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Simplicity of eigenvalues in Anderson-type
models

Sergey Naboko, Roger Nichols and Günter Stolz

Abstract. We show almost sure simplicity of eigenvalues for several models of Anderson-

type random Schrödinger operators, extending methods introduced by Simon for the discrete

Anderson model. These methods work throughout the spectrum and are not restricted to the

localization regime. We establish general criteria for the simplicity of eigenvalues which can be

interpreted as separately excluding the absence of local and global symmetries, respectively. The

criteria are applied to Anderson models with matrix-valued potential as well as with single-site

potentials supported on a finite box.

1. Introduction

1.1. Models

Some time back Barry Simon published the short note [15] in which he proved
almost sure simplicity of eigenvalues of the discrete Anderson model. The latter is
the random operator acting on u∈�2(Zd) as

(1) (hωu)(n)= (h0u)(n)+ωnu(n),

where h0 is the discrete Laplacian,

(2) (h0u)(n) =
∑

k∈Z
d

|k−n|=1

u(k),

and ω=(ωn)n∈Zd are independent identically distributed real random variables with
distribution μ. Here we assume that μ is absolutely continuous with bounded and
compactly supported density ρ. While stated somewhat differently in [15], the result
proven there can most easily be formulated as the following theorem.
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Theorem 1. For a.e. ω, all eigenvalues of hω are simple.

What makes this result particularly appealing is that it is known that the
Anderson model has intervals of dense pure point spectrum. In fact, for sufficiently
large disorder (in the sense that ‖ρ‖∞ is sufficiently small) it is known that the
entire spectrum of hω is almost surely pure point, see e.g. [2]. Theorem 1 says that
on intervals of pure point spectrum the spectral multiplicity of hω is one.

One of the reasons for being interested in results like Theorem 1 is that they
can be useful tools in proofs of other properties of random operators, see e.g. the
proof of dynamical localization in [13]. However, our interest in Simon’s result and
the technique used to prove it comes mainly from the fact that it makes rigorous
sense out of the following physical heuristics:

Degeneracies of eigenvalues, with the exception of accidental ones, are caused
by symmetry. Randomness breaks all symmetry and accidental degeneracies should
have probability zero. Thus an operator which is truly random should have simple
eigenvalues with probability one.

One of the difficulties in making such heuristics rigorous lies in the fact that
the connection between symmetry and eigenvalue degeneracy is usually understood
via analytic perturbation theory: Analytic eigenvalue branches will either show
permanent degeneracies (reflecting a symmetry not broken by the perturbation) or
have level crossings only for discrete sets of the perturbation parameter. However,
analytic perturbation theory does not apply to dense lying eigenvalues!

Another problem comes with the relative vagueness of the claim that random-
ness breaks symmetry. Do our favorite models of random operators come with
the “true randomness” which rules out all symmetries, even potentially well-hidden
ones?

It is mostly for these reasons that we have decided to give Simon’s result
a second, closer, look. We do this by considering three different models, where
attempting to extend Simon’s result causes an increasing amount of difficulty and
technical complexity, while all of them fall under the same physical heuristics.

The first model contains the discrete Anderson model (1) as a special case and
will serve as a simple test case for the methods to be developed.

Model A: Anderson model with matrix-valued potential

Fix k ∈N and a real-valued, symmetric and positive definite k ×k-matrix W .
Consider the random operator HA

ω acting on φ∈�2(Zd; Ck)∼=(�2(Zd))k as

(3) (HA
ω φ)(n)= (h0φ)(n)+ωnWφ(n), n ∈ Z

d.
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Here (ωn)n∈Zd and h0 are as above (more precisely, h0 acts on each component of
φ by (2)).

Without loss of generality we may assume that W =diag(λ1, ..., λk), where the
eigenvalues λj of W are all strictly positive (apply the diagonalizing transformation
of W to each n in (3), leading to a unitarily equivalent operator). As a result,

HA
ω

∼=
k⊕

j=1

h(j)
ω ,

where
(h(j)

ω u)(n)= (h0u)(n)+λjωnu(n) for u ∈ �2(Zd).

Thus each h
(j)
ω is of the form (1) with the additional parameter λj scaling the

random potential. Note, however, that the random operators h
(j)
ω , j=1, ..., k, are

correlated and that simplicity of the eigenvalues of HA
ω is not an immediate con-

sequence of Theorem 1. In fact, if W has degenerate eigenvalues, then the point
spectrum of HA

ω will have degeneracies of at least the same multiplicity with prob-
ability one. Thus we will need to require simplicity of W .

A more complex generalization of the Anderson model (1) is given as fol-
lows.

Model B: Anderson model with finitely supported single-site potential

Choose L=(L1, L2, ..., Ld)∈N
d and consider the rectangular box

C0 := {0, ..., L1 −1} ×...× {0, ..., Ld −1}.

Pick a single-site potential f : C0→(0, ∞) and for n=(n1, n2, ..., nd)∈Z
d let nL:=

(n1L1, n2L2, ..., ndLd). Model B is the family of selfadjoint operators HB
ω on �2(Zd)

given by

(4) HB
ω =h0+

∑

n∈Zd

ωnf( · −nL).

Models A and B have in common that they give generalizations of the discrete
Anderson model where the single-site potential is an operator of finite rank greater
than one, providing internal structure to the single-site terms. On the heuristic level
of symmetry considerations one is lead to distinguish between global and local sym-
metries. The global symmetries are the ones which are broken by the randomness of
the potential. But degeneracies within the single-site terms W and f , respectively,
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give rise to additional symmetries, whose influence on the multiplicity of eigenval-
ues in the Anderson model is not clear, not even heuristically. From this point
of view, particularly interesting special cases of Model B are those where f=χC0 ,
the characteristic function of the box C0. Here the single-site contributions to the
random potential have maximal degeneracy, and it must depend on the specifics of
the interaction of potential and kinetic energy if these degeneracies can be broken
up by the randomness.

A particular reason for introducing Model B is that it can be seen as a hybrid,
which shares some properties with the discrete Anderson model (1) but has other
features in common with our last model, the continuum Anderson model.

Model C: continuum Anderson model

This is the random operator in L2(Rd) given by

(5) HC
ω = −Δ+

∑

n∈Zd

ωnf(x−n).

Here Δ is the continuum Laplacian and the random parameters (ωn)n∈Zd are as
before. The single-site potential is now a multiplication operator by a non-negative
bounded function f , supported on [0, 1]d.

