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Möbius homogeneous hypersurfaces with two
distinct principal curvatures in Sn+1

Tongzhu Li, Xiang Ma and Changping Wang

Abstract. The purpose of this paper is to classify the Möbius homogeneous hypersurfaces

with two distinct principal curvatures in Sn+1 under the Möbius transformation group. Addition-

ally, we give a classification of the Möbius homogeneous hypersurfaces in S4.

1. Introduction

A diffeomorphism φ : Sn+1→Sn+1 is said to be a Möbius transformation if φ

takes round n-spheres into round n-spheres. The Möbius transformations form a
transformation group, which is called the Möbius transformation group of Sn+1 and
denoted by M(Sn+1). It is well known that for n≥2 the Möbius group M(Sn+1)
coincides with the conformal group C(Sn+1). In [11], Wang introduced a complete
Möbius invariant system for a submanifold x : Mm→Sn+1, and obtained a con-
gruence theorem for hypersurfaces in Sn+1 (see also [1]). Recently some special
hypersurfaces in Sn+1, for example, the Möbius isoparametric hypersurfaces, the
Blaschke isoparametric hypersurfaces and so on, have been extensively studied in
the context of Möbius geometry (see, for instance, [3]–[6]).

Another special hypersurface is the Möbius homogeneous hypersurface. A hy-
persurface x : Mn→Sn+1 is said to be a Möbius homogeneous hypersurface if for any
two points p, q ∈Mn, there exists a Möbius transformation φ∈M(Sn+1) such that
φ◦x(Mn)=x(Mn) and φ◦x(p)=x(q). Standard examples of Möbius homogeneous
hypersurfaces are images of (Euclidean) homogeneous hypersurfaces in Sn+1 un-
der Möbius transformations. But there are some examples of Möbius homogeneous
hypersurfaces which cannot be obtained in this way. In [9], Sulanke constructed a
Möbius homogeneous surface, which is the image of the inverse of the stereographic
projection σ : R

3→S3 of a cylinder over a logarithmic spiral in R
2, and classified

Möbius homogeneous surfaces in S3 under the Möbius transformation group.
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Our goal is to classify the Möbius homogeneous hypersurfaces with two distinct
principal curvatures in Sn+1 under the Möbius transformation group. Let Hn+1 be
the hyperbolic space

Hn+1 = {(y0, �y1) ∈ R
+ ×R

n+1 | 〈y, y〉 = −y2
0+�y1 ·�y1 = −1}.

We can define the conformal map τ : Hn+1→Sn+1 by

τ(y) =
(

1
y0

,
�y1

y0

)
, y =(y0, �y1) ∈ Hn+1.

The inverse of the stereographic projection σ : R
n+1→Sn+1 is defined by

σ(u) =
(

1− |u|2
1+|u|2 ,

2u

1+|u|2

)
.

The conformal maps σ and τ assign any hypersurface in R
n+1 or Hn+1 to a

hypersurfaces in Sn+1. In [7], the authors proved that the Möbius invariants
on f : Mn→R

n+1 and f : Mn→Hn+1 are the same as the Möbius invariants on
σ ◦f : Mn→Sn+1 and τ ◦f : Mn→Sn+1, respectively. Next we give an example
of a Möbius homogeneous hypersurface, which is a higher-dimensional version of
Sulanke’s example.

Example 1.1. Let γ : I→R
2 be the logarithmic spiral given by

γ(s)= (sin secs, cos secs), c > 0.

The cylinder in R
n+1 over γ(s) is defined by

f(γ, id) : I ×R
n−1 −→R

n+1,

where id : R
n−1→R

n−1 is the identity mapping. We call the hypersurface f a
logarithmic spiral cylinder.

We give a characteristic of logarithmic spiral cylinders as follows.

Theorem 1.2. Let x : Mn→Sn+1 be a Möbius homogeneous hypersurface with
two distinct principal curvatures. If the Möbius form C �=0, then x is Möbius equiv-
alent to the image of σ of a logarithmic spiral cylinder.

