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Biharmonic PNMC submanifolds in spheres

Adina Balmuş, Stefano Montaldo and Cezar Oniciuc

Abstract. We obtain several rigidity results for biharmonic submanifolds in Sn with par-

allel normalized mean curvature vector fields. We classify biharmonic submanifolds in Sn with

parallel normalized mean curvature vector fields and with at most two distinct principal curva-

tures. In particular, we determine all biharmonic surfaces with parallel normalized mean curvature

vector fields in Sn.

Then we investigate, for (not necessarily compact) proper-biharmonic submanifolds in Sn,

their type in the sense of B.-Y. Chen. We prove that (i) a proper-biharmonic submanifold in Sn is

of 1-type or 2-type if and only if it has constant mean curvature f=1 or f ∈(0, 1), respectively; and

(ii) there are no proper-biharmonic 3-type submanifolds with parallel normalized mean curvature

vector fields in Sn.

1. Introduction

Let ϕ : M→(N, h) be a Riemannian immersion of a manifold M into a Rie-
mannian manifold (N, h). We say that ϕ is a biharmonic Riemannian immersion,
or M is a biharmonic submanifold in N , if its mean curvature vector field H satisfies
the equation

τ2(ϕ) = −m(ΔϕH+trace RN (dϕ( · ), H) dϕ( · )) = 0,(1)

where Δϕ denotes the rough Laplacian on sections of the pull-back bundle ϕ−1(TN)
and RN denotes the curvature operator on (N, h). The section τ2(ϕ) is called the
bitension field.
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author was supported by Contributo d’Ateneo, University of Cagliari, Italy. The third author
was supported by a grant of the Romanian National Authority for Scientific Research, CNCS–
UEFISCDI, project number PN-II-RU-TE-2011-3-0108.
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When M is compact, the biharmonic condition arises from a variational prob-
lem for maps: For an arbitrary smooth map ϕ : (M, g)→(N, h) we define

E2(ϕ) =
1
2

∫
M

|τ(ϕ)|2 vg,

where τ(ϕ)=trace ∇ dϕ is the tension field (see [15] for a detailed account on har-
monic maps). The functional E2 is called the bienergy functional. In the particular
case when ϕ : (M, g)→(N, h) is a Riemannian immersion, the tension field has the
expression τ(ϕ)=mH and (1) is equivalent to ϕ being a critical point of E2.

Obviously, any minimal submanifold (H=0) is biharmonic. The nonharmonic
biharmonic submanifolds are called proper-biharmonic.

The study of proper-biharmonic submanifolds is nowadays becoming a very
active subject and its popularity was initiated with the challenging conjecture of
B.-Y. Chen: Any biharmonic submanifold in the Euclidean space is minimal.

Due to some nonexistence results (see [18] and [25]) the Chen conjecture was
generalized to: Any biharmonic submanifold in a Riemannian manifold with non-
positive sectional curvature is minimal, but this was proved not to hold. Indeed,
in [28] the authors constructed examples of proper-biharmonic hypersurfaces in a
5-dimensional space of nonconstant negative sectional curvature.

Yet, the conjecture is still open in its full generality for ambient spaces with con-
stant nonpositive sectional curvature, although it was proved to be true in numerous
cases when additional geometric properties for the submanifolds were assumed (see,
for example, [2], [7], [10], [14] and [17]).

By way of contrast, as we shall detail in Section 2, there are several families of
examples of proper-biharmonic submanifolds in the n-dimensional unit Euclidean
sphere S

n. For simplicity we shall denote these classes by B1, B2, B3 and B4. Nev-
ertheless, a full understanding of the geometry of proper-biharmonic submanifolds
in S

n has not been achieved. The goal of this paper is to continue the study of
proper-biharmonic submanifolds in S

n that was initiated for the very first time in
[18] and then developed in [2]–[7], [24] and [25].

In [5] the proper-biharmonic submanifolds with parallel mean curvature vector
fields (PMC) in S

n were studied. In the first part of this paper we extend our
study to biharmonic submanifolds with parallel normalized mean curvature vector
fields (PNMC). We recall that there exist PNMC surfaces which are not PMC (see
[8] and [21]) and, obviously, a PNMC submanifold is PMC if and only if it has
constant mean curvature (CMC). We underline the fact that all known examples of
proper-biharmonic submanifolds in spheres are CMC, but there is no general result
concerning the constancy of the mean curvature of proper-biharmonic submanifolds
in S

n.
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First, in Section 3, under some hypotheses on the mean curvature function
or on the squared norm of the shape operator associated with the mean curvature
vector field, we prove that compact, or complete, PNMC biharmonic submanifolds
are PMC.

As we shall see in Section 4, PNMC pseudo-umbilical biharmonic submanifolds
in S

n are of class B3. We then study the PNMC biharmonic submanifolds in S
n

with at most two distinct principal curvatures in the direction of the mean curvature
vector field, proving that they are CMC and belong to the classes B3 and B4
(Theorem 4.4).

The second part of the paper is devoted to finite-type submanifolds. These
submanifolds were introduced by Chen (see, for example, [9] and [11]) in the attempt
of finding the best possible estimate of the total mean curvature of a compact
submanifold in the Euclidean space. Although defined in a different manner, finite-
type submanifolds arise also, in a natural way, as solutions of a variational problem.

We prove that proper-biharmonic submanifolds in spheres are of 1-type or
2-type if and only if they are CMC with mean curvature f=1 or f ∈(0, 1), respec-
tively (Theorem 5.8).

Moreover, we prove that there are no 3-type PNMC biharmonic submanifolds
in S

n (Theorem 5.10), obtaining the nonexistence of 3-type biharmonic hypersur-
faces in S

n (Corollary 5.11).
Finally, under some extra conditions (mass-symmetric and independent) on

finite k-type submanifolds in S
n we prove that biharmonicity implies k=2 (Propo-

sition 5.12).

