Research Article
 Legendre's Differential Equation and Its Hyers-Ulam Stability

Soon-Mo Jung

Received 9 June 2007; Revised 15 July 2007; Accepted 16 July 2007
Recommended by John Michael Rassias

We solve the nonhomogeneous Legendre's differential equation and apply this result to obtaining a partial solution to the Hyers-Ulam stability problem for the Legendre's equation.

Copyright © 2007 Soon-Mo Jung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In 1940, S. M. Ulam gave a wide ranging talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of important unsolved problems [1]. Among those was the question concerning the stability of homomorphisms. Let G_{1} be a group and let G_{2} be a metric group with a metric $d(\cdot, \cdot)$. Given any $\delta>0$, does there exist an $\varepsilon>0$ such that if a function $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x y), h(x) h(y))<\varepsilon$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\delta$ for all $x \in G_{1}$?

In the following year, Hyers [2] partially solved the Ulam's problem for the case where G_{1} and G_{2} are Banach spaces. Furthermore, the result of Hyers has been generalized by Rassias [3]. Since then, the stability problems of various functional equations have been investigated by many authors (see [4-7]).

We will now consider the Hyers-Ulam stability problem for the differential equations. Assume that X is a normed space over a scalar field \mathbb{K} and that I is an open interval, where \mathbb{K} denotes either \mathbb{R} or \mathbb{C}. Let $a_{0}, a_{1}, \ldots, a_{n}: I \rightarrow \mathbb{K}$ be given continuous functions, let $g: I \rightarrow X$ be a given continuous function, and let $y: I \rightarrow X$ be an n times continuously
differentiable function satisfying the inequality

$$
\begin{equation*}
\left\|a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)+g(t)\right\| \leq \varepsilon \tag{1.1}
\end{equation*}
$$

for all $t \in I$ and for a given $\varepsilon>0$. If there exists an n times continuously differentiable function $y_{0}: I \rightarrow X$ satisfying

$$
\begin{equation*}
a_{n}(t) y_{0}^{(n)}(t)+a_{n-1}(t) y_{0}^{(n-1)}(t)+\cdots+a_{1}(t) y_{0}^{\prime}(t)+a_{0}(t) y_{0}(t)+g(t)=0 \tag{1.2}
\end{equation*}
$$

and $\left\|y(t)-y_{0}(t)\right\| \leq K(\varepsilon)$ for any $t \in I$, where $K(\varepsilon)$ is an expression of ε with $\lim _{\varepsilon \rightarrow 0} K(\varepsilon)=$ 0 , then we say that the above differential equation has the Hyers-Ulam stability. For more detailed definitions of the Hyers-Ulam stability, we refer the reader to [4-6].

Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of differential equations. They proved in [8] that if a differentiable function $f: I \rightarrow \mathbb{R}$ is a solution of the differential inequality $\left|y^{\prime}(t)-y(t)\right| \leq \varepsilon$, where I is an open subinterval of \mathbb{R}, then there exists a solution $f_{0}: I \rightarrow \mathbb{R}$ of the differential equation $y^{\prime}(t)=y(t)$ such that $\left|f(t)-f_{0}(t)\right| \leq 3 \varepsilon$ for any $t \in I$.

This result of Alsina and Ger has been generalized by Takahasi et al. They proved in [9] that the Hyers-Ulam stability holds true for the Banach space valued differential equation $y^{\prime}(t)=\lambda y(t)$ (see also [10, 11]).

Moreover, Miura et al. [12] investigated the Hyers-Ulam stability of the nth order linear differential equation with complex coefficients. They [13] also proved the HyersUlam stability of linear differential equations of first order, $y^{\prime}(t)+g(t) y(t)=0$, where $g(t)$ is a continuous function. Indeed, they dealt with the differential inequality $\| y^{\prime}(t)+$ $g(t) y(t) \| \leq \varepsilon$ for some $\varepsilon>0$. Recently, the author proved the Hyers-Ulam stability of various linear differential equations of the first order (see [14-17]).

In Section 2 of this paper, we will investigate the general solution of the nonhomogeneous Legendre's differential equation of the form

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+p(p+1) y(x)=\sum_{m=0}^{\infty} a_{m} x^{m} \tag{1.3}
\end{equation*}
$$

where the parameter p is a given real number and the coefficients a_{m} 's of the power series are given such that the radius of convergence is positive.

In Section 3, we will give a partial solution to the Hyers-Ulam stability problem for the Legendre's differential equation (2.1) in the class of analytic functions.

2. Nonhomogeneous Legendre's equation

A function is called a Legendre function if it satisfies the Legendre's differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+p(p+1) y(x)=0 . \tag{2.1}
\end{equation*}
$$

The Legendre's equation plays a great role in physics and engineering. In particular, this equation is most useful for treating the boundary value problems exhibiting spherical symmetry.

