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General Hausdorff functions, and the notion
of one-sided measure and dimension

Claude Tricot

Abstract. The main facts about Hausdorff and packing measures and dimensions of a Borel

set E are revisited, using determining set functions φα : BE!(0,∞), where BE is the family of

all balls centred on E and α is a real parameter. With mild assumptions on φα, we verify that

the main density results hold, as well as the basic properties of the corresponding box dimension.

Given a bounded open set V in R
D, these notions are used to introduce the interior and exterior

measures and dimensions of any Borel subset of ∂V . We stress that these dimensions depend on

the choice of φα. Two determining functions are considered, φα(B)=VolD(B∩V ) diam(B)α−D

and φα(B)=VolD(B∩V )α/D, where VolD denotes the D-dimensional volume.

1. Introduction

Hausdorff and packing measures were first intended to generalize the notions of
length, area, volume etc. In his 1919 paper [4], F. Hausdorff uses general determin-
ing functions (also called Hausdorff, gauge or constituent functions) φ : R

+!R
+ to

define the Hausdorff measure in a metric space as

Hφ(E)= lim
ε!0

inf
{∑
i≥0

φ(diam(Ei)) :E⊂
⋃
i≥0

Ei and diam(Ei)≤ ε

}
.(1)

Let id be the identity function, so that idα(t)=tα for all t∈R and α>0. The scale of
functions Φ={idα :α>0} is used to obtain a large family of Hausdorff measures Hidα

,
rather denoted by Hα for simplicity. Up to some constants, H1 gives the proper
definition for the notion of length, H2 for the notion of area etc. For many references
concerning the classical theory, see [2].

The Hausdorff dimension of a set E is introduced as a critical exponent:
dim(E)=inf{α:Hα(E)=0}. The dimension is a real number in this context, but
a different choice of Φ could lead to a different notion of dimension, as pointed out
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by Hausdorff himself in his seminal paper. In general the dimension is a Dedekind
cut in a scale of functions.

The value of Hα(E) is 0 when α>dim(E), +∞ when α<dim(E). When Hα(E)
is non-zero and finite, its exact value is known only for very particular sets like curves
of finite length or symmetric Cantor sets. As shown by A. S. Besicovitch, a finite
measure μ such that μ(E)>0 may help to get estimations of Hα(E), by using the
μ-densities μ(B(x, ε))/εα, where B(x, ε) denotes the ball of centre x and radius ε.
A typical result [6] stands as follows: If a and b are such that

a≤ lim sup
ε!0

μ(B(x, ε))
(2ε)α

≤ b

for all x∈E, then a≤Hα(E)≤2b. A better result may be obtained by changing
somewhat the definition of Hα. If we consider only covers of E by centred balls,
the centred covering measure cα(E) is obtained through a two-stages operation [9].
Then, with the same assumptions, the inequality a≤cα(E)≤b is always true.

The corresponding result for the dimension is often attributed to P. Billings-
ley [1]: Let μ be a finite measure such that μ(E)>0. If there exists α and β such
that

α≤ lim inf
ε!0

logμ(B(x, ε))
log ε

≤ β

for all x∈E, then dim(E)∈[α, β].
Giving a sense to the above formulas after exchanging lim inf and lim sup is

possible, at the condition of introducing new notions of measure and dimension.
Using the scale Φ={idα :α>0}, this was done in [12] for the dimension and in [11]
and [9] for the measures, by introducing the packing measures and dimension. In
the present paper we will give a detailed account of these notions, in a more general
framework.

The above density results have been extended to functions φ : (0,∞)!(0,∞)
which are increasing, continuous at 0, and such that φ(2ε)/φ(ε) is bounded [9].
More generally, φ(diam(Ei)) may be replaced by φ(Ei), where φ is a specific set
function: See for example [7], where a multifractal analysis of measures uses φ(Ei)=
diam(Ei)tν(Ei)q for some prescribed measure ν. In [8], φ is a function defined on
balls centred on the set E under analysis. This is also our point of view in the
present paper.

Let D≥1 and VolD be the D-dimensional volume in R
D. For any Borel set E,

let BE be the family of closed balls centred on E. In Section 2 we use functions
φ : BE!(0,∞) to define covering and packing Borel measures Hφ and pφ. We
get corresponding results involving the μ-densities and prove the usual inequality
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Hφ≤pφ. For any Borel set E, replacing the measure μ by the restriction to E of
the measures Hφ and pφ allows us to state local density results in Section 3, giving
rise to a notion of rectifiability. Until this point, there is no assumption whatsoever
made on the determining function φ. We introduce parameterized scales of functions
Φ={φα :α∈R} in Section 4 to define the related covering and packing dimensions,
dimΦ and DimΦ. Section 5 deals with the corresponding box dimension. With
the help of mild assumptions on functions φα, we introduce a pre-measure and
show that the corresponding critical index ΔΦ verifies some of the fundamental
properties of the usual box dimension, for example ΔΦ(E)=ΔΦ(E). We investigate
the particular case φα(B)=ν(B) diam(B)α−D, where ν is a finite, Borel measure.
If E(ε) is the Minkowski sausage (set of points at a distance ≤ε from E), we show
that ΔΦ(E)=lim supε!∞(D−log ν(E(ε)))/ log ε.

Section 6 deals with the main purpose of this paper: defining lateral or one-
sided measures and dimensions on both sides of a closed curve. This has already
been done for the box-counting dimension [15] but for the Hausdorff dimension these
notions seem to be new. More generally, being given an open set V and E⊂∂V ,
we perform a fractal analysis of E relative to V , by using determining functions
φ : BE!(0,∞) such that φ(B) depends on B∩V . There are several ways to do
this. We pay special attention to the function

φα(B)=
VolD(B∩V )

VolD(B)
diam(B)α.

It involves a notion of covering and packing interior measures (from the results of
Section 2), and interior dimensions (from Section 4) denoted by dimint and Dimint.
Being given a finite measure on E such that μ(E)>0, we can establish relationships
between those dimensions and the quantities

logμ(B)
log(diam(B))

+D− log VolD(B∩V )
log(diam(B))

.

It is worth pointing out that the following characteristic quantity

−D+
log VolD(B∩V )
log(diam(B))

has already been considered in [5] to perform a multifractal analysis of ∂V , seen
from the interior of V .

