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Residue calculus for c-holomorphic functions

Maciej P. Denkowski

Abstract. In this paper we introduce Coleff–Herrera residue currents defined by systems of

c-holomorphic functions and prove a Lelong–Poincaré and a Cauchy-type formula as well as the

transformation law for these currents.

1. Preliminaries

In complex analysis one often comes across what is called weakly holomorphic
functions. These functions appear in a natural way e.g. in problems related to Abel’s
or Lie–Griffiths’ theorem – see [HP]. They are defined and holomorphic on the
regular part of a (complex) analytic set and locally bounded near the singularities.
However, they are not as handy as one would like them to be.

Among other possible notions of ‘holomorphicity’ for functions defined on an-
alytic sets there is one which is of greater interest and was introduced by Remmert
(see [R]). Let A be an analytic subset of an open set Ω⊂Cm.

Definition 1.1. ([W]) A mapping f : A!Cn is called c-holomorphic if it is con-
tinuous and the restriction of f to the subset Reg A of regular points is holomorphic.
We denote by Oc(A, Cn) the ring of c-holomorphic mappings, and by Oc(A) the ring
of c-holomorphic functions.

This happens to be a very good generalization of holomorphic functions on ana-
lytic sets. It is well-known that a mapping defined in an open set is holomorphic if
and only if it is continuous and its graph is an analytic set (it is then a submanifold).
We have a similar result for c-holomorphic mappings (cf. [W, Theorem 4.5Q]), which
motivates this generalization:

Theorem 1.2. A mapping f : A!Cn is c-holomorphic if and only if it is
continuous and its graph Γf :={(x, f(x)):x∈A} is an analytic subset of Ω×Cn.
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It is worth noting that by a recent result of N. V. Shcherbina [S] the pluri-
polarity of the graph is sufficient (unlike for instance sub- or semianalyticity:
f(x):=|x| for x∈C has a semianalytic graph which is not complex analytic). By
Theorem 1.2 the zero set of a c-holomorphic function is analytic.

Throughout this paper we assume that A⊂Ω is a purely k-dimensional analytic
set in an open set Ω⊂Cm.

Note that in general we have only an inclusion Γf |Reg A
⊂Reg Γf . However,

since the (2k−1)-dimensional Hausdorff measure of Γf |Sng A
is zero, we may always

replace the set Reg Γf by Γf |Reg A
in the approximating integrals from the next

section.

2. Residue currents defined by c-holomorphic functions

Let f∈Oc(A) be such that it does not vanish identically on any irreducible com-
ponent of A. The aim of this part is to define, following an idea of A. Yger, a residue
current which would generalize to the c-holomorphic case the restricted residue cur-
rent of Coleff–Herrera [A]∧∂[1/f ] (see [CH] and [TY]). Were f holomorphic in Ω,
we would have for any ϕ∈D(k,k−1)(Ω) by the definition of Coleff and Herrera:〈

[A]∧∂

[
1
f

]
, ϕ

〉
: = lim

ε!0+

1
2πi

∫
{z∈Reg A:|f(z)|2=ε}

ϕ

f

=− lim
ε!0+

1
2πi

∫
{z∈Reg A:|f(z)|2>ε}

∂ϕ

f
.

The current we obtain is ∂-closed and supported by A∩f−1(0). It is a deep result
that such a current is well-defined – actually, we are concealing here the prob-
lem of the existence of the current ∂[1/f ], i.e. the ∂ of the principal value current
[1/f ](ϕ):=(2πi)−1 limε!0+

∫
{z:|f(z)|2>ε} ϕ/f solving the equation (2πi)f t=1 in Ω.

We introduce the notation

Res
[
ϕ(z)
f(z)

]
A

:=
〈

[A]∧∂

[
1
f

]
, ϕ

〉
, ϕ∈D(k,k−1)(Ω).

When A=Ω we simply omit it in the subscript since it does not interfere with
anything. Note that the Lelong–Poincaré formula says in particular that if the
hypersurface X={z :g(z)=0} is given by a reduced analytic equation, then

〈[X ], ϕ〉= Res
[
dg∧ϕ

g

]
.(LP)

Observe that the above equality can be rewritten as [X ]=∂[1/g]∧dg (since one has
(2πi)−1∂∂ log |g|2=∂[1/g]∧dg in the sense of currents).
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Now, if f is just c-holomorphic on A we define a residue current of type
(m−k, m−k+1) setting

Res
[
ϕ(z)
f(z)

]
A

:= Res
[
ϕ(z)
w

]
Γf

, ϕ∈D(k,k−1)(Ω),(∗)

where (z, w)∈Γf⊂Ω×C (i.e. on the right-hand side we have [Γf ]∧∂[1/p], where
p(z, w)=w; note that the graph is also purely k-dimensional). In other words, we
use the graph to properly define the current

Res
[
ϕ(z)
f(z)

]
A

.