In this section, we define

$$
\begin{equation*}
c_{m}=\frac{1}{m!} \sum_{i=1}^{[m / 2]}(m-2 i)!a_{m-2 i} \prod_{j=1}^{i-1}(m-2 j-p)(m-2 j+p+1) \tag{2.2}
\end{equation*}
$$

for each $m \in\{2,3, \ldots\}$, where $[m / 2]$ denotes the largest integer not exceeding $m / 2$ and we refer to (1.3) for the a_{m} 's. By some manipulations, we get

$$
\begin{equation*}
c_{m+2}=\frac{1}{(m+2)(m+1)} a_{m}+\frac{(m-p)(m+p+1)}{(m+2)(m+1)} c_{m} \tag{2.3}
\end{equation*}
$$

for any $m \in\{2,3, \ldots\}$.
Using these definitions and relations above, we will solve the nonhomogeneous Legendre's equation (1.3).

Theorem 2.1. Assume that p is a given real number and the radius of convergence of the power series $\sum_{m=0}^{\infty} a_{m} x^{m}$ is $\rho_{0}>0$. Moreover, suppose that there exist real numbers σ_{1} and σ_{2} with

$$
\begin{align*}
& \sigma_{1}= \begin{cases}\lim _{k \rightarrow \infty}\left|\frac{1}{(2 k+2)(2 k+1)} \frac{a_{2 k}}{c_{2 k}}\right| & \text { if the limit exists } \\
-1 & \text { if } c_{2 k}=0 \text { for all sufficiently large } k,\end{cases} \\
& \sigma_{2}= \begin{cases}\lim _{k \rightarrow \infty}\left|\frac{1}{(2 k+3)(2 k+2)} \frac{a_{2 k+1}}{c_{2 k+1}}\right| & \text { if the limit exists } \\
-1 & \text { if } c_{2 k+1}=0 \text { for all sufficiently large } k .\end{cases} \tag{2.4}
\end{align*}
$$

A positive number ρ is defined by

$$
\begin{equation*}
\rho=\min \left\{\frac{1}{\sqrt{1+\sigma_{1}}}, \frac{1}{\sqrt{1+\sigma_{2}}}, \rho_{0}, 1\right\} \tag{2.5}
\end{equation*}
$$

with the convention $1 / 0=\infty$. Then, every solution $y:(-\rho, \rho) \rightarrow \mathbb{C}$ of the differential equation (1.3) can be expressed by

$$
\begin{equation*}
y(x)=y_{h}(x)+\sum_{m=2}^{\infty} c_{m} x^{m} \tag{2.6}
\end{equation*}
$$

where $y_{h}(x)$ is a Legendre function.

4 Abstract and Applied Analysis

Remark 2.2. If $c_{2 k}=0$ for all sufficiently large k, then $\sum_{k=1}^{\infty} c_{2 k} x^{2 k}$ is indeed a polynomial which can obviously be defined on the whole real numbers and this fact is not contrary to our definition $\sigma_{1}=-1$, since in this case we have

$$
\begin{align*}
\rho & =\min \left\{\frac{1}{\sqrt{1+\sigma_{1}}}, \frac{1}{\sqrt{1+\sigma_{2}}}, \rho_{0}, 1\right\} \\
& =\min \left\{\frac{1}{\sqrt{1+\sigma_{2}}}, \rho_{0}, 1\right\} . \tag{2.7}
\end{align*}
$$

A similar argument is applicable to σ_{2}.
Proof. Since each coefficient of (1.3) is analytic at $x=0$, every solution of (1.3) can be expressed as a power series of the form

$$
\begin{equation*}
y(x)=\sum_{m=0}^{\infty} b_{m} x^{m} \tag{2.8}
\end{equation*}
$$

(0 is an ordinary point of (1.3) and ± 1 are the nearest singular points of the equation. So, the radius of convergence of the above power series is at least 1 . This fact is consistent with the domain of y).

Substituting (2.8) into (1.3) and collecting like powers together, we have

$$
\begin{align*}
& \left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+p(p+1) y(x) \\
& \quad=\sum_{m=0}^{\infty}\left\{(m+2)(m+1) b_{m+2}-(m-p)(m+p+1) b_{m}\right\} x^{m}=\sum_{m=0}^{\infty} a_{m} x^{m} \tag{2.9}
\end{align*}
$$

for all $x \in(-\rho, \rho)$. Comparing the coefficients of like powers of two power series, we get

$$
\begin{equation*}
b_{m+2}=\frac{1}{(m+2)(m+1)} a_{m}+\frac{(m-p)(m+p+1)}{(m+2)(m+1)} b_{m} \tag{2.10}
\end{equation*}
$$

for any $m \in\{0,1,2, \ldots\}$.
We now assert that

$$
\begin{equation*}
b_{m}=c_{m}+\frac{b_{m-2[m / 2]}}{m!} \prod_{j=1}^{[m / 2]}(m-2 j-p)(m-2 j+p+1) \tag{2.11}
\end{equation*}
$$

for any $m \in\{2,3, \ldots\}$.