Considering the interior of the complement of V , it is also possible to define
exterior dimensions dimext and Dimext. Relationships between these dimension are
obtained, namely: If VolD(∂V )=0 and E⊂∂V , then

max{dimint(E), dimext(E)}≤ dim(E)≤Dim(E)= max{Dimint(E),Dimext(E)}.
(2)
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Some examples are studied. An interesting feature of this determining function φ

is that the interior dimension of a singleton depends on the shape of ∂V , and may
take all values between −∞ and 0. We also construct an open set V in R, then
in R

2, such that the first inequality in (2) is strict. Finally we point out in Section 7
that this is not the only approach to a one-sided fractal analysis: other determining
functions might be used, giving other results.

2. φ-measures

Being given a set E in R
D, a net over E is a family F of sets such that

every point in E belongs to a sequence En of F such that diam(En)!0. In other
words, F is a net if, for every ε>0, one can extract from F a cover of E by sets
of diameter ≤ε. It is sometimes called a Vitali covering, or a fine covering. The
family of all closed centred balls BE is a net.

A centred net over E will be a subfamily F of BE such that every x∈E is the
centre of a sequence of balls in F whose diameters tend to 0.

For every set family F ,
⋃F denotes the union of the sets in F , as usual.

We will make use of the Besicovitch lemma, in the two following forms:

Lemma 2.1. Let E be a bounded set, and F⊂BE be such that every x∈E is
the centre of some ball in F . From F one can extract a number K≤6D of families
R1, ...,RK such that

⋃K
n=1 Rn covers E and every Rn consists of disjoint centred

balls.

This result implies the following consequence:

Lemma 2.2. Let E be a Borel set and μ be a Borel measure such that μ(E)<
+∞. From every centred net F over E we can extract a family R, consisting of
disjoint balls, such that μ(E\⋃R)=0.

Let us recall that a set function F is subadditive if F (E1∪E2)≤F (E1)+F (E2),
and σ-subadditive if for any sequence {En}n≥0, F (

⋃
n≥0En)≤

∑
n≥0 F (En).

Let φ be an application defined on BE , with values in (0,+∞).

2.1. φ-covering measures

For every ε>0, let

Cφε (E)= inf
{∑
i≥0

φ(Bi) :Bi ∈BE , E⊂
⋃
i≥0

Bi and diam(Bi)≤ ε

}
.(3)
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It is a decreasing function of ε, with values in [0,+∞]. As a set function it is
σ-subadditive. The quantity

Cφ(E)= lim
ε!0

Cφε (E)(4)

is defined like the Hausdorff measure. As a set function, Cφ is σ-subadditive, but
not increasing. Hence it is not a measure. To change it into an increasing function,
it is necessary to perform the following operation:

cφ(E)= sup{Cφ(F ) :F is Borel and F ⊂E}.(5)

This new set function is increasing and σ-subadditive. Moreover we can set
cφ(∅)=0. Then cφ is an outer measure. Since it is also metric, cφ is a Borel
measure, called the centred φ-covering measure [9]. The next two results will be
helpful to establish a density theorem for cφ.

Proposition 2.3. Let μ be a Borel measure and F be a centred net over E.
Let us assume that

φ(B)≤μ(B) for all B ∈F .
Then cφ(E)≤μ(E).

Proof. Suppose that μ(E)<∞. Let ε>0, and for every open V , G(V, ε)=
{B∈F :diam(B)≤ε and B⊂V }.

(a) Since E is Borel, there exists an open set VE such that E⊂VE and μ(VE)≤
μ(E)+ε. The family G(VE , ε) is a centred net over E. Using Lemma 2.2, we can ex-
tract from G(VE , ε) a sequence {Bi}i≥0 of disjoint balls such that μ(E\⋃

i≥0 Bi)=0.
Therefore ∑

i≥0

φ(Bi)≤μ(VE)≤μ(E)+ε.

(b) Let F be a Borel set in E. There exists an open set VF such that F⊂VF
and μ(VF )≤μ(F )+ε. Using Lemma 2.1, one can extract from G(VF , ε) a number K
of families R1, ...,RK such that Rn is made up with disjoint balls and F⊂⋃K

n=1 Rn.
For every n, ∑

{φ(B) :B ∈Rn}≤μ(VF )≤μ(F )+ε,

so that
∑{φ(B):B∈⋃K

n=1 Rn}≤K(μ(F )+ε). Applying this to F=E\⋃
i≥0 Bi, we

get a cover
⋃K
n=1 Rn of E\⋃

i≥0 Bi such that

∑{
φ(B) :B ∈

K⋃
n=1

Rn

}
≤Kε.
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(c) Since {Bi}i≥0∪(
⋃K
n=1 Rn) is an ε-covering of E,

Cφε (E)≤
∑
i≥0

φ(Bi)+
∑{

φ(B) :B ∈
K⋃
n=1

Rn

}
≤μ(E)+(K+1)ε.

Letting ε!0, we get Cφ(E)≤μ(E). This result is true for any Borel subset G of E:

Cφ(G)≤μ(G)≤μ(E).

Taking the supremum over all G⊂E gives cφ(E)≤μ(E). �

Here is a result in the other direction:

Proposition 2.4. Let ε0>0, Fε0 be the family of all balls centred on E such
that diam(B)≤ε0, and μ be a Borel measure such that

φ(B)≥μ(B) for all B ∈Fε0 .
Then cφ(E)≥μ(E).

Proof. Let ε∈(0, ε0]. For every cover {Bi}i≥0 of E by balls centred on E such
that diam(B)≤ε, ∑

i≥0

φ(Bi)≥
∑
i≥0

μ(Bi)≥μ(E),

so that Cφε (E)≥μ(E). Letting ε!0, shows that Cφ(E)≥μ(E). Since cφ≥Cφ we
get the desired result. �

Now we can set up the main density result. It allows us to give estimates of
cφ(E) with the help of the μ-densities μ(B)/φ(B).

The usual conventions hold: for every a>0, 0/a=0 and a/0=+∞. The cases
of indetermination are 0

0 and +∞/+∞.

Theorem 2.5. Let E be a Borel set and μ be a Borel measure. Then

inf
x∈E

lim sup
ε!0

μ(B(x, ε))
φ(B(x, ε))

≤ μ(E)
cφ(E)

≤ sup
x∈E

lim sup
ε!0

μ(B(x, ε))
φ(B(x, ε))

,(6)

except in the cases of indetermination.