1.2. Results

While we hope to return to the continuum Anderson model in the future, we
do not have any final results on the simplicity of its point spectrum to present
here. Our concrete results on simplicity of the point spectrum will be restricted
to Models A and B. However, in Section 2 below we will start by presenting The-
orem 5, a general criterion for simplicity of eigenvalues in terms of simplicity of
corresponding Birman–Schwinger operators, which applies to all the models con-
sidered here. The criterion will yield two conditions, which need to be verified in
concrete examples to conclude simplicity. Physically, these conditions can be in-
terpreted as absence of local and global symmetries, respectively. As discussed in
detail at the end of Section 2, it is illuminating to see how the goal of verifying
these two conditions brings out the mathematical differences between Models A,
B and C. For Model A both conditions are relatively easy to verify, which makes
it a nice test case. In Model B each condition yields additional challenges and, at
least for one of the conditions, our answer will require additional information on the
structure of C0 and/or f . Finally, for the continuum Anderson model one condition
is obviously true (it follows from unique continuation which is not available for the



Simplicity of eigenvalues in Anderson-type models 161

discrete models) while the other condition is very hard to check with any degree of
generality (and we will not try here).

After the general results in Section 2 the rest of the paper is devoted to cases,
where the single-site potential is a finite-rank operator, i.e. in particular to Mod-
els A and B. In Section 3 we present Theorem 6, a result which extends a rank-
one argument provided in [15] to a finite-rank setting suitable for our applica-
tions.

This will be used in Section 4 to prove simplicity of the point spectrum for
Model A.

Theorem 2. Suppose that the positive definite matrix W in (3) has simple
eigenvalues. Then HA

ω has simple point spectrum for a.e. ω.

As noted above the simplicity of W is necessary here.
More effort will go in the subsequent investigation of Model B, where our main

result will be the following theorem.

Theorem 3. Suppose that for Model B one of the following additional assump-
tions holds:

(i) d and C0 are arbitrary and f : C0→(0, ∞) simple, i.e. f(j) �=f(k) for arbi-
trary j, k ∈C0 with j �=k;

(ii) d is arbitrary, C0={0, ..., L1 −1} × {0} ×...× {0}, L1 is any positive integer
and f=χC0 , the characteristic function of C0;

(iii) d=2, C0={0, 1} × {0, 1} and f=χC0 .
Then the point spectrum of HB

ω is almost surely simple.

Theorem 3 will be proven in the last two sections, with Section 5 establishing
the condition for absence of global symmetries and Section 6 showing the absence
of local symmetries. Here the additional assumptions (i), (ii) or (iii) required in
Theorem 3 reflect different mechanisms which can be used to break local symmetries.
In case (i) local symmetries are broken by the potential energy term alone. For (ii),
where the single-site potentials are essentially one-dimensional, we will be able to
use that one-dimensional Jacobi matrices have simple eigenvalues. Condition (iii)
is the hardest but also most interesting case. Here we will have to use properties
of the random environment (i.e. the effect of random variables other than ω0) to
break the symmetries. While we cannot prove simplicity of the point spectrum
for Model B in full generality, the study of case (iii) provides prototypes of some
techniques which would have to be pushed further (and understood in a way which
uses less brute force) for a general result.
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1.3. Context

An interesting alternative approach to simplicity of eigenvalues in the Anderson
model, using methods very different from those employed here, has been found by
Klein and Molchanov [9]. Their methods work in the localization regime, i.e. in
energy regions where the spectrum is known to be pure point. They exploit known
decay properties of Green’s function in these regions together with the Minami
estimate. The latter can be interpreted as showing the stochastic independence of
near lying eigenvalues and served as the central tool in the proof of Poisson level
statistics of the eigenvalues of finite volume restrictions of the discrete Anderson
model in [10].

The proof of the Minami estimate and Poisson statistics has recently been
extended to the continuum Anderson model by Combes, Germinet and Klein [3],
where it holds in the localized region near the bottom of the spectrum. Their work
also extends the result of [9] to the continuum Anderson model, showing almost
sure simplicity of eigenvalues in the energy regime covered by [3].

Much of our motivation for the current investigation came from these works.
While we cannot treat the continuum Anderson model at this point, our methods
establish simplicity of eigenvalues throughout the spectrum. They do not use any
of the specific properties of the localized regime which were exploited in [9] and [3].
In particular, our method does not rely on a Minami estimate, which has not been
established in situations such as Models A and B above. In fact, our hope for
future work is that we can reverse the approach of [3] and [9] and use the methods
developed here to show that a Minami estimate holds throughout the spectrum
for general classes of Anderson-type models, ultimately including the continuum
Anderson model. Of course, our results so far are only a preliminary step in this
direction.

We also refer to [1] and [6] for other proofs of the Minami estimate as well as
extensions to n-level Minami estimates. Far reaching extensions of the results in [3]
and [10] were recently announced by Germinet and Klopp as work in preparation.

Finally, we mention work by Jakšić and Last [7] which extends Simon’s result
Theorem 1 to showing that the singular spectrum (the unions of point and singular
continuous spectrum) of the discrete Anderson model is almost surely simple. We
guess that this will also hold in more general situations like those considered here,
but have not proven this. Jakšić and Last mention that results of this form allow
for an intriguing way of viewing the extended states conjecture (or at least a weak
version of it): If one could identify regimes with spectral regions of multiplicity larger
than one in the Anderson model, then this would necessarily imply the existence of
continuous spectrum (or, using their result, absolutely continuous spectrum).
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2. Simplicity through Birman–Schwinger operators

The set of eigenvalues of a selfadjoint operator A on a separable Hilbert space
H will be denoted by σp(H). For Borel sets B ⊂R we denote by χB(A) the spectral
projection onto B for A. The closed linear span of all eigenfunctions of A will be
denoted by Hpp(A), the pure point subspace for A, and P pp(A) is the orthogonal
projection onto Hpp(A).

If M ⊂ H, then H(A, M) denotes the smallest reducing subspace for A contain-
ing M . Note the characterization

(6) H(A, M) = span{(A−z)−1f : z ∈ C\R and f ∈ M }.

We will denote Lebesgue measure on R by | · |. We use N( · ) to denote null
spaces and R( · ) to denote ranges.

Let H0 be a selfadjoint operator and V a non-negative and bounded operator
in H. Consider the family of selfadjoint operators

(7) Hλ =H0+λV

for λ∈R. We write HV :=H(H0, R(V )) and note that it is easily seen from the
resolvent identity and (6) that

(8) HV = H(Hλ, R(V )) for all λ∈R.

We will use the following consequence of spectral averaging in the following
lemma.

Lemma 4. If a set M ⊂R is such that |M |=0, then, for Lebesgue-a.e. λ,
χM (Hλ)| HV

=0. In particular, for a.e. λ, Hλ| HV
has no eigenvalues in M .

Proof. By spectral averaging, see Corollary 4.2 in [4] and its proof, it holds for
arbitrary ϕ∈ H and arbitrary Borel sets M that

∫

R

〈
χM (Hλ)

√
V ϕ,

√
V ϕ

〉

1+λ2
dλ ≤ |M | ‖ϕ‖2.

Thus, if |M |=0 and ϕ is fixed, then
〈
χM (Hλ)

√
V ϕ,

√
V ϕ

〉
=0 for a.e. λ,

and, as
√

V χM (Hλ)
√

V ≥0,
√

V χM (Hλ)
√

V ϕ=0 for a.e. λ.
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Here the exceptional nullset depends on ϕ. As H is separable, we may apply the
previous argument to every element of a countable orthonormal basis and conclude
that √

V χM (Hλ)
√

V =0 for a.e. λ.