By the mathematical induction on m, we will prove the formula (2.11) for all even integers m. If we put $m=2$ in (2.11) and recall the definition (2.2), then we obtain

$$
\begin{equation*}
b_{2}=c_{2}-\frac{p(p+1)}{2!} b_{0}=\frac{1}{2!} a_{0}-\frac{p(p+1)}{2!} b_{0} \tag{2.12}
\end{equation*}
$$

which is identical with the formula induced from (2.10) for $m=0$. Assume now that formula (2.11) is true for some even m. It then follows from (2.10), (2.11), and (2.2) that

$$
\begin{align*}
b_{m+2}= & \frac{m!}{(m+2)!} a_{m} \\
& +\frac{1}{(m+2)!} \sum_{i=1}^{[m / 2]}(m-2 i)!a_{m-2 i} \prod_{j=0}^{i-1}(m-2 j-p)(m-2 j+p+1) \\
& +\frac{b_{0}}{(m+2)!} \prod_{j=0}^{[m / 2]}(m-2 j-p)(m-2 j+p+1) \\
= & \frac{1}{(m+2)!} \sum_{i=0}^{[m / 2]}(m-2 i)!a_{m-2} \prod_{j=0}^{i-1}(m-2 j-p)(m-2 j+p+1) \\
& +\frac{b_{0}}{(m+2)!} \prod_{j=0}^{[m / 2]}(m-2 j-p)(m-2 j+p+1) \tag{2.13}\\
= & \frac{1}{(m+2)!} \sum_{i=1}^{[m / 2]+1}(m+2-2 i)!a_{m+2-2 i} \\
& \cdot \prod_{j=1}^{i-1}(m+2-2 j-p)(m+2-2 j+p+1) \\
& +\frac{b_{0}}{(m+2)!} \prod_{j=1}^{[m / 2]+1}(m+2-2 j-p)(m+2-2 j+p+1) \\
= & c_{m+2}+\frac{b_{0}}{(m+2)!} \prod_{j=1}^{[m / 2]+1}(m+2-2 j-p)(m+2-2 j+p+1),
\end{align*}
$$

which is identical with formula (2.11) when m is replaced by $m+2$. (We assume that $\prod_{j=1}^{i-1}(\cdots)(\cdots)=1$ for $i \leq 1$.) Hence, (2.11) is valid for any even m. Similarly, we can verify that (2.11) is true for all odd m.

Consequently, it follows from (2.8) and (2.11) that

$$
\begin{align*}
y(x)= & b_{0}+b_{1} x+\sum_{k=1}^{\infty} b_{2 k} x^{2 k}+\sum_{k=1}^{\infty} b_{2 k+1} x^{2 k+1} \\
= & \sum_{k=1}^{\infty} c_{2 k} x^{2 k}+\sum_{k=1}^{\infty} c_{2 k+1} x^{2 k+1} \\
& +b_{0}\left[1+\sum_{k=1}^{\infty} \frac{x^{2 k}}{(2 k)!} \prod_{j=1}^{k}(2 k-2 j-p)(2 k-2 j+p+1)\right] \tag{2.14}\\
& +b_{1}\left[x+\sum_{k=1}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!} \prod_{j=1}^{k}(2 k-2 j-p+1)(2 k-2 j+p+2)\right] \\
= & y_{h}(x)+\sum_{m=2}^{\infty} c_{m} x^{m},
\end{align*}
$$

where y_{h} stands for the last two power series, that is,

$$
\begin{equation*}
y_{h}(x)=b_{0}\left[1+\sum_{k=1}^{\infty} \cdots\right]+b_{1}\left[x+\sum_{k=1}^{\infty} \cdots\right] \tag{2.15}
\end{equation*}
$$

Using the ratio test, we can easily show that the power series in the brackets converge for each $x \in(-1,1)$. For any real numbers b_{0} and $b_{1}, y_{h}(x)$ is a Legendre function, that is, it is a solution of the Legendre's equation (2.1) (see [18]).

