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1. Introduction and motivation

Throughout this paper, H will denote a complex Hilbert space, endowed with the inner
product (·,·) and the norm | · |, and �(H) denotes the Banach algebra of bounded linear
operators on H .

Mathematical models for a number of natural phenomena can be formulated in terms
of partial differential equations (PDEs) of the form

m∑

i=1

ki(x, t)uti =
n∑

i, j=1

ai j(x, t)uxixj +
n∑

i=1

bi(x, t)uxi + c(x, t)u+ f (x, t), (Epp)

∂s1+s2+···+smu

∂t
s1
1 ∂t

s2
2 ···∂tsmm

+
m∑

i=1

pi(x, t)uti =
n∑

i, j=1

ai j(x, t)uxixj +
n∑

i=1

bi(x, t)uxi + c(x, t)u+ f (x, t),

(Eph)

where x = (x1, . . . ,xn) ∈ Rn is the “space variable,” and t = (t1, . . . , tm) ∈ Rm is the “time
variable.” The right-hand side of (Epp) (resp., (Eph)) is assumed to be elliptic, that is
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∑n
i, j=1 ai j(x, t)ξiξ j ≥ a0

∑n
i=1 ξ

2
i where a0 > 0 is a constant, for every ξ ∈ Rn and for all

values (x, t) in some domain.
When m = 1, (Epp) is called parabolic, and when m = 1, s1 = 2, (Eph) is called hyper-

bolic. When m ≥ 2, this kind of equations is called multitime evolution equations, and
(Epp) (resp., (Eph)) is called pluriparabolic (ultraparabolic) (resp., plurihyperbolic). Thus,
in the multitime case, there are several “time-like” variables in the equations.

The multi-time evolution equations are encountered for instance in the theory of
Brownian motion (diffusion process with inertia) [1], transport theory (Fokker-Planck-
type equations) [2], biology (age-structured population dynamics) [3], waves and
Maxwell’s equations [4], and other practical applications of mathematical physics and
engineering sciences.

Plurihyperbolic equations with standard Goursat conditions, Cauchy conditions, Pi-
card conditions, mixed conditions [5–14] are well studied with the help of the energy
inequality method and Riemann functions.

Nonlocal problems for some classes of PDEs depending on one time variable have
attracted much interest in recent years, and have been studied extensively by many au-
thors, see for instance Ashyralyev et al. [15–20], Byszewski and Lakshmikantham [21],
Balachandran and Park [22], Chesalin and Yurchuk [23–25], Gordeziani and Avalishvili
[26], and Agarwal et al. [27]. However, the case of multi-time equations with nonlocal
conditions does not seem to have been widely investigated and few results are available,
see, for example, the articles by the authors Rebbani et al. [28, 29]. The study of this case
is caused not only by theoretical interest, but also by practical necessity.

In this paper, we investigate a class of nonclassical problems for plurihyperbolic equa-
tions with nonlocal conditions. The multi-time PDE considered is formulated as follows.

Let D =]0,T1[×]0,T2[ be a bounded rectangle in the plane R2 with coordinates t =
(t1, t2). We consider

�λu= ∂2u

∂t1∂t2
+A(t)

(
u+ λ

∂2u

∂t1∂t2

)
= f (t), t ∈D, (1.1)

l1μu= B1(μ)u |t1=0 −B2(μ)u |t1=T1= ϕ
(
t2
)
, t2 ∈

[
0,T2

]
,

l2μu= B1(μ)u |t2=0 −B2(μ)u |t2=T2= ψ
(
t1
)
, t1 ∈

[
0,T1

]
,

(1.2)

where u and f are H-valued functions on D, ϕ (resp., ψ) is H-valued function on [0,T2]
(resp., [0,T1]), λ is a positive parameter, μ is a complex parameter belonging to �, a set of
arbitrary nature on which the notion of convergence of sequences is defined and A(t) is
an unbounded linear operator in H , with domain of definition �(A(t)) densely defined
and independent of t.

Here we are concerned by the existence and uniqueness of the strong solution to the
problem (1.1)-(1.2).

We suppose that A(t) and Bi(μ), i= 1,2, satisfy the following conditions.
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Condition (�1). The operator A(t) is selfadjoint and strongly positive for every t ∈ D,
that is,

A(t)=A(t)∗,
(
A(t)u,u

)≥ c0|u|2, ∀u∈�
(
A(t)

)
, (1.3)

where c0 is a positive constant not depending on u and t.

B1(μ) and B2(μ) are two families of operators belonging to the Banach space �(H) and
�(A) is invariant for these families of operators Bi(μ)(�(A(t))⊆�(A(t)). Moreover, the
operators Bi(μ), i= 1,2, satisfy one of the following conditions.

Condition (�1). The operator B1(μ) admits a bounded inverse B−1
1 (μ) in H such that

α1 =
∥∥B−1

1 (μ)B2(μ)
∥∥2

�(H) exp
(
3C
(
T1 +T2

))
< 1. (1.4)

Condition (�2). The operator B2(μ) admits a bounded inverse B−1
2 (μ) in H such that

α2 =
∥∥B−1

2 (μ)B1(μ)
∥∥2

�(H) exp
(
3C
(
T1 +T2

))
< 1, (1.5)

where C is a positive constant depending on A(t) and its derivatives.

The functions ϕ and ψ satisfy the compatibility condition:

B1(μ)ϕ(0)−B2(μ)ϕ
(
T2
)= B1(μ)ψ(0)−B2(μ)ψ

(
T1
)
. (1.6)

Remark 1.1. (1) We note that the case where B1(μ) = μ1 and B2(μ) = μ2 are complex
parameters was studied in [29].

(2) If λ= 0, B2(μ)= 0, and B1(μ)= I , we obtain the Goursat conditions, and the results
of this case are contained in [7, 10].

In this paper, we continue the investigation started in [29] for a plurihyperbolic equa-
tion with nonlocal initial conditions of the nonclassical type. We prove existence and
uniqueness of a strong solution of the problem (�= (1.1)-(1.2)).

We reformulate problem (1.1)-(1.2) as a problem of solving the operator equation

Lu=�, (	)

where L is generated by (1.1) and (1.2), with domain of definition �(L), the operator L is
considered from the Banach space B into the Hilbert space F, which will be defined later.
For this operator, we establish an energy inequality

‖u‖B ≤ k‖Lu‖F, (a1)

and we show that the operator L has the closure L.

Definition 1.2. A solution of the operator equation Lu=� is called a strong generalized
solution of the problem (�).

Inequality (a1) can be extended to u∈�(L), that is,

‖u‖B ≤ k‖Lu‖F, ∀u∈�(L). (a2)
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From this inequality we obtain the uniqueness of a strong generalized solution if it exists,
and the equality of sets 
(L) and 
(L). Thus, to prove the existence of a strong solution
of the problem (�) for any �∈ F, it remains to prove that the set 
(L) is dense in F.

2. Preliminaries

In this section, we give the notation and the functional necessary for the sequel.
Let us denote by Wr = �(Ar(0)), 0 ≤ r ≤ 1, the space Wr endowed with the inner

product (x, y)r = (Ar(0)x,Ar(0)x) and the norm |x|r = |Ar(0)x| is a Hilbert space. We
show that the operator A(t) (resp., A1/2(t)) is bounded from W1 (resp., W1/2) into H ,
that is, A(t) (resp., A1/2(t))∈�(W1;H) (resp., �(W1/2;H)) (see [30]).

Proposition 2.1 [7]. If the function D 	 t 
→ A(t)∈�(W1;H) is continuous with respect
to the topology of �(W1;H), then there exist positive constants c1 and c2 such that

c1|u|1 ≤
∣∣A(t)u

∣∣≤ c2|u|1, ∀u∈W1,
√
c1|u|1/2 ≤

∣∣A1/2(t)u
∣∣≤√c2|u|1/2, ∀u∈W1/2.

