fley)=fx)y+xf(y) (2.13)
for all x, y € A. Thus the mapping f : A — A is a linear derivation. O

THEOREM 2.5. Let r < 1 and 0 be nonnegative real numbers, and let f : A — A be a mapping
satisfying (2.2) and (2.11). Then the mapping f : A — A is a linear derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 2.4. O

THEOREM 2.6. Letr > 1 and 0 be nonnegative real numbers, and let f : A — B be a bijective
mapping satisfying (2.2) such that

[f(xy) = F)fF g <0 lIxll - N1yl (2.14)
1 (x*) = F)* |15 < 0 7> - IlxlI? (2.15)

forally € T and all x,y € A. Then the mapping f : A — B is a C*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A — B is
C-linear.
It follows from (2.14) that

- st~ e (525) - (2)(2)

4"0

1 —_— rl r:
S%ljl;lo i llxll’y - lylly =0

B (2.16)
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forall x,y € A. Thus

flxy)=fx)f(y) (2.17)

forallx,y € A.
It follows from (2.15) that

x* x\*
1 (x*) = f)*||p = lim 2" f<27>—f(27>
B
(2.18)
<lim 20 el = 0
for all x € A. Thus
fx*) = flo)* (2.19)

for all x € A. Hence the bijective mapping f : A — B is a C*-algebra isomorphism. [

THEOREM 2.7. Let r < 1 and 0 be nonnegative real numbers, and let f : A — B be a bijective
mapping satisfying (2.2), (2.14), and (2.15). Then the mapping f : A — B is a C*-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2 and 2.6. O

TueorReM 2.8. Letr > 1 and 0 be nonnegative real numbers, and let f : A — A be a mapping
satisfying (2.2) such that

1fxy) = f@)y =xfDlla =6 =l - Iyl (2.20)
forall x,y € A.Then the mapping f : A — A is a linear derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping [ : A — A is
C-linear.
It follows from (2.20) that

[1fGey) = fx)y = xf ()], = lim 4"

H2)-A3)-22)

A
(2.21)
. 4"0
< lim o7 - Il - 1yl =
forall x,y € A. So
fly) = fx)y+xf(y) (2.22)
for all x, y € A. Thus the mapping f : A — A is a linear derivation. O

THEOREM 2.9. Letr < 1 and 0 be nonnegative real numbers, and let f : A — A be a mapping
satisfying (2.2) and (2.20). Then the mapping f : A — A is a linear derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 2.8. O
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3. Isomorphisms and derivations in Lie C*-algebras

Throughout this section, assume that A is a Lie C*-algebra with norm || - [|4, and that B
is a Lie C*-algebra with norm || - || 5.

Definition 3.1 (6,7, 13]. A bijective C-linear mapping H : A — B s called a Lie C*-algebra

isomorphism if H : A — B satisfies

H([x,y]) = [H(x),H(y)] (3.1)
forallx,y € A.

Definition 3.2 [6, 7, 13]. A C-linear mapping D : A — A is called a Lie derivation if D :
A — A satisfies

D([x,y]) = [Dx,y] + [x,Dy] (3.2)

forallx,y € A.

In this section, we investigate Lie C*-algebra isomorphisms between Lie C*-algebras
and Lie derivations on Lie C*-algebras associated with the Cauchy-Jensen functional
equation.

TaEOREM 3.3. Letr > 1 and 0 be nonnegative real numbers, and let f : A — B be a bijective
mapping satisfying (2.2) such that

1S ([ 1) = [£ ), fO) 5 < OCIxNT + IylIE) (3.3)

forall x,y € A. Then the mapping f : A — B is a Lie C*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A — B is
C-linear.
It follows from (3.3) that

5) - LG ()

I1f (L y1) = £ ), f()] 5 = lim 47

B

(3.4)
< tim &€ (1137 + 1y1) -0
for all x,y € A. Thus
f(ley]) =[f (0, f ()] (3.5)
for all x, y € A. Hence the bijective mapping f : A — B is a Lie C*-algebra isomorphism,
as desired. O