We need to point out that the logarithmic spiral cylinder is of constant Möbius
sectional curvature K=−|C|2. Our main results are as follows.
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Theorem 1.3. Let x : Mn→Sn+1 be a Möbius homogeneous hypersurface with
two distinct principal curvatures. Then x is Möbius equivalent to one of the follow-
ing hypersurfaces:

(1) the standard torus Sk(r)×Sn−k
(√

1−r2
)
, 1≤k ≤n−1;

(2) the images of σ of the standard cylinder Sk(1)×R
n−k ⊂R

n+1, 1≤k ≤n−1;
(3) the images of τ of Sk(r)×Hn−k

(√
1+r2

)
, 1≤k ≤n−1;

(4) the image of σ of a logarithmic spiral cylinder.

In [10], Wang classified the Möbius homogeneous hypersurfaces with three
distinct principal curvatures in S4, which consists of two categories. One is the
1-parameter family of isoparametric hypersurfaces with three principal curvatures,
which is a tube of constant radius over a standard Veronese embedding of RP 2 into
S4 (see [2]). Another is the images of σ of the cone over the 1-parameter family
of isoparametric tori in S3. Thus combining Theorem 1.3, we have the following
results.

Corollary 1.4. Let x : M3→S4 be a Möbius homogeneous hypersurface. Then
x is Möbius equivalent to one of the following hypersurfaces :

(1) the round sphere S3 ⊂S4;
(2) the standard torus S1(r)×S2

(√
1−r2

)
;

(3) the images of σ of the standard cylinder Sk(1)×R
3−k ⊂R

4, 1≤k ≤2;
(4) the images of τ of Sk(r)×H3−k

(√
1+r2

)
, 1≤k ≤2;

(5) the image of σ of a logarithmic spiral cylinder ;
(6) the image of σ of the cone over the Clifford torus S1(r)×S1

(√
1−r2

)
;

(7) the tube of constant radius over a standard Veronese embedding of RP 2

into S4.

We organize the paper as follows. In Section 2, we give the elementary facts
about Möbius geometry for hypersurfaces in Sn+1 needed in this paper. In Section 3,
we construct some Möbius homogeneous hypersurfaces in Sn+1, and give the proofs
of Theorems 1.2 and 1.3.

2. Möbius invariants for hypersurfaces in Sn+1

In this section, we recall some facts about the Möbius transformation group
and define Möbius invariants of hypersurfaces in Sn+1. For details we refer to [11].

Let R
n+3
1 be the Lorentz space, i.e., R

n+3 with the inner product 〈 · , · 〉 defined
by

〈x, y〉 = −x0y0+x1y1+...+xn+2yn+2
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for x=(x0, x1, ..., xn+2), y=(y0, y1, ..., yn+2)∈R
n+3.

Let O(n+2, 1) be the Lorentz group of R
n+3
1 defined by

O(n+2, 1) = {T ∈ GL(Rn+3) | tTI1T = I1},

where tT denotes the transpose of T and I1=( −10
0 I

).
Let

Cn+2
+ = {y =(y0, y1) ∈ R×R

n+2 | 〈y, y〉 =0 and y0 > 0} ⊂ R
n+3
1 ,

and O+(n+2, 1) denote the subgroup of O(n+2, 1) defined by

O+(n+2, 1) = {T ∈ O(n+2, 1) | T (Cn+2
+ ) =Cn+2

+ }.

Lemma 2.1. ([8]) Let T =( w u
v B )∈O(n+2, 1). Then T ∈O+(n+2, 1) if and only

if w>0.

It is well known that the subgroup O+(n+2, 1) is isomorphic to the Möbius
transformation group M(Sn+1). In fact, for any

T =
(

w u

v B

)
∈ O+(n+2, 1),

we can define the Möbius transformation L(T ) : Sn+1→Sn+1 by

L(T )(x) =
Bx+u

vx+w
, x= t(x1, ..., xn+2) ∈ Sn+1.