(2.1)

Lemma 2.2. If the function D 	 t 
→ A(t)∈�(W1;H) admits bounded derivatives with re-
spect to t1 and t2 with respect to the simple topology in �(W1;H), then one has the estimates

∥∥∥∥
∂A(t)1/2

∂ti
A(t)−1/2

∥∥∥∥
�(H)

≤ δ
∥∥∥∥
∂A(t)
∂ti

A(t)−1
∥∥∥∥

�(H)
, i= 1,2, (2.2)

where δ = ∫∞0
√
s/(1 + s)2ds. (See [30, Lemma 1.9, page 186].)

Proposition 2.3. The operators (∂A(t)/∂ti)A(t)−1, (∂A(t)1/2/∂ti)A(t)−1/2 are uniformly
bounded, that is, (∂A(t)/∂ti)A(t)−1, (∂A(t)1/2/∂ti)A(t)−1/2 ∈ L∞(D;�(H)), i= 1,2.

Proof. The proof is based on the theorem of Banach-Steinhaus and the estimates (2.1)
and (2.2). �

We denote by H1,1(D;W1) the space obtained by completing �∞(D;W1) with respect
to the norm

‖u‖2
1,1 =

∫

D

(∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

1
+
∣∣∣∣
∂u

∂t1

∣∣∣∣
2

1
+
∣∣∣∣
∂u

∂t2

∣∣∣∣
2

1
+ |u|21

)
dt. (2.3)

Let H1([0,Ti];W1/2) be the obtained space by completing �∞([0,Ti];W1/2), i= 1,2 with
respect to the norms

‖ϕ‖2
1 =

∫ T2

0

(|ϕ′|2 + |ϕ|21/2 + λ|ϕ′|21/2 + λ|ϕ|21 + λ2|ϕ′|21
)
dt2,

‖ψ‖2
1 =

∫ T1

0

(|ψ′|2 + |ψ|21/2 + λ|ψ′|21/2 + λ|ψ|21 + λ2|ψ′|21
)
dt1.

(2.4)
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By completing the space �∞(D;W1) with respect to the norm

∥∥|u|∥∥2
1 =

σi(μ)
λ+ 1

[∫

D

(
λ
∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

+ λ2
∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

1/2
+ λ3

∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

1

)
dt

+ sup
τ∈D

(∣∣u
(
τ1,·)∥∥2

1 +
∥∥u
(·,τ2

)∥∥2
1

)]
,

(2.5)

where σi(μ)= (αi(1−αi))2/(1 +αi)4(1 +‖B−1
i ‖2

�(H)), i= 1,2 according to the realization
of conditions (�1) or (�2), we obtain the space Eλ,μ .

Denoting by � the Hilbert space, we get

L2(D;H)×�1([0,T2
]
;W1/2)×�1([0,T1

]
;W1/2) (2.6)

whose elements are �= ( f ,ϕ,ψ) such that the norm

∥∥|�|∥∥2 = ‖ f ‖2 +‖ϕ‖2
1 +‖ψ‖2

1 is finite. (2.7)

The symbol ‖ · ‖ denotes the L2(D;H)-norm.
�1([0,T2];W1/2) × �1([0,T1];W1/2) is the closed subspace of H1([0,T2];W1/2) ×

H1([0,T1];W1/2) composed of elements (ϕ,ψ) satisfying (1.6).
Let

C =max
(
d1,d2

)
, di = 2(δ + 1)

∥∥∥∥
∂A(t)
∂ti

A−1(t)
∥∥∥∥

�(H)
, i= 1,2,


= {μ∈� : α1 < 1 or α2 < 1
}
.

(2.8)

The following technical lemmas will be needed in the analysis of the problem.

Lemma 2.4 (generalized Gronwall’s lemma). (G1) Let v(t1, t2) and F(t1, t2) be two nonneg-
ative integrable functions on D such that the function F(t1, t2) is nondecreasing with respect
to the variables t1 and t2. Then the inequality

v
(
t1, t2

)≤ c3

{∫ t1

0
v
(
τ1, t2

)
dτ1 +

∫ t2

0
v
(
t1,τ2

)
dτ2

}
+F

(
t1, t2

)
, c3 ≥ 0, (I1)

gives

v
(
t1, t2

)≤ exp
(
2c3
(
t1 + t2

))
F
(
t1, t2

)
. (I′1)

(G2) Let v(t1, t2) and G(t1, t2) be two nonnegative integrable functions on D such that the
function G(t1, t2) is nonincreasing with respect to the variables t1 and t2. Then the inequality

v
(
t1, t2

)≤ c4

{∫ T1

t1
v
(
τ1, t2

)
dτ1 +

∫ T2

t2
v
(
t1,τ2

)
dτ2

}
+G

(
t1, t2

)
, c4 ≥ 0, (I2)
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yields

v
(
t1, t2

)≤ exp
(
2c4
(
T1 +T2− t1− t2

))
G
(
t1, t2

)
. (I′2)

Proof. We limit ourselves to proving the version (G1), and with the same manner we
deduce the version (G2).

Inequality (I1) can be rewritten as follows:

v ≤ c3�v+F, (a1)

where � is the linear integral operator

�(v)
(
t1, t2

)=
∫ t1

0
v
(
τ1, t2

)
dτ1 +

∫ t2

0
v
(
t1,τ2

)
dτ2. (2.9)

Applying the operator � to the inequality (a1) and multiplying the result by c3, we obtain

c3�v ≤ c2
3�2v+ c3�F, (a2)

which gives

v ≤ c2
3�2v+ c3�F +F. (a3)

By repeating this process n-times, we derive

v ≤ cn3�n+1v+
k=n∑

k=0

�kF. (a4)

Since the function F(t1, t2) is nonnegative and nondecreasing with respect to the variables
t1 and t2, we can estimate

∑k=n
k=0 �kF as follows:

k=n∑

k=0

�k(F)
(
t1, t2

)≤
k=n∑

k=0

ck3
(
t1 + t2

)k
F
(
t1, t2

)

n!
. (a5)

Similarly the quantity cn3�n+1v can be estimated as follows:

cn3 �n+1(v)
(
t1, t2

)≤ cn3 2n+1
(
t1 + t2

)n+1|v|∞
(n+ 1)!

. (a6)

Combining (a4), (a5), and (a6), we obtain

v
(
t1, t2

)≤
k=n∑

k=0

ck3
(
t1 + t2

)k
F
(
t1, t2

)

n!
+
cn3 2n+1

(
t1 + t2

)n+1|v|∞
(n+ 1)!

. (a7)
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Observing that

cn3 2n+1
(
t1 + t2

)n+1|v|∞
(n+ 1)!

−→ 0 as n−→∞,

k=n∑

k=0

ck3
(
t1 + t2

)k
F
(
t1, t2

)

n!
−→ exp

(
c3
(
t1 + t2

))
F
(
t1, t2

)
as n−→∞,

(2.10)

then passing to the limit, as n→∞ in (a7), we obtain the desired inequality (I′1). �

Lemma 2.5. Let | · |m be the norm in Wm (m = 0,1/2,1), let g be a function of variable
t ∈ [0,T] in Wm, and let h = B1(μ)g(0)− B2(μ)g(T). Then, if the condition (�1) holds,
one has

1
2

(
1 +α1

)∣∣g(0)
∣∣2
m−

∥∥B−1
1 (μ)B2(μ)

∥∥2
�(H)

∣∣g(T)
∣∣2
m ≤

(
1 +α1

)∥∥B−1
1 (μ)

∥∥2
�(H)(

1−α1
) |h|2m, (2.11)

and if the condition (�2) holds, one has

1
2

(
1 +α2

)∣∣g(T)
∣∣2
m−

∥∥B−1
2 (μ)B1(μ)

∥∥2
�(H)

∣∣g(0)
∣∣2
m ≤

(
1 +α2

)∥∥B−1
2 (μ)

∥∥2
�(H)(

1−α2
) |h|2m. (2.12)

(See [23].)