Proof. (a) Let D1 be the left-hand side of (6). Assume that D1>0. Let 0<
A1<D1, and F={B∈BE :A1φ(B)≤μ(B)}. The family F is a centred net over E.
Let μ∗=(1/A1)μ. Since φ(B)≤μ∗(B) for all B∈F , Proposition 2.3 gives cφ(E)≤
μ∗(E), so that A1cφ(E)≤μ(E). Letting A1 tend to D1 gives D1cφ(E)≤μ(E). This
may be written as D1≤μ(E)/cφ(E), except in the indetermination cases.
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(b) Let D2 be the right-hand side of (6). Assume that D2<∞. Let A2>D2,
and

Ek =
{
x∈E : ε≤ 1

k
⇒μ(B(x, ε))≤A2φ(B(x, ε))

}
,

so that E=
⋃
k≥1Ek. Proposition 2.4 implies that A2cφ(Ek)≥μ(Ek). Since μ and

cφ are Borel measures and Ek is an increasing sequence of sets, A2cφ(E)≥μ(E). To
conclude, let A2 tend to D2. �

2.2. φ-packing measures

Let E be a bounded Borel set. For every ε>0, {Bi}i≥0 is an ε-packing of E if
Bi∈BE , the Bi are disjoint, and diam(Bi)≤ε. Let

Pφε (E)= sup
{∑
i≥0

φ(Bi) : {Bi}i≥0 is an ε-packing of E
}
.(7)

This set function is increasing and subadditive. As a function of ε it increases, and
we can set the following pre-measure

Pφ(E)= lim
ε!0

Pφε (E).(8)

It is also increasing and subadditive, but not σ-subadditive. We get the φ-packing
measure through the standard operation [12], [10],

pφ(E)= inf
{∑
n≥0

Pφ(En) :En are Borel sets with E=
⋃
n≥0

En

}
.(9)

In particular, pφ≤Pφ. Like Hφ and cφ, pφ is a metric, outer measure, and therefore
a Borel measure. The main results relating the value of pφ(E) to μ(E), for some
measure μ, are very similar to those already proved for cφ. We begin with two
propositions and get a density theorem.

In the following proofs, it is necessary to assume that E is bounded since the
pre-measure Pφ is used; but all results, as well as (9), may be extended to unbounded
sets E without change.

Proposition 2.6. Let ε0>0, Fε0 be the family of all balls centred on E such
that diam(B)≤ε0, and μ be a Borel measure such that

φ(B)≤μ(B) for all B ∈Fε0 .
Then pφ(E)≤μ(E).
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Proof. Assume that μ(E)<∞. Let V be an open set such that E⊂V . Let N
be an integer such that N≥1/ε0. For every n≥N , let

En =
{
x∈E :B

(
x,

1
n

)
⊂V

}
.

The sequence {En}n≥N is increasing. If ε≤1/n and x∈En, then φ(B(x, ε))≤
μ(B(x, ε)). For every ε-packing {Bi}i≥0 of En, we get

∑
i≥0

φ(Bi)≤
∑
i≥0

μ(Bi)≤μ(V ).

Therefore Pφε (En)≤μ(V ). Letting ε!0 gives that Pφ(En)≤μ(V ). We deduce that
pφ(En)≤μ(V ) for all n≥N , and since E=

⋃
n≥0En, pφ(E)≤μ(V ). Since E is Borel,

we can choose V such that μ(V ) is as close to μ(E) as we wish. Therefore pφ(E)≤
μ(E). �

Proposition 2.7. Let μ be a Borel measure and F be a centred net over E.
Let us assume that

μ(B)≤φ(B) for all B ∈F .
Then pφ(E)≥μ(E).

Proof. Let ε>0, and Gε={B∈F :diam(B)≤ε}. Using Lemma 2.2, from Gε we
can extract a disjoint family {Bi}i≥0 such that μ(E)=μ(E∩(

⋃
i≥0 Bi)). Therefore

μ(E)=
∑
i≥0 μ(Bi)≤

∑
i≥0 φ(Bi)≤Pφε (E). Letting ε!0 gives that μ(E)≤Pφ(E).

This inequality is also true for any Borel subset of E. If E=
⋃
k≥0 Ek, then

μ(E)≤∑
k≥0 μ(Ek)≤

∑
k≥0 Pφ(Ek). Taking the infimum over all Borel covers of E

gives μ(E)≤pφ(E). �

Propositions 2.6 and 2.7 imply the following density theorem, symmetrical to
Theorem 2.5:

Theorem 2.8. Let E be a Borel set, μ be a Borel measure. Then

inf
x∈E

lim inf
ε!0

μ(B(x, ε))
φ(B(x, ε))

≤ μ(E)
pφ(E)

≤ sup
x∈E

lim inf
ε!0

μ(B(x, ε))
φ(B(x, ε))

,(10)

except in the cases of indetermination.

Proof. (a) Let D1 be the left-hand side of (10). Assume that D1>0. Let
0<A1<D1, and

Ek =
{
x∈E : ε≤ 1

k
⇒A1φ(B(x, ε))≤μ(B(x, ε))

}
.
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Proposition 2.6 implies that A1pφ(Ek)≤μ(Ek). Since E=
⋃
k≥1 Ek and Ek is in-

creasing, A1pφ(E)≤μ(E). Then let A1 tend to D1.
(b) Let D2 be the right-hand side of (10). Assume that D2<∞. Let A2>D2,

and F={B∈BE :μ(B)≤A2φ(B)}. The family F is a centred net over E. Prop-
osition 2.7 gives μ(E)≤A2pφ(E). Then let A2 tend to D2. �

The relationships between the measures cφ and pφ are as usual:

Proposition 2.9. For any Borel set E and φ : BE!(0,∞), the inequality
cφ(E)≤pφ(E) holds.

Proof. Let ε>0, and Fε={B∈BE :diam(B)≤ε}. Since cφ is a Borel measure,
we may use Lemma 2.2 to extract a disjoint family {Bi}i≥0 from Fε such that
cφ(E\⋃

i≥0 Bi)=0. The set function Cφε is subadditive, so that

Cφε (E)≤Cφε

(
E∩

⋃
i≥0

Bi

)
+Cφε

(
E\

⋃
i≥0

Bi

)
.

From the general inequalities Cφε≤Cφ≤cφ, we deduce that Cφε (E\⋃
i≥0 Bi)=0. And

Cφε (E∩(
⋃
i≥0Bi))≤

∑
i≥0 φ(Bi)≤Pφε (E), so that

Cφε (E)≤Pφε (E).