Furthermore, in view of (2.3) and (2.4), we can apply the ratio test and show that power series

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{2 k} x^{2 k}, \quad \sum_{k=1}^{\infty} c_{2 k+1} x^{2 k+1} \quad \text { converge for all } x \in(-\rho, \rho) \tag{2.16}
\end{equation*}
$$

We will now show that each function $y:(-\rho, \rho) \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
y(x)=y_{h}(x)+\sum_{m=2}^{\infty} c_{m} x^{m} \tag{2.17}
\end{equation*}
$$

is a solution of the nonhomogeneous Legendre differential equation (1.3), where $y_{h}(x)$ is a Legendre funcion and c_{m} is given by (2.2). For this purpose, it only needs to show that

$$
\begin{equation*}
y_{p}(x)=\sum_{m=2}^{\infty} c_{m} x^{m} \tag{2.18}
\end{equation*}
$$

satisfies (1.3). It is not difficult to see

$$
\begin{align*}
(1- & \left.x^{2}\right) y_{p}^{\prime \prime}(x)-2 x y_{p}^{\prime}(x)+p(p+1) y_{p}(x) \\
& =2 c_{2}+6 c_{3} x+\sum_{m=2}^{\infty}\left\{(m+2)(m+1) c_{m+2}-(m-p)(m+p+1) c_{m}\right\} x^{m} \tag{2.19}\\
& =a_{0}+a_{1} x+\sum_{m=2}^{\infty} a_{m} x^{m},
\end{align*}
$$

since we obtain $a_{0}=2 c_{2}$ and $a_{1}=6 c_{3}$ by putting $m=2$ and $m=3$ in (2.2), respectively, and since it follows from (2.3) that

$$
\begin{equation*}
(m+2)(m+1) c_{m+2}-(m-p)(m+p+1) c_{m}=a_{m} \tag{2.20}
\end{equation*}
$$

for all $m \in\{2,3, \ldots\}$.
Corollary 2.3. Under the same notations and conditions of Theorem 2.1, it holds that

$$
\begin{equation*}
\sum_{m=2}^{\infty} c_{m} x^{m}=\sum_{i=1}^{\infty} x^{2 i} \sum_{m=0}^{\infty} \frac{a_{m} x^{m}}{(m+2 i)(m+1)} \prod_{j=1}^{i-1}\left\{1-\frac{p(p+1)}{(m+2 i-2 j+1)(m+2 i-2 j)}\right\} \tag{2.21}
\end{equation*}
$$

for any $x \in(-\rho, \rho)$.
Proof. Since

$$
\begin{equation*}
\frac{(m-2 i)!}{m!}=\frac{1}{m(m-2 i+1)} \prod_{j=1}^{i-1} \frac{1}{(m-2 j+1)(m-2 j)}, \tag{2.22}
\end{equation*}
$$

it follows from (2.2) that

$$
\begin{align*}
\sum_{m=2}^{\infty} c_{m} x^{m} & =\sum_{m=2}^{\infty} \frac{x^{m}}{m!} \sum_{i=1}^{[m / 2]}(m-2 i)!a_{m-2 i} \prod_{j=1}^{i-1}(m-2 j-p)(m-2 j+p+1) \tag{2.23}\\
& =\sum_{m=2}^{\infty} \sum_{i=1}^{[m / 2]} x^{m} \frac{a_{m-2 i}}{m(m-2 i+1)} \prod_{j=1}^{i-1} \frac{(m-2 j-p)(m-2 j+p+1)}{(m-2 j+1)(m-2 j)} .
\end{align*}
$$

Thus, we further obtain

$$
\begin{align*}
\sum_{m=2}^{\infty} c_{m} x^{m} & =\sum_{m=2}^{\infty} \sum_{i=1}^{[m / 2]} x^{m} \frac{a_{m-2 i}}{m(m-2 i+1)} \prod_{j=1}^{i-1}\left\{1-\frac{p(p+1)}{(m-2 j+1)(m-2 j)}\right\} \tag{2.24}\\
& =\sum_{m=2}^{\infty} \sum_{i=1}^{[m / 2]} \alpha_{m i} x^{m}
\end{align*}
$$

where we set

$$
\begin{equation*}
\alpha_{m i}=\frac{a_{m-2 i}}{m(m-2 i+1)} \prod_{j=1}^{i-1}\left\{1-\frac{p(p+1)}{(m-2 j+1)(m-2 j)}\right\} . \tag{2.25}
\end{equation*}
$$