Lemma 2.6 (the method of continuity). Let E1, E2 be two Banach spaces and let L0, L1 be
bounded operators from E1 into E2. For each r ∈ [0,1], set

Lr = (1− r)L0 + rL1 (2.13)

and suppose that there is a constant k such that

‖u‖E1 ≤ k
∥∥Lru

∥∥
E2

(2.14)

for r ∈ [0,1]. Then L1 maps E1 onto E2 if and only if L0 maps E1 onto E2. (See [31, Theorem
5.2, page 75].)

We also need the ε-inequality: 2|ab| ≤ ε|a|2 + ε−1|b|2, ε > 0.

3. Uniqueness and continuous dependence

For the operator Lλ,μ = (�λ, l1μ, l2μ) acting from Eλ,μ into � with domain of definition
�(Lλ,μ) = H1,1(D;W1) ⊂ Eλ,μ we establish an a priori estimate and some corollaries re-
sulting directly from this estimate.

For this purpose, we assume the following.

Condition (�2). (1)

A
(
t1,T2

)= A(t1,0
)
, t1 ∈

[
0,T1

]
; (3.1)
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(2)

A
(
T1, t2

)= A(0, t2
)
, t2 ∈

[
0,T2

]
; (3.2)

(3)

∂A
(
t1,0

)

∂t1
Bi(μ)u= Bi(μ)

∂A
(
t1,0

)

∂t1
u, i= 1,2, μ∈
, u∈�

(
A(t)

)
; (3.3)

(4)

∂A
(
0, t2

)

∂t2
Bi(μ)u= Bi(μ)

∂A
(
0, t2

)

∂t2
u, i= 1,2, μ∈
, u∈�

(
A(t)

)
; (3.4)

(5)

Bj(μ)B3− j(μ)u= B3− j(μ)Bj(μ)u, ( j = 1,2), μ∈
, u∈�
(
A(t)

)
. (3.5)

We are now in a position to state and to prove the main results of this paper.

Theorem 3.1. Let the function D 	 t 
→ A(t) ∈�(W1;H) have bounded derivatives with
respect to t1 and t2 with respect to the simple convergence topology of �(W1;H) and let the
conditions (�1), (�2) and (�1) or (�2) be fulfilled. Then, one has

∥∥|u|∥∥2
1 ≤ S

∥∥∣∣Lλ,μu
∣∣∥∥2

, ∀u∈H1,1(D;W1), (3.6)

where S is a positive constant independent of λ, μ, and u.

Proof. Taking the inner product of the expression �λu and Mu = ∂u/∂t1 + ∂u/∂t2 +
λA(∂u/∂t1 + ∂u/∂t2), we get

∂

∂t1

(
F
(
t2
))

+
∂

∂t2

(
F
(
t1
))=G(t), (3.7)
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where

F2(t)=
{∣∣∣∣

∂u

∂t2

∣∣∣∣
2

+
∣∣A1/2u

∣∣2
+ 2λ

∣∣∣∣A1/2 ∂u

∂t2

∣∣∣∣
2

+ λ|Au|2 + λ2
∣∣∣∣A

∂u

∂t2

∣∣∣∣
2}

,

F1(t)=
{∣∣∣∣

∂u

∂t1

∣∣∣∣
2

+
∣∣A1/2u

∣∣2
+ 2λ

∣∣∣∣A1/2 ∂u

∂t1

∣∣∣∣
2

+ λ|Au|2 + λ2
∣∣∣∣A

∂u

∂t1

∣∣∣∣
2}

,

G(t)= 2Re
(
�λu,Mu

)
+ 4λRe

((
A1/2)

2
∂u

∂t1
,A1/2 ∂u

∂t1

)
+ 2Re

((
A1/2)

1u,A1/2u
)

+ 2λRe
(
A1u,Au

)
+ 2λ2 Re

(
A2

∂u

∂t1
,A

∂u

∂t1

)
+ 4λRe

((
A1/2)

1
∂u

∂t2
,A1/2 ∂u

∂t2

)

+ 2Re
((
A1/2)

2u,A1/2u
)

+ 2λRe
(
A2u,Au

)
+ 2λ2 Re

(
A1

∂u

∂t2
,A

∂u

∂t2

)
,

Ai = ∂

∂ti

(
A(t)

)
,

(
A1/2)

i =
∂

∂ti

(
A(t)1/2), i= 1,2.

(3.8)

Integrating the identity (3.7) over Dτ =]0,τ1[×]0,τ2[⊂D, we get

∫ τ1

0
F1
(
t1,τ2

)
dt1 +

∫ τ2

0
F2
(
τ1, t2

)
dt2 =

∫ τ2

0

∫ τ1

0
G(t)dt+

∫ τ1

0
F1
(
t1,0

)
dt1 +

∫ τ2

0
F2
(
0, t2

)
dt2.

(3.9)

By making use of (2.1), (2.2) and some elementary estimates, we derive the following
inequality:

(i)

∫ τ1

0
F1
(
t1,τ2

)
dt1 +

∫ τ2

0
F2
(
τ1, t2

)
dt2

≤
∫ τ2

0

∫ τ1

0
2
∣∣(�λu,Mu

)∣∣dt+C
∫ τ2

0

∫ τ1

0

(
F1(t) +F2(t)

)
dt

+
∫ τ1

0
F1
(
t1,0

)
dt1 +

∫ τ2

0
F2
(
0, t2

)
dt2.

(3.10)

By making similar calculations in the rectangles ]τ1,T1[×]τ2,T2[, ]0,τ1[×]τ2,T2[
end ]τ1,T1[×]0,τ2[, respectively, we get
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(ii)

−
∫ T1

τ1

F1
(
t1,τ2

)
dt1−

∫ T2

τ2

F2
(
τ1, t2

)
dt2

≤
∫ T2

τ2

∫ T1

τ1

2
∣∣(�λu,Mu

)∣∣dt+C
∫ T2

τ2

∫ T1

τ1

(
F1(t) +F2(t)

)
dt

−
∫ T1

τ1

F1
(
t1,T2

)
dt1−

∫ T2

τ2

F2
(
T1, t2

)
dt2,

(3.11)

(iii)

∫ T2

τ2

F2
(
τ1, t2

)
dt2−

∫ τ1

0
F1
(
t1,τ2

)
dt1

≤
∫ T2

τ2

∫ τ1

0
2
∣∣(�λu,Mu

)∣∣dt+C
∫ T2

τ2

∫ τ1

0

(
F1(t) +F2(t)

)
dt

+
∫ T2

τ2

F2
(
0, t2

)
dt2−

∫ τ1

0
F1
(
t1,T2

)
dt1,

(3.12)

(iv)

∫ T1

τ1

F1
(
t1,τ2

)
dt1−

∫ τ2

0
F2
(
τ1, t2

)
dt2

≤
∫ τ2

0

∫ T1

τ1

2
∣∣(�λu,Mu

)∣∣dt+C
∫ τ2

0

∫ T1

τ1

(
F1(t) +F2(t)

)
dt

+
∫ T1

τ1

F1
(
t1,0

)
dt1−

∫ τ2

0
F2
(
T1, t2

)
dt2.

(3.13)

In this step, we study the case where the condition (�1) is realized, the case (�2) is treated
by the same methodology. Let the condition (�1) be fulfilled.