This definition makes sense in that it coincides with the usual one when f is holo-
morphic as we will see in the proof of the following theorem. Note that there is
no problem of support relative to the vertical variable w since we may successfully
replace the form ϕ(z) in (∗) by ϕ(z)·θ(w), where θ(w) is a C∞ function with com-
pact support, identically equal to 1 on a ball of radius r>maxz∈suppϕ |f(z)|. For
simplicity we will omit writing these cut-off functions (this does not affect the proofs
– to illustrate this we are keeping this extra function in the first proof below).

The Coleff–Herrera residue is also defined for n functions in the proper inter-
section case. Namely, if f1, ..., fn∈O(Ω) are such that A∩⋂n

j=1 f−1
j (0) has pure

dimension k−n, then for any ϕ∈D(k,k−n)(Ω),

Res
[

ϕ

f1, ..., fn

]
A

:= lim
δ!0+

(
1

2πi

)n ∫
Reg A∩Tδ(f)

ϕ

f1 ·...·fn
,

where Tδ(f)={z :|fj(z)|2=εj(δ), j=1, ..., n} and ε1�...�εn are special functions
tending to zero with δ (along what is called an admissible path:

lim
δ!0+

εj(δ)
εj+1(δ)p

= 0 for all p∈N, j = 1, ..., n−1;

and the limit is independent of the choice of the admissible path), is a well-defined
current of type (m−k, m−k+n). For more information see [CH] and [TY]. Note
that the actual ordering of {f1, ..., fn} is important.

It is quite easy to extend this notion of residue current to the case of a c-holo-
morphic mapping f =(f1, ..., fn) : A!Cn

w defining a proper intersection on A,
i.e. f−1(0) is of pure dimension k−n (then Γf and Ω×{0} intersect properly in
C

m×C
n). We put

Res
[

ϕ(z)
f1(z), ..., fn(z)

]
A

:= Res
[

ϕ(z)
w1, ..., wn

]
Γf

, ϕ∈D(k,k−n)(Ω),(∗∗)
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getting a current of type (m−k, m−k+n). It is a natural generalization of the
Coleff–Herrera restricted residue current [A]∧∂[1/f1]∧...∧∂[1/fn] to the case of
c-holomorphic functions since we have the following result.

Theorem 2.1. If the function f (respectively the mapping f =(f1, ..., fn)) is
holomorphic in Ω, then equality (∗) (respectively (∗∗)) holds.

Proof. If we look at the approximating integrals, it is clear that the residue
depends only on the values of f on Reg A, i.e. if g∈O(Ω, Cn

w) is such that g=f on
Reg A, then

Res
[ ·
f1, ..., fn

]
A

= Res
[ ·
g1, ..., gn

]
A

.

Now, if we consider f1, ..., fn as holomorphic in Ω×Cn, then for any test form
ϕ∈D(k,k−n)(Ω),

Res
[

ϕ(z)
f1(z), ..., fn(z)

]
A

= Res
[

ϕ(z)θ(w)
f1(z, w), ..., fn(z, w)

]
A×{0}n

with some cut-off function θ equal to 1 in a neighbourhood of zero (the intersection
Γf(z,w)∩Ω×Cn×{0}n is still proper).

Let Φ: Ω×Cn!Ω×Cn be the biholomorphism Φ(z, w)=(z, f(z)+w). We
clearly have Φ(A×{0}n)=Γf . But

Res
[
ϕ(z)θ(w)
f1, ..., fn

]
A×{0}n

= Res
[

ϕ(z)θ(w)
f1+w1, ..., fn+wn

]
A×{0}n

since w=0 on A×{0}n. By the change of variables theorem we obtain

Res
[

ϕ(z)θ(w)
f1+w1, ..., fn+wn

]
A×{0}n

= Res
[
ϕ(z)θ(w−f(z))

w1, ..., wn

]
Γf

as wanted. �
One more thing is perhaps worth noting. Throughout the paper we are using

to a great extent a change of variables theorem for residue currents. Such a theorem
is valid also in the case of c-holomorphic functions. It may be stated in the following
form.

Lemma 2.2. Let Φ: Ω!Ω′ be a biholomorphism between open subsets of C
m.

Let A⊂Ω be analytic and purely k-dimensional. If f =(f1, ..., fn)∈Oc(Φ(A), Cn) is
such that f−1(0) has pure dimension k−n, then

Res
[

ϕ

f1, ..., fn

]
Φ(A)

= Res
[

Φ∗ϕ
f1 �Φ, ..., fn �Φ

]
A

for any test form ϕ∈D(k,k−n)(Ω′).
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Proof. By definition,

Res
[

ϕ

f1, ..., fn

]
Φ(A)

= Res
[

ϕ

w1, ..., wn

]
Γf

.