As we already stated in (2.16), it follows from (2.3) and (2.4) that the power series $\sum_{m=2}^{\infty} c_{m} x^{m}$ is absolutely convergent for all $x \in(-\rho, \rho)$ (recall the Cauchy-Hadamard formula or the root test). Hence, we can rearrange the terms of the power series without changing its sum as follows:

$$
\begin{align*}
\sum_{m=2}^{\infty} \sum_{i=1}^{[m / 2]} \alpha_{m i} x^{m}= & \alpha_{21} x^{2}+\alpha_{31} x^{3} \\
& +\alpha_{41} x^{4}+\alpha_{42} x^{4} \\
& +\alpha_{51} x^{5}+\alpha_{52} x^{5} \\
& +\alpha_{61} x^{6}+\alpha_{62} x^{6}+\alpha_{63} x^{6} \\
& +\alpha_{71} x^{7}+\alpha_{72} x^{7}+\alpha_{73} x^{7} \\
& +\alpha_{81} x^{8}+\alpha_{82} x^{8}+\alpha_{83} x^{8}+\alpha_{84} x^{8} \tag{2.26}\\
& \vdots \quad \vdots \quad \vdots \\
& \quad \vdots \quad \sum_{m=2}^{\infty} \alpha_{m 1} x^{m}+\sum_{m=4}^{\infty} \alpha_{m 2} x^{m}+\sum_{m=6}^{\infty} \alpha_{m 3} x^{m}+\cdots \\
= & \sum_{i=1}^{\infty} \sum_{m=2 i}^{\infty} \alpha_{m i} x^{m} .
\end{align*}
$$

So, we further obtain

$$
\begin{align*}
\sum_{m=2}^{\infty} c_{m} x^{m} & =\sum_{i=1}^{\infty} \sum_{m=2 i}^{\infty} \frac{a_{m-2 i} x^{m}}{m(m-2 i+1)} \prod_{j=1}^{i-1}\left\{1-\frac{p(p+1)}{(m-2 j+1)(m-2 j)}\right\} \tag{2.27}\\
& =\sum_{i=1}^{\infty} x^{2 i} \sum_{m=2 i}^{\infty} \frac{a_{m-2 i} x^{m-2 i}}{m(m-2 i+1)} \prod_{j=1}^{i-1}\left\{1-\frac{p(p+1)}{(m-2 j+1)(m-2 j)}\right\}
\end{align*}
$$

Finally, if we substitute m for $(m-2 i)$ in the above equality, then we get the desired equality.

3. Partial solution to Hyers-Ulam stability problem

In this section, we will investigate a property of the Legendre's differential equation (2.1) concerning the Hyers-Ulam stability problem. That is, we will try to answer the question, whether there exists a Legendre function near any approximate Legendre function.

If a function $y(x)$ can be expressed as a power series of the form (2.8), then we follow the first part of the proof of Theorem 2.1 to get

$$
\begin{align*}
& \left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+p(p+1) y(x) \\
& \quad=\sum_{m=0}^{\infty}\left\{(m+2)(m+1) b_{m+2}-(m-p)(m+p+1) b_{m}\right\} x^{m} . \tag{3.1}
\end{align*}
$$

Let us define

$$
\begin{equation*}
a_{m}=(m+2)(m+1) b_{m+2}-(m-p)(m+p+1) b_{m} \tag{3.2}
\end{equation*}
$$

for all $m \in\{0,1,2, \ldots\}$. By some tedious calculations, we can now express the c_{m} 's defined in (2.2) in terms of the b_{m} 's:

$$
\begin{align*}
c_{m} & =\frac{1}{m!} \sum_{i=1}^{[m / 2]}(m-2 i)!a_{m-2 i} \prod_{j=1}^{i-1}(m-2 j-p)(m-2 j+p+1) \\
& =b_{m}-\frac{b_{m-2[m / 2]}}{m!} \prod_{j=1}^{[m / 2]}(m-2 j-p)(m-2 j+p+1) \tag{3.3}
\end{align*}
$$

for any $m \in\{2,3, \ldots\}$ (cf. (2.11) in Section 2).
Theorem 3.1. Assume that ρ and ρ_{0} are positive constants with $\rho<\min \left\{1, \rho_{0}\right\}$. Let y : $(-\rho, \rho) \rightarrow \mathbb{C}$ be a function which can be represented by a power series of the form (2.8) whose radius of convergence is ρ_{0}. Assume moreover that the conditions in (2.4) are satisfied with a_{m} 's and c_{m} 's given in (3.2) and (3.3). If there exists a constant $\varepsilon>0$ such that

$$
\begin{equation*}
\left|\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+p(p+1) y(x)\right| \leq \varepsilon \tag{3.4}
\end{equation*}
$$

for all $x \in(-\rho, \rho)$ and for some real number p, then there exists a Legendre function y_{h} : $(-\rho, \rho) \rightarrow \mathbb{C}$ and a constant $C>0$ such that

$$
\begin{equation*}
\left|y(x)-y_{h}(x)\right| \leq C \frac{x^{2}}{1-x^{2}} \tag{3.5}
\end{equation*}
$$

for all $x \in(-\rho, \rho)$.
Proof. We assumed that $y(x)$ can be represented by a power series (2.8) whose radius of convergence is $\rho_{0}>\rho$, so