Letting ε!0 gives that Cφ(E)≤Pφ(E).
For any F⊂E we get Cφ(F )≤Pφ(F )≤Pφ(E), so that cφ(E)≤Pφ(E). If E=⋃

n≥0En, then cφ(E)≤∑
n≥0 cφ(En)≤∑

n≥0 Pφ(En). Therefore cφ(E)≤pφ(E). �

3. Local density inequalities

Local density inequalities are direct applications of the density theorems, where
the measure μ is replaced by the Borel measures cφ or pφ restricted to E. Without
looking for exhaustiveness we present here a few basic results. Again, our statements
do not require any assumption on the determining function φ : BE!(0,∞).

Let E be a Borel set in R
D. We make use of the classical notations

dφc (x,E) = lim inf
ε!0

cφ(B(x, ε)∩E)
φ(B(x, ε))

, d
φ

c (x,E) = lim sup
ε!0

cφ(B(x, ε)∩E)
φ(B(x, ε))

,

dφp(x,E) = lim inf
ε!0

pφ(B(x, ε)∩E)
φ(B(x, ε))

, d
φ

p (x,E) = lim sup
ε!0

pφ(B(x, ε)∩E)
φ(B(x, ε))

.
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Lemma 3.1. Suppose that cφ(E)<∞. Let F be a Borel subset of E.
If cφ(F )>0, then

inf
x∈F

d
φ

c (x,E)≤ 1≤ sup
x∈F

d
φ

c (x,E).(11)

If pφ(F )>0, then

inf
x∈F

dφc (x,E)≤ cφ(F )
pφ(F )

≤ sup
x∈F

dφc (x,E).(12)

Proof. For any Borel set G, let μ(G)=cφ(G∩E). Then μ is a Borel measure,
such that

d
φ

c (x,E)= lim sup
ε!0

μ(B(x, ε))
φ(B(x, ε))

,

and μ(F )=cφ(F ). A direct application of (6) gives (11). The condition cφ(F )>0
ensures that the indetermination cases are avoided. Also,

dφc (x,E)= lim inf
ε!0

μ(B(x, ε))
φ(B(x, ε))

,

and a direct application of (10) gives (12). �

Equations (6) and (10) may also be used to obtain the symmetric results:

Lemma 3.2. Suppose that pφ(E)<∞. Let F be a Borel subset of E such that
pφ(F )>0. Then

inf
x∈F

d
φ

p (x,E)≤ pφ(F )
cφ(F )

≤ sup
x∈F

d
φ

p (x,E),(13)

inf
x∈F

dφp(x,E)≤ 1≤ sup
x∈F

dφp(x,E).(14)

Corollary 3.3. If cφ(E)<∞, then d
φ

c (x,E)=1 cφ-almost everywhere, that is,
for all x∈E except on a subset F such that cφ(F )=0.

Proof. Let

Fk =
{
x∈E : d

φ

c (x,E)≤ 1− 1
k

}
and Gk =

{
x∈E : d

φ

c (x,E)≥ 1+
1
k

}
.

If cφ(Fk)>0, then (11) implies that 1≤1−1/k. This is impossible, so that
cφ(Fk)=0.

If cφ(Gk)>0, then (11) implies that 1≥1+1/k. This is impossible, so that
cφ(Gk)=0.
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Taking countable unions of Fk and Gk, we deduce that

cφ({x∈E : d
φ

c (x,E)< 1})= cφ({x∈E : d
φ

c (x,E)> 1})= 0. �

Similar arguments and (14) are used for the following consequence:

Corollary 3.4. If pφ(E)<∞, then dφp(x,E)=1 pφ-almost everywhere.

The following results deal with the notion of regularity:

Corollary 3.5. If pφ(E)<∞, then the following are equivalent :
(i) cφ(E)=pφ(E);
(ii) dφc (x,E)=d

φ

c (x,E)=1 pφ-a.e.;
(iii) dφp(x,E)=d

φ

p (x,E)=1 pφ-a.e.

Sets that fulfill these conditions may be called strongly φ-regular.

Proof. (i)⇒(ii) and (iii) For any Borel set F⊂E, cφ(F )≤pφ(F ). If cφ(E)=
pφ(E), then cφ(F )=pφ(F ). This implies that cφ-a.e. is equivalent to pφ-a.e. in this
case.

Let Fk={x∈E :dφc (x,E)≤1−1/k}. If pφ(Fk)>0, then (12) implies that 1≤
1−1/k. This is impossible, so that pφ(Fk)=0 for all k, or in other words dφc (x,E)≥1
pφ-a.e.

Similarly, define Gk={x∈E :d
φ

p (x,E)≥1+1/k} and use (13) to show that

pφ(Gk)=0 for all k, or in other words d
φ

p (x,E)≤1 pφ-a.e.
With Corollaries 3.3 and 3.4, this suffices to prove (ii) and (iii).
(ii)⇒(i) Let F={x∈E :dφc (x,E)≥1}. Equation (12) implies that cφ(F )≥pφ(F ),

hence cφ(F )=pφ(F ). By hypothesis, pφ(F )=pφ(E), so that pφ(E\F )=0 and
cφ(E\F )=0. Therefore cφ(F )=cφ(E). We conclude that cφ(E)=pφ(E).

(iii)⇒(i) This is shown by similar arguments, using (13). �

Let us give an application, among many others, which deals with the Cartesian
product of sets:

Proposition 3.6. Let D1≥1 and D2≥1. We assume that R
D1+D2 is endowed

with a metric which is the Cartesian product of the metrics in R
D1 and R

D2 , so
that for all ε>0, x∈R

D1 and y∈R
D2 , we have:

B((x, y), ε)=B(x, ε)×B(y, ε).

Let E be a Borel set of R
D1 , F be a Borel set of R

D2 , φ : BE!(0,+∞) and
ψ : BF!(0,+∞).

If cφ(E)<+∞ and cψ(F )<+∞, then

cφ(E)cψ(F )≤ cφ×ψ(E×F ).(15)
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Notice that φ×ψ is defined on BE×F , and that

(φ×ψ)(B((x, y), ε))=φ(B(x, ε))ψ(B(y, ε)).

Proof. Without loss of generality, we assume that cφ(E)>0 and cψ(F )>0. For
all Borel sets G1⊂R

D1 and G2⊂R
D2 , let μ(G1)=cφ(E∩G1) and ν(G2)=cψ(F ∩G2).

