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We introduce some concepts of generalized invexity for the continuous-time multiobjec-
tive programming problems, namely, the concepts of Karush-Kuhn-Tucker invexity and
Karush-Kuhn-Tucker pseudoinvexity. Using the concept of Karush-Kuhn-Tucker invex-
ity, we study the relationship of the multiobjective problems with some related scalar
problems. Further, we show that Karush-Kuhn-Tucker pseudoinvexity is a necessary and
suffcient condition for a vector Karush-Kuhn-Tucker solution to be a weakly efficient so-
lution.
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1. Introduction

In this work, we regard the continuous-time multiobjective optimization problem,

T T
Minimize ¢(x) = (L fl(x(t),l‘)dt,...,f0 fp(x(t),t)dt) ( |
CMP

subject to g;(x(£),t) <0 ae.in [0,T],i=1,...,m, x € X.

Here X is a nonempty open convex subset of the Banach space L% [0,T], ¢ : X — R?,
fitx(®),0)=&(x)(1), j €] :={L,..., p}, &i(x(1),1) = yi(x) (1), i€I:={1,...,m}, where §;:
X — A}[0,T), j€],and y;: X — A}[0,T], i € I. L, [0, T] denotes the space of all n-di-
mensional vector-valued Lebesgue measurable functions, which are essentially bounded,



2 Abstract and Applied Analysis

defined on the compact interval [0, T] C R, with norm || - || defined by

||x||oozlrnaxesssup{|xj(t)|,0sts T}, (1.1)
<jzn

where for each t € [0, T], x;(t) is the jth component of x(t) € R" and A7'[0,T] denotes
the space of all m-dimensional vector-valued functions which are essentially bounded
and Lebesgue measurable, defined on [0, T'], with the norm || - ||; defined by

T
Iyl = max | 1yi(0)]dt (1.2)

The mono-objective version of this class of problems was introduced by Bellman [1]
in connection with production-inventory “bottleneck processes.” He considered a type
of optimization problems, which is now known as continuous-time linear programming,
formulated its dual and provided duality relations. He also suggested some computational
procedures.

Since then, various authors have extended his theory to wider classes of continuous-
time problems (e.g., [2-12]). In these articles, the authors study the mono-objective case,
but in many applications it is necessary to minimize not only one objective. So, the mul-
tiobjective problem is more general and more suitable for many applications. The de-
velopment of the necessary and sufficient optimality conditions for (CMP) was done in
[13].

Our aim in this paper is to provide necessary and sufficient conditions for global opti-
mality of a vector Karush-Kuhn-Tucker solution as well for a vector Karush-Kuhn-Tucker
solution to solve a related scalar problem. Our results extend the finite dimensional case
studied in [14, 15] and the continuous-time mono-objective case studied in [16].

For more literature about these issues, we refer the reader to [14-16] and the bibliog-
raphy cited therein.

We organized this work into four sections. In Section 2, we give some preliminaries.
We introduce KKT pseudoinvexity for (CMP) and state our first mean result in Section 3.
The notion of KKT invexity and our second mean result are given in Section 4.

2. Preliminaries

Let V be an open subset of R" containing the set {x(f) € R":x € X, t € [0,T]}. We
assume that f;, j € J,and g;, i € I, are real functions defined on V x [0, T]. The functions
t— fij(x(t),t), j € J,and t — gi(x(t),t), i € I, are assumed to be Lebesgue measurable and
integrable for all x € X. We assume also that the functions f;, j € J, and g;, i € I, are
continuously differentiable with respect to their first arguments.

Let F be the set of all feasible solutions of problem (CMP) (which we suppose non
empty), that is, let

F={xeX:g(x(t),t) <0ae.in[0,T], i I}. (2.1)
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Given x € [, for each i € I we denote by A;(x) the subset of [0, T] where the ith con-
straint is active, that is,

Ai(x) = {t€[0,T]: gi(x(),t) = 0}. (2.2)

In this paper, all vectors are collum vectors. We use a prime to denote transposition.
Besides, given w € R?, w < 0 means that w; < 0 for i = 1,2,..., p, and w < 0 means that
wi<0fori=1,2,...,p.

In what follows, we state a result which will be useful for the proof of our results.
This result can be viewed as a generalized Motzkin theorem of the alternative. It is the
continuous-time analogue of the theorem given by Mangasarian [17, page 66] and its
proof is almost identical to the one given in the Mangasarian’s book.