By a straightforward application of Lemma 2.4 to (3.10), we obtain

∫ τ1

0
F1
(
t1,τ2

)
dt1 +

∫ τ2

0
F2
(
τ1, t2

)
dt2

≤ exp
(
3C
(
T1 +T2

))[∫ τ2

0

∫ τ1

0
2
∣∣(�λu,Mu

)∣∣dt+
∫ τ1

0
F1
(
t1,0

)
dt1 +

∫ τ2

0
F2
(
0, t2

)
dt2

]
.

(3.14)
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For the inequality (3.12), we can write

∫ T2

τ2

F2
(
τ1, t2

)
dt2 +

∫ τ1

0
F1
(
t1,T2

)
dt1

≤
∫ τ1

0

∫ T2

τ2

2
∣∣(�λu,Mu

)∣∣dt+C
∫ τ1

0

∫ T2

τ2

(
F1(t) +F2(t)

)
dt

+
∫ τ1

0
F1
(
t1,τ2

)
dt1 +

∫ T2

τ2

F2
(
0, t2

)
dt2.

(3.15)

We fix the variable τ2 and consider the function

Y
(
τ1,τ2

)=
∫ T2

τ2

F2
(
τ1, t2

)
dt2 +

∫ τ1

0
F1
(
t1,T2

)
dt1 (3.16)

as a function of one variable τ1 with a parameter τ2, and by using the classical Gronwall
lemma we derive the following inequality:

∫ T2

τ2

F2
(
τ1, t2

)
dt2− exp

(
CT1

)
1

∫ τ1

0
F1
(
t1,τ2

)
dt1

≤ exp
(
CT1

)[∫ T2

τ2

∫ τ1

0
2
∣∣(�λu,Mu

)∣∣dt+C
∫ T2

τ2

∫ τ1

0
F1(t)dt+

∫ T2

τ2

F2
(
0, t2

)
dt2

]

−
∫ τ1

0
F1
(
t1,T2

)
dt1.

(3.17)

In a similar way, we derive from (3.13) the inequality

∫ T1

τ1

F1
(
t1,τ2

)
dt1− exp

(
CT2

)∫ τ2

0
F2
(
τ1, t2

)
dt2

≤ exp
(
CT2

)[∫ τ2

0

∫ T1

τ1

2
∣∣(�λu,Mu

)∣∣dt+C
∫ τ2

0

∫ T1

τ1

F2(t)dt+
∫ T1

τ1

F1
(
t1,0

)
dt1

]

−
∫ τ2

0
F2
(
T1, t2

)
dt2.

(3.18)
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Multiplying the inequalities (3.14) by (1/4)(1 +α1)2, (3.17) by (1/2)(1 +α1)α1 exp(CT2),
(3.18) by 1/2(1 + α1)α1 exp(CT1), and (3.11) by α2

1 and summing up the obtained in-
equalities after using of some elementary estimates, we get

1
4

(
1 +α1

)(
1−α1

)[∫ τ1

0
F1
(
t1,τ2

)
dt1 +

∫ τ2

0
F2
(
τ1, t2

)
dt2

]

+
1
2

(
1−α1

)
α1

[∫ T1

τ1

F1
(
t1,τ2

)
dt1 +

∫ T2

τ2
F2
(
τ1, t2

)
dt2

]

≤ 1
4

(
1 +α1

)2
η
∫ T2

0

∫ T1

0
2
(
�λ,Mu

)
dt

+
1
2

(
1 +α1

)
ηC
[∫ T1

τ1

∫ T2

0
F2(t)dt+

∫ T2

τ2

∫ T1

0
F1(t)dt

]

+
1
2

(
1+α1

)
η
[

1
2

(
1+α1

)∫ T1

0
F1
(
t1,0

)
dt1−

∥∥B−1
2 (μ)B1(μ)

∥∥2
�(H)

∫ T1

0
F1
(
t1,T2

)
dt1

]

+
1
2

(
1+α1

)
η
[

1
2

(
1+α1

)∫ T2

0
F2
(
0, t2

)
dt2−

∥∥B−1
2 (μ)B1(μ)

∥∥2
�(H)

∫ T2

0
F2
(
T1, t2

)
dt2

]
,

(3.19)

where η = exp(3C(T1 +T2)).
For simplicity we put

Q1
(
τ1,τ2

)= 1
4

(
1 +α1

)(
1−α1

)[∫ τ1

0
F1
(
t1,τ2

)
dt1 +

∫ τ2

0
F2
(
τ1, t2

)
dt2

]
,

Q2
(
τ1,τ2

)= 1
2

(
1−α1

)
α1

[∫ T1

τ1

F1
(
t1,τ2

)
dt1 +

∫ T2

τ2
F2
(
τ1, t2

)
dt2

]
,

R= 1
4

(
1 +α1

)2
η
∫ T2

0

∫ T1

0
2(�λ,Mu)dt,

H
(
τ1,τ2)= 1

2

(
1 +α1

)
α1ηC

[∫ T1

τ1

∫ T2

0
F2(t)dt+

∫ T2

τ2

∫ T1

0
F1(t)dt

]
,

N1= 1
2

(
1+α1

)
η
[

1
2

(
1+α1

)∫ T1

0
F1(t1,0)dt1−

∥∥B−1
2 (μ)B1(μ)

∥∥2
�(H)

∫ T1

0
F1
(
t1,T2

)
dt1

]
.

(3.20)

The inequality (3.19) can be rewritten as

Q1 +Q2 ≤H +R+N1 +N2. (3.21)
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By virtue of (2.1) and Lemma 2.5, the quantities N1 and N2 are dominated as follows:

N1 +N2 ≤ k1
[∥∥l1μu

∥∥2
1 +

∥∥l2μu
∥∥2

1

]=N3, (3.22)

where k1 = (1/2)((1 +α1)2/(1−α1))‖B1(μ)−1‖2
�(H) exp(3C(T1 +T2))max(1,c2

2).
Let us consider the first case (0 < α1 < 1/3). We observe that ((1/2)(1 + α1) ≤ 2(1−

α1)), which yields

�
(
τ1,τ2

)= α1
(
1−α1

)[∫ T1

0
F1
(
t1,τ1

)
dt1 +

∫ T2

0
F2
(
τ1, t2

)
dt2

]

≤ 2R+ 2N3 + 4
(
1−α1

)
α1ηC

[∫ T1

τ1

∫ T2

0
F2(t)dt+

∫ T2

τ2

∫ T1

0
F1(t)dt

]
.

(3.23)

Hence, by (G2) of Gronwall’s lemma it follows that

�
(
τ1,τ2

)≤ θ(2R+ 2N3
)=N4, (3.24)

where θ = exp(8C exp(C(T1 +T2))(T1 +T2)).
By using the ε-inequality, the quantity N4 can be estimated as follows:

N4 ≤ θ2(1 +α1)2
[

(ε−1
1 + ε−1

2 )
∥∥�λu

∥∥2
+ ε1

∫ T2

0

∫ T1

0
F1(t)dt+ ε2

∫ T2

0

∫ T1

0
F2(t)dt

]

+ θ2

(
1 +α1

)2

(1−α)

∥∥B−1
1 (μ)

∥∥2
�(H) max

(
1,c2

2

)[∥∥l1μu
∥∥2

1 +
∥∥l2μu

∥∥2
1

]
,

(3.25)

which implies

�
(
τ1,τ2

)≤ θ2(1 +α1
)2
[(
ε−1

1 + ε−1
2

)∥∥�λu
∥∥2

+ ε1

∫ T2

0

∫ T1

0
F1(t)dt+ ε2

∫ T2

0

∫ T1

0
F2(t)dt

]

+ θ2

(
1 +α1

)2

(1−α)

∥∥B−1
1 (μ)

∥∥2
�(H) max

(
1,c2

2

)[∥∥l1μu
∥∥2

1 +
∥∥l2μu

∥∥2
1

]
.