Then μ and ν are finite Borel measures. If G1⊂E and G2⊂F , then μ(G1)=cφ(G1),
ν(G2)=cψ(G2) and (μ×ν)(G1×G2)=cφ(G1)cψ(G2).

The inequalities

lim sup
ε!0

(μ×ν)(B((x, y), ε))
(φ×ψ)(B((x, y), ε))

≤ lim sup
ε!0

μ(B(x, ε))
φ(B(x, ε))

lim sup
ε!0

ν(B(y, ε))
ψ(B(y, ε))

are true for any (x, y)∈E×F .
From Corollary 3.3 there existE′⊂E and F ′⊂F such that μ(E)=μ(E′), ν(F )=

ν(F ′) and for all (x, y)∈E′×F ′, d
φ

c (x,E)=d
ψ

c (y, F )=1. Therefore for all such (x, y),

lim sup
ε!0

(μ×ν)(B((x, y), ε))
(φ×ψ)(B((x, y), ε))

≤ d
φ

c (x,E)d
ψ

c (y, F )≤ 1.

From (6) we deduce that (μ×ν)(E′×F ′)≤cφ×ψ(E′×F ′). Since (μ×ν)(E′×F ′)=
μ(E)ν(F )=cφ(E)cψ(F ) and cφ×ψ(E′×F ′)≤cφ×ψ(E×F ) we obtain the inequal-
ity (15). �

4. Related dimensions

Let E be a bounded Borel set in R
D. Let us call a scale of functions associated

with E a family Φ of determining functions φ : BE!(0,∞), such that for any φ1

and φ2 in Φ, only the three following cases can occur:
(a) φ1=φ2;
(b) for any x∈E, limε!0(φ1/φ2)(B(x, ε))=0;
(c) for any x∈E, limε!0(φ1/φ2)(B(x, ε))=+∞.
The measures cφ(E) and pφ(E) are significant only if φ belongs to such a scale.

Then we may hope to associate a notion of dimension with Φ. We choose to consider
families Φ={φα :α∈R} parameterized by a real number α. To be more specific, let
us consider throughout this paper the following type of determining functions:

Assumption 1. φα(B)=p(B)q(B)α, where p : BE!(0,∞), q : BE!(0,∞), and
if

f(ε)= sup{q(B) :B ∈BE and diam(B)≤ ε},
then limε!0 f(ε)=0.
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This property ensures that Φ={pqα:α∈R} is a scale of functions.

Notation. We will write cα instead of cφα for simplicity. Similarly, Cα, Pα and
pα replace Cφα , Pφα and pφα , respectively.

The classical theory deals with p=1 and q=diam, but we will consider other
scales Φ in the sequel.

Proposition 4.1. Let α<β.
If Cα(E)<∞, then Cβ(E)=0; if Cβ(E)>0, then Cα(E)=∞.
The same results hold for cα, Pα and pα.

Proof. For every ε>0 and B∈BE such that diam(B)≤ε, we have φα(B)≥
f(ε)α−βφβ(B). Therefore Cαε (E)≥f(ε)α−βCβε (E). Then let ε!0. �

Dimensions. We may therefore define the following dimensions:

dimΦ(E)= inf{α : cα(E)= 0};
ΔΦ(E)= inf{α : Pα(E)= 0};

DimΦ(E)= inf{α : pα(E)= 0}.
The properties of dimΦ, ΔΦ and DimΦ derive easily from those of the related

measures or pre-measures. In particular we have the following facts:
Since cα, Pα and pα are increasing set functions, dimΦ, ΔΦ and DimΦ are also

increasing set functions.
Since Pα is subadditive, ΔΦ is stable, that is

ΔΦ(E1∪E2)= max{ΔΦ(E1),ΔΦ(E2)}.(16)

Since cα and pα are σ-subadditive, dimΦ and DimΦ are σ-stable, in other words

dimΦ

( ⋃
n≥0

En

)
= sup{dimΦ(En)}, DimΦ

( ⋃
n≥0

En

)
= sup{DimΦ(En)}.(17)

This allows us to define dimΦ and Dimφ on unbounded sets as well.
Since cα(E)≤pα(E)≤Pα(E),

dimΦ(E)≤DimΦ(E)≤ΔΦ(E).(18)

From ΔΦ a direct definition of DimΦ may be derived:

Proposition 4.2. For any Borel set E, let

Δ̂Φ(E)= inf
{

sup ΔΦ(En) :En are bounded Borel sets, with E=
⋃
n≥0

En

}
.
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Then

Δ̂Φ(E)= DimΦ(E).(19)

Proof. Let En be a sequence of bounded sets covering E. Then

DimΦ(E)≤ sup
n≥0

DimΦ(En)≤ sup
n≥0

ΔΦ(En).

This gives DimΦ(E)≤Δ̂Φ(E).
For the other direction let α>DimΦ(E). Then pα(E)=0, and there exists

{En}n≥0 such that E=
⋃
n≥0En and

∑
n≥0 Pα(En)≤1. For every n, Pα(En)≤1, so

that ΔΦ(En)≤α. Therefore Δ̂Φ(E)≤α. �

As for the measures cα and pα, a Borel measure μ spread on E may help to
evaluate the value of the dimensions:

Theorem 4.3. Let μ be a finite or σ-finite Borel measure such that μ(E)>0,
and

αμ(B)=
logμ(B)−log p(B)

log q(B)
.

Then

inf
x∈E

lim inf
ε!0

αμ(B(x, ε))≤ dimΦ(E)≤ sup
x∈E

lim inf
ε!0

αμ(B(x, ε)),(20)

inf
x∈E

lim sup
ε!0

αμ(B(x, ε))≤DimΦ(E)≤ sup
x∈E

lim sup
ε!0

αμ(B(x, ε)).(21)

Proof. Without loss of generality, assume that μ(E)<∞.
For (20), we make use of (6). Let α1 be the left-hand side of (20), and assume

that α1>0. Let β∈(0, α1). For any x∈E,

lim inf
ε!0

αμ(B(x, ε))>β =⇒ lim sup
ε!0

μ(B(x, ε))
φβ(B(x, ε))

≤ 1.

The right inequality of (6) gives cβ(E)≥μ(E). Therefore dimΦ(E)≥β, so that
dimΦ(E)≥α1.