Conventions Throughout this paper all manifolds, metrics and maps are as-
sumed to be smooth, i.e. C∞. All manifolds are assumed to be connected. The
following sign conventions are used

ΔϕV = − trace ∇2V and RN (X, Y )= [∇X , ∇Y ]− ∇[X,Y ],

where V ∈C(ϕ−1(TN)) and X, Y ∈C(TN).
By a submanifold M in a Riemannian manifold (N, h) we mean a Riemannian

immersion ϕ : M→(N, h) (see, for example, [20] and [30]).

Acknowledgements. The authors would like to thank Professors B.-Y. Chen
and I. Dimitric for helpful discussions.
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2. Biharmonic submanifolds

2.1. Submanifolds in Riemannian manifolds

We recall here the fundamental equations of first order for a submanifold in
a Riemannian manifold. These equations define the second fundamental form, the
shape operator and the connection in the normal bundle.

Let ϕ : M→N be a Riemannian immersion. For each p∈M , Tϕ(p)N splits as
an orthogonal direct sum

(2) Tϕ(p)N = dϕ(TpM)⊕dϕ(TpM)⊥,

and NM=
⋃

p∈M dϕ(TpM)⊥ is referred to as the normal bundle of ϕ, or of M in N .
Denote by ∇ and ∇N the Levi-Civita connections on M and N , respectively,

and by ∇ϕ the induced connection in the pull-back bundle ϕ−1(TN)=
⋃

p∈M Tϕ(p)N .
Taking into account the decomposition in (2), one has

∇ϕ
X dϕ(Y ) = dϕ(∇XY )+B(X, Y ), X, Y ∈ C(TM),

where B ∈C(�2T ∗M ⊗NM) is called the second fundamental form of M in N . The
mean curvature vector field of M in N is defined by H=(trace B)/m∈C(NM) and
the mean curvature function of M is |H|. All throughout this paper we shall write
f=|H|.

Furthermore, if η ∈C(NM), then

∇ϕ
Xη = −dϕ(Aη(X))+∇⊥

Xη, X ∈ C(TM),

where Aη ∈C(T ∗M ⊗TM) is called the shape operator of M in N in the direction
of η, and ∇⊥ is a connection on sections of NM , called the induced connection in
the normal bundle. Moreover, 〈B(X, Y ), η〉=〈Aη(X), Y 〉, for all X, Y ∈C(TM) and
η ∈C(NM).

When confusion is unlikely, locally, we identify M with its image, X with
dϕ(X) and we replace ∇ϕ

X dϕ(Y ) with ∇N
XY . With these identifications in mind,

we write

∇N
XY = ∇XY +B(X, Y ),

and

∇N
Xη = −Aη(X)+∇⊥

Xη.
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2.2. Biharmonic submanifolds

The key ingredient in the study of biharmonic submanifolds is the splitting of
the bitension field with respect to its normal and tangent components.

Theorem 2.1. A submanifold ϕ : Mm→Nn in a Riemannian manifold N is
biharmonic if and only if the normal and the tangent components of τ2(ϕ) vanish,
i.e. respectively

(3a) Δ⊥H+trace B( · , AH · )+trace(RN (dϕ( · ), H) dϕ( · ))⊥ =0,

and
m

2
grad f2+2 trace A∇ ⊥

( · )H
( · )+2 trace(RN (dϕ( · ), H) dϕ( · ))� =0,(3b)

where A denotes the shape operator, B the second fundamental form, H the mean
curvature vector field, f=|H| the mean curvature function, and ∇⊥ and Δ⊥ the
connection and the Laplacian in the normal bundle of M in N .

This result was obtained in [9] and [25] for submanifolds in space forms, and
in [27] for general hypersurfaces (see also [22] for the normal component of τ2). We
note that the tangent part of τ2(ϕ) vanishes if and only if the stress-energy tensor
for biharmonic maps associated with ϕ vanishes (see [19] and [23]). In the case
when the ambient space is a space form E

n(c) of constant sectional curvature c,
(3a)–(3b) reduce to the following.

Corollary 2.2. ([9] and [25]) A submanifold ϕ : Mm→E
n(c) in the space form

E
n(c) is biharmonic if and only if

(4)

⎧⎨
⎩

Δ⊥H+trace B( · , AH · )−mc H =0,

2 trace A∇ ⊥
( · )H

( · )+
m

2
grad f2 =0.

Up to now there are no known examples of proper-biharmonic submanifolds
in a space form E

n(c) with c≤0, i.e. proper solutions of (4) with c≤0. This fact
has suggested, as we have mentioned in the introduction, the generalized Chen
conjecture.

If c=1, the situation is rather different and we consider the following to be
the main examples of proper-biharmonic submanifolds in the unit Euclidean sphere
S

n=E
n(1).

Example B1. The small hypersphere

S
n−1

(
1√
2

)
=

{(
x,

1√
2

)
∈ R

n+1 : |x|2 =
1
2

}
⊂ S

n.
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Example B2. The standard products of spheres

S
n1

(
1√
2

)
×S

n2

(
1√
2

)
=

{
(x, y) ∈ R

n1+1 ×R
n2+1 : |x|2 = |y|2 =

1
2

}
⊂ S

n,

n1+n2=n−1 and n1 �=n2.

Example B3. The submanifolds ϕ=ı·ψ : M→S
n, where ψ : M→S

n−1(1/
√

2)
is a minimal immersion, and ı : S

n−1(1/
√

2)→S
n denotes the inclusion map.

Example B4. The submanifolds ϕ=ı·(ψ1 ×ψ2) : M1 ×M2→S
n, where the maps

ψi : Mmi
i →S

ni(1/
√

2), 0<mi ≤ni, i=1, 2, are minimal immersions, m1 �=m2,
n1+n2=n−1, and ı : S

n1(1/
√

2)×S
n2(1/

√
2)→S

n denotes the inclusion map.

Example B2 was found in [18], while Example B1 was derived in [6]. The
two families of examples described in Examples B3 and B4 were constructed in [7].
Moreover, Example B3 is a consequence of the following property.