TueOoREM 3.4. Let r < 1 and 0 be nonnegative real numbers, and let f : A — B be a bijec-
tive mapping satisfying (2.2) and (3.3). Then the mapping f : A — B is a Lie C*-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.3. O
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THEOREM 3.5. Letr > 1 and 0 be nonnegative real numbers, and let f : A — A be a mapping
satisfying (2.2) such that

1f (Lo y]) = LGy ] = T fOO N4 < O + DIy 1) (3.6)
forall x,y € A. Then the mapping f : A — A is a Lie derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f: A — A is
C-linear.
It follows from (3.6) that

1f (I p1) = [f (), p] =[x FO)]]4

(CIRUEEIRENE

= lim 4"

H— o " (3.7)
= tim 2 (i +1y13) =0
forall x,y € A. So
f(loy]) = [f )y +1x f ()] (3.8)
for all x, y € A. Thus the mapping f : A — A is a Lie derivation. O

THEOREM 3.6. Let r < 1 and 0 be nonnegative real numbers, and let f : A — A be a mapping
satisfying (2.2) and (3.6). Then the mapping f : A — A is a Lie derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.5. O

THEOREM 3.7. Letr > 1 and 0 be nonnegative real numbers, and let f : A — B be a bijective
mapping satisfying (2.2) such that

1 (Lo y]) = LF G, fODIlp < 6+ llxll - Il (3.9)

forall x,y € A. Then the mapping f : A — B is a Lie C*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A — B is
C-linear.
It follows from (3.9) that

ILf (16 y1) = [£ ), fFO)]I| = Lim 4

(%) -G ()

o ) 310
.o4n
< AII?O o llllyy - [y, =0
forall x,y € A. Thus
f(lxeyl) = [f(x), f(y)] (3.11)

for all x, y € A. Hence the bijective mapping f : A — B is a Lie C*-algebra isomorphism,
as desired. O
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TaEOREM 3.8. Let r < 1 and 0 be nonnegative real numbers, and let f : A — B be a bijec-
tive mapping satisfying (2.2) and (3.9). Then the mapping f : A — B is a Lie C*-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.6, and 3.7. O

THEOREM 3.9. Letr > 1 and 0 be nonnegative real numbers, and let f : A — A be a mapping
satisfying (2.2) such that

[1f (Lo y]) = Lf Gy ] = [ f L4 < 0+ Nl - Iy Il (3.12)
forall x,y € A. Then the mapping f : A — A is a Lie derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f: A — A is
C-linear.
It follows from (3.12) that

f (e, y]) = [f Gyl = [ fFD]l4

T YA ESY x\ Y X (Y
-t (50) - [ G5 - BB e
. 4"0
< lim 225 - llxlly - [yl =0
forall x,y € A. So
fley]) = 1f ]+ % f(y)] (3.14)
for all x, y € A. Thus the mapping f : A — A is a Lie derivation. O

THEOREM 3.10. Let r < 1 and 0 be nonnegative real numbers, and let f : A — A be a map-
ping satisfying (2.2)and (3.12). Then the mapping f : A — A is a Lie derivation.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.8, and 3.9. O

4. Isomorphisms and derivations in ] C* -algebras

Throughout this section, assume that A is a JC*-algebra with norm || - ||4, and that B is
a JC*-algebra with norm || - || 5.

Definition 4.1 [7, 13]. A bijective C-linear mapping H : A — B is called a JC*-algebra
isomorphism if H : A — B satisfies

H(xoy) = H(x) o H() (4.1)

forallx,y € A.

Definition 4.2 [7, 13]. A C-linear mapping D : A — A is called a Jordan derivation if D :
A — A satisfies

D(xoy)=Dxoy+xoDy (4.2)

forallx,y € A.
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In this section, we investigate JC*-algebra isomorphisms between JC*-algebras and
Jordan derivations on JC*-algebras associated with the Cauchy-Jensen functional equa-
tion.