THEOREM 2.1. Let Z < L%, [0, T] be a nonempty convex subset. Let p: W x [0, T] — R™ and
g: W x[0,T] — R¥ be mappings given by p(z(t),t) = n(z)(t) and q(z(t),t) = B(t)z(t) —
b(t), respectively, where W = R" is an open subset, 7w is a mapping from Z into AT'[0,T],
B(t) is a k X n matrix, and b(t) € R¥. Assume that p is convex with respect to its first argu-
ment in W throughout [0, T] and that there does not exist v € L%, [0, T] \ {0}, v(t) = 0 a.e.
in [0, T] such that

B'(t)v(t)=0 a.e in[0,T]. (2.3)

Then exactly one of the following systems is consistent:
(I) p(z(t),t) <0, B(t)z(t) < b(t) a.e. in [0, T] has a solution z € Z;
(I1) fOT{u'(t)p(z(t),t)+v’(t) [B(t)z(t)—b(t)]}dt =0 forallz€ Z, for some u € L™ [0,T],
u(t) =0, u(t) # 0 a.e. in [0, T] and for some v € LK [0, T], v(t) = 0 a.e. in [0, T].

Proof. Quite similar to the proof of Theorem 3.4 in [10, page 137]. O

In the two following definitions, we define as in [13] a weakly efficient solution and a
vector Karush-Kuhn-Tucker solution.

Definition 2.2. A feasible solution y is said to be a weakly efficient solution of (CMP) if
and only if there does not exist another feasible solution x such that ¢(x) < ¢(y).

Definition 2.3. A feasible solution y is said to be a vector Karush-Kuhn-Tucker solution
(or vector KKT solution) for problem (CMP) if there exist y € R? and A € L2[0, T] such
that

T
JO [Zijfj'(y(t),t)+z)ti(t)Vg[(y(t),t)]h(t)dt:0 VYheln[0,T], (2.4)

jel iel
Ai(t)gi(y(£),t) =0 ae.in[0,T], i€, (2.5)
Ai(t)=0 ae. in[0,T],i€l, (2.6)
Uj=0, je],u#0. (2.7)

At last we give a constraint qualification in the continuous-time setting.
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Definition 2.4. The constraints g;, i € I, satisty (CQ) at y € [ if there do not exist v; €
Lo[0,T], vi(t) = 0a.e.in [0, T], i € I, not all zero, such that

ZJ Vi)V (e, )h(Ddt =0 YheLL[0,T). (2.8)

iel

3. KKT-pseudoinvexity and optimality conditions

In this section, we introduce the notion of Karush-Kuhn-Tucker pseudoinvexity for
(CMP). Further, we state and prove a result which provides necessary and sufficient con-
ditions for global optimality of a vector Karush-Kuhn-Tucker solution.

Definition 3.1. The problem (CMP) is said to be Karush-Kuhn-Tucker pseudoinvex (or
KKT-pseudoinvex) if there exists a function 77: VX V x [0, T] — R" such that t — n(x(t),
y(t),t) € L% [0,T], and

T
¢(x)<¢(y)=>L V£ (p(0), ) (x(0), y(0),1)dE <0, jeE], (3.1)

=Vg (y(),)n(x(t),y(t),t) =0 ae.inAi(y), i€l (3.2)

forallx,y € F.

THEOREM 3.2. Assume that the constraints g;, i € I, satisfy (CQ) at each y € F. Then every
vector KKT-solution is a weak efficient solution of (CMP) if and only if (CMP) is KKT-
pseudoinvex.

Proof. Let y be a vector KKT-solution and suppose that (CMP) is KKT-pseudoinvex.
Suppose that there exists a feasible solution x such that ¢(x) < ¢(y). As (CMP) is KKT-
pseudoinvex, using (3.1), we obtain

T
. VA OO0 @.d<o. el (33)

Since y is a vector KKT-solution, there exist y € R? and A € L™[0, T] satisfying (2.4)—
(2.7). By (2.7) and (3.3), we have

J > VI (7(0,0)7 (x(1), y(1), 1)t < 0. (3.4)

jel

Using (2.4) with h(t) = y(x(t), y(t),t), t € [0, T], we obtain

J S LV (y(1), )7 (x(0), y(), £)dt > . (3.5)

i€l
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By the other hand, from (2.6) and (3.2), since by (2.5) A;(¢) = 0, t & A;(y), i € I, it follows
that

T
. SMovg (5 o.0n(0,y0.0d <0, (3.6)
iel

which is a contradiction to (3.5). Therefore y is a weakly efficient solution.