Theorem 2.3. ([7]) Let ψ : M→S
n−1(a) be a minimal submanifold in a small

hypersphere S
n−1(a)⊂S

n, of radius a∈(0, 1), and denote by ı : S
n−1(a)→S

n the
inclusion map. Then ϕ=ı·ψ : M→S

n is proper-biharmonic if and only if a=1/
√

2.

We note that the proper-biharmonic submanifolds in S
n, obtained from mini-

mal submanifolds of the proper-biharmonic hypersphere S
n−1(1/

√
2), have constant

mean curvature f=1.
More generally, we have the following bounds for the mean curvature of CMC

proper-biharmonic submanifolds in S
n.

Theorem 2.4. ([26]) Let ϕ : M→S
n be a CMC proper-biharmonic submani-

fold. Then f ∈(0, 1]. Moreover, if f=1, then ϕ induces a minimal immersion of M

into S
n−1(1/

√
2)⊂S

n.

Notice also that proper-biharmonic submanifolds in S
n obtained from minimal

submanifolds of S
n−1(1/

√
2) have parallel mean curvature vector fields (PMC) and

are pseudo-umbilical, i.e. AH =f2 Id. In [29] it was proved that an umbilical bihar-
monic surface in any 3-dimensional Riemannian manifold must be a CMC surface.
This is a particular case of the following proposition.

Proposition 2.5. Let ϕ : Mm→N be a submanifold in a Riemannian mani-
fold N , m �=4. If M is pseudo-umbilical, then the tangent part of τ2(ϕ) vanishes,
i.e. (3b) is satisfied, if and only if M is CMC. In particular, if M is a biharmonic
pseudo-umbilical submanifold in N , m �=4, then M is CMC.
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Proof. First, we note that, in general, (3b) is equivalent to

(5) − m

2
grad f2+2 trace(∇AH)( · , · )= 0.

Since M is pseudo-umbilical, AH =f2 Id and we find immediately that

(6) trace(∇AH)( · , · ) = grad f2.

Then, (5) is equivalent to

(m−4) grad f2 =0,

and we conclude. �

We recall that a codimension-two pseudo-umbilical submanifold ϕ : Mm→
S

m+2, m �=4, is proper-biharmonic if and only if it is minimal in S
m+1(1/

√
2)

(see [2]). Now, a natural question arises: For arbitrary codimension, is a pseudo-
umbilical proper-biharmonic submanifold Mm in S

n, m �=4, minimal in S
n−1(1/

√
2)?

3. Biharmonic submanifolds with parallel normalized mean curvature
vector fields in S

n

A submanifold ϕ : M→N in a Riemannian manifold is said to have parallel
normalized mean curvature vector fields (PNMC) if it has nowhere zero mean cur-
vature and the unit vector field in the direction of the mean curvature vector field
is parallel in the normal bundle, i.e.

(7) ∇⊥(H/f)= 0,

where f=|H| denotes the mean curvature function. Notice that, in this case, f is a
smooth and positive function. In the following, for a PNMC submanifold, we shall
denote by ξ=H/f the normalized mean curvature vector field and by A the shape
operator associated with ξ.

PNMC submanifolds generalize nonminimal PMC submanifolds. Moreover, for
CMC submanifolds PNMC is equivalent to PMC. Note that, as stated in [8] and
[21], it is possible to find examples of PNMC submanifolds which are not PMC.

The following characterization of PNMC biharmonic submanifolds in S
n, which

we shall use throughout this paper, is an immediate consequence of Corollary 2.2.
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Theorem 3.1. Let ϕ : Mm→S
n be a PNMC submanifold in the n-dimensional

unit Euclidean sphere S
n. Then M is biharmonic if and only if

(8)

⎧⎪⎪⎨
⎪⎪⎩

trace B( · , AH · ) =
(

m− 1
f

Δf

)
H,

AH(grad f2) = − m

2
f2 grad f2,

or, equivalently,

(9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) 〈A, Aη 〉 =0 for all η ∈ C(NM) with η ⊥ ξ,

(ii) Δf =(m− |A|2)f,

(iii) A(grad f) = − m

2
f grad f,

where NM denotes the normal bundle of M in S
n.

Proof. Let p∈M and consider {Ei}m
i=1 to be a local orthonormal frame field

on M geodesic at p. Since M is PNMC, we have

(10) ∇⊥
XH =

1
f

X(f)H, X ∈ C(TM).

From here, at p we have

Δ⊥H = − trace(∇⊥)2H = −
m∑

i=1

∇⊥
Ei

(
1
f

Ei(f)H
)

=
1
f

(Δf)H,

which implies that the first equation of (4) becomes the first equation of (8).
From (10) we obtain

(11) traceA∇ ⊥
( · )H

( · ) =
m∑

i=1

A∇ ⊥
Ei

H(Ei) =
1

2f2
AH(grad f2),

and the second equation of (4) becomes the second equation of (8).
Next, since AH =fA, by considering the components of trace B( · , AH · ), the

one parallel to ξ and the one orthogonal to ξ, one verifies immediately that (8) and
(9) are equivalent. �
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3.1. The compact case

Immediate consequences for compact PNMC biharmonic submanifolds follow
from (9)(ii).

Corollary 3.2. Let ϕ : M→S
n be a compact PNMC biharmonic submani-

fold.
(i) If |A|2 ≤m, or |A|2 ≥m, on M , then M is PMC and |A|2=m.
(ii) If |A| is constant, then M is PMC and |A|2=m.

From Corollary 3.2, if M is a compact PNMC biharmonic submanifold in S
n,

then either there exists p∈M such that |A(p)|2<m, or |A|2=m.
Moreover, as a consequence of Corollary 3.2, we shall also prove that compact

PNMC biharmonic submanifolds in S
n, with a supplementary bounding condition

on the mean curvature, are PMC.

Proposition 3.3. Let ϕ : M→S
n be a compact PNMC biharmonic submani-

fold. If the mean curvature of M satisfies f2 ≥4(m−1)/m(m+8), then M is PMC.
Moreover,

(i) if m∈ {2, 3}, then ϕ induces a minimal immersion of M into S
n−1(1/

√
2)

⊂S
n;

(ii) if m=4, then ϕ(M) is the standard product ψ1(M3
1 )×S

1(1/
√

2), where
ψ1 : M1→S

n−2(1/
√

2) is a compact minimal submanifold.