Similar arguments are used to obtain the right inequality of (20) from the left
inequality of (6). In the same way, (21) derives from (10). �

For further application, let us deal with the sum of two determining functions:

Proposition 4.4. Let p1 and p2 be two functions : BE!(0,∞), and q be as
above. We consider the function scales

Φ1 = {p1q
α :α∈R}, Φ2 = {p2q

α :α∈R} and Φ1 = {(p1+p2)qα :α∈R}.
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Then

max{dimΦ1(E), dimΦ2(E)}≤ dimΦ(E)≤DimΦ(E)= max{DimΦ1(E),DimΦ2(E)}.
(22)

Proof. It suffices to show that

DimΦ(E)≤max{DimΦ1(E),DimΦ2(E)}.
For any determining functions φ and ψ, the inequality Pφ+ψ≤Pφ+Pψ is obtained
through elementary arguments. This implies that

ΔΦ(E)≤max{ΔΦ1(E),ΔΦ2(E)}.
Let α>DimΦi(E) for i=1, 2. We can find a cover {Ei}i≥0 of E such that
sup ΔΦ1(Ei)<α, and a cover {Fj}j≥0 of E such that sup ΔΦ2(Fj)<α. Let Gij=
Ei∩Fj . Then {Gij}i,j≥0 is a cover of E, and for all i, j, ΔΦ1(Gij)<α and
ΔΦ2(Gij)<α. Therefore supi,j ΔΦ(Gij)≤α. This proves that DimΦ(E)≤α, and
gives the desired inequality. �

5. A special study of ΔΦ

The set function ΔΦ becomes the well-known box dimension when φα=
diamα [12]. Among important features of this dimension are

(i) its definition using balls of equal diameter;
(ii) the equality Δ(E)=Δ(E), where E is the closure of E.
Let φα(B)=p(B)q(B)α as before. With the help of some mild assumptions on

p and q we will be able to recover these properties.
The function f(ε) has been introduced in the last section. The following

strengthens Assumption 1:

Assumption 2. There exists two constants c0, α0>0 such that for all B∈BE,
f(ε)≤c0εα0 .

But we also need a few more conditions on p and q:

Assumption 3. Both functions p and q are weakly increasing, in the following
sense: There exists real constants a1 and a2 such that for all balls B and B′ of BE ,
B′⊂B, diam(B)≤2 diam(B′),

p(B′)≤ a1p(B) and q(B′)≤ a2q(B).

With φα=pqα, this inequality implies that

φα(B′)≤ a1a
α
2φα(B).(23)

From now on we will assume that Assumptions 2 and 3 are satisfied.
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5.1. Packing with equal balls

In this section E is bounded. The following set function is defined like Pαε , with
the only difference that the packings are made up with balls of equal diameter. Let

Qα
ε (E)= sup

{∑
i≥0

φα(Bi) :Bi ∈BE are disjoint and diam(Bi)= ε

}
.

As a function of ε, Qα does not need to be monotonous. Hence there is no limit as
ε!0 in general. Let

Qα(E)= lim sup
ε!0

Qα
ε (E).

The statement of Proposition 4.1 is still true for Q: If α<β, then

Qα(E)<∞ =⇒ Qβ(E)= 0 and Qβ(E)> 0 =⇒ Qα(E)=∞.

From that, we deduce the existence of a critical index, or dimension. We are willing
to show that this dimension is precisely ΔΦ.

The inequality Qα≤Pα is easily verified. But these two set functions are not
equivalent in general.

Proposition 5.1. Let α<β. If Pβ(E)>0, then Qα(E)=∞.

We need the following elementary lemma:

Lemma 5.2. Let {B(xi, ε)}i≥0 be a family of disjoint balls, and a≥1. There
exists an integer K1≤(2a+1)D such that the family {B(xi, aε)}i≥0 may be separated
into K1 families, each of them made up with disjoint balls.

Proof. For i 
=j, B(xi, aε)∩B(xj , aε) 
=∅⇔B(xj, ε)⊂B(xi, (2a+1)ε). The ball
B(xi, (2a+1)ε) cannot contain more than (2a+1)D disjoint balls of radius ε. Thus
B(xi, aε) cannot meet more than (2a+1)D balls B(xj , aε). A standard argument
achieves the proof. �

Proof of Proposition 5.1. It suffices to show that Qα(E)>0. Let η=β−α,
ε∈(0, 1), and a∈(0,Pβ(E)). There exists an ε-packing R={Bi}i≥0 of E such that∑

i≥0 φβ(Bi)≥a. For any non-negative integer k, let

Rk = {B ∈R : 2−k−1< diam(B)≤ 2−k}.
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When ε≤2−k−1, we have Rk=∅. The Rk are such that
⋃
k≥0 Rk=R, so that∑

k≥0

∑{φβ(B):B∈Rk}≥a. Let c0 and α0 be as in Assumption 2. From the
equality

a=
∑
k≥0

a(1−2−α0η)2−kα0η

we deduce the existence of an integer k0 such that∑
{φβ(B) :B ∈Rk0}≥ a(1−2−α0η)2−k0α0η.(24)

Let Cj=B(xj , εj) be the balls of Rk0 . Let C∗
j =B(xj , 2−k0−1) and C∗∗

j =B(xj , 2εj).
Since 2−k0−1<2εj≤2−k0, Cj⊂C∗

j ⊂C∗∗
j . As the Cj are disjoint, Lemma 5.2 implies

that for some integer K1≤5D, the family {C∗∗
j }j≥0 may be divided into K1 families

of disjoint balls. The same is true for the family {C∗
j }j≥0, so that

∑
j≥0

φα(C∗
j )≤K1Qα

2−k0 (E).(25)

For every j, φβ(C∗
j )≤f(2−k0)ηφα(C∗

j ). Using Assumption 2,

φβ(C∗
j )≤ cη02

−k0α0η φα(C∗
j ).

Since p and q are weakly increasing, (23) gives

φβ(Cj)≤ c12−k0α0ηφα(C∗
j )(26)

with c1=a1a
β
2 c
η
0 . Putting together (24) and (26) shows that

a(1−2−α0η)≤ 2k0α0η
∑
j≥0

φβ(Cj)≤ c1
∑
j≥0

φα(C∗
j ).

With (25) we obtain

Qα
2−k0 (E)≥ a(1−2−α0η)

c1K1
.