For each such λ it follows that χM (Hλ)| HV
=0: Observe first that for f=V φ∈R(V )

and ψ :=
√

V φ,
‖χM (Hλ)f ‖2 =

〈√
V χM (Hλ)

√
V ψ, ψ

〉
=0,

i.e. χM (Hλ)f=0. Now let ϕ=(Hλ −z)−1f with any z ∈C\R and f ∈R(V ). Then
χM (Hλ)ϕ=χM (Hλ)(Hλ −z)−1f=(Hλ −z)−1χM (Hλ)f=0. Using (6) to character-
ize HV =H(Hλ, R(V )) shows that vectors ϕ of this form are a total subset of HV .
Thus we conclude that χM (Hλ)| HV

=0. �

Below we will consider the Birman–Schwinger operators

G(z) :=
√

V (H0 −z)−1
√

V

for z ∈C\R, as well as their operator-norm boundary values

(9) G(E+i0) := lim
ε↓0

G(E+iε)

for E ∈R where this boundary value exists.
The following abstract criterion will be the basis of all our further investiga-

tions.

Theorem 5. Assume that G(z) is compact for all z ∈C\R and that its bound-
ary value G(E+i0) exists for Lebesgue-a.e. E ∈R and has simple non-zero eigen-
values. Then Hλ| HV

has simple point spectrum for a.e. λ∈R.

Before proving this, several comments are in order:
(i) Note that G(E+i0) is compact if it exists. Thus its non-zero spectrum

consists entirely of discrete eigenvalues. By simplicity we mean algebraic simplicity,
i.e. all generalized eigenspaces are one-dimensional (and thus eigenspaces). Note
that G(E+i0) is not necessarily selfadjoint.

(ii) The following proof shows that there is also a local version of the result:
If I ⊂R is an open interval and G(E+i0) has simple non-zero eigenvalues for a.e.
E ∈I , then, for a.e. λ∈R, Hλ| HV

has simple point spectrum in I .
(iii) Theorem 5 does not say anything about the continuous spectrum of Hλ.

When applying Theorem 5 to Anderson-type models, simplicity of the entire spec-
trum of Hλ (in some interval or the whole line) follows if spectral localization,
i.e. absence of continuous spectrum, is established by separate means.
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Proof. By assumption there exists a set S ⊂R with |S|=0 such that, for every
E ∈R\S, G(E+i0) exists and has simple non-zero eigenvalues. Let M :=S ∪σp(H0).
By Lemma 4 there exists a set A⊂R with |A|=0 such that, for every λ∈R\A, Hλ| HV

has no eigenvalues in M .
Fix λ∈R\(A∪ {0}). We will show that all eigenvalues of Hλ| HV

are simple. As
|A∪ {0}|=0, this proves the theorem.

Let E be an eigenvalue of Hλ| HV
. Thus E /∈M and, in particular, χ{E}(H0)=0.

Also, G(E+i0) exists and has simple non-zero eigenvalues. We will show that
√

V

defines a one-to-one mapping from N((Hλ −E)| HV
) into N(G(E+i0)+1/λ).

Let u∈N((Hλ −E)| HV
) and u �=0. Then Hλu=Eu, which is equivalent to

(10) u = −λ(H0 −E −iε)−1
√

V
√

V u−iε(H0 −E −iε)−1u

for every ε>0. Note that

−iε(H0 −E −iε)−1 s
−−→χ{E}(H0)= 0

as ε↓0. Multiplying (10) by
√

V and letting ε↓0, we infer that
√

V u = −λG(E+i0)
√

V u.

This shows that
√

V u∈N(G(E+i0)+1/λ). Also,
√

V u �=0 as otherwise it would
follow from Hλu=Eu that H0u=Eu, a contradiction to E /∈M . Thus the mapping
is one-to-one. From

dim N((Hλ −E)| HV
) ≤ dim N

(
G(E+i0)+

1
λ

)
≤ 1

we conclude that E is a simple eigenvalue of Hλ| HV
. �

We devote the rest of this section to a preliminary discussion of how one can
hope to apply Theorem 5 to prove simplicity of the point spectrum for Models A,
B and C. First, we introduce language, which allows us to discuss the three models
simultaneously.

Thus let Hω be one of the operators HA
ω , HB

ω or HC
ω . Vj is the action of the

single-site potential at site j, i.e.

(Vjφ)(n) =
{

Wφ(j), n=j,

0, n �=j,

for φ∈�2(Zd; Ck) in case of Model A; (Vjφ)(n)=f(n−jL)φ(n), n∈Z
d, for Model B;

and (Vjφ)(x)=f(x−j)φ(x), x∈R
d, for Model C. For all three models we can now

write
Hω =H0+

∑

j∈Zd

ωjVj ,

where H0 is either the discrete or continuum Laplacian.
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If we also denote by Pj the orthogonal projection onto R(Vj), then we have
at least for Models A and B that

∑
j∈Zd Pj =I , a “covering condition”. This is

guaranteed by our assumptions, since W >0 gives for Model A that

R(Vj) = {φ ∈ �2(Zd; Ck) : φ(n) = 0 for all n �= j},

and f>0 for Model B means that

R(Vj) = {φ ∈ �2(Zd) : φ(n) = 0 for all n /∈ Cj } = �2(Cj).

Here the tiles Cj :=C0 −jL are the supports of f( · −jL), j ∈Z
d.

The coupling constant λ in (7) is identified with one of the random parameters
which we choose to be ω0. Writing V =V0 and ω=(ω̂, ω0), where ω̂=(ωn)n �=0, we
have for all three models

Hω =H
bω+ω0V,

which for fixed ω̂ takes the form of (7). While we will often keep ω̂ fixed and study
the effect of adding ω0V to H

bω , we stress that we can only expect to prove simplicity
of the eigenvalues of Hω for a.e. ω=(ωn)n∈Zd with respect to the distribution in the
infinite product space

⊗
n∈Zd(R, μ). Using Fubini’s theorem, this means that we

want to show simplicity of Hω for μ-a.e. ω0 at a.e. choice of the “random environ-
ment” ω̂. Properties of the latter will play a role in our applications of Theorem 5
with λ=ω0. Note that we have assumed that the single-site distribution μ is abso-
lutely continuous. Thus we can show that a property holds for μ-a.e. ω0 if we can
show that it holds Lebesgue-a.e.

Our goal is to show that almost surely Hω has simple point spectrum, i.e. that
Hω | Hpp(Hω) has simple spectrum. Obviously, this follows if we can establish the
following two properties:

(11) Hω | H(Hω,R(V )) has simple point spectrum for a.e. ω,

and

(12) Hpp(Hω) ⊂ H(Hω, R(V )) for a.e. ω.