Proof. We will show that, under the given hypotheses, we have |A|2 ≥m on
M . Therefore, by Corollary 3.2, M is PMC. Then, the last assertion follows from
Theorem 3.11 in [5].

Let p0 ∈M be arbitrarily fixed. We have two cases.
Case 1. If gradp0

f �=0, since M is PNMC biharmonic, from (9)(iii) we have
that e1=gradp0

f/| gradp0
f | is a principal direction for A with principal curvature

λ1=−mf(p0)/2. By considering ek ∈Tp0M , k=2, ..., m, such that {ei}m
i=1 is an

orthonormal basis in Tp0M and A(ek)=λkek, we get at p0 that

|A|2 =
m∑

i=1

|A(ei)|2 = |A(e1)|2+
m∑

k=2

|A(ek)|2 =
m2

4
f2+

m∑
k=2

λ2
k(12)

≥ m2

4
f2+

1
m−1

(
m∑

k=2

λk

)2

=
m2(m+8)
4(m−1)

f2,
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and thus the hypothesis on the mean curvature function implies

|A|2 ≥ m2(m+8)
4(m−1)

f2 ≥ m.

Case 2. Consider now the case when gradp0
f=0. If there exists an open

subset U ⊂M , p0 ∈U , such that (grad f)|U =0, then (9)(ii) implies that |A|2=m

on U . Otherwise, p0 is a limit point for the set V ={p∈M :gradp f �=0}. By case 1
we have |A(p)| ≥m for all p∈V . Therefore, we obtain |A(p0)|2 ≥m, and the proof is
completed. �

Since hypersurfaces with nowhere zero mean curvature are PNMC submani-
folds, we have the following result.

Corollary 3.4. Let ϕ : Mm→S
m+1 be a compact biharmonic hypersurface. If

the mean curvature of M satisfies f2 ≥4(m−1)/m(m+8), then M is CMC.

3.2. The noncompact case

We first notice that an explicit example of a complete noncompact proper-
biharmonic submanifold in S

n can be immediately derived from the proper-biharmonic
submanifold S

n−2(1/
√

2)×S
1, by considering its universal cover S

n−2(1/
√

2)×R.
For the noncompact case, if ϕ : Mm→S

n is a PNMC biharmonic submanifold
such that |A|2 ≥m, then f is a subharmonic function and therefore either f is
constant, or f cannot attain its maximum. In the following we shall prove that,
under some additional hypotheses, the latter case cannot occur.

Theorem 3.5. (Omori–Yau maximum principle, [32]) If Mm is a complete
Riemannian manifold with Ricci curvature bounded from below, then for any func-
tion u∈C2(M), bounded from above, there exists a sequence of points {pk }k∈N ⊂M

satisfying

lim
k→∞

u(pk)= sup
M

u, |gradpk
u| <

1
k

and Δu(pk) > − 1
k

.

Now we can prove our result.

Proposition 3.6. Let ϕ : Mm→S
n be a complete noncompact PNMC bihar-

monic submanifold with nonnegative Ricci curvature. If |A| is constant and |A| ≥m,
then M is PMC and |A|2=m.
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Proof. From (9)(ii), we get that Δf ≤0 on M . On the other hand, since
f ≤ |A|/

√
m is bounded, then by Theorem 3.5 there exists a sequence of points

{pk }k∈N ⊂M such that

Δf(pk) > − 1
k

and lim
k→∞

f(pk)= sup
M

f.

It follows that limk→∞Δf(pk)=0, and thus limk→∞(m− |A|2)f(pk)=0.
As limk→∞ f(pk)=supM f>0, we get |A|2=m. This, together with (9)(ii),

implies that f is a harmonic function on M . Since f is also a bounded function
on M , by a result of S.-T. Yau in [32], we deduce that f=constant. �

Using (12), as a direct consequence of Proposition 3.6, we obtain the following
result.

Corollary 3.7. Let ϕ : M→S
n be a noncompact PNMC biharmonic subman-

ifold. Assume that M is complete and has nonnegative Ricci curvature. If |A|2 is
constant and f2 ≥4(m−1)/m(m+8), then M is PMC and |A|2=m.

In the case of hypersurfaces, we recall that if ϕ : Mm→S
m+1 is complete and

proper-biharmonic with f=1, then ϕ is an embedding and ϕ(M)=S
m(1/

√
2), and

thus M has to be compact. From here, taking also into account Theorem 3.11 in [5],
we get the following consequence.

Corollary 3.8. Let ϕ : Mm→S
m+1 be a noncompact biharmonic hypersurface.

Assume that M is complete and has nonnegative Ricci curvature. If |A|2 is constant
and f2 ≥4(m−1)/m(m+8), then M is CMC and |A|2=m. In this case, m≥4 and
f2 ≤((m−2)/m)2.

4. PNMC biharmonic submanifolds in S
n with at most two distinct

principal curvatures

Inspired by the case of hypersurfaces (see [2]), we intend to study PNMC bihar-
monic submanifolds in S

n by taking into account the number of distinct principal
curvatures in the direction of the mean curvature vector field.

Proposition 4.1. If ϕ : Mm→S
n, m≥2, is a pseudo-umbilical PNMC sub-

manifold, then M is PMC. Moreover, ϕ induces a minimal immersion of M in
S

n−1(a)⊂S
n for some a∈(0, 1).
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Proof. By the Codazzi equation, for any submanifold in S
n we have

(13) 2 trace(∇AH)( · , · ) =m grad f2+2 trace A∇ ⊥
(·)H

( · ).

Now, taking into account (6) and (11), (13) becomes

(m−1) grad f2 =0.

Thus M is PMC and, using a result of Chen in [9, p. 133], we conclude that ϕ

induces a minimal immersion of M in S
n−1(a)⊂S

n for some a∈(0, 1). �

Combining Proposition 4.1 and Theorem 2.3, one gets the following result.