The right-hand side is strictly positive and does not depend on ε. Since 2−k0<4ε,
we deduce that lim supε!0 Qα

ε (E)>0. �

Corollary 5.3. ΔΦ(E)=inf{α:Qα(E)=0}.
Proof. If α>ΔΦ(E), then Pα(E)=0, so that Qα(E)=0.
If Qα(E)=0, then for all β>α, Pβ(E)=0, so that β≥ΔΦ(E). Therefore α≥

ΔΦ(E). �
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5.2. The dimension of E

The inequality ΔΦ(E)≤ΔΦ(E) is always true. But when Assumption 3 is
fulfilled, the converse inequality also holds. Let us first show a result on the pre-
measures.

Lemma 5.4. For every α, Qα(E)≤a1a
α
2 9DQα(E).

Proof. Assume that Qα(E)>0. Let ε>0 and 0<a<Qα
2ε(E). Let {xi}i≥0 be

a finite subset of E such that d(xi, xj)>2ε for every i 
=j, and
∑

i≥0 φα(B(xi, ε))>a.
Without loss of generality we assume that this sequence is maximal, in the sense
that for any x∈E, d(x, {xi}i≥0)≤2ε. The balls B(xi, ε) are disjoint, and E⊂⋃
i≥0 B(xi, 2ε).

For every i, let yi∈E be such that d(xi, yi)≤ε/2, so that

B
(
yi,

ε

2

)
⊂B(xi, ε)⊂B(yi, 2ε).

Letting b=a1a
α
2 , (23) implies that

φα(B(xi, ε))≤ bφα(B(yi, 2ε)).

Since the B(yi, ε/2) are disjoint, we make use of Lemma 5.2 to separate the family
{B(yi, 2ε)}i≥0 into K≤9D families made up with disjoint balls, so that

∑
i≥0

φα(B(yi, 2ε))≤ 9DQα
4ε(E).

Gathering all intermediary results we obtain

a<
∑
i≥0

φα(B(xi, ε))≤ b
∑
i≥0

φα(B(yi, 2ε))≤ b9DQα
4ε(E).

Let a tend to Qα
2ε(E) and then ε!0 to get the result. �

This implies directly that ΔΦ(E)≤ΔΦ(E), hence

Proposition 5.5. For any bounded Borel set E, ΔΦ(E)=ΔΦ(E).

As in [12], this result may be used to establish a relationship between ΔΦ(E)
and DimΦ(E) when E shows a homogeneous structure:

Corollary 5.6. Let E be compact and α∈R be such that for any open set V
meeting E, ΔΦ(E∩V )=α. Then

DimΦ(E)= ΔΦ(E)=α.
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Proof. It suffices to prove that Δ̂Φ(E)≥α. Let {En}n≥0 be a sequence of Borel
sets such that E=

⋃
n≥0En. Baire’s theorem implies that for some index N , EN is

somewhere dense in E: There exists an open set V such that EN∩V =E∩V . Then

α= ΔΦ(E∩V )= ΔΦ(EN∩V )≤ΔΦ(EN ).

Since ΔΦ(EN )=ΔΦ(EN ), we finally get α≤supn ΔΦ(En), and hence the required
result. �

5.3. A special case: φα(B)=ν(B) diam(B)α−D

Let ν be a σ-finite Borel measure. Letting p(B)=ν(B)/ diam(B)D and q(B)=
diam(B)α, it is easy to check that Assumptions 2 and 3 are verified. In particular,
if B′⊂B is such that diam(B)≤2 diam(B′), then

p(B′)=
ν(B′)

diam(B′)D
≤ 2D

ν(B)
diam(B)D

= 2Dp(B).

We may take a1=2D and a2=1.
An interesting case is ν=VolD, where φα(B)�diam(B)α. The correspond-

ing dimension is the classical box dimension Δ. Let E(ε)=
⋃{B(x, ε):x∈E}. We

know [12] that Δ satisfies the equality

Δ(E)= lim sup
ε!0

(
D− log VolD(E(ε))

log ε

)
.

Let us show that this result may be generalized.

Proposition 5.7. Let φα(B)=ν(B) diam(B)α−D. Then

ΔΦ(E)= lim sup
ε!0

(
D− log ν(E(ε))

log ε

)
.(27)

Proof. Denote by Δ′ the right-hand side. It may be written as

Δ′ = inf{α : εα−Dν(E(ε))! 0}.
(a) Let ε>0, and {xi}i be a finite subset of E such that d(xi, xj)>2ε if

i 
=j. Since the balls B(xi, ε) are disjoint,
∑
i≥0 ν(B(xi, ε))≤ν(E(ε)), so that∑

i≥0 φα(B(xi, ε))≤εα−Dν(E(ε)). Then Qα
2ε(E)≤εα−Dν(E(ε)). Letting ε!0 gives

Qα(E)≤ lim sup
ε!0

εα−Dν(E(ε)).(28)
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(b) On the other hand, it is possible to choose in E a subset {xi}i≥0 such that
d(xi, xj)>2ε, if i 
=j, and for any x∈E, d(x, {xi}i≥0)≤2ε. Let Bi=B(xi, 3ε). Then
E(ε)⊂⋃

i≥0 Bi and

ν(E(ε))≤
∑
i≥0

ν(Bi),

so that

εα−Dν(E(ε))≤
∑
i≥0

εα−Dν(Bi)= 6D−α∑
i≥0

φα(Bi).

The balls B(xi, ε) are disjoint: Using Lemma 5.2, we can divide {B(xi, 3ε)}i≥0 into
K≤7D families, each made up of disjoint balls. Therefore

∑
i≥0

φα(Bi)≤ 7DQα
3ε(E).

We deduce that εα−Dν(E(ε))≤7D6D−αQα
3ε(E). Letting ε!0 shows that

lim sup
ε!0

εα−Dν(E(ε))≤ 7D6D−αQα(E).(29)

(c) Equations (28) and (29) prove that the set function lim supε!0 ε
α−Dν(E(ε))

is a pre-measure equivalent to Qα. They have the same critical index. Therefore
Δ′=ΔΦ(E). �

Remark. The equality ΔΦ(E)=ΔΦ(E) is much easier to prove in this case, by
making use of Proposition 5.7. Indeed, it suffices to verify that E(ε)⊂E(2ε), so
that

εα−Dν(E(ε))≤ 2D−α(2ε)α−Dν(E(2ε)).

This gives directly ΔΦ(E)≤ΔΦ(E).