Noting (8), (11) can be established via Theorem 5 if we can verify simplicity
of the boundary values of the Birman–Schwinger operator

√
V (H

bω −z)−1
√

V for
a.e. ω̂. We will thus refer to (11) as simplicity of the Birman–Schwinger operators.
In addition, we will have to establish (12) which we will refer to as weak cyclicity of
R(V ) (cyclicity of R(V ) denotes the stronger property that H(Hω, R(V ))=H). In
the language used in the introduction, (11) reflects the absence of local symmetries
in the model, while (12) can be interpreted as absence of global symmetries.
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It is quite enlightening to compare the discrete Anderson model (1) and Models
A, B and C from the point of view of differences, which arise when trying to verify
(11) and (12).

The discrete Anderson model (1) and Model C, the continuum Anderson model,
represent two extreme cases. For the discrete Anderson model the boundary values
G(E+i0) are rank-one operators and thus trivially have simple non-zero eigenvalues
(existence of G(E+i0) for a.e. E holds for all three models as discussed in the
Appendix A). Thus for the discrete Anderson model only weak cyclicity of R(V )
(in this case the span of the canonical basis vector e0) needs to be checked. This is
essentially what was done in [15], whose arguments can be traced in our discussion
in Section 3 (and are a special case of the result shown there).

The situation for the continuum Anderson model is reversed. In this case the
weak cyclicity of R(V )={fφ:φ∈L2(Rd)} is well known. In fact, under the additional
assumption that f>0 on a non-trivial open set it is known that R(V ) is cyclic for
every Schrödinger operator H=−Δ+q with, say, bounded potential q. This is a
consequence of unique continuation for Schrödinger operators, see e.g. [4]. However,
proving simplicity of the non-zero eigenvalues of the infinite-rank Birman–Schwinger
operator f1/2(H

bω −(E+i0))−1f1/2 for a.e. ω̂ is a hard problem for the continuum
Anderson model, reflecting the very rich structure of possible local symmetries in
the continuum. In this paper we will have nothing to say about this.

Instead we will focus on verifying (11) and (12) for Models A and B. For these
models both conditions are non-trivial, but, due to the finite-rank property of V ,
technically accessible with linear algebra tools. Checking weak cyclicity of R(V )
is non-trivial for these models because of the lack of a general unique continuation
property for discrete Schrödinger equations. A look at our proofs of cyclicity for
Models A and B shows that they can be interpreted as salvaging analogs of unique
continuation properties in some specific situations.

For Model A we will be able to verify (11) and (12) and thus prove Theorem 2 in
full generality, only requiring the necessary condition that the single-site matrix W

has simple eigenvalues. For Model B we can prove weak cyclicity of R(V ) without
further restrictions, but can show simplicity of the Birman–Schwinger operators
only for some special cases, leading to Theorem 3. One may think of Model B as a
discretization of Model C. For a discretization to provide a good approximation of
the continuum one needs to choose a fine mesh corresponding to large C0. Thus,
trying to consider Model B with large C0 allows us to anticipate the difficulties, due
to an increasing number of local symmetries, in aiming at ultimately handling the
continuum Anderson model. Our proofs will shed some light on this.
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3. A generalization of Simon’s argument

For the rest of this paper we will consider Models A and B only. In both cases
the single-site potential is a finite-rank perturbation, which allows us to use the
following extension of an argument from [15].

Theorem 6. Let H be selfadjoint in the separable Hilbert space H, k ∈N, and
X and Y be k-dimensional subspaces of H with orthogonal projections PX and PY .
Let V ≥0 with R(V )=X and Hλ :=H+λV , λ∈R.

Suppose that there exists z0 ∈C
+ such that

(13) span{R(PX(Hμ −z0)−1PY ) : μ ∈ R} =X.

Then for Lebesgue-a.e. λ∈R,

(14) P pp(Hλ)X ⊂ P pp(Hλ)Y.

Observe that (14) implies that P pp(Hλ)X ⊂ H(Hλ, Y ), which is how it will be
used in verifying (12) for Models A and B below. There we will also use that the
Hilbert space can be spanned by subspaces X on which (14) holds.

There are two special cases of Theorem 6 worthwhile mentioning: (i) If the
operator PX(H −z0)−1IY is invertible from X to Y (and thus surjective) for one
z0 ∈C

+, then (13) trivially holds, requiring only the use of the single coupling con-
stant μ=0. Below we will verify this form of the condition for Model A. (ii) In
the rank-one case dim X=dimY =1, i.e. the discrete Anderson model (1), the pre-
vious special case means non-vanishing of the matrix-element (H −z0)−1(x, y) for
one z0 ∈C

+. This is how the argument behind Theorem 6 enters in [15].

Proof. First note that due to the finite dimension of X , there is a finite set
N ⊂R (of at most dimX elements) such that it suffices to take the span over μ∈N

on the left-hand side of (13).
Let A be the set of all those t∈R for which either PX(Hμ −(t+i0))−1PY does

not exist for at least one μ∈N or such that

(15) span{R(PX(Hμ −(t+i0))−1PY ) : μ ∈ N }

is not all of X .
We see that |A|=0 as follows: For φ in the Hilbert space and a fixed μ∈N ,

((Hμ −z)−1φ, φ) is Herglotz as a function of z ∈C
+. Hence, by polarization and

Lemma 11, ((Hμ −z)−1φ, ψ) is of bounded characteristic for arbitrary φ and ψ. Thus
the matrices PX(Hμ −z)−1PY , μ∈N , represented with respect to fixed orthonormal
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bases in X and Y , have entries of bounded characteristic. By Lemma 12(a) the
boundary values PX(Hμ −(t+i0))−1PY exist for all μ∈N and a.e. t∈R.

Furthermore, by (13) there is a collection of k columns fj(z), j=1, ..., k, chosen
from the matrices PX(Hμ −z)−1PY , μ∈N , such that the square matrix

(f1(z), ..., fk(z))

is invertible at z=z0. Therefore by Lemma 12(b) we see that the boundary value
(f1(t+i0), ..., fk(t+i0)) is invertible for a.e. t, showing that (15) gives all of X . This
completes the proof of |A|=0.

Therefore A′ :=A∪
⋃

μ∈N σp(Hμ) is a nullset as well. By Lemma 4 there is a
nullset M ⊂R such that

(16) Hλ| HV
has no eigenvalues in A′ for all λ∈R\M.

Fix λ∈R\(M ∪N) and write

(17) P pp(Hλ)X =
∑

e∈σp(Hλ)

Pλ
e X

with Pλ
e :=χ{e}(Hλ), the eigenspace of Hλ to e.

For now fix e∈σp(Hλ) with Pλ
e X �={0} and also fix μ∈N . Thus e is an eigen-

value of Hλ| HV
, which by (16) cannot lie in A′, in particular, e /∈σp(Hμ). As Hλ is

obtained via a rank-k perturbation of Hμ we have

rank Pλ
e ≤ k < ∞.