Proposition 4.2. Let ϕ : Mm→S
n, m≥2, be a PNMC pseudo-umbilical bihar-

monic submanifold. Then, ϕ induces a minimal immersion of M in S
n−1(1/

√
2)⊂S

n.

Thus, the next step consists in classifying the PNMC biharmonic submanifolds
in S

n with at most two distinct principal curvatures in the direction of H . Notice
that any hypersurface with nowhere zero mean curvature is PNMC, and the clas-
sification of proper-biharmonic hypersurfaces with at most two distinct principal
curvatures was achieved in [2]. In order to obtain the desired general classification,
we first have to prove the following result.

Theorem 4.3. Let ϕ : Mm→S
n be a PNMC biharmonic submanifold with at

most two distinct principal curvatures in the direction of H . Then M is PMC.

Proof. It is sufficient to prove that f , which is a positive function on M , is con-
stant. Suppose that f �=constant. Then, there exists p∈M such that gradp f �=0,
and hence there is a neighborhood U of p in M such that grad f �=0 on U . Taking
into account Proposition 4.2, U cannot be made up only of pseudo-umbilical points.
We can thus assume that there exists a point q ∈U which is not pseudo-umbilical.
Then, eventually by restricting U , we can assume that A �=f Id at every point of U .
Thus A has exactly two distinct principal curvatures on U . Recall that, as A has
exactly two distinct principal curvatures, the multiplicities of its principal curva-
tures are constant and the principal curvatures are smooth (see [30]). Thus A is
diagonalizable with respect to a local orthonormal frame field {E1, ..., Em}. We
then have A(Ei)=k̄iEi, i=1, ..., m, where

k̄1(q) = ... = k̄m1(q) = k1(q), k̄m1+1(q) = ... = k̄m(q) = k2(q),

and k1(q) �=k2(q) for all q ∈U . From (9)(iii) we can assume that

(14) k1 = − m

2
f
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and E1=grad f/|grad f |.
Since 〈Eα, E1〉=0, we have on U that

(15) Eα(f)= 0, α =2, ..., m.

We shall use the connection equations with respect to the orthonormal frame
field {E1, ..., Em},

(16) ∇EiEj =ωk
j (Ei)Ek.

Let us first prove that the multiplicity of k1 is m1=1. Suppose that m1 ≥2.
Then there exists α∈ {2, ..., m1} such that k̄α=k1 on U . Since ∇⊥ξ=0, the Codazzi
equation for A becomes

(17) (∇EiA)(Ej)= (∇Ej A)(Ei), i, j =1, ..., m.

By using (16), the Codazzi equation can be written as

(18) Ei(k̄j)Ej +
m∑

l=1

(k̄j −k̄l)ωl
j(Ei)El =Ej(k̄i)Ei+

m∑
l=1

(k̄i −k̄l)ωl
i(Ej)El.

Putting i=1 and j=α in (18) and taking the scalar product with Eα we ob-
tain E1(k1)=0, which, together with (14) and (15), gives f=constant, which is a
contradiction.

Thus k̄1=k1 and k̄α=k2, for α=2, ..., m, and since trace A=mf , we get

(19) k2 =
3
2

m

m−1
f.

Putting i=1 and j=α in (18) and taking the scalar product with Eα, Eβ ,
β �=α, and E1, respectively, one gets

ωα
1 (Eα) = − 3

m+2
E1(f)

f
,(20a)

ωα
1 (Eβ) = 0,(20b)

ωα
1 (E1) = 0(20c)

for α, β=2, ..., m, α �=β.
Consider {ηm+1=ξ, ηm+2, ..., ηn} to be an orthonormal frame field of the nor-

mal bundle of U in S
n and let Aa=Aηa , a=m+2, ..., n. As ∇⊥ξ=0, from the Ricci

equation of U in S
n, we have

A·Aa =Aa ·A, a =m+2, ..., n.
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Since k1 has multiplicity 1, it follows directly that E1 is a principal direction for
Aa, for all a=m+2, ..., n. Fix a∈ {m+2, ..., n} and set Aa(E1)=λaE1 on U . From
(9)(i), we have that

∑m
i=1〈A(Ei), Aa(Ei)〉=0 and this leads to

(k1 −k2)λa+k2 trace Aa =0.

Since traceAa=m〈H, ηa〉=0, we conclude that λa=0, i.e.

(21) Aa(E1)= 0, a =m+2, ..., n.

We now express the Gauss equation for U in S
n,

〈RS
n

(X, Y )Z, W 〉 = 〈R(X, Y )Z, W 〉(22)

+〈B(X, Z), B(Y, W )〉 − 〈B(X, W ), B(Y, Z)〉,

with X=W =E1 and Y =Z=Eα. Using (21) one obtains

B(E1, Eα)= 0, B(E1, E1) = k1ξ and 〈B(Eα, Eα), B(E1, E1)〉 = k1k2.

From (16), (20b), (20c), and using that ωk
j =−ωj

k, the curvature term is

〈R(E1, Eα)Eα, E1〉 = −E1(ωα
1 (Eα))−ωα

1 (Eα)2.

Finally, (22) and (20a) imply

(23) fE1(E1(f)) =
m+2

3
f2 − m2(m+2)

4(m−1)
f4+

m+5
m+2

E1(f)2.

From (14) and (19), we have

(24) |A|2 = k2
1+(m−1)k2

2 =
m2(m+8)
4(m−1)

f2.

Moreover, using (15), (16) and (20a), the Laplacian of f becomes

Δf = −E1(E1(f))−
m∑

α=2

Eα(Eα(f))+(∇E1E1)f+
m∑

α=2

(∇EαEα)f(25)

= −E1(E1(f))+
m∑

α=2

ω1
α(Eα)E1(f)

= −E1(E1(f))+
3(m−1)
m+2

E1(f)2

f
.
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From (9)(ii), by substituting (24) and (25), we get

(26) fE1(E1(f)) = −mf2+
m2(m+8)
4(m−1)

f4+
3(m−1)
m+2

E1(f)2.