(3.26)

Taking εi = α1(1−α1)/2θ2(1 +α1)2T3−i and integrating (3.26) with respect to τi from 0
to Ti, i= 1,2, we obtain

1
2
α1
(
1−α1

)[
T1

∫ T2

0

∫ T1

0
F1(t)dt+T2

∫ T2

0

∫ T2

0
F2(t)dt

]

≤ γ1
∥∥�λu

∥∥2
+ γ2

[∥∥l1μu
∥∥2

1 +
∥∥l2μu

∥∥2
1

]
,

(3.27)
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where

γ1 = 2θ4
(
1 +α1

)4(
T1 +T2

)
T1T2

α1
(
1−α1

) ,

γ2 = θ2
(
1 +α1

)2(
T1 +T2

)

α1
(
1−α1

)
∥∥B−1

1 (μ)
∥∥2

�(H) max
(
1,c2

2

)
.

(3.28)

By combining (3.26) and (3.27), it follows that

�
(
τ1,τ2

)≤ γ3
[∥∥�λu

∥∥2
+
∥∥l1μu

∥∥2
1 +

∥∥l2μu
∥∥2

1

]
, (3.29)

with γ3=(2θ4(1+α1)4/α1(1−α1))(T1 +T2 +1)3(1+‖B−1
1 (μ)‖2

�(H))max(1,c2
2). By virtue of

(3.29), (2.1), we obtain

σ1(μ)
[∥∥u

(·,τ2
)∥∥2

+
∥∥u
(
τ1,·)∥∥2]≤ S1

[∥∥�λu
∥∥2

+
∥∥l1μu

∥∥2
1 +

∥∥l2μu
∥∥2

1

]
, (3.30)

with S1 = 2θ4(T1 +T2 + 1)3(max(1,c2
2)/min(1,c2

1)).
Multiplying (1.1) by

√
λ and estimating with L2(D;H)-norm by use of (2.1) and (3.30),

we derive the following inequality

min
(
1,c2

1

)
σ1(μ)

[∫

D

(
λ
∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

+ λ2
∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

1/2
+ λ3

∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

1

]
dt

]

≤ S2
[∥∥�λu

∥∥2
+
∥∥l1μu

∥∥2
1 +

∥∥l2μu
∥∥2

1

]
,

(3.31)

with S2 = 4θ4(T1 +T2 + 1)4 max(1,c2
2)(1 + λ).

Combining (3.30) and (3.31), we obtain

σ1(μ)
1 + λ

[∫

D

(
λ
∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

+ λ2
∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

1/2
+ λ3

∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

1

)
dt+

(∥∥u
(·,τ2

)∥∥2
+
∥∥u
(
τ1,·)∥∥2)

]

≤ S3
[∥∥�λu

∥∥2
+
∥∥l1μu

∥∥2
1 +

∥∥l2μu
∥∥2

1

]
,

(3.32)

where S3 = 6θ4(T1 +T2 + 1)4(max(1,c2
2)/min(1,c2

1)).
The right-hand side of (3.32) is independent of τ. Hence taking the upper bound of

the left-hand side with respect to τ, we obtain the estimate (3.6) with S= S3.
Now, we consider the second case (1/3≤ α1 < 1).
By making the change of variable σ1(μ)= (β1(α1)= (1/2)(1−α1)) which implies that

(0 < β1 ≤ 1/3). Observe that ((β1(1−β1))2/(1 +β1)4 ≥ (α1(1−α1))2/4(1 +α1)4) which
involves for all 0 < α1 < 1,

∥∥|u|∥∥2
1 ≤ S

∥∥|Lλ,μu|
∥∥2

, ∀u∈�
(
Lλ,μ

)
. (3.33)

We recall that in the case (�2) we proceed with the same methodology used in the case
(�1) to obtain the desired estimate (3.6). The proof of Theorem 3.1 is complete. �
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Now we are interested in the consequences of Theorem 3.1.
It can be proved in the standard way that the operator admits a closure.

Proposition 3.2. If the conditions of Theorem 3.1 are satisfied, then the operator Lλ,μ ad-
mits a closure Lλ,μ with domain of definition denoted by �(Lλ,μ).

The solution of the equation

Lλ,μu=�, �∈�, (3.34)

is called a strong generalized solution of problem (�). Passing to the limit, we extend the
inequality (3.6) to the strong generalized solution, we obtain

∣∣‖u‖∣∣2
1 ≤ S

∣∣∥∥Lλ,μu
∥∥∣∣2

, ∀u∈�
(
Lλ,μ

)
, (3.35)

from which we deduce the following.

Corollary 3.3. From the inequality (3.35), deduce that if the strong generalized solution
exists, then it depends continuously on �= ( f ,ϕ,ψ).

Corollary 3.4. The set of values 
(Lλ,μ) of the operator Lλ,μ is equal to the closure 
(Lλ,μ)

of R(Lλ,μ) and (Lλ,μ)−1 = L−1
λ,μ.

This corollary allows us to claim that to establish the existence of the strong solution
to problem (�) it suffices to prove the density of the set 
(Lλ,μ) in �.

4. Solvability of the problem

To establish the density of 
(Lλ,μ) in �, that is, R(Lλ,μ)⊥ = {(0,0,0)}, we introduce the
following Hilbert structure.

Let H1,1(D;H) be the Hilbert space obtained by completion of �∞(D;H) with respect
to the norm

‖u‖2
1,1 =

∫

D

(∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

+
∣∣∣∣
∂u

∂t1

∣∣∣∣
2

+
∣∣∣∣
∂u

∂t2

∣∣∣∣
2

+ |u|2
)
dt. (4.1)

LetH1([0,T2];H) be the Hilbert space obtained by completion of the space �∞([0,T2];H)
with respect to the norm

‖ϕ‖2
1 = ‖ϕ‖2 +‖ϕ′‖2. (4.2)

We construct H1([0,T1];H) in a similar manner.
Denote by � the Hilbert space L2(D;H)×�1([0,T2];H)×�1([0,T1];H) that is

composed of elements �= ( f ,ϕ,ψ) such that the norm

∥∥|�|∥∥2 = ‖ f ‖2 +‖ϕ‖2
1 +‖ψ‖2

1 is finite, (4.3)

where �1([0,T2];H) × �1([0,T1];H) is the closed subspace of H1([0,T2];H) ×
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H1([0,T1];H) composed of elements (ϕ,ψ) such that

B∗2 (μ)ϕ(0)−B∗1 (μ)ϕ
(
T2
)= B∗2 (μ)ψ(0)−B∗1 (μ)ψ

(
T1
)
, (4.4)

“∗” denotes the symbol of the adjoint.
We denote by H1,1

0 (D;W1) the closed subspace of H1,1(D;W1) defined by

H1,1
0

(
D;W1)= {u∈H1,1(D;W1) : B1(μ)u |t1=0 −B2(μ)u |t1=T1= 0,

B1(μ)u |t2=0 −B2(μ)u |t2=T2= 0
}
.

(4.5)

H1,1
0 (D;H) is the closed subspace of H1,1(D;H) defined by

H1,1
0 (D;H)= {u∈H1,1(D;H) : B1(μ)u |t1=0 −B2(μ)u |t1=T1= 0,

B1(μ)u |t2=0 −B2(μ)u |t2=T2= 0
}
.