Besides, Ψ:=Φ×IdCn is a biholomorphism such that Ψ(Γf�Φ|A)=Γf . Therefore, by
the usual change of variables theorem (applied to the approximating integrals) we
obtain

Res
[

ϕ

w1, ..., wn

]
Γf

= Res
[

Ψ∗ϕ
w1, ..., wn

]
Γf�Φ|A

and the latter is equal to

Res
[

Φ∗ϕ
f1 �Φ, ..., fn �Φ

]
A

. �

3. A Lelong–Poincaré formula

The key-point of this part is a more or less known version of the restricted
Lelong–Poincaré formula mentioned above. If fj∈O(Ω), j=1, ..., r, are such that⋂r

j=1 f−1
j (0) has pure dimension m−r, then by [T, p. 133] (see also [CH]),

[Zf ] = Res
[
df1∧...∧dfr∧( · )

f1, ..., fr

]
= ∂

[
1
f1

]
∧...∧∂

[
1
fr

]
∧df1∧...∧dfr,

where Zf is the cycle of zeroes of f =(f1, ..., fr) (computed as the proper intersec-
tion cycle Γf ·(Ω×{0}) following Draper [Dr]). Note that there is Zf =Zf1 ·...·Zfr

and the intersection being proper, the product of cycles is associative (see [Ch]).
By the Lelong–Poincaré formula, for each j, [Zfj ]=∂∂uj , where we put uj :=
(2πi)−1 log |fj |2. Let A be a purely k-dimensional analytic subset of Ω such that
f−1(0)∩A has pure dimension k−r. If we put t:=[A], then by the results of Bedford
and Taylor, the product t∧∂∂u is well defined by ∂∂(ut), which in turn is equal
to [A·Zf1 ] (by the version of Lelong–Poincaré from [Ch, p. 216]). If now we put
T1 :=A·Zf1 and t1 :=[T1], we obtain ∂∂(u2t1)=[T1 ·Zf2 ] by the same theorem. Iter-
ating this, we get

[A]∧[Zf1 ]∧...∧[Zfr ] = [A·Zf1 ·...·Zfr ] = [A·Zf ],

where the left-hand side of the equality is understood in the Bedford–Taylor sense.
By [De], Corollaire 5.5, we know that [Zf1 ]∧...∧[Zfr ]=[Zf ]. Therefore,

[A·Zf ] = Res
[
df1∧...∧dfr∧( · )

f1, ..., fr

]
A

.(LP′)
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The main idea of all our constructions in the c-holomorphic setting is that we
replace the non-existent df by dw taken on the graph of f .

Formula (LP′) leads to three c-holomorphic results. The first one is the c-holo-
morphic counterpart of the Lelong–Poincaré formula. Let f∈Oc(A) be such that it
does not vanish on any irreducible component of A. Then, by an observation made
in [D], the set f−1(0) has pure dimension k−1 and so Γf ∩(Ω×{0}) is a proper
intersection. Thus Zf :=Γf ·(Ω×{0}) is well defined.

Theorem 3.1. In the introduced setting,

[Zf ] =
1

2πi
[Γf ]∧∂∂ log |w|2 on D(k−1,k−1)(Ω),

where w is the variable from the target space.

Proof. It suffices to observe that (Ω×{0})=Zw, whence Zf =Γf ·Zw, and so
by (LP′),

[Zf ] = Res
[
dw∧( · )

w

]
Γf

=
1

2πi
[Γf ]∧∂∂ log |w|2,

which completes the proof. �

This has a straightforward generalization to the case of several functions:

Theorem 3.2. Let f1, ..., fn∈Oc(A) be such that f−1(0) has pure dimension
k−n for f :=(f1, ..., fn). Then on D(k−n,k−n)(Ω) there is

[Zf ] = Res
[
dw1∧...∧dwn∧( · )

w1, ..., wn

]
Γf

,

where Zf :=Γf ·(Ω×{0}n) is the proper intersection cycle of f and wj are the vari-
ables from the target space.

Proof. It is similar to the previous one – we just observe that [Zf ]=[Γf ·Zw],
where Zw is the cycle of zeroes of the projection onto the target space, w : Ω×Cn	
(z, w) 
!w∈Cn. �

If n=k, then we can compute the (geometric) multiplicity m0(f) for f∈
Oc(A, Ck) with 0 isolated in f−1(0) similarly to the holomorphic case. Recall first
that m0(f) is by definition the number of points in the generic fibre of f which coin-
cides with the proper intersection multiplicity at zero, denoted i(Γf ·(Ω×{0}k); 0),
of Γf and Ω×{0}k.
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Corollary 3.3. Let f∈Oc(A, Ck
w) be such that f−1(0)={0}. Then

m0(f)δ0 = Res
[
dw1∧...∧dwk∧( · )

w1, ..., wk

]
Γf

,

where δ0 is the Dirac delta at zero.