Consider now γ=γ(u) to be an arbitrary integral curve of E1 in U . Along γ

we have f=f(u) and we set w=E1(f)2=(f ′)2. Then dw/df=2f ′ ′, and (23) and
(26) become

(27)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
f

dw

df
=

m+2
3

f2 − m2(m+2)
4(m−1)

f4+
m+5
m+2

w,

1
2
f

dw

df
= −mf2+

m2(m+8)
4(m−1)

f4+
3(m−1)
m+2

w.

By subtracting the two equations we find two cases.
If m=4, then

4f4 −f2 =0,

and thus f is constant.
If m �=4, then

w =
(m+2)(2m+1)

3(m−4)
f2 − m2(m+2)(m+5)

4(m−4)(m−1)
f4.

Differentiating with respect to f and replacing this in the second equation of (27),
we get

(m−1)(m+5)
3

f2+
3m2(2m+1)

4(m−1)
f4 =0.

Therefore f is constant along γ, and thus grad f=0 along γ and we have a contra-
diction. �

As a consequence of Theorem 4.3 we have the following rigidity result.

Theorem 4.4. Let ϕ : Mm→S
n be a PNMC biharmonic submanifold with at

most two distinct principal curvatures in the direction of H . Then either ϕ induces
a minimal immersion of M in S

n−1(1/
√

2), or locally,

ϕ(M) =Mm1
1 ×Mm2

2 ⊂ S
n1

(
1√
2

)
×S

n2

(
1√
2

)
⊂ S

n,

where Mi is a minimal embedded submanifold of S
ni(1/

√
2), i=1, 2, m1+m2=m,

m1 �=m2 and n1+n2=n−1.
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Proof. From Theorem 4.3 we conclude that M is PMC. Moreover, since AH has
at most two distinct principal curvatures in the direction of H , from Proposition 3.19
in [5], we get that ∇AH =0. Now, the conclusion follows by applying Theorem 3.16
in [5]. �

Moreover, as a corollary of Theorem 4.4, the following rigidity result, which
generalizes Theorem 5.6 in [2], is valid.

Corollary 4.5. Let ϕ : M2→S
n be a PNMC biharmonic surface. Then ϕ

induces a minimal immersion of M in S
n−1(1/

√
2).

Remark 4.6. (i) In [8] it was proved that, in general, a PNMC analytic surface
in S

n is either minimal in a small hypersphere of S
n, and therefore it is PMC, or it

lies in a 4-dimensional great sphere S
4 ⊂S

n. Notice that with no analyticity condi-
tion, by Corollary 4.5, the supplementary hypothesis that the surface is biharmonic
leads only to the first case.

(ii) For the particular case of PNMC biharmonic surfaces in S
4 we can give a

different proof of Theorem 4.4. Indeed, if we suppose that the surface is not PMC,
using the codimension reduction result of J. Erbacher in [16], we obtain that the
surface lies in a great hypersphere S

3 of S
4. Therefore, the surface has constant

mean curvature and this is a contradiction.
(iii) We can slightly relax the hypotheses of Theorem 4.4, obtaining the same

result, in the following way. By the unique continuation property for biharmonic
maps (see [26]), if M is a proper-biharmonic submanifold in S

n, then H is nowhere
zero on an open dense subset W ⊂M . If we assume that ∇⊥(H/f)=0 on W and AH

has at most two distinct principal curvatures everywhere on W , then by Theorem 4.4
we get ∇⊥H=0 on W . By continuity we obtain ∇⊥H=0 on M .

5. On the type of biharmonic submanifolds in S
n

Definition 5.1. ([9] and [11]) A submanifold φ : M→R
n+1 is of finite type if

it can be expressed as a finite sum of R
n+1-valued eigenmaps of the Laplacian Δ

of M , i.e.

(28) φ =φ0+φt1 +...+φtk
,

where φ0 ∈R
n+1 is a constant vector and φti : M→R

n+1 are nonconstant maps
satisfying Δφti =λtiφti , i=1, ..., k. If, in particular, all eigenvalues λti are assumed
to be mutually distinct, the submanifold is said to be of k-type and (28) is called
the spectral decomposition of φ.
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Remark 5.2. If M is compact, the immersion φ : M→R
n+1 admits a unique

spectral decomposition φ=φ0+
∑∞

i=1 φi, where φ0 is the center of mass. Then,
it is of k-type if only k terms of {φi} ∞

i=1 are nonvanishing. In the noncompact
case the spectral decomposition φ=φ0+

∑∞
i=1 φi is not guaranteed. Nonetheless, if

Definition 5.1 is satisfied, the spectral decomposition is unique. Notice also that,
in the noncompact case, the harmonic component of the spectral decomposition
is not necessarily constant. Finite-type submanifolds with nonconstant harmonic
component are called null finite-type submanifolds.

A k-type submanifold φ : M→R
n+1 is said to be linearly independent if the

linear subspaces

Eti =span{φti(u) : u ∈ M }, i =1, ..., k,

are linearly independent, i.e. the dimension of the subspace spanned by vectors in⋃k
i=1 Eti is equal to

∑k
i=1 dimEti .

The following result provides us with a necessary and a sufficient condition for
a submanifold to be of finite type.

Theorem 5.3. ([9] and [13]) Let φ : M→R
n+1 be a Riemannian immersion.

(i) If M is of finite k-type, there exist a constant vector φ0 ∈R
n+1 and a monic

polynomial with simple roots P of degree k with P (Δ)(φ−φ0)=0.
(ii) If there exist a constant vector φ0 ∈R

n+1 and a polynomial P with simple
roots such that P (Δ)(φ−φ0)=0, then M is of finite k-type with k ≤degree(P ).

We shall also use the following version.

Theorem 5.4. ([9] and [13]) Let φ : M→R
n+1 be a Riemannian immersion.

(i) If M is of finite k-type, there exists a monic polynomial P of degree k −1
or k with P (Δ)H0=0.

(ii) If there exists a polynomial P with simple roots such that P (Δ)H0=0, then
M is of infinite type or of finite k-type with k −1≤degree(P ).