(4.6)

Ĥ1,1
0 (D;H) is the closed subspace of H1,1(D,H) defined by

Ĥ1,1
0 (D;H)= {u∈H1,1(D;H) : B∗2 (μ)u |t1=0 −B∗1 (μ)u |t1=T1= 0,

B∗2 (μ)u |t2=0 −B∗1 (μ)u |t2=T2= 0
}
.

(4.7)

In proving the existence theorem we meet some difficulties, and to surmount these diffi-
culties, we use the regularization technique (for more details, see [32]).

Definition 4.1. Put

Aε(t)=
(
I + εA(t)

)
, Jε(t)=A−1

ε (t)= (I + εA(t)
)−1

,

Rε(t)= A(t)
(
I + εA(t)

)−1 = 1
ε

(
I − Jε(t)

)
, ε > 0,

(4.8)

and call Rε(t) the Yosida approximation of A(t).

Some basic properties of Rε are listed in the following proposition.

Proposition 4.2 (see [33]). One has
(1) Jε, Rε ∈�(H), ‖Jε‖ ≤ 1, ‖Rε‖ ≤ 1/ε, for all ε > 0;
(2) JεAu= AJεu, for all u∈W1.
(3) |Rεu| ≤ |u|1, for all ε > 0, for all u∈W1;
(4) limε→0 Jεu= u, for all u∈H ;
(5) limε→0Rεu=Au, for all u∈W1.

Let us now establish the density of the set 
(Lλ,μ) in �. For this purpose, we assume
the following.

Condition (�). D 	 t 
→ A(t)∈�(D;W1) admits mixed derivatives

∂2A

∂t1∂t2
,

∂2A

∂t2∂t1
with

∂A

∂t1∂t2
A−1,

∂A

∂t2∂t1
A−1 ∈ L2

(
D;�(H)

)
. (4.9)
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Theorem 4.3. Under the conditions of Theorem 3.1 and the condition (�), the set 
(Lλ,μ)
is dense in �.

Proof. The idea is to prove the result in the case λ= 0, that is, 
(L0,μ)=� and by means
of the method of continuity we establish the general case.

The case λ= 0.
Let �0 = ∂2/∂t1∂t2 +A(t) be the corresponding operator to λ= 0 and let V = (v,ξ,χ)

be an orthogonal element to 
(L0,μ). Then we have

〈
L0,μu,V

〉
� =

〈
�0u,v

〉
+
〈
l1μu,ξ

〉
+
〈
l2μu,χ

〉= 0, ∀u∈H1,1(D,W1). (4.10)

We need the following proposition.

Proposition 4.4. If for every v ∈ L2(D;H), one has

〈
�0u,v

〉=
〈
∂2u

∂t1∂2
+A(t)u,v

�
= 0, ∀u∈H1,1

0

(
D;W1), (4.11)

then v = 0.

Proof. Let w =A−1
ε v and h= Aεu. After substitution in (4.10), we get

〈
∂2h

∂t1∂t2
− ∂

∂t1

(
B∗1εh

)− ∂

∂t2

(
B∗2εh

)
,w
�
=−〈h,

(
AA−1

ε +B0εA
−1
ε

)
v
〉
. (4.12)

Here, h may be considered as an arbitrary function of H1,1
0 (D;H) and

B∗iε (t)= ε
∂A(t)
∂t3−i

A−1
ε (t), i= 1,2,

B∗0ε(t)= ε
∂2A(t)
∂t2∂t1

A−1
ε (t), Bjε(t)∈�(H), j = 0,1,2.

(4.13)

Equation (4.12) leads to the study of the operators �̃ and �̃′ defined by

�(�̃)= Ĥ1,1
0 (D;H),

�̃u= ∂2u

∂t1∂t2
+B1ε

∂u

∂t1
+B2ε

∂u

∂t2
,

D(�̃′)=H1,1
0 (D;H),

�̃′u= ∂2u

∂t1∂t2
− ∂

∂t1

(
B∗1εu

)− ∂

∂t2

(
B∗2εu

)
.

(4.14)

We show that �̃′ is the adjoint of �̃ and we have

〈
�̃′v,u

〉= 〈v,�̃u
〉

, ∀u∈ Ĥ1,1
0 (D;H), ∀v ∈H1,1

0 (D;H). (4.15)



18 Abstract and Applied Analysis

Equation (4.12) means that for each ε �= 0, w is the weak solution to the problem

�̃w = ∂2w

∂t1∂t2
+B1ε

∂

∂t1
w+B2ε

∂

∂t2
w =−(B0εA

−1
ε +AA−1

ε )v,

l̃1μw = B∗2 (μ)w |t1=0 −B∗1 (μ)w |t1=T1= 0,

l̃2μw = B∗2 (μ)w |t2=0 −B∗1 (μ)w |t2=T2= 0,

(4.16)

with v ∈ L2(D;H), Bjε ∈�(H), j = 0,1,2.

Consider the operator L̃= (�̃, l̃1μ, l̃2μ) acting from H1,1(D;H) into �. For this opera-
tor, we establish the following propositions.

Proposition 4.5. The operator L̃ is isomorphism from H1,1(D;H) into �.

Proof. We must show that 
(L̃)=� and
(i)

∥∥|L̃u|∥∥2 ≤ K1‖u‖2
1,1, ∀u∈H1,1(D;H), (4.17)

(ii)

‖u‖2
1,1 ≤ K2

∥∥|L̃u|∥∥2
, ∀u∈H1,1(D;H), (4.18)

where K1 and K2 are positive constants independent of u.
(i) By virtue of Biε ∈�(H) and

∥∥Biε
∥∥

�(H) =
∥∥∥∥ε

∂A

∂t3−i
A−1
ε

∥∥∥∥
�(H)

=
∥∥∥∥
∂A

∂t3−i
A−1(I −A−1

ε

)∥∥∥∥
�(H)

≤
∥∥∥∥
∂A

∂t3−i
A−1

∥∥∥∥
�(H)

∥∥(I −A−1
ε

)∥∥
�(H) ≤ C, i= 1,2,

(4.19)

|�̃u|2 can be an estimate as follows:

|�̃u|2 =
∣∣∣∣
∂2u

∂t1∂t2
+B1ε

∂u

∂t1
+B2ε

∂u

∂t2

∣∣∣∣
2

≤
{∣∣∣∣

∂2u

∂t1∂t2

∣∣∣∣+
∣∣∣∣B1ε

∂u

∂t1

∣∣∣∣+
∣∣∣∣B2ε

∂u

∂t2

∣∣∣∣
}2

≤ 4max
(
1,C2)

{∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

+
∣∣∣∣
∂u

∂t1

∣∣∣∣
2

+
∣∣∣∣
∂u

∂t2

∣∣∣∣
2

+ |u|2
}

,

(4.20)

which implies that

‖�̃u‖2 ≤ 4max
(
1,C2)‖u‖2

1,1, ∀u∈H1,1(D;H). (4.21)

By virtue of the continuity of the operators l̃1μ, l̃2μ from H1,1(D;H) into H1([0,T2];H),
H1([0,T1];H), respectively, and the inequality (4.21), we obtain the estimate (i).
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(ii) Following the same techniques to those used to establish the estimate (3.6) in
Theorem 3.1, we establish the estimate (4.17).

From the continuity of the operator L̃ and the inequality (4.18), we conclude that
the operator L̃ is an isomorphism from H1,1(D;H) into the closed subspace 
(L̃) =
L̃(H1,1(D;H)).

To prove that 
(L̃s)=�, we proceed by the method of continuity. For this purpose,
we introduce the family of operators {L̃s}s∈[0,1] defined by

L̃s =
(
�̃s, l̃1μ, l̃2μ

)
, s∈ [0,1],

�̃su= ∂2u

∂t1∂t2
+ sBu, with Bu= B1ε

∂u

∂t1
+B2ε

∂u

∂t2
,

D
(
L̃s
)=H1,1(D,H).