Conversely, suppose that every vector KKT-solution is a weakly efficient solution. Let
x,y € [ be such that ¢(x) < ¢(y). Then y is not a weakly efficient solution, so that, by
hypothesis, y is not a vector Karush-Kuhn-Tucker solution. So the system

T
L [vaf/ (y(0,1) + > XD Vg (y(t),t)]h(t)dt =0 Vhely[0,T],

jel icl
Ai(t)gi(y(t),t) =0 ae.in[0,T], i€, (3.7)
Ai(t)=0 ae. in[0,T],i€l,
uj=0, jeju#0,

has no solution (y,1) € R? x L [0, T]. Equivalently, the system

T

JO [Zyﬁfj’ (y(t),t) + lei(t)Xi(t)Vg,-' (y(t),t)}h(t)dt =0 Vhel[0,T],

" - . | (3.8)
Ai(t) =0 ae.in[0,T], i€,

‘M]ZOJ Je],ﬂ?éo,

has no solution (y,A) € R? X L2 [0, T], where y; : [0, T] — R is defined, for each i € I, by

” :{1 ift € Ai(y), 39

0 ifte Ay

As the constraint qualification holds by hypothesis, the condition (2.3) in Theorem 2.1 is
verified. Applying that theorem, it follows that there exists h € L2 [0, T] such that

T
L VI (y(t)t)h(Ddt <0, je],

(3.10)
xi(OVg (y(t),t)h(t) <0 ae. in[0,T],icl
Define 5(x(t), y(t),t) = h(t) a.e. in [0, T]. Therefore
T
JO V£ (0,0 (x(0), y(t),t)dE <0, je], -

=Vg (y(),)n(x(t),y(t),t) =0 ae.inAi(y), i€l
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Thus there exists a function 57: VXV x[0,T] — R" such that ¢t — 5(x(t), y(t),t) € L, [0, T]
and

T
$(x) < $(y) = JO VF ((0,0n(x(0), y(0),)de <0, e, .

—Vgi (y(),0)n(x(t),y(t),t) =0 ae. inAi(y), i€l
for all x, y € F, so that (CMP) is KKT-pseudoinvex. O

4. Karush-Kuhn-Tucker invexity and scalar problems

In this section, we generalize to the continuous-time context the notion of Karush-Kuhn-
Tucker invexity introduced in [15] for finite-dimensional multiobjective problems. In
addition, we give necessary and sufficient conditions for a vector KKT-solution to solve a
related weighting scalar problem.

We will regard the following weighting scalar problem related with (CMP):

T
Minimize ®(x) = L Zyjfj(x(t),t)dt )
j€l .

subject to g;(x(t),t) <0 a.e.in[0,T],i€l, x€X,

where ; € R, j € ]. This is one of the most known scalar problems associated with mul-
tiobjective optimization problems.

TueoreM 4.1. Every optimal solution of a weighting scalar problem with u; > 0, j € J, not
all zero, is a weakly efficient solution of (CMP).

Proof. Let y be an optimal solution of a scalar problem with y ; =0, j €], not all zero,
and let us suppose that there exists x € [ such that ¢(x) < ¢(y). Then ¢;(x) < ¢;(y),j €],
so that

pidi(x) <pidi(y), jE, (4.2)

since y; = 0, j € J. Provided p;, j € ], are not all zero, there exists at least one j € J such
that y; > 0. Therefore, in the inequalities above, at least one holds strictly. So summing
over J,

2195 () < 2 uii (), (4.3)
i€l j€l
which contradicts the optimality of . O

In order to establish the reciprocal of Theorem 4.1, we need some qualifications on the
constraints and, furthermore, we need some generalized convexity hypothesis.
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Definition 4.2. The problem (CMP) is said to be Karush-Kuhn-Tucker invex (or KKT-
invex) if there exists a function 77: V X V x [0,T] — R” such that t — 5(x(t), y(t),t) €
L"[0,T] and

T
810 - 400 = |V Go.0mx0.p0u0d e, "

=Vg (y(),0)n(x(t),y(t),t) =0 ae.inAi(y), i€l

forallx,y € F.

THEOREM 4.3. Assume that the constraints g;, i € I, satisfy (CQ) at each y € F. If (CMP)
is KKT-invex, then every weakly efficient solution solves a weighting scalar problem with
uj =0, j €], notall zero.

Proof. Let y be a weakly efficient solution of (CMP). Then, by [13, Theorem 3.3, page 9],
there exist 4 € R? and A € L™ [0, T] satistying

T
JO [Zwvfj’ (y(0),8) + X Mi(1) Vg (y(t),t)]h(t)dt =0 Vhell[0,T],

j&l icl
Ai(t)gi(y(£),t) =0 ae.in[0,T], i€, (4.5)
uj=0, jeJ, A(t)=0 ae in[0,T],i€l,
(A1) #0 ae.in [0,T].

If u =0, then A(t) # O a.ein [0, T], and

JT [zai(t)v&-’ (y(t),t)}h(t)dt =0 VhelL[0,T]. (4.6)
0

i€l

From A;(t)gi(y(t),t) = 0,a.e.in [0, T], i € I, it follows that A;(t) = 0, t & A;(y). So we have

ZJ (Ve (y(O,00h(Ddt =0 VheLn[0,T], (4.7)

icl

with A;(¢) = 0 a.e. in [0, T], i € I, not all zero, which contradicts the hypothesis that (CQ)
holds at y. Thus y is a vector KKT-solution, that is, there exist y € R? and A € L7[0, T']
satistying (2.4)—(2.7).