By the second resolvent identity,

(Hλ −z)−1 =(Hμ −z)−1 −(λ−μ)(Hλ −z)−1V (Hμ −z)−1, z ∈ C\R,

and, in particular, for ε>0,

iεPλ
e (Hλ −e−iε)−1PY = iεPλ

e (Hμ −e−iε)−1PY

−(λ−μ)Pλ
e iε(Hλ −e−iε)−1V (Hμ −e−iε)−1PY .

Since e /∈σp(Hμ), letting ε↓0 in the last equality gives

Pλ
e PY = −(λ−μ)Pλ

e V (Hμ −(e+i0))−1PY ,

where we have used the fact that Pλ
e =limε↓0 iε(Hλ −e−iε)−1 in the weak sense (and

thus in norm due to finite dimensionality). We infer that

Pλ
e R(V (Hμ −(e+i0))−1PY ) ⊂ Pλ

e Y for all μ∈N.
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But, using that R(V )=X and e /∈A,

span{R(V (Hμ −(e+i0))−1PY ) : μ ∈ N } =span{R(PX(Hμ −(e+i0))−1PY ) : μ ∈ N }

=X,

which yields
Pλ

e X ⊂ Pλ
e Y ⊂ P pp(Hλ)Y.

This holds for every e∈σp(Hλ) with Pλ
e X �={0}, so (17) implies (14). �

4. Model A

As a first application of the general theory developed so far, we will now prove
Theorem 2 by verifying (11) and (12).

For the duration of this proof we write H=Hω=HA
ω . For |z|>‖H‖ we have

the Neumann series

(18) (H −z)−1 = − 1
z

(
I+

1
z
H+

1
z2

H2+...

)
,

which will be used in the verification of both (11) and (12). We start with the
former.

Here (18) implies that

V
1/2
0 (H −z)−1V

1/2
0 = − 1

z

(
V0+O

(
1

|z|

))
.

As V0|R(V0)=W , this shows that simplicity of W leads to simplicity of

(19) V
1/2
0 (Hω −z)−1V

1/2
0 : R(P0) −→R(P0)

for all ω and z ∈C
+ with |z| sufficiently large.

As in Section 2 write ω=(ω̂, ω0), where ω̂=(ωn)n �=0. As observed in the proof
of Theorem 6 the entries of the operator V

1/2
0 (Hω −z)−1V

1/2
0 are of bounded char-

acteristic. It follows from (19) and Lemma 12(c) that for every ω̂ the boundary
value V

1/2
0 (H

bω −(t+i0))−1V
1/2
0 exists and has simple non-zero eigenvalues for a.e.

t∈R.
Thus we can apply Theorem 5 with H0=H

bω and V =V0. Using that ω0 has
absolutely continuous distribution, we conclude that (11) holds for a.e. ω.

The following argument to verify the assumption of Theorem 6 and thus prove
(12) is essentially found in [15]. For j �=0 we get from (18) that

Pj(H −z)−1P0 = − 1
z2

PjHP0 − 1
z3

PjH
2P0+... .
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Using that H has only next neighbor hopping terms of magnitude one and letting
|j|=|j1|+...+|jd| for j ∈Z

d, we observe that

PjH
lP0 =0 if |j|<l,

and
PjH

lP0 =Pjh
l
0P0 =Cj,dI if |j|=l,

where the latter is viewed as an operator from R(P0) to R(Pj) (with I being the
matrix representation in the canonical bases of these spaces) and Cj,d �=0 is the
number of shortest paths from 0 to j in Z

d. We conclude that

Pj(H −z)−1P0 = − Cj,d

zl+1
I+O

(
1

|z|l+2

)
,

which is invertible for |z| sufficiently large.
Theorem 6 and a re-sampling argument in the absolutely continuous random

variable ωj yields that

P pp(Hω)R(Pj) ⊂ H(Hω, R(P0)) for a.e. ω.

Note that this also holds trivially for j=0. Using that {R(Pj):j ∈Z
d} spans H and

taking a countable intersection of full measure sets we conclude that

Hpp(Hω) =P pp(Hω)H ⊂ H(Hω, R(P0)) for a.e. ω,

which is (12).

5. Weak cyclicity for Model B

The goal of this section is to verify weak cyclicity (12) for Model B, which we
can do in full generality, i.e. for any choice of C0={0, ..., L1 −1} ×...× {0, ..., Ld −1}
and f : C0→(0, ∞).

Proposition 7. Model B satisfies

Hpp(HB
ω ) ⊂ H(HB

ω , R(P0))

for a.e. ω.

We first prove a lemma. For any tile C=Cm, m∈Z
d, we denote by fC the

single-site potential on C, i.e. fC =fm=f( · −mL). A neighboring tile C ′ =Cm′ of
C is a tile such that m and m′ coincide in all but one coordinate, and differ by 1
in the latter. For a pair (C, C ′) of neighboring tiles, h

(C,C′)
0 is the restriction of h0

to �2(C ∪C ′).
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Lemma 8. For every z0 ∈C
+ and every pair (C, C ′) of neighboring tiles,

(20) span{R(χC(h(C,C′)
0 +μfC −z0)−1χC′ ) : μ ∈ R} = �2(C).

Proof. Without loss of generality we may assume that C=C0 and C ′ =C(−1,0,...,0).
We have to show that
⋂

μ∈R

R(χC(h(C,C′)
0 +μfC −z0)−1χC′ )⊥ =

⋂

μ∈R

N(χC′ (h(C,C′)
0 +μfC −z̄0)−1χC) = {0}.

Thus assume that ψ ∈�2(C) is such that

(21) χC′ (h(C,C′)
0 +μfC −z̄0)−1ψ =0 for all μ∈R.

Our goal is to show that ψ=0.
Let gμ :=(h(C,C′)

0 +μfC −z̄0)−1ψ. Then supp gμ ⊂C and

(22) ψ =(h(C,C′)
0 +μfC −z̄0)gμ

for all μ∈R. For ψ, gλ and fC , all supported on C, we will consider transversal
sections corresponding to a fixed value of the first coordinate, i.e. we write

ψk(n2, ..., nd) =ψ(k, n2, ..., nd),

and similar gμ,k and fC,k for the sections of gμ and fC . Let h1
0 be the restriction of

the (d−1)-dimensional discrete Laplacian to {0, ..., L2 −1} ×...× {0, ..., Ld −1}.
Evaluating (22) at the value k=−1 of the first coordinate gives

(23) 0 = gμ,0.

If L1=1, this means that gμ=0 and thus ψ=0 by (22). If L1>1, we evaluate (22)
at values 0≤k ≤L1 −1 to get

ψ0 = gμ,1+(h1
0+μfC,0 −z̄0)gμ,0,(24)

ψk = gμ,k−1+gμ,k+1+(h1
0+μfC,k −z̄0)gμ,k, 1 ≤ k ≤ L1 −2,(25)

ψL1−1 = gμ,L1−2+(h1
0+μfC,L1−1 −z̄0)gμ,L1−1.(26)

Inserting (23) into (24) and then, successively for 1≤k ≤L1 −2, into (25) yields

gμ,k =(−1)k−1μk−1fC,1...fC,k−1ψ0+O(μk−2),

as μ→∞, for all k ≤L1 −1. Ultimately, inserting into (26) gives

ψL1−1 =(−1)L1−1μL1−1fC,1...fC,L1−1ψ0+O(μL1−2).