(4.22)

Step 1. Let us first consider the case where s= 0. In this step, we show that the operator

(L̃0)=�. Before proving this result, we need to give this auxiliary result.

It is well known that if we have two linear bounded operators S1 and S2 such that S1 is
invertible and ‖S−1

1 S2‖ < 1 or S2 is invertible and ‖S−1
2 S1‖ < 1, then the operator S1− S2 is

invertible.
By virtue of these results and by taking into account conditions (�i), i = 1,2, and

(�2)(5), we deduce that the operator B∗2 (μ)−B∗1 (μ) is invertible in �(H).
Now, by using the invertibility of the operator (B∗2 (μ)−B∗1 (μ)) and a simple integra-

tion, we easily show that the solution of the operator equation

�̃0u= ∂2u

∂t1∂t2
= f̃ (t),

l̃1μu≡ B∗2 (μ)u |t1=0 −B∗1 (μ)u |t1=T1= ϕ̃
(
t2
)
,

l̃2μu≡ B∗2 (μ)u |t2=0 −B∗1 (μ)u |t2=T2= ψ̃
(
t1
)

(4.23)

is given by the formula

u
(
t1, t2

)= (B∗2 (μ)−B∗1 (μ)
)−1(

ϕ̃
(
t2
)

+ ψ̃
(
t1
)−B∗2 (μ)ψ̃(0) +B∗1 (μ)ψ̃(T1)

)

+
∫ t2

0

∫ t1

0
f̃ (τ)dτ +B∗1 (μ)

(
B∗2 (μ)

−B∗1 (μ)
)−1

(∫ t2

0

∫ T1

0
f̃ (τ)dτ +

∫ T2

0

∫ t1

0
f̃ (τ)dτ +B∗1 (μ)

(
B∗2 (μ)

−B∗1 (μ)
)−1

∫ T2

0

∫ T1

0
f̃ (τ)dτ

)
.

(4.24)

This shows that the operator L̃0 is surjective, and thus 
(L̃0)=�, which ensures that L̃0

is an isomorphism from H1,1(D;H) into �.
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Step 2. For s0, s∈ [0,1], we can write

L̃s = L̃s0 +
(
s− s0

)
(L̃1− L̃0) with

(
L̃1− L̃0

)= (B, l̃1μ, l̃2μ
)
. (4.25)

It is easy to obtain the estimate

‖Bu‖2 ≤ 2C2‖u‖2
1,1, ∀u∈H1,1(D;H). (4.26)

By virtue of the inequality (4.26) and the continuity of the operators l̃1μ, l̃2μ, we obtain

∥∥∣∣(L̃1− L̃0
)
u
∣∣∥∥2 ≤ K3‖u‖2

1,1, ∀u∈H1,1(D;H). (4.27)

Now, we prove that

‖u‖2
1,1 ≤ K4

∣∣∥∥L̃su
∥∥∣∣2

, ∀u∈H1,1(D;H), (4.28)

where K4 is a positive constant independent of u.
Thanks to the inequality (4.18), we have

∀s∈ [0,1], ‖u‖2
1,1 ≤ K(s)

∥∥∣∣L̃su
∣∣∥∥2

, ∀u∈H1,1(D;H). (4.29)

Putting h(s)= infu∈H1,1(D;H)(‖|L̃su|‖/‖u‖1,1), let us show that h is continuous on [0,1].
Let ε > 0 and δ = ε/√K3. For s0, s∈ [0,1] such that |s0− s| < δ, we have

∥∥∣∣L̃su
∣∣∥∥−∥∥∣∣L̃s0u

∣∣∥∥≤ ∥∥∣∣L̃su− L̃s0u
∣∣∥∥= ∣∣s0− s

∣∣∥∥∣∣L̃1u− L̃0u
∣∣∥∥

≤ δ∥∥∣∣L̃1u− L̃0u
∣∣∥∥≤ ε√

K3

√
K3‖u‖2

1,1 = ε‖u‖2
1,1,

(4.30)

which implies

∥∥∣∣L̃s0u
∣∣∥∥

‖u‖1,1
− ε ≤

∥∥∣∣L̃su
∣∣∥∥

‖u‖1,1
≤
∥∥∣∣L̃s0u

∣∣∥∥

‖u‖1,1
+ ε. (4.31)

By passing to the inf on H1,1(D;H) in (4.31), we obtain |h(s)−h(s0)| ≤ ε. Thus the func-
tion h is continuous and reaches its lower bound. Denoting this lower bound by 1/

√
K4,

we obtain (4.28).
The equation L̃su= F can be rewritten under the following form:

L̃su= L̃s0u+ (s− s0)
(
L̃1− L̃0

)
u= F. (4.32)

We suppose that 
(L̃s0 )=�, and we prove that 
(L̃s)=� for s near to s0.
Equation (4.32) is equivalent to

u+ (s− s0)
(
L̃s0
)−1(

L̃1− L̃0
)
u= (L̃s0

)−1
F. (4.33)
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From (4.28) and (4.27), we have

∥∥(L̃s0
)−1

F
∥∥

1,1 ≤
√
K4
∥∥|F|∥∥,

∥∥(L̃s0
)−1

(L̃1− L̃0)u
∥∥

1,1 ≤
√
K4
∥∥∣∣(L̃1− L̃0)u

∣∣∥∥≤ √K4

√
K3‖u‖1,1 = K5‖u‖1,1.

(4.34)

Denoting by

�= (s− s0
)(
L̃s0
)−1(

L̃1− L̃0
)
, g = (L̃s0

)−1
F, (4.35)

then (4.33) becomes

u+ �u= g. (4.36)

Let s∈ [0,1] such that |s0− s| ≤ ρ < 1/K5, then

‖�‖ = sup
‖u‖1,1≤1

‖�u‖1,1 =
∣∣s− s0

∣∣∥∥(L̃s0
)−1(

L̃1− L̃0
)
u
∥∥

1,1 ≤
∣∣s− s0

∣∣K5 < 1. (4.37)

Hence the operator (I + �) is invertible, and the solution of (4.36) is given by the Neu-
mann series

u=
∞∑

n=0

(−1)n�ng. (4.38)

This shows that 
(L̃s)=�, for all s : |s0− s| ≤ ρ < 1/K5.
If we take s0 = 0, we obtain 
(L̃s)=�, for all s : 0 < s≤ ρ.
Now, if we put s0 = ρ and by the same procedure, we obtain 
(L̃s)=�, for all s : 0 <

s ≤ 2ρ. Proceeding step by step in this way, we establish that 
(L̃s) =�, for every s ∈
[0,1]. For the case s= 1, we have 
(L̃1)=
(L̃)=�. This proves Proposition 4.5. �

Proposition 4.6. The operator L̃= �̃ is closed.

Proof. Let (un)⊂�(L̃)= Ĥ1,1
0 (D,H) such that

un −→ u in L2(D;H), L̃un −→ f in L2(D;H), n−→∞. (4.39)

From (4.18) we deduce that (un) is a Cauchy sequence in H1,1(D;H), then un → v in
H1,1(D;H). Since Ĥ1,1

0 (D;H) is a closed subspace ofH1,1(D,H), then v ∈ Ĥ1,1
0 (D,H). The

convergence un → u in H1,1(D;H) implies the convergence un → v in L2(D;H), since we
have supposed that un→ u in L2(D;H), then u= v, and the boundedness of the operator
L̃ from H1,1(D,H) into L2(D;H) gives L̃u= f . This completes the proof. �

Now we give some basic properties of the operator L̃′ = �̃′.
It follows from the above propositions that the operator L̃′ = �̃′ is continuous from

H1,1
0 (D;H) into L2(D;H).
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Moreover, from the properties of the operators with closed range, it follows that


(L̃′)=
(L̃)⊥ = L2(D;H)⊥ = {0},

(L̃′)=
(L̃′)=
(L̃)⊥ = {0}⊥ = L2(D;H).