Then the map L : O+(n+2, 1)→M(Sn+1) is a group isomorphism.
Let x : Mn→Sn+1 be a hypersurface without umbilical point, and en+1 be the

unit normal vector field. Let II and H be the second fundamental form and the
mean curvature of x, respectively. The Möbius position vector Y : Mn→R

n+3
1 of x

is defined by
Y = ρ(1, x), ρ2 =

n

n−1
(‖II ‖2 −nH2).

Theorem 2.2. ([11]) Two hypersurfaces x, x̃ : Mn→Sn+1 are Möbius equiva-
lent if and only if there exists T ∈O+(n+2, 1) such that Ỹ =Y T.

It follows immediately from Lemma 2.1 that

g = 〈dY, dY 〉 = ρ2 dx·dx

is a Möbius invariant, which is called the Möbius metric of x (see [11]).
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Let Δ be the Laplacian operator with respect to g. We define

N = − 1
n

ΔY − 1
2n2

〈ΔY, ΔY 〉Y.

Then we have
〈Y, Y 〉 =0, 〈N, Y 〉 =1 and 〈N, N 〉 =0.

Let {E1, ..., En} be a local orthonormal basis for (Mn, g) with the dual basis
{ω1, ..., ωn}, and write Yi=Ei(Y ). Then we have

〈Yi, Y 〉 = 〈Yi, N 〉 =0 and 〈Yi, Yj 〉 = δij , 1 ≤ i, j ≤ n.

We define the conformal Gauss map

G=(H, Hx+en+1).

By direct computation, we have

〈G, Y 〉 = 〈G, N 〉 = 〈G, Yi〉 =0 and 〈G, G〉 =1.

Then {Y, N, Y1, ..., Yn, G} forms a moving frame in R
n+3
1 along Mn. We use the

following range of indices in this section: 1≤i, j, k, l≤n. We can write the structure
equations as

dY =
n∑

i=1

Yiωi,

dN =
n∑

i=1

n∑
j=1

AijωiYj +
n∑

i=1

CiωiG,

dYi = −
n∑

j=1

AijωjY −ωiN+
n∑

j=1

ωijYj +
n∑

j=1

BijωjG,

dG = −
n∑

i=1

CiωiY −
n∑

i=1

n∑
j=1

ωjBijYi,

where ωij is the connection form of the Möbius metric g, and ωij +ωji=0. The ten-
sors A=

∑n
i=1

∑n
j=1 Aijωi ⊗ωj , C=

∑n
i=1 Ciωi and B=

∑n
i=1

∑n
j=1 Bijωi ⊗ωj are

called the Blaschke tensor, the Möbius form and the Möbius second fundamental
form of x, respectively. The eigenvalues of (Bij) are called the Möbius principal
curvatures of x. The covariant derivatives of Ci, Aij and Bij are defined by

n∑
j=1

Ci,jωj = dCi+
n∑

j=1

Cjωji,



320 Tongzhu Li, Xiang Ma and Changping Wang

n∑
k=1

Aij,kωk = dAij +
n∑

k=1

Aikωkj +
n∑

k=1

Akjωki,

n∑
k=1

Bij,kωk = dBij +
n∑

k=1

Bikωkj +
n∑

k=1

Bkjωki.

The integrability conditions for the structure equations are given by

Aij,k −Aik,j =BikCj −BijCk,(1)

Ci,j −Cj,i =
n∑

k=1

(BikAkj −BjkAki),(2)

Bij,k −Bik,j = δijCk −δikCj ,
n∑

j=1

Bij,j = −(n−1)Ci,(3)

Rijkl =BikBjl −BilBjk+δikAjl+δjlAik −δilAjk −δjkAil,(4)

Rij : =
n∑

k=1

Rikjk = −
n∑

k=1

BikBkj +(trA)δij +(n−2)Aij ,(5)

n∑
i=1

Bii =0,

n∑
i=1

n∑
j=1

B2
ij =

n−1
n

and tr A=
n∑

i=1

Aii =
1
2n

(1+n2s),(6)

where Rijkl denotes the curvature tensor of g and s=(1/n(n−1))
∑n

i=1

∑n
j=1 Rijij is

the normalized Möbius scalar curvature. When n≥3, we know that all coefficients
in the structure equations are determined by {g, B} and we have the following
theorem.