Proof. Clearly m0(f)δ0=[Γf ·(Ω×{0}k)], since m0(f)=i(Γf ·(Ω×{0}k); 0). It
remains to apply the previous result. �

Note. In particular we have by Corollary 3.3 the equality

m0(f)= Res
[
dw1∧...∧dwk

w1, ..., wk

]
Γf

,

generalizing the well-known holomorphic formula

m0(f)= Res
[
df1∧...∧dfm

f1, ..., fm

]

in the case A=Ω and
⋂m

j=1 f−1
j (0)={0} (see [T, Section II.6]).

4. Residue currents with numerators

We are keeping the notation introduced so far and consider n c-holomorphic
functions fj : A!C not vanishing identically on any irreducible component of A

and such that f−1(0)⊂A has pure dimension k−n (see [D] for considerations on
the dimension of zero-sets of c-holomorphic mappings). These play the role of
denominators. Let us take a ‘numerator’ h∈Oc(A). Our aim is to define a residue
current which would be an analogue of the restricted Coleff–Herrera current of type
(m−k, m−k+n),

h·[A]∧∂

[
1
f1

]
∧...∧∂

[
1
fn

]

for h, f1, ..., fn holomorphic. Once again we follow the idea of A. Yger – we shall
make use of the graph.

We introduce a new variable t∈C and consider the c-holomorphic mapping

H : C×A	 (t, z) 
−! (t−h(z), f(z))∈Cw0×C
n
w.

Then we put by definition for ϕ∈D(k,k−n)(Ω),

h(z)Res
[

ϕ(z)
f1(z), ..., fn(z)

]
A

:= Res
[

tϕ(z)∧dt

w0, w1, ..., wn

]
ΓH

.(�)
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This coincides in the holomorphic case with the usual definition as we prove in the
following result.

Theorem 4.1. If h, f1, ..., fn are holomorphic, then (�) holds.

Proof. By assumptions we have H∈O(C×Ω). Let Λ be the graph of H |C×A.
Consider the biholomorphism

Ξ: C×Ω×C
n	 (t, z, w0, w) 
−! (t, z, w0+t−h(z), w+f(z))∈C×Ω×C

n.

Then Λ=Ξ(C×A×{0}1+n) and by Lemma 2.2,

Res
[

tϕ(z)∧dt

w0, w1, ..., wn

]
Λ

= Res
[

Ξ∗(tϕ(z)∧dt)
w0+t−h, f1+w1, ..., fn+wn

]
C×A×{0}1+n

= Res
[

tϕ(z)∧dt

t−h, f1, ..., fn

]
C×A×{0}1+n

,

since w0=w1=...=wn=0 on C×A×{0}1+n. The latter residue may be rewrit-
ten replacing C×A×{0}1+n with C×A, since it does not depend on the variables
w0, w1, ..., wn.

By Fubini’s theorem (applied to the approximating integrals) and Cauchy’s
formula,

Res
[

tϕ(z)∧dt

t−h, f1, ..., fn

]
C×A

= Res
[
h(z)ϕ(z)
f1, ..., fn

]
A

which completes the proof. �

Proposition 4.2. If f1, ..., fn are just c-holomorphic but h is holomorphic
on A, then

h Res
[

ϕ

f1, ..., fn

]
A

= Res
[

hϕ

f1, ..., fn

]
A

, ϕ∈D(k,k−n)(Ω).

Proof. The left-hand side of the required equality is defined by (�). Consider
the following biholomorphism

Ψ: C×Ω×C×C
n	 (t, z, w0, w) 
−! (t, z, w0+t−h(z), w)∈C×Ω×C×C

n.

Put Γ:={(t, z, 0, f(z)):t∈C and z∈A}. We have Ψ(Γ)=ΓH and so by Lemma 2.2,

Res
[

tϕ(z)∧dt

w0, w1, ..., wn

]
ΓH

= Res
[

tϕ(z)∧dt

w0+t−h, w1, ..., wn

]
Γ

= Res
[

tϕ(z)∧dt

t−h, w1, ..., wn

]
C×Γf

,

since w0=0 on Γ and once we got rid of w0 we may replace Γ by C×Γf .
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Applying now Fubini’s theorem and the Cauchy formula we obtain

Res
[

tϕ(z)∧dt

t−h, w1, ..., wn

]
C×Γf

= Res
[

h(z)ϕ(z)
w1, ..., wn

]
Γf

,

which is the equality sought for. �

Added in response to the referee’s remark. As observed by the referee, a sim-
pler way to define the multiplication would be to put

h(z)Res
[

ϕ(z)
f1, ..., fn

]
A

= Res
[

w0ϕ(z)
w1, ..., wn

]
Γ(h,f)

,(��)

where Γ(h,f) is the graph of (h, f) : A!Cw0×Cn
w. This would lead to even shorter

proofs of Theorem 4.1 and Proposition 4.2. However, the results from the following
two sections would be harder to establish (actually, formula (�) has a form leading
directly to the transformation law from Section 6). Fortunately, as we will show
below, it turns out that both formulae, (�) and (��), do coincide.