$$
\begin{equation*}
\left(1-x^{2}\right) \sum_{m=2}^{\infty} m(m-1) b_{m} x^{m-2}-2 x \sum_{m=1}^{\infty} m b_{m} x^{m-1}+p(p+1) \sum_{m=0}^{\infty} b_{m} x^{m} \tag{3.6}
\end{equation*}
$$

is also a power series whose radius of convergence is ρ_{0}. More precisely, in view of (3.1) and (3.2), we have

$$
\begin{equation*}
\left(1-x^{2}\right) \sum_{m=2}^{\infty} m(m-1) b_{m} x^{m-2}-2 x \sum_{m=1}^{\infty} m b_{m} x^{m-1}+p(p+1) \sum_{m=0}^{\infty} b_{m} x^{m}=\sum_{m=0}^{\infty} a_{m} x^{m} \tag{3.7}
\end{equation*}
$$

for all $x \in\left(-\rho_{0}, \rho_{0}\right)$.
Since

$$
\begin{equation*}
y(x)=\sum_{m=0}^{\infty} b_{m} x^{m}, \quad y^{\prime}(x)=\sum_{m=1}^{\infty} m b_{m} x^{m-1}, \quad y^{\prime \prime}(x)=\sum_{m=2}^{\infty} m(m-1) b_{m} x^{m-2} \tag{3.8}
\end{equation*}
$$

for any $x \in(-\rho, \rho)$, we get

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+p(p+1) y(x)=\sum_{m=0}^{\infty} a_{m} x^{m} \tag{3.9}
\end{equation*}
$$

for all $x \in(-\rho, \rho)$, where the radius of convergence of $\sum_{m=0}^{\infty} a_{m} x^{m}$ is ρ_{0}. Thus, it follows from (3.4) that

$$
\begin{equation*}
\left|\sum_{m=0}^{\infty} a_{m} x^{m}\right| \leq \varepsilon \tag{3.10}
\end{equation*}
$$

for all $x \in(-\rho, \rho)$.
Since the power series $\sum_{m=0}^{\infty} a_{m} x^{m}$ is absolutely convergent on its interval of convergence, which includes the interval $[-\rho, \rho]$, and the power series $\sum_{m=0}^{\infty}\left|a_{m} x^{m}\right|$ is continuous on $[-\rho, \rho]$ (a power series is differentiable on its interval of convergence), there exists a constant $C_{1}>0$ with

$$
\begin{equation*}
\sum_{m=0}^{n}\left|a_{m} x^{m}\right| \leq C_{1} \tag{3.11}
\end{equation*}
$$

for all integers $n \geq 0$ and for any $x \in(-\rho, \rho)$.
Moreover, we know that $\{1 /(m+2 i)(m+1)\}_{m=0,1, \ldots}$ is a decreasing sequence of positive numbers. According to [19, Theorem 3.3], it holds that

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{\left|a_{m} x^{m}\right|}{(m+2 i)(m+1)} \leq \frac{C_{1}}{2 i} \tag{3.12}
\end{equation*}
$$

for any $x \in(-\rho, \rho)$ and all $i \in\{1,2, \ldots\}$.
On the other hand, since

$$
\begin{align*}
\sum_{k=1}^{\infty}\left|\frac{p(p+1)}{(m+2 k+1)(m+2 k)}\right| & =\frac{|p(p+1)|}{(m+3)(m+2)}+\frac{|p(p+1)|}{(m+5)(m+4)}+\cdots \tag{3.13}\\
& \leq \frac{|p(p+1)|}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty
\end{align*}
$$

for any integer $m \geq 0$, we may conclude that the infinite product

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left\{1-\frac{p(p+1)}{(m+2 k+1)(m+2 k)}\right\} \tag{3.14}
\end{equation*}
$$

converges. (According to [20, Theorem 6.6.2], the above infinite product converges for $p(p+1)<0$. The same argument can be applied for the case of $p(p+1) \geq 0$.) Hence, substituting $i-j$ for k in the above infinite product, there exists a constant $C_{2}>0$ with

$$
\begin{equation*}
\left|\prod_{j=1}^{i-1}\left\{1-\frac{p(p+1)}{(m+2 i-2 j+1)(m+2 i-2 j)}\right\}\right| \leq C_{2} \tag{3.15}
\end{equation*}
$$

for all integers $i \geq 1$ and $m \geq 0$. Therefore, it follows from Corollary 2.3 that

$$
\begin{equation*}
\left|\sum_{m=2}^{\infty} c_{m} x^{m}\right| \leq C_{2} \sum_{i=1}^{\infty}|x|^{2 i} \sum_{m=0}^{\infty} \frac{\left|a_{m} x^{m}\right|}{(m+2 i)(m+1)} \tag{3.16}
\end{equation*}
$$