Theorem 2.3. ([11]) Two hypersurfaces x : Mn→Sn+1 and x̃ : Mn→Sn+1,
n≥3, are Möbius equivalent if and only if there exists a diffeomorphism
ϕ : Mn→Mn, which preserves the Möbius metric g and the Möbius second fun-
damental form B.

Using the stereographic projection σ−1 : Sn+1→R
n+1 ∪ {∞}, the Möbius in-

variants of the hypersurface f=σ−1 ◦x : Mn→R
n+1 and the Euclidean invariants

of f are related by [7] as follows:

Bij = ρ−1(hij −Hδij),

Ci = −ρ−2

[
ei(H)+

n∑
j=1

(hij −Hδij)ej(log ρ)
]
,

Aij = −ρ−2[Hessij(log ρ)−ei(log ρ)ej(log ρ)−Hhij ]− 1
2ρ−2(| ∇ log ρ|2+H2)δij ,

(7)

where Hessij and ∇ are the Hessian matrix and the gradient with respect to
I=df ·df , respectively, and H is the mean curvature of f . Let {e1, ..., en} be an
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orthonormal basis for (Mn, I) and let the dual basis be {θ1, ..., θn}. Then

A= ρ2
n∑

i=1

n∑
j=1

Aijθi ⊗θj , B = ρ2
n∑

i=1

n∑
j=1

Bijθi ⊗θj and C = ρ

n∑
i=1

Ciθi.

Clearly the number of distinct Möbius principal curvatures is the same as that of its
distinct Euclidean principal curvatures. Let k1, ..., kn be the principal curvatures
of f , and {λ1, ..., λn} be the corresponding Möbius principal curvatures. Let en+1 be
the unit normal vector field of f . Then the curvature sphere of principal curvature
ki is

ξi =λiY +ξ =
(

1+|f |2
2

ki+f ·en+1,
1− |f |2

2
ki −f ·en+1, kif+en+1

)
,

where Y and ξ are the Möbius position vector and the conformal Gauss map of f ,
respectively, given by

Y = ρ

(
1+|f |2

2
,
1+|f |2

2
, f

)
, ρ2 =

n

n−1
(‖II ‖2 −nH2), and

ξ =
(

1+|f |2
2

H+f ·en+1,
1− |f |2

2
H −f ·en+1, Hf+en+1

)
.

If 〈ξi, (1, −1, 0, ..., 0)〉=0, then ki=0. This means that the curvature sphere of prin-
cipal curvature ki is a hyperplane in R

n+1.

3. The Möbius homogeneous hypersurface in Sn+1

In this section we give some examples of the Möbius homogeneous hypersurface,
after which we prove our main Theorem 1.3.

Let x : Mn→Sn+1 be a Möbius homogeneous hypersurface. We define

Π= {φ ∈ M(Sn+1) | φ◦x(Mn) =x(Mn)}.

Then Π is a subgroup of the Möbius group M(Sn+1), and the hypersurface x is
the orbit of the subgroup Π. Thus the Möbius invariants on the hypersurface x are
constant. Next we give some examples of Möbius homogeneous hypersurfaces.

Example 3.1. Let

Π=

⎧⎨
⎩

⎛
⎝1 0 0

0 O(k+1) 0
0 0 O(n−k+1)

⎞
⎠

⎫⎬
⎭ ⊂ O+(n+2, 1).
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Then Π is a subgroup of O+(n+2, 1).
The standard torus x : Sk(r)×Sn−k

(√
1−r2

)
→Sn+1 is a Möbius homogeneous

hypersurface. It is the orbit of the subgroup L(Π)⊂M(Sn+1) acting on the point

p=
(
r, 0, ..., 0︸ ︷︷ ︸

k

,
√

1−r2, 0, ..., 0︸ ︷︷ ︸
n−k

)
∈ Sn+1.

Example 3.2. Let

Π=

⎧⎨
⎩

⎛
⎝O+(n−k, 1) 0 0

0 1 0
0 0 O(k+1)

⎞
⎠

⎫⎬
⎭ ⊂ O+(n+2, 1).