Proposition 4.3. In the situation under consideration, for any test form ϕ∈
D(k,k−n)(Ω),

Res
[

w0ϕ(z)
w1, ..., wn

]
Γ(h,f)

= Res
[

tϕ(z)∧dt

w0, w1, ..., wn

]
Γ(t−h,f)

with (t−h, f) : Ct×A	(t, z)!(t−h(z), f(z))∈Cw0×Cw.

Proof. Consider the biholomorphism Φ(t, z, w0, w)=(t, z, t−w0, w) and apply
Lemma 2.2: since Φ(C×Γ(h,f))=Γ(t−h,f), the residue (�) becomes

Res
[

tϕ(z)∧dt

t−w0, w1, ..., wn

]
C×Γ(h,f)

.

By Fubini’s theorem and Cauchy’s formula this is equal to

Res
[

w0ϕ(z)
w1, ..., wn

]
Γ(h,f)

as required. �

5. A Cauchy-type formula

If f∈O(Ω) and 0∈Ω⊂Cm, then the usual Cauchy’s formula may be expressed
as follows (cf. Fubini’s theorem):

f(0)=
(

1
2πi

)m

lim
δ!0+

∫
Tδ(z)

f(z)dz1∧...∧dzm

z1...zm
,
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where Tδ(z) is the tube defined earlier, taken for z1, ..., zm and an admissible path.
This formula may be more generally written as

f(0)= (f t)(θdz1∧...∧dzm),

where θ is a C∞ function with compact support, identically equal to 1 in a neigh-
bourhood of zero (we shall not write it any longer, it is ‘cosmetics’) and t is the
current (of type (m, 0)) defined by

t(ϕ) := Res
[

ϕ

z1, ..., zm

]
.

This approach cannot be directly transposed to the c-holomorphic case (roughly
speaking, the main problem is that there are too many variables z1, ..., zm for a set
of dimension <m). Nonetheless, we may proceed in the following way: let as earlier
A⊂Ω be an analytic set containing 0 and of pure dimension k. Suppose that the
natural projection π on the first k coordinates realizes the degree (Lelong number)
deg0 A as the sheet number (multiplicity) of the branched covering π|A (see [Ch]).
Then by (LP′), for any f∈O(A) and all ξ∈Ck sufficiently small,

∑
ζ∈π−1(ξ)∩A

µζ(π|A)f(ζ)= Res
[
f(z)dz1∧...∧dzk

z1−ξ1, ..., zk−ξk

]
A

,(†)

where µζ(π|A) is the multiplicity of π|A at the point ζ∈A (see [Ch] for this notion).
More generally, we have the following proposition.

Proposition 5.1. In the introduced setting,

∑
ζ∈π−1(ξ)∩A

µζ(π|A)δζ = Res
[
( · )∧dz1∧...∧dzk

z1−ξ1, ..., zk−ξk

]
A

,

where δζ are Dirac functions. In particular, for any function f∈O(Ω),

deg0 A·f(0)= Res
[
f(z)dz1∧...∧dzk

z1, ..., zk

]
A

.

Proof. Fix ξ and take h(z):=(z1−ξ1, ..., zk−ξk) for z∈Cm. Then the cycle Zh

is well defined and equal to {ξ}×Cm−k (with multiplicity 1). This intersects A

properly at the points ζ∈A for which π(ζ)=ξ and the multiplicities attached to
these points correspond to the multiplicities µζ(π|A) (see [Ch]). Now, by (LP′) and
a similar argument to the one used in the proof of Corollary 3.3 we obtain

[A·Zh] = Res
[
( · )∧dz1∧...∧dzk

z1−ξ1, ..., zk−ξk

]
A

=
∑

ζ∈π−1(ξ)∩A

µζ(π|A)δζ
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and the proof is accomplished (to get the assertion for f holomorphic, we just
replace f by a compactly supported smooth function equal to f in a small enough
neighbourhood U×V ⊂Ck×Cm of the fibre π−1(ξ)∩A chosen so that cl(A∩(U×V ))
does not meet U×∂V ). �

By the way, observe that since deg0 A=i(A·π−1(0); 0)=m0(π|A) (π is seen as
a function Ω!Ck), by Corollary 3.3 and in view of the fact that π|A is holomorphic,
there is

deg0 A= Res
[
dw1∧...∧dwk

w1, ..., wk

]
Γπ|A

= Res
[
dz1∧...∧dzk

z1, ..., zk

]
A

.