(4.40)

Hence L̃′ is an isomorphism from H1,1
0 (D;H) into L2(D;H) and it is closed in the topol-

ogy of L2(D;H).

Definition 4.7. Denote by �̂= (�̃′)∗ the weak extension of the operator �̃ defined by

〈
�̃′u,v

〉= 〈u,�̂v
〉= 〈u, f

〉
, ∀u∈H1,1

0 (D,H), �̂v = f ∈ L2
(
D,H

)
. (4.41)

Proposition 4.8. The weak extension �̂ of the operator �̃ coincides with its strong exten-

sion (�̂)′ = �̃′.

Proof. We must show that

�(�̃)=�(�̂), �̃u= �̂u, ∀u∈�(�̂). (4.42)

It is clear that �(�̃)⊂�(�).
By virtue of the Banach theorem for operators with closed range, we deduce that the

operator (�̂)−1 is defined on the closed subspace 
(�̂)=
(�̃′)⊥ and it is continuous.
We have

(i)


(�̂)=
(�̃′)⊥ = {0}, (4.43)

(ii)


(�̃′)= {0}, (4.44)

(iii)


(�̂)= L2(D,H). (4.45)

From (ii) it follows that for all f ∈ L2(D,H) there exists a solution to the equation �̂u=
f . Let v be the solution of the equation �̃u= f for a fixed f , and let us show that u= v.

From (4.41) and (4.15), we have

〈
z,�̂u

〉= 〈�̃′z,u
〉= 〈z, f

〉
, ∀z ∈H1,1

0 (D;H),

〈
z,�̃v

〉= 〈�̃′z,v
〉= 〈z, f

〉
, ∀z ∈H1,1

0 (D;H),
(4.46)

therefore 〈�̃′z,v−u〉 = 0, for all z ∈H1,1
0 (D;H), which means that w = v−u is the weak

solution of the homogeneous equation L̃u= 0. According to uniqueness of the weak so-

lution, we obtain u= v. Consequently u= v ∈H1,1
0 (D;H) and �̃u= �̂u= f . This com-

pletes the proof of Proposition 4.8. �
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From Proposition 4.8, we deduce that the weak solution to problem (4.16) coincides
with its strong solution. Hence w ∈ H1,1(D;H)∩ L2(D,W1) and satisfies the problem
(4.16) in the strong sense, that is,

∂2w

∂t1∂t2
+B1ε

∂w

∂t1
+B2ε

∂w

∂t2
+B0εw+Aw = 0,

B∗2 (μ)w |t1=0= B∗1 (μ)w |t1=T1 ,

B∗2 (μ)w |t2=0= B∗1 (μ)w |t2=T2 .

(4.47)

Problem (4.47) is equivalent to

�(�)= Ĥ1,1
0 (D;H),

�w = ∂2w

∂t1∂t2
+B1ε

∂w

∂t1
+B2ε

∂w

∂t2
+Aw =−B0εw = f .

(4.48)

By similar calculations to those used to establish Theorem 3.1, we show the following.

Proposition 4.9. Under the assumptions of Theorem 3.1, one has the estimate

∥∥A1/2w
∥∥2 ≤ K6

∥∥B0εw
∥∥2

, ∀w ∈ Ĥ1,1
0 (D;H). (4.49)

From (4.49) and (�1), it follows that

‖w‖2 ≤ 1
c0

∥∥A1/2w
∥∥2 ≤ K6

c0

∥∥B0εw
∥∥2
. (4.50)

Replacing w by A−1
ε v in (4.50), we obtain

∥∥A−1
ε v

∥∥2 ≤ K6

c0

∥∥B0εA
−1
ε v

∥∥2
. (4.51)

We have

∥∥B0εA
−1
ε v

∥∥=
∥∥∥∥
(
ε
∂2A

∂t2∂t1
A−1
ε

)∗
A−1
ε v

∥∥∥∥

=
∥∥∥∥
(
I −A−1

ε

)( ∂2A

∂t2∂t1
A−1

)∗
A−1
ε v

∥∥∥∥

≤
{∥∥∥∥
(
I −A−1

ε

)( ∂2A

∂t2∂t1
A−1

)∗(
A−1
ε v− v)

∥∥∥∥

+
∥∥∥∥
(
I −A−1

ε

)( ∂2A

∂t2∂t1
A−1

)∗
v
∥∥∥∥
}
−→ 0, ε −→ 0.

(4.52)

Passing to the limit in (4.51), when ε→ 0 and applying the properties of A−1
ε , we obtain

v = 0. This completes the proof of Proposition 4.2. �
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Let us go back to (4.10), by virtue of Proposition 4.4, we obtain 〈l1μu,ξ〉0 + 〈l2μu,χ〉0 =
0. Since l1μ, l2μ are independent and the ranges of the operators l1μ, l2μ are dense in the
corresponding spaces, we obtain ξ = χ = 0. Hence V = (0,0,0), and therefore, 
(Lλ,μ)=
� for λ= 0.

We consider now the case ˘ �= 0. We need the following lemma.

Lemma 4.10. The operator (L1,μ−L0,μ) is bounded, and

∥∥∣∣(L1,μ−L0,μ
)
u
∣∣∥∥≤ k∥∥|u|∥∥1, (4.53)

where the constant k does not depend on u. The proof results from the continuity of B ≡
A∂2/∂t1∂t2, l1μ and l2μ in the corresponding spaces.

The equation Lλ,μu= F can be written as

(
Lλ0,μ +

(
λ− λ0

)(
L1,μ−L0,μ

))
u= F, (4.54)

which is equivalent to the equation

u+
(
λ− λ0

)(
Lλ0,μ

)−1(
L1,μ−L0,μ

)
u= (Lλ0,μ

)−1
F. (4.55)

It follows from (3.35) and (4.53) that

∥∥∣∣(Lλ0,μ
)−1

F
∣∣∥∥

1 ≤
√
S
∥∥|F|∥∥,

∥∥∣∣(Lλ0,μ
)−1(

L1,μ−L0,μ
)
u
∣∣∥∥

1 ≤
√
S
∥∥∣∣(L1,μ−L0,μ

)
u
∣∣∥∥≤m∥∥|u|∥∥1,

(4.56)

where m= k√S.
Let |λ− λ0| ≤ ρ < 1/m. Putting Λ = (λ− λ0)(Lλ0,μ)(L1,μ−L0,μ) and N = (Lλ0,μ)−1F,

(4.55) can be written as u+Λu=N .
Observe that ‖Λ‖ = supu∈D(Lλ,μ)(‖Λu‖1/‖u‖1) < 1. The Neumann series u =

∑∞
n=0(−Λ)nN is then a solution to (4.55). We have thus proved that if 
(Lλ0,μ)=� and

|λ− λ0| ≤ ρ < 1/m, then 
(Lλ,μ) =�. Proceeding step by step in this way, we establish
that 
(Lλ,μ)=� for any λ≥ 0. The proof of Theorem 4.3 is achieved. �

Theorem 4.11. For every element � = ( f ,ϕ,ψ) ∈� there exists a unique strong general-

ized solution u= (Lλ,μ)−1�= (L−1
λ,μ)� to problem (1.1)-(1.2) satisfying the estimate

∥∥|u|∥∥2
1 ≤ S

∥∥∣∣Lλ,μu
∣∣∥∥2

, ∀u∈H1,1(D;W1), (4.57)

where S is a positive constant independent of λ, μ, and u.
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