Here H0 denotes the mean curvature vector field of M in R
n+1.

A well known result of T. Takahashi can be rewritten as the classification of
1-type submanifolds in R

n+1.

Theorem 5.5. ([31]) A submanifold φ : M→R
n+1 is of 1-type if and only if

either φ is a minimal immersion in R
n+1, or φ induces a minimal immersion of

M in a hypersphere of R
n+1.
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Definition 5.6. A submanifold ϕ : M→S
n is said to be of finite type if it is of

finite type as a submanifold of R
n+1, where S

n is canonically embedded in R
n+1.

Moreover, a nonnull finite-type submanifold in S
n is said to be mass-symmetric if the

constant vector φ0 of its spectral decomposition is the center of the hypersphere S
n,

i.e. φ0=0.

Remark 5.7. By Theorem 5.5, biharmonic submanifolds of class B3 are 1-type
submanifolds. Indeed, the immersion φ : M→R

n+1 of M in R
n+1 has the spectral

decomposition

φ =φ0+φp,

where φ0=(0, 1/
√

2), φp : M→R
n+1, φp(x)=(ψ(x), 0) and Δφp=2mφp.

Moreover, biharmonic submanifolds of class B4 are mass-symmetric 2-type
submanifolds. Indeed, φ : M1 ×M2→R

n+1 has the spectral decomposition

φ =φp+φq,

where φp(x, y)=(ψ1(x), 0), φq(x, y)=(0, ψ2(y)), Δφp=2m1φp and Δφq=2m2φq .

Let ϕ : M→S
n be a submanifold in S

n and denote by φ=i·ϕ : M→R
n+1 the

immersion of M in R
n+1. Denote by H the mean curvature vector field of M in S

n

and by H0 the mean curvature vector field of M in R
n+1.

The mean curvature vector fields H0 and H are related by H0=H −φ. More-
over, we have

(29) 〈H, φ〉 =0, 〈H0, H〉 = f2 and 〈H0, φ〉 = −1.

Following [7], the bitension field of ϕ can be written as

τ2(ϕ) = −mΔH0+2m2H0+m2(2− |H0|2)φ.

Thus, τ2(ϕ)=0 if and only if

(30a) ΔH0 −2mH0+m(f2 −1)φ =0,

or equivalently, since Δφ=−mH0,

(30b) Δ2φ−2mΔφ−m2(f2 −1)φ =0.

In [2, Theorem 3.1] we proved that CMC compact proper-biharmonic subman-
ifolds in S

n are of 1-type or 2-type. This can be generalized to the following result.
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Theorem 5.8. Let ϕ : M→S
n be a proper-biharmonic submanifold, not nec-

essarily compact, in the unit Euclidean sphere S
n. Denote by φ=i·ϕ : M→R

n+1

the immersion of M in R
n+1, where i : S

n→R
n+1 is the canonical inclusion map.

Then
(i) M is a 1-type submanifold if and only if f=1. In this case, φ=φ0+φp,

Δφp=2mφp, φ0 ∈R
n+1 and |φ0|=1/

√
2.

(ii) M is a 2-type submanifold if and only if f=constant, f ∈(0, 1). In this
case, φ=φp+φq , Δφp=m(1−f)φp and Δφq=m(1+f)φq .

Proof. In order to prove (i), notice that the converse is obvious, by Theo-
rems 5.5 and 2.4.

Let us suppose that M is a 1-type submanifold. From Theorem 5.4(i) follows
that there exists a∈R such that

(31) ΔH0 = aH0.

Equations (30a) and (31) imply that

(2m−a)H0 −m(f2 −1)φ =0,

and by considering the scalar product with H and using (29), since M is proper-
biharmonic, we get a=2m and

m(f2 −1)φ =0.

Thus f=1. Now, as the map φ cannot be harmonic, (30b) leads to the spectral
decomposition φ=φ0+φp, where Δφp=2mφp. As Δφ=−mH0, taking into account
the relation between H and H0, we obtain 2φ0=φ+H . Since |φ|=1=f , and H is
orthogonal to φ, we conclude that |φ0|=1/

√
2.

Let us now prove (ii). The converse of (ii) follows immediately. Indeed, from
(30b), if f=constant, f ∈(0, 1), then choosing the constant vector φ0=0 and the
polynomial with simple roots

P (Δ) =Δ2 −2mΔ1 −m2(f2 −1)Δ0,

we are in the hypotheses of Theorem 5.3(ii). Thus M is of finite k-type, with k ≤2.
Taking into account (i), since f ∈(0, 1), this implies that M is a 2-type submanifold
with

φ =φp+φq,

with corresponding eigenvalues λp=m(1−f) and λq=m(1+f). Also, notice that

φp =
λq

λq −λp
φ− 1

λq −λp
Δφ and φq = − λp

λq −λp
φ+

1
λq −λp

Δφ,
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which are smooth nonzero maps.
Suppose now that M is a 2-type submanifold. From Theorem 5.3(i) follows

that there exist a constant vector φ0 ∈R
n+1 and a, b∈R such that

(32) ΔH0 = aH0+b(φ−φ0).

Equations (30a) and (32) lead to

(33) (2m−a)H0 −(m(f2 −1)+b)φ+bφ0 =0.

We have to consider two cases.
Case 1. If b=0, i.e. M is a null 2-type submanifold, by taking the scalar product

with H in (33) and using (29), since M is proper-biharmonic, we get a=2m and
f=1. By (i), this leads to a contradiction.

Case 2. If b �=0, we shall prove that grad f2=0 on M , and therefore f is
constant on M . Indeed, locally, by taking the scalar product with X ∈C(TU) in
(33), we obtain 〈φ0, X〉=0 for all X ∈C(TU), i.e. the component of φ0 tangent to
U vanishes

(34) φ�
0 =0,

where U denotes an arbitrary open set in M . Take now the scalar product with φ

in (33) and use (29). We obtain

−2m+a−m(f2 −1)−b+b〈φ0, φ〉 =0,

and, by differentiating,

(35) m grad f2 = b grad〈φ0, φ〉.