On the right-hand side of (†) we have the residue

s := Res
[ ·
z1−ξ1, ..., zk−ξk

]
A

(a current of type (m−k, m)) multiplied by f and computed on the test form
dz1∧...∧dzk. This we may try to transpose to the c-holomorphic case. Let now
f∈Oc(A) and ξ∈Ck, then we set

rξ(ϕ) := Res
[

tϕ(z)∧dt

w0, ..., wk

]
Tξ

, ϕ∈D(k,0)(Ω),

where Tξ is the graph of the c-holomorphic mapping

gξ : C×A	 (t, z) 
−! (t−f(z), z1−ξ1, ..., zk−ξk)∈Cw0×C
k
w.

We obtain a current of type (m+1, m+2+k) and we have to compute rξ(dz1∧
...∧dzk). It is easy to see that we may replace this current by

r̃ξ(ϕ) := Res
[

tϕ(z)∧dt

w0, z1−ξ1, ..., zk−ξk

]
Γ

, ϕ∈D(k,0)(Ω),

where Γ is the graph of C×A	(t, z) 
!t−f(z)∈Cw0.

Theorem 5.2. In the introduced setting, Proposition 5.1 holds true for c-
holomorphic functions and so in particular for ξ=0 we have

r̃0(dz1∧...∧dzk)= r0(dz1∧...∧dzk)= deg0 A·f(0).

Proof. We shall use r̃ξ and (LP′). Fix ξ and let

H(t, z, w0) := (w0, z1−ξ1, ..., zk−ξk), (t, z, w0)∈C×C
m×C.



84 Maciej P. Denkowski

Clearly, the proper cycle of zeroes ZH =C×({ξ}×Cm−k)×{0}. Observe now that

Γ·ZH =
∑

ζ∈π−1(ξ)∩A

µζ(π|A){(f(ζ), ζ, 0)}.

If now p denotes the projection (t, z, w0) 
!t, then obviously

〈[Γ·ZH ], p〉=
∑

ζ∈π−1(ξ)∩A

µζ(π|A)δ(f(ζ),ζ,0)(p)=
∑

ζ∈π−1(ξ)∩A

µζ(π|A)f(ζ),

and since by (LP′),

〈[Γ·ZH ], p〉= r̃ξ(dz1∧...∧dzk)

the proof is completed. �

Remark 5.3. What also may be treated as a c-holomorphic counterpart of
a Cauchy-type formula for c-holomorphic functions is the integral dependence re-
lation established in the following easy lemma (cf. [W]).

Lemma 5.4. Suppose that A has pure dimension k. Then a continuous func-
tion f : A!C is c-holomorphic if and only if for any point a∈A there is a neigh-
bourhood U	a and a polynomial P ∈O(U)[t] monic in t (i.e. unitary) and such that
P (x, f(x))=0 for x∈U∩A.

Proof. If f is c-holomorphic, then for any point a∈A we may choose co-
ordinates in Cm in such a way that the projection π onto the first k coordi-
nates is a branched covering on A in a neighbourhood V ×W⊂Ck×Cm−k of a and
π−1(π(a))∩A∩(V ×W )={a}. Then for any point v∈V outside the critical locus σ

of π|A there are exactly d different points wj such that (v, wj)∈A. Then setting
P (v, w, t):=

∏d
j=1(t−f(v, wj)) and extending its coefficients analytically through σ

by the Riemann extension theorem we obtain the required P ∈O(V ×W )[t].
On the other hand, if such a polynomial exists in a neighbourhood U of

a∈Reg A, then shrinking U if necessary, we may assume that U∩Reg A is biholo-
morphic to the unit polydisc in Ek⊂Ck. Thus in fact we reduce ourselves to the
case of a continuous function f : Ek!C such that P (x, f(x))=0, x∈Ek, for some
monic P ∈O(Ek)[t]. It is well known that f must be holomorphic. �

Therefore, in the situation under consideration,

f(z)d+a1(ξ)f(z)d−1+...+ad(ξ)≡ 0,

in a neighbourhood of zero, with π(z)=ξ, d:=deg0 A and aj(ξ) being the symmetric
functions (taking account of the sign) of f(z(j)) for π−1(ξ)∩A={z(1), ..., z(d)}.
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6. Transformation law

The aim of this part is to prove the transformation law in the c-holomorphic
case. Assume, as earlier, that A is a purely k-dimensional analytic set in an open
set Ω⊂Cm.

Theorem 6.1. Assume that a, f∈Oc(A) are such that neither of them van-
ishes identically on any irreducible component of A. Then

Res
[ ·
f

]
A

= a Res
[ ·
af

]
A

.

Proof. On the left-hand side of the required equality we have by definition

Res
[
ϕ

f

]
A

:= Res
[
ϕ(z)
w

]
Γf

, ϕ∈D(k,k−1)(Ω), (z, w)∈Ω×C,(L)

while on the right-hand side

a Res
[

ϕ

af

]
A

:= Res
[
tϕ(z)∧dt

v, w

]
Γ

, ϕ∈D(k,k−1)(Ω),(R)

where Γ denotes the graph of the c-holomorphic mapping

h : C×A	 (t, z) 
−! (t−a(z), a(z)f(z))∈Cv×Cw.