As this must hold for all μ, we conclude that ψ0=0, and thus, by (24), gμ,1=0.
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This allows us to reinterpret (21) as

(27) χC′
+
(h(C,C′)

0 +μfC −z̄0)−1ψ =0 for all μ∈R

and ψ ∈�2(C−). Here C ′
+ and C− are the boxes found by moving the left-most layer

of C to C ′, i.e.

C− := {1, ..., L1 −1} × {0, ..., L2 −1} ×...× {0, ..., Ld −1},

C ′
+ := { −L1, ..., 0} × {0, ..., L2 −1} ×...× {0, ..., Ld −1}.

This shows that the process of calculating (22) to (26) can be repeated, now
starting with (27) and leading to ψ1=0 and gμ,2=0. Iterating, we find that
ψ0=ψ1=...=ψL1−1=0, and thus ψ=0. �

For the remainder of this and the following section we write H=Hω=HB
ω .

Proof of Proposition 7. For an arbitrary pair of neighboring tiles (C, C ′) we
can apply Lemma 8. As �2(C) is finite-dimensional there exists a finite set N ⊂
R such that it suffices to take the span over μ∈N on the left-hand side of (20).
Let C=Cm, C ′ =Cm′ , ΛB be a boundary layer consisting of tiles enclosing C ∪C ′,
Λext=Z

d \ {C ∪C ′ ∪ΛB}, and for given ω=(ωl)l∈Zd define

(28) ω
(λ,μ)
l =

⎧
⎪⎪⎨

⎪⎪⎩

μ, l=m,

0, l=m′,

λ, on sites in ΛB,

ωl, on sites in Λext.

We claim that, for fixed μ,

(29) lim
λ→∞

χC(Hω(λ,μ) −z0)−1χC′ =χC(h(C,C′)
0 +μfC −z0)−1χC′ .

This is shown by a Schur complementation argument: Decompose the space
�2(Zd)=�2(Zd \ΛB)⊕�2(ΛB) and let P =PZd \ΛB =PC∪C′ ⊕PΛext and Q=I −P =PΛB

be the corresponding orthogonal projections. Write

Hω(λ,μ) −z0 =
(

A B

C D

)

as a block operator with respect to this decomposition. Here the operator
D=Q

(
h0 −z+λ

∑
j Vj

)
Q in �2(ΛB). Here the summation in

∑
j Vj is over all tiles

in the boundary layer B. As
∑

j Vj has a uniform positive lower bound, D is in-
vertible for λ sufficiently large and limλ→∞ D−1=0. A, B and C do not depend
on λ.
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Thus Schur complementation yields

P (Hω(λ,μ) −z0)−1P =(A−BD−1C)−1 →A−1, as λ→∞.

We also have

A=PC∪C′ (h0+μfC −z0)PC∪C′ +PΛext(Hω −z0)PΛext ,

giving

χC(Hω(λ,μ) −z0)−1χC′ =χCPC∪C′ (Hω(λ,μ) −z0)−1PC∪C′ χC′

→χC(h(C,C′)
0 +μfC −z0)−1χC′ ,

as λ→∞, proving (29).
Finiteness of N implies the existence of λ0 sufficiently large such that

span{R(χC(Hω(λ0,μ) −z0)−1χC′ ) : μ ∈ N }

=span{R(χC(h(C,C′)
0 +μfC −z0)−1χC′ ) : μ ∈ N }

= �2(C).

Picking dim �2(C)=|C| linearly independent columns of the matrices

{χC(Hω(λ0,μ) −z0)−1χC′ : μ ∈ N },

we observe that the determinant of the matrix formed by these columns is analytic
in each of the parameters ωl corresponding to sites in ΛB ∪C ′. As the determinant
is non-zero for the special choice made in (28), we can successively use analyticity
in these parameters to conclude that for a.e. ω̂=(ωl)l �=m,

span{R(χC(H
bω+μfC −z0)−1χC′ ) : μ ∈ N } = �2(C),

where H
bω=h0+

∑
l �=m ωlfl. We have thus verified the assumptions of Theorem 6

with X=�2(C), Y =�2(C ′), H=H
bω and V =fC and can therefore conclude that

P pp(Hω)�2(C) ⊂ P pp(Hω)�2(C ′) for a.e. ω.

As this holds for any pair of neighboring tiles (C, C ′), we may iterate to con-
clude

P pp(Hω)�2(Cn) ⊂ P pp(Hω)�2(Cm) for any (n, m) and a.e. ω.

Finally, choosing m=0 and taking the union over n on the left, we get

Hpp(Hω) ⊂ P pp(Hω)�2(C0) ⊂ H(Hω, �2(C0)) for a.e. ω,

as was to be shown. �
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6. Simplicity of the Birman–Schwinger operator for Model B

This final section is aimed at verifying (11) for Model B, that is simplicity of
the restriction of H=Hω=HB

ω to the reducing subspace generated by the single-
site potential. We will accomplish this via Theorem 5 by showing simplicity of
the corresponding Birman–Schwinger operators. It is here where we do not have
a general argument and will have to use one of the additional conditions given in
Theorem 3. As discussed in Section 2, when combined with Proposition 7 this
completes the proof of Theorem 3.

Proposition 9. Suppose that for Model B one of the additional assumptions
(i), (ii) and (iii) in Theorem 3 holds. Then HB

ω | H(HB
ω ,R(V )) has simple point spec-

trum for a.e. ω.

We will prove this by establishing that for a.e. ω there exists z ∈C
+ such that

(30)
√

f(Hω −z)−1
√

f : �2(C0) −→ �2(C0)

is simple. In fact, under conditions (i) and (ii) of Theorem 3 this will hold determin-
istically, i.e. for every ω, but in case (iii) we only get an almost sure result. Based
on this and Theorem 5, Proposition 9 now follows with the same argument which
was used for Model A in Section 4. Here it suffices to know that (30) holds almost
surely.

As in Section 4 for Model A, our argument starts with the Neumann series
(18). The easiest case is (i), i.e. simplicity of f , in which case using only the first
order approximation in (18) gives

(31) −z
√

f(H −z)−1
√

f = f+O

(
1

|z|

)

as an operator in �2(C0) and for |z|→∞. Since f is simple it follows that
√

f(H −z)−1
√

f

is simple for sufficiently large |z|.
Now consider case (ii), C0={0} × {0, ..., L−1} and f=χC0 . In this case we have√

f=χC0 and use the second order approximation in (18) to conclude that

(32) −zχC0(H −z)−1χC0 =χC0 +
1
z
χC0h0χC0 +

ω0

z
χC0 +O

(
1

|z|2

)

and thus

(33) z
(

−zχC0(H −z)−1χC0 −
(
1+

ω0

z

)
χC0

)
=χC0h0χC0 +O

(
1

|z|

)
,
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as |z|→∞. In the canonical basis of �2(C0),

χC0h0χC0 =

⎛

⎜⎜⎜⎜⎜⎝

0 1

1
... ...
... ... 1

1 0

⎞

⎟⎟⎟⎟⎟⎠
,

a finite Jacobi matrix with simple eigenvalues. Thus the left-hand side of (33) and
therefore χC0(H −z)−1χC0 , is simple for |z| sufficiently large.