Then Π is a subgroup of O+(n+2, 1).
Let Hn−k

(√
1+r2

)
×Sk(r) be the isoparametric hypersurface in Hn+1. The

hypersurface
τ
(
Hn−k

(√
1+r2

)
×Sk(r)

)
⊂ Sn+1

is a Möbius homogeneous hypersurface. It is the orbit of the subgroup L(Π)⊂
M(Sn+1) acting on the point

p=
(

0, ..., 0︸ ︷︷ ︸
n−k

,
1√

1+r2
,

r√
1+r2

, 0, ..., 0︸ ︷︷ ︸
k

)
∈ Sn+1.

Example 3.3. Let

Π=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ 1
2 |u|2 − 1

2 |u|2 u1 ... un−k 0
1
2 |u|2 1− 1

2 |u|2 u1 ... un−k 0
u1 −u1 1 ... 0 0
... ... ... ... ... ...

un−k −un−k 0 ... 1 0
0 0 0 ... 0 O(k+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊂ O+(n+2, 1).

Then Π is a subgroup of O+(n+2, 1).
Let R

n−k ×Sk
(√

2
)

be the isoparametric hypersurface in R
n+1. The hypersur-

face
σ
(
R

n−k ×Sk
(√

2
))

⊂ Sn+1

is a Möbius homogeneous hypersurface. It is the orbit of the subgroup L(Π)⊂
M(Sn+1) acting on the point

p=
(

1
3 , 0, ..., 0︸ ︷︷ ︸

n−k

, 2
3

√
2, 0, ..., 0︸ ︷︷ ︸

k

)
∈ Sn+1.
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Example 3.4. Let f(s, u1, ..., un−1)=(sin secs, cos secs, u1, ..., un−1)∈R
n+1, and

Π=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ 1
2 |f |2 − 1

2 |f |2 sin secs cos secs u1 ... un−1

1
2 |f |2 1− 1

2 |f |2 sin secs cos secs u1 ... un−1

sin secs − sin secs 1 0 0 ... 0
cos secs − cos secs 0 1 0 ... 0

u1 −u1 0 0 1 ... 0
... ... ... ... ... ... ...

un−1 −un−1 0 0 0 ... 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⊂ O+(n+2, 1).

Then Π is a subgroup of O+(n+2, 1).
The logarithmic spiral cylinder

f(s, u1, ..., un−1)= (sin secs, cos secs, u1, ..., un−1) ∈ R
n+1

is a Möbius homogeneous hypersurface in R
n+1. The hypersurface σ ◦f is a Möbius

homogeneous hypersurface in Sn+1. It is the orbit of the subgroup L(Π)⊂M(Sn+1)
acting on the point p=(1, 0, ..., 0)∈Sn+1.

Let x : Mn→Sn+1, n≥3, be a Möbius homogeneous hypersurface with two dis-
tinct principal curvatures. We denote by b1 and b2 the Möbius principal curvatures,
whose multiplicities are k and n−k, respectively. Using (6), we get

b1 =
1
n

√
(n−1)(n−k)

k
and b2 = − 1

n

√
(n−1)k
n−k

.

First we assume that the Möbius form C=0. Since the Möbius principal cur-
vatures are constant, x is a Möbius isoparametric hypersurface. In [5], the authors
classified Möbius isoparametric hypersurfaces with two distinct principal curvatures
in Sn+1. Using [5], we have the following result.

Proposition 3.5. ([5]) Let x : Mn→Sn+1 be a hypersurface with two distinct
principal curvatures. If the Möbius form C=0, then x is Möbius equivalent to an
open part of one of the following Möbius isoparametric hypersurface in Sn+1:

(1) the standard torus Sk(r)×Sn−k
(√

1−r2
)

in Sn+1, 1≤k ≤n−1;
(2) the image of σ of the standard cylinder Sk(1)×R

n−k ⊂R
n+1, 1≤k ≤n−1;

(3) the image of τ of Sk(r)×Hn−k
(√

1+r2
)

in Hn+1, 1≤k ≤n−1.