TaEOREM 4.3. Letr > 1 and 0 be nonnegative real numbers, and let f : A — B be a bijective
mapping satisfying (2.2) such that

IfGxoy) = fGx)o fDlp =< OCUxZ + I yI1Z) (4.3)

forall x,y € A. Then the mapping f : A — B is a JC*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A — B is
C-linear.
It follows from (4.3) that

1f(xoy) = fx) o fD)llg = lim 4" f(jé’) _f<2£n) f<zl)

P (4
. 4"0
< lim 4 (Il + 11yl =0
for all x,y € A. Thus
flxey)=f(x)e f(y) (4.5)

for all x, y € A. Hence the bijective mapping f : A — B is a JC*-algebra isomorphism, as
desired. O

THEOREM 4.4. Let r < 1 and 0 be nonnegative real numbers, and let f : A — B be a bi-
jective mapping satisfying (2.2) and (4.3). Then the mapping f : A — B is a JC*-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2 and 4.3. O

THEOREM 4.5. Let r > 1 and 0 be nonnegative real numbers, and let f : A — A be a mapping
satisfying (2.2) such that

[[f(xoy)— f(x)oy—xof(MI,<0xIZ +IyIZ) (4.6)

forall x,y € A. Then the mapping f : A — A is a Jordan derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A — A is
C-linear.
It follows from (4.6) that

) -1(5)3-501(3)

.40
< lim - (Il 3 + Iy1I7) =0

4nr

If(xey) = flx)oy—xo f(yll, = lim 4" )

n

(4.7)
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forallx,y € A. So

flxoy)=f(x)oy+xof(y) (4.8)

for all x, y € A. Thus the mapping f : A — A is a Jordan derivation. O

THEOREM 4.6. Let v < 1 and 0 be positive real numbers, and let f : A — A be a mapping
satisfying (2.2) and (4.6). Then the mapping f : A — A is a Jordan derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 4.5. g

THEOREM 4.7. Let r > 1 and 0 be nonnegative real numbers, and let f : A — B be a bijective
mapping satisfying (2.2) such that

fGxoy) = f@x)e flp =0~ llxlly - NIyl (4.9)

forall x,y € A. Then the mapping f : A — B is a JC*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A — B is
C-linear.
It follows from (4.9) that

1) - 1G) £ (33)

1fGeo )= £ o fly = lim 47

? (4.10)
. 49
< ilj{}ow lxlly - llylly =0
forall x,y € A. Thus
flxoy)=f(x)o f(y) (4.11)

for all x, y € A. Hence the bijective mapping f : A — B is a JC*-algebra isomorphism, as
desired. O

THEOREM 4.8. Let r < 1 and 0 be nonnegative real numbers, and let f : A — B be a bi-
jective mapping satisfying (2.2) and (4.9). Then the mapping f : A — B is a JC*-algebra
isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.6, and 4.7. O

THEOREM 4.9. Let r > 1 and 0 be nonnegative real numbers, and let f : A — A be a mapping
satisfying (2.2) such that

1f(xoy) = flx)oy—xo f(yly=0-Ixll} -yl (4.12)

forall x,y € A.Then the mapping f : A — A is a Jordan derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping f : A — A is
C-linear.
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It follows from (4.6) that

If(xoy)=flx)oy—xo f(y)ll, = lim4”

E)-5) 3 513)

A
= %ljlolofT? lxly - lyli =0
(4.13)
forall x,y € A. So
flxoy)=f(x)oy+xof(y) (4.14)
for all x, y € A. Thus the mapping f : A — A is a Jordan derivation. O

THEOREM 4.10. Let r < 1 and 0 be positive real numbers, and let f : A — A be a mapping
satisfying (2.2) and (4.12). Then the mapping f : A — A is a Jordan derivation.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.8, and 4.9. O
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