So far our arguments can be summarized as follows: In case (i) the first term
in the asymptotic expansion (18) suffices to break all degeneracies. For case (ii) the
degeneracies are broken by the second term in the expansion.

Case (iii) is considerably more complicated. We will have to explicitly calculate
several more terms in the asymptotic expansion. Degeneracies will not be broken
completely by including the next term in the series, but only partially. Thus we
have to carefully control the effect of terms of different orders on eigenvalues, to
avoid that eigenvalues which are split by lower order terms become degenerate again
by adding higher order terms to split the remaining degeneracies.

Instead of the full random operator Hω we will start by considering the operator
ha,b=h0+Va,b with potential restricted to two sites,

Va,b(j) := aχC0(j1, j2 −2)+bχC0(j1+2, j2)

for all j=(j1, j2)∈Z
2. Thus supp Va,b=C(0,1) ∪C(−1,0), only the sites above and to

the left of C0 are occupied.

Proposition 10. If a �=b, then χC0(Ha,b −z)−1χC0 as an operator on �2(C0)
has simple eigenvalues for |z| sufficiently large.

Proof. For matrix-representations of operators in �2(C0) we will throughout
use the following orthonormal basis, which is best suitable to reflect the various
symmetries in the model (and which need to be broken):

(34)

δ1 =
1
2

(
1 1
1 1

)
, δ2 =

1
2

(
1 −1

−1 1

)
,

δ3 =
1
2

(
1 1

−1 −1

)
, δ4 =

1
2

(
1 −1
1 −1

)
,

where we represent functions on C0 as 2×2-arrays.
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We have χC0ha,b=χC0h0 and ha,bχC0 =h0χC0 . Thus the expansion (18) written
down up to fourth order yields, as an operator in �2(C0),

z(−zχC0(ha,b −z)−1χC0 −I) = χC0h0χC0 +
1
z
χC0h

2
0χC0 +

1
z2

h0(h0+Va,b)h0χC0

+
1
z3

h0(h0+Va,b)2h0χC0 +O

(
1

|z|4

)
.(35)

The calculation of the various terms on the right-hand side of (35) should be
done geometrically, starting from the arrays giving the vectors δi, i=1, ..., 4, and
using that h0 acts on every two-dimensional array of numbers by adding up all
neighboring values at each site.

With considerable effort we get

χC0h0χC0 =

⎛

⎜⎜⎝

2 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ ,

χC0h
2
0χC0 =

⎛

⎜⎜⎝

6 0 0 0
0 6 0 0
0 0 2 0
0 0 0 2

⎞

⎟⎟⎠ ,

χC0h
3
0χC0 =

⎛

⎜⎜⎝

18 0 0 0
0 −18 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ ,

χC0h0Va,bh0χC0 =

⎛

⎜⎜⎝

a+b 0 a b

0 a+b b a

a b a+b 0
b a 0 a+b

⎞

⎟⎟⎠ ,

χC0h0(h0+Va,b)2h0χC0 =
(

12+
a2+b2

2

)
I+

⎛

⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ a−b 0
∗ ∗ 0 b−a

⎞

⎟⎟⎠ .

For the latter matrix we will only need the lower right 2×2-block.
Thus, suppressing constant multiples of the 4×4-identity matrix, we find that

it suffices to show simplicity of the 2×2-block matrix

ga,b(z) =
(

A(z) B(z)
C(z) D(z)

)
,
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where

A(z) =
(

2 0
0 −2

)
+O

(
1

|z|

)
,

B(z) =C(z) =
1

2z2
B0+O

(
1

|z|3

)
, B0 :=

(
a b

b a

)
,

D(z) =
1
z3

D0+O

(
1

|z|4

)
, D0 :=

(
a−b 0

0 b−a

)
.

For |z| sufficiently large, ga,b has one eigenvalue each near 2 and −2 and two
eigenvalues (counted with multiplicity) near 0. The latter two eigenvalues satisfy
λ=O(1/|z|) and we must show that they are distinct. For each of these eigenvalues
A−λI is invertible and we can therefore use Schur complementation to find the
corresponding eigenvectors: Suppose that

(
A−λI B

C D −λI

) (
φ1

φ2

)
=0.

Then (A−λI)φ1+Bφ2=0 and Cφ1+(D −λI)φ2=0 and we can eliminate φ1 to get

−C(A−λI)−1Bφ2+(D −λI)φ2 =0.

The two eigenvalues of ga,b with λ=O(1/|z|) are therefore roots of

(36) det(D −λI −C(A−λI)−1B)= 0.

From the above expressions for A, B, C and D we see that

D −λI −C(A−λI)−1B =
1
z3

D0 −λI+O

(
1

|z|4

)
,

and thus, calculating the determinant on the right,

(37) 0 =λ2 − 1
z6

(a−b)2+O

(
1

|z|7

)
+O

(
λ

|z|4

)
.

Using that λ=O(1/|z|) in the last term gives λ2=O(1/|z|5) and thus the improved
bound λ=O(1/|z|5/2). Therefore (37) becomes

(38) 0 =λ2 − 1
z6

(a−b)2+O

(
1

|z|13/2

)
.

Applying Rouché’s theorem to the function f(λ)=λ2 −1/z6(a−b)2 and the contours
γ± given by circles centered at ±(a−b)/z3 with radius 1/|z|3+ε, 0<ε< 1

2 , shows that
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(38) has one root each in the interior of the disjoint contours γ± for |z| sufficiently
large. This completes the proof of Proposition 10. �

We now return to the full random operator Hω=h0+
∑

n∈Z2 ωnfn from case
(iii) of Proposition 9. Fix values of a and b with a �=b and let

h0
ω,L :=ha,b+Vω,L,

where
Vω,L :=

∑

|n|∞>L

ωnfn.

By the resolvent identity we have

(39) χ0(h0
ω,L −z)−1χ0 =χ0(ha,b −z)−1χ0 −χ0(h0

ω,L −z)−1Vω,L(ha,b −z)−1χ0.

Using Proposition 10, fix z with |z| sufficiently large such that χ0(ha,b −z)−1χ0 is
simple and let

δ :=min{|λ−μ| : λ and μ are eigenvalues of χ0(ha,b −z)−1χ0 and λ �=μ}.