Remark 3.6. From Examples 3.1–3.3, we know that the hypersurfaces given in
Proposition 3.5 are Möbius homogeneous hypersurfaces.
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Next we assume the Möbius form C �=0.

Theorem 3.7. Let x : Mn→Sn+1 be a Möbius homogeneous hypersurface with
two distinct principal curvatures. If the Möbius form C �=0, then x is Möbius equiv-
alent to the image of σ of a logarithmic spiral cylinder. Moreover, the logarithmic
spiral cylinder is of constant Möbius sectional curvature K=−|C|2.

Proof. We can choose a local orthonormal basis {E1, ..., En} with respect to
the Möbius metric g of x such that

(Bij)=diag(b1, ..., b1, b2, ..., b2).

Claim. One of the principal curvatures must be simple.

Proof of Claim. We assume that the multiplicities of both of the principal
curvatures are greater than one. Using

dBij +
n∑

k=1

Bkjωki+
n∑

k=1

Bikωkj =
n∑

k=1

Bij,kωk,

we obtain that

Bij,l =0, 1 ≤ i, j ≤ k and 1 ≤ l ≤ n,

Bαβ,l =0, k+1 ≤ α, β ≤ n and 1 ≤ l ≤ n.
(8)

Since the multiplicities of both of the principal curvatures are greater than one,
from (8) we have that

Cj =Bii,j −Bij,i=0, 1≤i, j ≤k and i �=j,

Cα=Bββ,α −Bαβ,β =0, k+1≤α, β ≤n and α �=β.

Thus the Möbius form C=0, which is in contradiction with the assumption that
C �=0. This proves the claim. �

Under the local orthonormal basis {E1, ..., En},

(9) (Bij)=diag
(

n−1
n

, − 1
n

, ..., − 1
n

)
.

In this section we make use of the following convention on the ranges of indices:

1 ≤ i, j, k ≤ n and 2 ≤ α, β, γ ≤ n.
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Since Bαβ=(−1/n)δαβ , we can rechoose a local orthonormal basis {E1, ..., En} with
respect to the Möbius metric g such that

(Bij)=diag
(

n−1
n

, − 1
n

, ..., − 1
n

)
and (Aij) =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 ... A1n

A21 a2 0 ... 0
A31 0 a3 ... 0
... ... ... ... ...

An1 0 0 ... an

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let {ω1, ..., ωn} be the dual basis, and {ωij } be the connection forms. Using

dBij +
n∑

k=1

Bkjωki+
n∑

k=1

Bikωkj =
n∑

k=1

Bij,kωk

and (3), we get that

B1α,α = −C1; and Bij,k =0, otherwise;

ω1α = −C1ωα and Cα =0.
(10)

Since the vector field E1 is an eigenvector of the Möbius second fundamental form
B, we have

(11) C1 = constant �=0 and A11 = constant .

Using
∑n

j=1 Ci,jωj =dCi+
∑n

j=1 Cjωji and (10), we get that

(12) Ci,j =0, i �= j.

Combining (2) and (12) we obtain that

(13) A1α =0.

Using (10),

dω1α = −dC1 ∧ωα −C1 dωα = −dC1 ∧ωα −C2
1ω1 ∧ωα −C1

n∑
γ=1

ωγ ∧ωγα,

and dω1α −
∑n

j=1 ω1j ∧ωjα=− 1
2

∑n
k=1

∑n
l=1 R1αklωk ∧ωl, we get that

(14) R1α1α = −C2
1 .

Since R1α1α=−(n−1)/n2+a1+aα=−C2
1 , we thus have

(15) a2 = a3 = ... = an = constant .
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Using

dBij +
n∑

k=1

Bkjωki+
n∑

k=1

Bikωkj =
n∑

k=1

Bij,kωk

and (1), we get that

(16) A1α,α = − 1
n

C1 and (a1 −a2)ω1α =A1α,αωα.

From (16), we know that a1 �=a2 and

(17) ω1α =
A1α,α

a1 −a2
ωα =

C1

n(a2 −a1)
ωα.