for every $x \in(-\rho, \rho)$.
By (3.12) and (3.16), we get

$$
\begin{equation*}
\left|\sum_{m=2}^{\infty} c_{m} x^{m}\right| \leq C_{1} C_{2} \sum_{i=1}^{\infty} \frac{|x|^{2 i}}{2 i} \leq \frac{C_{1} C_{2}}{2} \frac{x^{2}}{1-x^{2}} \tag{3.17}
\end{equation*}
$$

for all $x \in(-\rho, \rho)$. This completes the proof of our theorem.
John M. Rassias' open problems. (1) It is an open problem whether Theorem 3.1 also holds for the function $y(x)$ which cannot be represented by a power series of the form (2.8).
(2) It seems to be interesting to investigate the stability problem for the case where the inequality (3.4) is controlled by a power of the absolute value of x.

4. Example

In this section, our task is to show that there certainly exist functions $y(x)$ which satisfy all the conditions given in Theorem 3.1.

Example 4.1. Let p be neither an odd number nor of the form, $-2 k$, for some $k \in \mathbb{N}$, let ρ be a positive constant less than 1 , and let q be given with

$$
\begin{equation*}
0<q \leq \frac{\varepsilon}{p^{2}+|p|+3} \tag{4.1}
\end{equation*}
$$

We define a function $y:(-\rho, \rho) \rightarrow \mathbb{R}$ by

$$
\begin{align*}
y(x)= & \sum_{m=0}^{\infty} b_{m} x^{m}=y_{h}(x)+q \sin x \\
= & 1+\sum_{k=1}^{\infty} \frac{x^{2 k}}{(2 k)!} \prod_{j=1}^{k}(2 k-2 j-p)(2 k-2 j+p+1) \\
& +x+\sum_{k=1}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!} \prod_{j=1}^{k}(2 k-2 j-p+1)(2 k-2 j+p+2)+q \sin x \tag{4.2}\\
= & 1+\sum_{k=1}^{\infty} \frac{x^{2 k}}{(2 k)!} \prod_{j=1}^{k}(2 k-2 j-p)(2 k-2 j+p+1)+(1+q) x \\
& +\sum_{k=1}^{\infty} \frac{x^{2 k+1}}{(2 k+1)!}\left\{(-1)^{k} q+\prod_{j=1}^{k}(2 k-2 j-p+1)(2 k-2 j+p+2)\right\},
\end{align*}
$$

which is a sum of a Legendre function and a sine function. Obviously, the radius of convergence of $y(x)$ is $\rho_{0}=1$ and we have

$$
\begin{align*}
& b_{0}=1, \quad b_{2 k}=\frac{1}{(2 k)!} \prod_{j=1}^{k}(2 k-2 j-p)(2 k-2 j+p+1), \\
& b_{1}=1+q, \quad b_{2 k+1}=\frac{1}{(2 k+1)!}\left\{(-1)^{k} q+\prod_{j=1}^{k}(2 k-2 j-p+1)(2 k-2 j+p+2)\right\} \tag{4.3}
\end{align*}
$$

for all $k \in \mathbb{N}$.
It follows from (3.3) and (3.2) that

$$
\begin{equation*}
c_{2 k}=0, \quad a_{2 k}=0 \tag{4.4}
\end{equation*}
$$

for any $k \in \mathbb{N}$. In this case, according to (2.4), we have $\sigma_{1}=-1$. Similarly, using (3.3) and (3.2), we get

$$
\begin{align*}
& c_{2 k+1}=\frac{q}{(2 k+1)!}\left\{(-1)^{k}-\prod_{j=1}^{k}(2 k-2 j-p+1)(2 k-2 j+p+2)\right\}, \tag{4.5}\\
& a_{2 k+1}=\frac{(-1)^{k+1} q}{(2 k+1)!}\{1+(2 k-p+1)(2 k+p+2)\}
\end{align*}
$$

for any $k \in \mathbb{N}$. Thus, we get

$$
\begin{equation*}
\sigma_{2}=\lim _{k \rightarrow \infty}\left|\frac{1}{(2 k+3)(2 k+2)} \frac{a_{2 k+1}}{c_{2 k+1}}\right|=0 \tag{4.6}
\end{equation*}
$$

Hence, both conditions in (2.4) are satisfied with $\sigma_{1}=-1$ and $\sigma_{2}=0$.