Now, by considering {Ei}m
i=1 to be a local orthonormal frame field on U , we have

(36) grad〈φ0, φ〉 =
m∑

i=1

Ei(〈φ0, φ〉)Ei =
m∑

i=1

〈φ0, ∇0
Ei

φ〉Ei =
m∑

i=1

〈φ0, Ei〉Ei =φ�
0 .

This, together with (34) and (35), leads to grad f2=0 on U .
Now, as f is constant on M , using Theorem 2.4, we conclude the proof. �

Remark 5.9. The direct implication of (i) in Theorem 5.8 can be also proved
in a more geometric manner (see [1]).



Biharmonic PNMC submanifolds in spheres 217

We are now interested in proper-biharmonic submanifolds of 3-type in spheres.
In [12] it was proved that there are no CMC 3-type hypersurfaces in a hypersphere of
the Euclidean space. Since the known examples of proper-biharmonic hypersurfaces
in spheres are CMC, one may think that there are no such hypersurfaces of 3-type.
Indeed, we have a more general result.

Theorem 5.10. There exist no PNMC biharmonic 3-type submanifolds Mm

in the unit Euclidean sphere S
n.

Proof. Suppose that M is a PNMC biharmonic 3-type submanifold. From
Theorem 5.3 follows that there exist a constant vector φ0 ∈R

n+1 and a, b, c∈R such
that

(37) Δ2H0 = aΔH0+bH0+c(φ−φ0).

Equations (30a) and (37) lead to

(38) Δ2H0 =(2ma+b)H0+(c−ma(f2 −1))φ−cφ0.

Now, by applying Δ to (30a) we get

(39) Δ2H0 =m2(3+f2)H0 −(mΔf2+2m2(f2 −1))φ+2mdφ(grad f2).

By taking the scalar product with ξ=H/f in (38) and (39) and by using (29), we
obtain

(40) −c〈φ0, ξ〉 =m2f3+(3m2 −2ma−b)f.

In the following, by using a local argument, we shall prove that grad f=0 on M .
Take the scalar product with X ∈C(TU) in (38) and (39), where U is an arbitrary
fixed open set in M . This implies that

−c〈φ0, X〉 =2mX(f2),

and, further, the component of cφ0 tangent to U is given by

(41) −cφ�
0 =2m grad f2.

Moreover, by taking the scalar product with an arbitrary vector field η normal to
U in S

n, η ⊥ξ, in (38) and (39), we find that

(42) −c〈φ0, η〉 =0.

Equations (41) and (42) lead to

(43) −cφ0 =2m grad f2 −c〈φ0, ξ〉ξ −c〈φ0, φ〉φ.
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Differentiating (40), one gets

(44) −c grad〈φ0, ξ〉 =(3m2f2+3m2 −2ma−b) grad f.

By considering {Ei}m
i=1 to be a local orthonormal frame field on U and using

∇⊥ξ=0, (43), (40) and (41), we have the following

−c grad〈φ0, ξ〉 = −c

m∑
i=1

Ei(〈φ0, ξ〉)Ei(45)

= −c

m∑
i=1

(〈∇0
Ei

φ0, ξ〉+〈φ0, ∇0
Ei

ξ〉)Ei

= −c

m∑
i=1

〈φ0, ∇Eiξ〉Ei

= −c

m∑
i=1

〈φ0, ∇⊥
Ei

ξ −A(Ei)〉Ei

= c

m∑
i=1

〈φ�
0 , A(Ei)〉Ei

=
m∑

i=1

〈A(cφ�
0 ), Ei〉Ei

= −2mA(grad f2).

Equations (44) and (45) imply

(46) 2mA(grad f2)= (−3m2f2 −3m2+2ma+b) grad f.

Since U is a PNMC biharmonic submanifold, (9)(iii), together with (46), leads
to

(m2f2+3m2 −2ma−b) grad f =0,

on U . This implies that grad f=0, i.e. M is CMC. From Theorem 5.8, we have that
M is a 1-type or 2-type submanifold and we get a contradiction. �

Since any hypersurface with nowhere zero mean curvature is PNMC we have
the following consequence.

Corollary 5.11. There does not exist any biharmonic 3-type hypersurface Mm

in the unit Euclidean sphere S
m+1.
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Proof. Suppose that M is of 3-type. Then M is not minimal in S
m+1, and thus

f is nowhere zero on an open dense subset W ⊂M . Every connected component
of W is PNMC and, by Theorem 5.10, it cannot be of 3-type. This leads to a
contradiction. �

We note that the classes B3 and B4 of proper-biharmonic submanifolds in
spheres are linearly independent (and even more, orthogonal) 2-type submanifolds.
Thus it is natural to ask whether there exist proper-biharmonic independent higher
finite-type submanifolds. We can prove the following result.

Proposition 5.12. Let ϕ : M→S
n be a proper-biharmonic submanifold. If M

is of finite k-type, mass-symmetric and linearly independent, then k=2.

Proof. Let M be a k-type mass-symmetric submanifold in S
n. Then,

φ =φt1 +φt2 +...+φtk
,

where φti are nonharmonic maps satisfying Δφti =λtiφti , and λti are mutually
distinct, i=1, ..., k. This implies that

(47) Δφ =
k∑

i=1

λtiφti and Δ2φ =
k∑

i=1

λ2
ti

φti .

Since M is proper-biharmonic, replacing (47) in (30b), we obtain

k∑
i=1

(λ2
ti

−2mλti −m2(f2 −1))φti =0.

Using that M is independent, we get (λ2
ti

−2mλti −m2(f2 −1))φti =0 on M for all
i=1, ..., k. As φti is nonzero on an open dense set in M , we have

λ2
ti

−2mλti −m2(f2 −1) =0 on M

for all i=1, ..., k. This implies that f=constant. Since φ is mass-symmetric, by
Theorem 5.8, we conclude that k=2. �
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3. Balmuş, A., Montaldo, S. and Oniciuc, C., Biharmonic hypersurfaces in 4-
dimensional space forms, Math. Nachr. 283 (2010), 1696–1705.
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