Combining (17) and (10), we have

(18) a2 = a1 − 1
n

.

Using (4) and (18), we get that

(19) Rαβαβ = −C2
1 , α �=β.

Since Aij =diag(a1, a2, ..., a2), from (3), (14) and (19), we know that (Mn, g) is of
constant Möbius sectional curvature K=−C2

1 =−|C|2. We define

F = − 1
n

Y +ξ, X1 = −C1Y −Y1 and P = −a2Y +N+C1X1+
1
n

F.

Clearly F is the curvature sphere of the Möbius principal curvature b2=−1/n of
multiplicity n−1. Then

(20) 〈F, X1〉 =0, 〈F, P 〉 =0, 〈X1, P 〉 =0, 〈F, F 〉 = 〈X1, X1〉 =1 and 〈P, P 〉 =0.

From the structure equations of x we derive that

(21)
E1(F ) = X1, Eα(F ) = 0,

E1(X1) = P −F, Eα(X1) = 0,

E1(P ) = C1P, Eα(P ) = 0.

Thus the subspace V =span{F, X1, P } is fixed along Mn, and P determines a fixed
direction. Hence up to a Möbius transformation we can write

P = ν(1, −1, 0, ..., 0), ν ∈ C∞(U),

V =span{F, X1, P }

=span{(1, −1, 0, ..., 0), (0, 0, 1, 0, ..., 0), (0, 0, 0, 1, 0, ..., 0)} ⊂ R
n+3
1 .
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Assume that f=σ−1 ◦x : Mn→R
n+1 has principal curvatures k1, k2, ..., k2. Since

〈P, F 〉 = 〈(1, −1, 0, ..., 0), F 〉 =0 and 〈X1, P 〉 =0,

from (7) we get that

(22) k2 =0 and C1ρ+E1(ρ)= 0, i.e., E1(log ρ) = −C1.

From the definitions of F , X1 and P , we get that Yα ⊥V . Thus 〈P, Yα〉=0. There-
fore

(23) Eα(ρ)= 0, i.e., Eα(log ρ)= 0.

Let {ei=ρEi |1≤i≤n}. Then {e1, ..., en} is an orthonormal basis of TMn with
respect to the first fundamental form I=df ·df . Let {ω̃1, ..., ω̃n} be its dual basis
and {ω̃ij } be the corresponding connection forms. Since g=ρ2I , it is well known
that

ω̃ij =ωij +ei(log ρ)ωj −ej(log ρ)ωi.

Thus from (10) and (23) we get ω̃1α=0. Therefore f=σ−1 ◦x : Mn→R
n+1 is Möbius

equivalent to a hypersurface given by

f(s, id) = (γ(s), id) : I ×R
n−1 −→R

n+1,

where id : R
n−1→R

n−1 is the identity mapping and γ(s)⊂R
2 is a regular curve.

Let I and II denote, respectively, the first fundamental form and the second fun-
damental form of the hypersurface f . Then

I = ds2+IRn−1 and II = k ds2,

where k(s) is the geodesic curvature of γ, and IRn−1 is the standard Euclidean
metric of R

n−1. So we have (hij)=diag(k, 0, ..., 0), H=k/n and ρ=k. Thus the
Möbius metric g of the hypersurface f is

g = ρ2I = k2(ds2+IRn−1).

The coefficients of the Möbius form of f with respect to an orthonormal frame
{E1, ..., En} can be obtained as follows using (7):

C1 = − ks

k2
and C2 = ... =Cn =0.

Since C1 is constant, k=1/C1s and the regular curve γ(s)=(sin seC1s, cos seC1s) is
a logarithmic spiral. Thus we finish the proof of Theorems 1.2 and 3.7. �

Using Proposition 3.5 and Theorem 1.2 we finish the proof of Theorem 1.3.

Acknowledgments. Li was partially supported by the grant No. 10801006 of
NSFC, while Ma and Wang were partially supported by the grant No. 10771005 of
NSFC.



328 Tongzhu Li, Xiang Ma and Changping Wang:
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