Take now the mapping

Ξ: C×Ω×C×C	 (t, z, v, w) 
−! (t, z, t−v, vw)∈C×Ω×C×C

whose Jacobian is equal to −v. Thus Ξ is a biholomorphism when restricted to
the open set C×(Ω\a−1(0))×C∗×C. Note that we may restrict the approximating
integrals defining (L) and (R) to graphs taken over the set Reg A\a−1(0) since we
forget only zero-measure sets. Keeping the same notation for the restricted graphs
we have

Ξ(C×Γ(a,f))= Γ(t−a,af) = Γ.

Applying now the change of variables formula to (R) (to its approximating integrals,
actually) we will obtain

Res
[
tϕ(z)∧dt

v, w

]
Γ

= Res
[
tϕ(z)∧dt

t−h, vw

]
C×Γ(a,f)

= Res
[
vϕ(z)
vw

]
Γ(a,f)

,

the latter being a consequence of Fubini’s theorem and Cauchy’s formula.
By the restricted holomorphic transformation law (see [BVY]),

Res
[
vϕ(z)
vw

]
Γ(a,f)

= Res
[
ϕ(z)
w

]
Γ(a,f)

.
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Since in the integrals from the right-hand side the variable v is now a ‘phantom’
one, we may forget it getting just (L) as required. �

We turn now to proving a more general version of this theorem. To achieve
this aim we shall need the following lemma proposed by A. Yger.

Lemma 6.2. Assume that f =(f1, ..., fn)∈Oc(A, Cn) is such that f−1(0) has
pure dimension k−n. Let a1, ..., al∈Oc(A). Then for any polynomial Q∈C[t1, ..., tl]
we have the following equality between currents of type (m−k, m−k+n): for any
test form ϕ(z),

Q(a1, ..., al)Res
[

ϕ(z)
f1, ..., fn

]
A

= Res
[
Q(t1, ..., tl)ϕ(z)∧dt1∧...∧dtl

v1, ..., vl, w1, ..., wn

]
Γ

,

where Γ is the graph of γ(t1, ..., tl, z)=(t1−a1(z), ..., tl−al(z), f(z)) defined and c-
holomorphic on C

l
t×A with values in C

l
v×C

n
w.

Proof. By definition, for ϕ∈D(k,k−n)(Ω),

Q(a1, ..., al)Res
[

ϕ(z)
f1, ..., fn

]
A

= Res
[

t0ϕ(z)∧dt0
w0, w1, ..., wn

]
Λ

,

where Λ is the graph of (t0, z) 
!(t0−Q(a1(z), ..., al(z)), f(z)). To prove the asser-
tion we will compute, in two different ways, the residue

t(ϕ) := Res
[
Q(t1, ..., tl)ϕ(z)∧dt1∧...∧dtl∧dt0

v1, ..., vl, w0, w1, ..., wn

]
Υ

,

where Υ is the graph of

(t0, t1, ..., tl, z) 
−! (t1−a1(z), ..., tl−al(z), t0−Q(a1(z), ..., al(z)), f(z)).

Put a(z)=(a1(z), ..., al(z)) and dt:=dt1∧...∧dtl. The integrals appearing in the
definition of t(ϕ) are computed over the set

E := {(t0, t, z, v, w0, w) : v = t−a(z), w0 = t0−Q(a(z)), w = f(z),

|v0|2 = η0, |vι|2 = ηι, |w0|2 = ε0 and |wj |2 = εj}
(given by an admissible path η0�...�ηn�ε0�...�εn), and are of the form

∫
E

Q(t)ϕ(z)∧dt∧dt0
v1...vlw1...wnw0

=
∫

E1

(∫
Ez

2

dt0
t0−Q(a(z))

)
Q(t)ϕ(z)∧dt

v1...vlw1...wn

= 2πi

∫
E1

Q(t)ϕ(z)∧dt

v1...vlw1...wn
,
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where E1 :={(t, z, v, w):v=t−a(z), w=f(z), |vι|2=ηι and |wj |2=εj} and on Ez
2 :=

{(t0, w0):w0=t0−Q(a(z)) and |w0|2=ε0} we computed the index (independent
of z). Therefore

t(ϕ)= Res
[
Q(t1, ..., tl)ϕ(z)dt1∧...∧dtl

v1, ..., vl, w1, ..., wn

]
Γ

.

Let us find another expression for this current. First observe that in the expression of
t(ϕ) we may write t0 instead of Q(t1, ..., tl). Indeed, on Υ we have t0−w0=Q(a(z))
and t−w=a(z). Remember that the residue is annihilated by the ideal of the
functions defining it. Thus, since Q is a polynomial, we may first replace the factor
Q(t) in t(ϕ) by Q(t−w). This in turn is equal to t0−w0 on Υ and since w0 is in
the ideal, we get the assertion.