We have supp Vω,L ⊂Z
2 \

⋃
|n|∞ ≤L Cn. Thus we find from a Combes–Thomas

type estimate (see e.g. Chapter 11 of [8] for a proof in the setting of discrete
Schrödinger operators) that there are C<∞ and η>0 such that

‖χ0(h0
ω,L −z)−1Vω,L(ha,b −z)−1χ0‖

≤
∥∥χ0(h0

ω,L −z)−1
√

Vω,L

∥∥∥∥√
Vω,L(ha,b −z)−1χ0

∥∥ ≤ (Ce−ηL)2(40)

for all L∈N and uniformly in all (ωn)|n|∞>L with ωn ∈supp ρ. Now fix L sufficiently
large such that the right-hand side of (40) is less than δ/2. By (39) we conclude
that χ0(hω,L −z)−1χ0 is simple.

To complete the proof we now use analyticity of (Hω −z)−1 in the finitely many
variables ωn, |n| ∞ ≤L:

Fix (ωn)|n|∞>L with ωn ∈supp ρ. Let S be the Sylvester matrix (46) of the op-
erator χ0(Hω −z)−1χ0. Then det S is analytic in each of the variables ωn, |n| ∞ ≤L.
For the particular choice of these variables given by the potential Va,b we get from
the simplicity of χ0(hω,L −z)−1χ0 that S is non-zero. Using analyticity in each
of the variables ωn, |n| ∞ ≤L, iteratively we conclude that det S is non-zero for
Lebesgue-a.e. (ωn)|n|∞ ≤L ∈R

(2L+1)2 . As μ is absolutely continuous, this also holds
with respect to the product measure on R

(2L+1)2 generated by μ. As discussed in
the proof of Lemma 12(c), a matrix is simple if and only if the determinant of its
Sylvester matrix is non-zero. Recalling that the choice of ωn ∈supp ρ, |n| ∞ >L, was
arbitrary, this completes the proof of almost sure simplicity of χ0(Hω −z)−1χ0 and
therefore Proposition 9 for case (iii).
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Appendix A. Background

For the sake of completeness, we use this appendix to collect some classical
facts on boundary values of analytic functions on the upper half plane and derive
the properties of boundary values of Green’s function which were used above.

An analytic function f : C
+→C

+ is called a Herglotz function. A function
f : C

+→C is said to be of bounded characteristic if there exist functions g and h,
both bounded and analytic in C

+, with

(41) f(z) =
g(z)
h(z)

for all z ∈C
+.

Lemma 11. (a) The set of functions of bounded characteristic is closed under
scalar multiplication, addition, and multiplication.

(b) Herglotz functions are of bounded characteristic.
(c) If f has bounded characteristic, then f(t+i0):=limε↓0 f(t+iε) exists for

Lebesgue-a.e. t∈R. If | {t:f(t+i0)=0} |>0, then f is identically zero.

Proof. Part (a) is elementary. To show (b), let f be Herglotz and

(42) g =
f −i

f+i
.

Then g is bounded, analytic, and

(43) f =
−i(1+g)

g −1

is the ratio of bounded analytic functions. Part (c) is a classical result which can
be found, for example, in the books [5] and [12]. �

Below, we say that a square matrix is simple if all its generalized eigenspaces
are one-dimensional (and thus eigenspaces).

Lemma 12. Let k ∈N and H be a k ×k-matrix-valued function on the upper
half plane C

+, such that all its entries are of bounded characteristic. Then
(a) H(t+i0):=limε↓0 H(t+iε) exists in norm for Lebesgue-a.e. t∈R;
(b) if H(z) is invertible for at least one z ∈C

+, then H(t+i0) is invertible for
a.e. t∈R;

(c) if H(z) is simple for at least one z ∈C
+, then H(t+i0) is simple for a.e.

t∈R.
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Proof. (a) All matrix elements of H(t+iε) have boundary values for a.e. t∈R

by Lemma 11(c). This implies the existence of norm limits for the finite matrix H

and a.e. t.
(b) Let d(z)=det H(z). Then d(z) is a sum of products of matrix elements of

H(z) and thus of bounded characteristic. By assumption, d(z) is not identically zero
in C

+. Therefore we conclude from Lemma 11 that d(t+i0)=det H(t+i0) exists
and is non-zero for a.e. t∈R, proving the claim.

(c) We use the following general fact: Suppose that C=(cij) is a k ×k matrix
and λ1, ..., λk are its eigenvalues counted with algebraic multiplicity. Let

(44) PC(x)=det(xI −C) =
k∑

n=0

anxn

be the corresponding characteristic polynomial with ak=1 and set

(45) F (C) =
∏

i<j

(λj −λi)2.

Thus C is simple if and only if F (C) �=0. Moreover, F (C)=(−1)1/2k(k−1) det S(C),
with the Sylvester matrix (1)

(46) S(C) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak ak−1 ... a0

ak ak−1 ... a0

... ... ...

ak ak−1 ... a0

kak (k −1)ak−1 ... a1

kak (k −1)ak−1 ... a1

... ... ...

kak (k −1)ak−1 ... a1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now we can argue similar to the proof of (b): If C=H(z), then the coefficients
an(z) of the characteristic polynomial are polynomials in the matrix-elements of
H(z) and thus of bounded characteristic. Therefore F (H(z)) is of bounded char-
acteristic and, by assumption, not identically vanishing in C

+. Its boundary value
F (H(t+i0)) is non-zero and thus H(t+i0) is simple for a.e. t∈R. �

We conclude by commenting on the existence of the boundary values (9) of
the Birman–Schwinger operators for the three models considered in this paper. For
Models A and B these operators are of finite rank and thus the existence of the

(1) http://en.wikipedia.org/wiki/Discriminant.

http://en.wikipedia.org/wiki/Discriminant
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boundary values is a special case of Lemma 12(a). For Model C the operators
G(z)=f1/2(H

bω −z)−1f1/2 are compact for z ∈C
+, which follows from standard rel-

ative compactness properties of Schrödinger operators, see e.g. [14]. To see why
boundary values exist we use the following well-known result, see e.g. [11].

Lemma 13. If H is an analytic bounded operator-valued function in the upper
half plane C

+ :={z :Im z>0} such that H(z) is of trace class and ImH(z)≥0 for all
z ∈C

+, then H(E+i0):=limε↓0 H(E+iε) exists in operator norm (in fact in every
Schatten class norm other than the trace class norm) for a.e. E ∈R.

For Model C we have analyticity of G(z) and ImG(z)≥0 in the upper half
plane, but G(z) is generally not of trace class (other than for d=1). But we can
argue as follows, inserting spectral projections:

For any finite interval I=[a, b] let I ′ =[a−1, b+1]. For E ∈I consider

G(E+iε) = f1/2(H
bω −(E+iε))−1PI′ (H

bω)f1/2

+f1/2(H
bω −(E+iε))−1PR\I′ (H

bω)f1/2.

The second term trivially has a limit as ε↓0, while the first term falls into the class
considered in Lemma 13. One uses here that f1/2PI′ (H

bω) is Hilbert–Schmidt, see
e.g. [14]. As a consequence, G(E+i0) exists for a.e. E ∈I , and, by exhaustion, for
a.e. E ∈R.
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