Asby (2.7) uj = 0, j € J,and by (2.6) Ai(t) = Oa.e.in [0, T], i € I, using (4.4) we obtain

J > uilfi(x — fi(y(t dt>J D iV (y(@,0)n(x(t),y(t),0)dt,  (4.8)

jel j€l

—Ai(t)Vg (y(t),t)n(x(£), y(t),t) =0 a.e.inAi(y), i€, (4.9)
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for all x € F. Remembering that A;(t) = 0, t € A;(y), i € I, integrating the inequalities in
(4.9) over [0, T] and summing over I, we obtain

T
- L STV, (0, 8) 7 (x(1), y(£),£)dt = 0. (4.10)

i€l

From (4.8) and (4.10), it follows that

T
[ Sl x0.0 5 (0, 1d
h (4.11)

T
> L [Zijﬁ (y(1),) + > Li() Vg (y(t),t)] 1 (x(t), y(t),t)dt,

jer iel

for all x € F. Setting h(t) = n(x(t), y(t),t) a.e. in [0,T], it follows from (2.4) that the
integral in the second line above is null. Thus y solves a weighting scalar problem with
¢j =0, j €], not all zero. g

TaEOREM 4.4. If (CMP) is KKT-invex, then every vector KKT-solution solves a weighting
scalar problem with u; > 0, j € J, not all zero.

Proof. Similar to the proof of Theorem 4.3. O

The theorems above show us that under the assumptions that (CMP) is KKT-invex
and the constraints satisfy (CQ) at each y € F, the sets of vector KKT-solutions, weakly
efficient solutions, and optimal solutions of weighting scalar problems are equal.

Under the hypothesis that the constraints satisfy (CQ), we can establish a reciprocal of
Theorem 4.4.

THEOREM 4.5. Assume that the constraints g;, i € I, satisfy (CQ) at each y € F. Then every
vector KKT-solution solves a weighting scalar problem if and only if (CMP) is KKT-invex.

Proof. The sufficiency part was proved in Theorem 4.4. Let us proceed to the necessity
part.

Assume that every vector KKT-solution solves a weighting scalar problem. Then the
system

T
L [Zujvf/ (y(0),t) + ZAi(t)Vgi(y(t),t)]h(t)dt =0 VhelL'[0,T],

jeJ icl
Ai(t)gi(y(£),t) =0 ae.in[0,T], i€,
Ai(t) =0 ae.in[0,T], i€, (4.12)
ujz0, je,u#0,
T
L S il ((0.8) = i (y(0),1)]dt <0,

j€l
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has no solution (y,A) € R? x L™[0, T] for any x, y € [F. Equivalently, the system

J [zmwj )+ Ly Vg ((b), )}h(t)dtzo Vhel[0,T],

jE€J iel

Ai(t) >0 a.e.in[0,T], i€,
(4.13)
uj=0, je],u#0,

JZ&“JfJ (t),t) = fi(y(t),t) ]dt <0,

jel

has no solution (y,A) € R? X L7 [0, T] for any x, y € F, where y; is defined as in the proof
of Theorem 3.2. It is easy to see that this implies that the system

0 1
T VAG®.)  filx®),t) = i(y(0:0) | [hee)
[ wl| : o
Vi @0),t)  fp(x(8),t) = fp(y(0),1)
r xi(OVg(y(®),t) 0 (4.14)
[ e Ao : : [h(t)]dt—

(Vg (y(t),t) 0
Vhell[0,T], Va€eR,
v>0, uj=0, j€J, u#0, A(t)=0 ae in[0,T],icl,

has no solution (v,u,A) € RP*! x L7[0,T] for any x, y € F. Since (CQ) holds by hypoth-
esis, the condition (2.3) in Theorem 2.1 is satisfied. Therefore, applying that theorem, it
follows that there exist « € R and h € L” [0, T] such that

O 1
JT vfagwn,o filx(),0) :ﬁ(yﬁhf) [hSJ]dt<o,

0 (4.15)

VG fl000) — fy(y(e0)
xi(OVg (y(t),t)h(t) <0 ae.in[0,T], i€l

for any x, y € F. Then «a < 0 and we can set « = —1. Defining

n(x(t), y(£),t) = h(t) ae.in [0,T], (4.16)
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we have

T T
JO Vf]f(y(t),t)n(x(t),y(t),t)dt<L Lfi(x(0,8) — Fi(y(00)]dt, j e,

Vg (y(),t)n(x(t),y(t),t) <0 ae. inAi(y), i€l

Therefore (CMP) is KKT-invex. O

(4.17)
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