If we repeat now the above argument extracting this time, by means of Fubini’s
theorem (Q(t1, ..., tl) does not bother us any longer), all the integrals∫

{(tj ,vj):vj=tj−aj(z),|vj|2=ηj}

dtj
tj−aj(z)

= 2πi,

then we get

t(ϕ)= Res
[

t0ϕ(z)∧dt0
w0, w1, ..., wn

]
Λ

.

This completes the proof. �

Theorem 6.3. Assume that f1, ..., fn, g1, ..., gn∈Oc(A) are such that⋂n
j=1 f−1

j (0) and
⋂n

j=1 g−1
j (0) have pure dimension k−n. If there exist functions

aιj∈Oc(A), ι, j=1, ..., n such that gj=
∑n

ι=1 aιjfι for all j, then

Res
[

ϕ

f1, ..., fn

]
A

= ∆ Res
[

ϕ

g1, ..., gn

]
A

, ϕ∈D(k,k−n)(Ω),

where ∆:=det[aιj]ι,j∈Oc(A).

Proof. For the sake of simplicity we shall restrict ourselves to the case n=2,
the main idea being the same in the general case. Due to the preceding lemma we
only need to show that for any ϕ∈D(k,k−2)(Ω),

Res
[

ϕ

f1, f2

]
A

= Res
[
(t11t22−t12t21)ϕ(z)∧dt11∧dt12∧dt21∧dt22

v11, v12, v21, v22, w1, w2

]
Γ

,

where Γ is the graph of γ(t11, t12, t21, t22, z)=((tιj−aιj(z))ιj, g1(z), g2(z)).
In the integrals approximating the residue on the right-hand side we change

the variables in the following way: we leave the zj, the tιj and the vιj untouched
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changing only

(w1, w2) to (u1, u2) such that

{
w1=u1t11+u2t12,

w2=u1t21+u2t22.

The integrals become (we forget only a zero-measure set not affecting them)
∫

E

(t11t22−t12t21)ϕ(z)∧dt11∧dt12∧dt21∧dt22
v11v12v21v22(u1t11+u2t12)(u1t21+u2t22)

computed over

E := {((tιj)ιj , z, (vιj)ιj , u1, u2) : |vιj |2 = ειj, |u1t11+u2t12|2 = ε1, and

|u1t21+u2t22|2 = ε2}.
Note that this is a subset of the graph Γ′ of ((tιj−aιj(z))ιj , f1(z), f2(z)). Applying
now the restricted transformation law to the residue obtained in this way, we have

Res
[

(t11t22−t12t21)ϕ(z)∧dt11∧dt12∧dt21∧dt22
v11, v12, v21, v22, (u1t11+u2t12), (u1t21+u2t22)

]
Γ′

= Res
[
ϕ(z)∧dt11∧dt12∧dt21∧dt22

v11, v12, v21, v22, u1, u2

]
Γ′

.

Finally, applying Fubini’s theorem and the index formula we easily check (as in the
previous theorem) that the latter is equal to

Res
[

ϕ(z)
u1, u2

]
Γ(f1 ,f2)

= Res
[

ϕ(z)
f1, f2

]
A

which ends the proof. �

Final remark. The idea of using the graph and the coordinate functions on it to
compute the residue could be perhaps useful when looking for a desingularization-
free proof of the existence of the Coleff–Herrera residue currents. At least, the
approach involving the graphs carries over the problem of desingularization from
functions to sets. This may turn out to be simpler in use, in some sense.
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[De] Demailly, J. P., Courants positifs et théorie de l’intersection, Gaz. Math. 53 (1992),
131–159.

[D] Denkowski, M. P., A note on the Nullstellensatz for c-holomorphic functions, Ann.
Polon. Math. 90 (2007), 219–228.

[Dr] Draper, R. N., Intersection theory in analytic geometry, Math. Ann. 180 (1969),
175–204.

[HP] Henkin, G. and Passare, M., Abelian differentials on singular varieties and varia-
tions on a theorem of Lie–Griffiths, Invent. Math. 135 (1999), 297–328.

[R] Remmert, R., Projektionen analytischer Mengen, Math. Ann. 130 (1956), 410–441.
[S] Shcherbina, N., Pluripolar graphs are holomorphic, Acta Math. 194 (2005), 203–

216.
[T] Tsikh, A. K., Multidimensional Residues and their Applications, Translations of

Mathematical Monographs 103, Amer. Math. Soc., Providence, RI, 1992.
[TY] Tsikh, A. and Yger, A., Residue currents, J. Math. Sci. (N. Y.) 120:6 (2004),

1916–1971.
[W] Whitney, H., Complex Analytic Varieties, Addison-Wesley, Reading–London–Don

Mills, 1972.

Maciej P. Denkowski
LaBAG
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