Obviously, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|\frac{a_{2 k+3}}{a_{2 k+1}}\right|=0 \tag{4.7}
\end{equation*}
$$

and we can show, by applying the ratio test, that the power series

$$
\begin{equation*}
\sum_{m=0}^{\infty} a_{m} x^{m}=a_{0}+a_{1} x+\sum_{k=1}^{\infty} a_{2 k+1} x^{2 k+1} \tag{4.8}
\end{equation*}
$$

converges for every real number x. (Notice that $a_{2 k}=0$ for all $k \in \mathbb{N}$.)
Since $y_{h}(x)$ is a Legendre function, we now have

$$
\begin{align*}
& \left|\left(1-x^{2}\right) y^{\prime \prime}(x)-2 x y^{\prime}(x)+p(p+1) y(x)\right| \\
& \quad=\left|-\left(1-x^{2}\right) q \sin x-2 q x \cos x+p(p+1) q \sin x\right| \tag{4.9}\\
& \quad \leq\left(\left|1-x^{2}\right|+2|x|+|p(p+1)|\right) q \leq\left(p^{2}+|p|+3\right) q \leq \varepsilon
\end{align*}
$$

for all x with $|x|<\rho<1$. Hence, $y(x)$ satisfies inequality (3.4).

Acknowledgment

The author is grateful to Professor John M. Rassias and anonymous referees for their valuable suggestions.

References

[1] S. M. Ulam, Problems in Modern Mathematics, John Wiley \& Sons, New York, NY, USA, Science edition, 1964.
[2] D. H. Hyers, "On the stability of the linear functional equation," Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941.
[3] T. M. Rassias, "On the stability of the linear mapping in Banach spaces," Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978.
[4] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, vol. 34 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Boston, Boston, Mass, USA, 1998.
[5] D. H. Hyers and T. M. Rassias, "Approximate homomorphisms," Aequationes Mathematicae, vol. 44, no. 2-3, pp. 125-153, 1992.
[6] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Fla, USA, 2001.
[7] J. M. Rassias, "On the Ulam stability of mixed type mappings on restricted domains," Journal of Mathematical Analysis and Applications, vol. 276, no. 2, pp. 747-762, 2002.
[8] C. Alsina and R. Ger, "On some inequalities and stability results related to the exponential function," Journal of Inequalities and Applications, vol. 2, no. 4, pp. 373-380, 1998.
[9] S.-E. Takahasi, T. Miura, and S. Miyajima, "On the Hyers-Ulam stability of the Banach spacevalued differential equation $y^{\prime}=\lambda y$," Bulletin of the Korean Mathematical Society, vol. 39, no. 2, pp. 309-315, 2002.
[10] T. Miura, "On the Hyers-Ulam stability of a differentiable map," Scientiae Mathematicae Japonicae, vol. 55, no. 1, pp. 17-24, 2002.

14 Abstract and Applied Analysis

[11] T. Miura, S.-M. Jung, and S.-E. Takahasi, "Hyers-Ulam-Rassias stability of the Banach space valued linear differential equations $y^{\prime}=\lambda y$," Journal of the Korean Mathematical Society, vol. 41, no. 6, pp. 995-1005, 2004.
[12] T. Miura, S. Miyajima, and S.-E. Takahasi, "Hyers-Ulam stability of linear differential operator with constant coefficients," Mathematische Nachrichten, vol. 258, pp. 90-96, 2003.
[13] T. Miura, S. Miyajima, and S.-E. Takahasi, "A characterization of Hyers-Ulam stability of first order linear differential operators," Journal of Mathematical Analysis and Applications, vol. 286, no. 1, pp. 136-146, 2003.
[14] S.-M. Jung, "Hyers-Ulam stability of linear differential equations of first order," Applied Mathematics Letters, vol. 17, no. 10, pp. 1135-1140, 2004.
[15] S.-M. Jung, "Hyers-Ulam stability of linear differential equations of first order II," Applied Mathematics Letters, vol. 19, no. 9, pp. 854-858, 2006.
[16] S.-M. Jung, "Hyers-Ulam stability of linear differential equations of first order III," Journal of Mathematical Analysis and Applications, vol. 311, no. 1, pp. 139-146, 2005.
[17] S.-M. Jung, "Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients," Journal of Mathematical Analysis and Applications, vol. 320, no. 2, pp. 549-561, 2006.
[18] E. Kreyszig, Advanced Engineering Mathematics, John Wiley \& Sons, New York, NY, USA, 4th edition, 1979.
[19] S. Lang, Undergraduate Analysis, Undergraduate Texts in Mathematics, Springer, New York, NY, USA, 2nd edition, 1997.
[20] M. C. Reed, Fundamental Ideas of Analysis, John Wiley \& Sons, New York, NY, USA, 1998.
Soon-Mo Jung: Mathematics Section, College of Science and Technology, Hong-Ik University, Chochiwon 339-701, South Korea
Email address: smjung@hongik.ac.kr