6. One-sided measures and dimensions

Let V be a bounded open set in R
D, with boundary ∂V such that VolD(∂V )=0.

Let W=R
D\V . From now on the notion of inside will refer to V ; the notion of

outside to the interior of the complement of V , which is W . Let us associate with V
the Hausdorff function

φα(B)= VolD(B∩V ) diam(B)α−D � VolD(B∩V )
VolD(B)

diam(V )α
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which belongs to the type studied in Section 5.3. It gives rise to a notion of α-in-
terior measure. Theorems 2.5 and 2.8 are valid, as well as the local density results
of Section 3. The family {φα}α∈R provides the interior dimensions dimint, Δint,
and Dimint. For E included in V they are equal to the classical dimensions. For E
in W we get the dimensions of an empty set, which may be granted the value −∞.
The interesting case deals with the subsets of ∂V . Let us point out that the notion
of interior box dimension Δint is known since a long time, see [3], [13], [14] and [15].
Following (27) it may be written as

Δint(E)= lim sup
ε!0

(
D− log VolD(E(ε)∩V )

log ε

)
.(30)

The inequalities

dimint(E)≤Dimint(E)≤Δint(E)

are always true.
We associate with W the Hausdorff function

ψα(B)= VolD(B∩W ) diam(B)α−D � VolD(B∩W )
VolD(B)

diam(V )α

which gives rise to the notion of the exterior dimensions dimext, Δext, and Dimext.
The exterior box dimension may be written as

Δext(E)= lim sup
ε!0

(
D− log VolD(E(ε)∩W )

log ε

)
.

The relation φα(B)+ψα(B)�diam(B)α implies that for any E⊂∂V ,

Δ(E)= max{Δint(E),Δext(E)},(31)

but Δint and Δext may take different values as shown in the quoted references. It
is possible to construct an open set V such that Δint(∂V )=1 and Δext(∂V )=2.

6.1. Main results

The interior and exterior Hausdorff and packing dimensions satisfy the follow-
ing relations (see (22)):

max{dimint(E), dimext(E)}≤ dim(E)≤Dim(E)= max{Dimint(E),Dimext(E)}.
(32)

Theorem 4.3 is rewritten as follows:
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Theorem 6.1. Let E be a Borel subset of V , μ be a finite or σ-finite Borel
measure such that μ(E)>0, and

αμ(B)=
logμ(B)

log diam(B)
+D− log VolD(B∩V )

log diam(B)
.

Then

inf
x∈E

lim inf
ε!0

αμ(B(x, ε))≤ dimint(E)≤ sup
x∈E

lim inf
ε!0

αμ(B(x, ε)),(33)

inf
x∈E

lim sup
ε!0

αμ(B(x, ε))≤Dimint(E)≤ sup
x∈E

lim sup
ε!0

αμ(B(x, ε)).(34)

The same results are true for the exterior dimensions, if we replace B∩V by
B∩W in the expression of αμ(B).

Let us mention that the quantity log VolD(B∩Ω)/ log diam(B)−D is used in [5]
to perform a multifractal analysis along the boundary of a domain Ω.

Symmetry. When a bounded open set V is such that for every x∈∂V and ε>0,

dimint(B(x, ε)∩∂V )= dimext(B(x, ε)∩∂V )= dim(B(x, ε)∩∂V ),

and the same holds for the dimensions Dim and Δ, then ∂V may be called laterally
symmetric. This is the case when ∂V is a C1 curve, or a self-similar curve in the
sense that ∂V is a finite union of self-similar arcs (like the well-known snowflake
curve). A sufficient condition for lateral symmetry is the following: There exists
constants c1 and c2 in (0, 1) such that for every x∈∂V and ε>0,

c1 VolD(B(x, ε)\V )≤VolD(B(x, ε)∩V )≤ c2 VolD(B(x, ε)\V ).

6.2. The interior dimension may be negative

In the classical theory the Hausdorff dimension belongs to [0, D]. This is not
so for the interior dimension. Depending on the shape of ∂V , the dimension of a set
E⊂∂V may take any negative value, or even the value −∞. Let us consider four
examples.

Example 1. Our set E is the single point x0=(0, 0) in R
2. Let α<0.

For all ε∈[0, 1], let f(ε)=ε1/(1−α), which is continuous and strictly increasing.
Let Γ1 be the graph of f on [0, 1], Γ2 be the polygonal curve with vertices (1, 1),
(0, 1) and x0, and Γ be the simple closed curve Γ1∪Γ2.

The interior of Γ is V . Since f(ε)≥ε, the area of B(x0, ε)∩V is equivalent to∫ ε

0

f−1(t) dt� ε2−α.
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If μ is the discrete measure of mass 1 over {x0}, a straightforward application of
Theorem 6.1 gives

dimint({x0})= Dimint({x0})= 2− log ε2−α

log ε
=α.

Example 2. Now we choose α and β such that α≤β<0, and for x0=(0, 0), we
construct a simple closed curve Γ such that Γ=∂V , dimint({x0})=α, and
Dimint({x0})=β.

Let γ=2−(α+β)/2, δ=(β−α)/2, G(ε)=exp((γ+δ sin log ε) log ε), and g(ε)=
G′(ε). One can check that there exists ε0>0 such that g is continuous and strictly
increasing on (0, ε0], and limε!0 g(ε)=0. We take f=g−1 on (0, g(ε0)], with f(0)=0.
Let Γ1 be the graph of f on [0, g(ε0)], Γ2 be the polygonal curve with vertices
(g(ε0), ε0), (0, ε0), and x0, and Γ be the simple closed curve Γ1∪Γ2.

As in Example 1, the interior of Γ is V . Since β<0, we have f(ε)≥ε. The area
of B(x0, ε)∩V is equivalent to ∫ ε

0

f−1(t) dt=G(ε).

With the help of the discrete measure of mass 1 over {x0}, we obtain

dimint({x0})= lim inf
ε!0

(
2− logG(ε)

log ε

)
= 2−γ−δ=α,

Dimint({x0})= lim sup
ε!0

(
2− logG(ε)

log ε

)
= 2−γ+δ= β.

Example 3. In this example, we construct an open set V in R, with a bound-
ary K such that dim(K)=log 2/ log 3, dimint(K)≤0, and dimext(K)≤0. This shows
that the first inequality in (32) may be strict.

We denote the length by L (instead of Vol1).
Let K be the triadic Cantor set in [0, 1].
Let F be the family of the complementary intervals of K: For all n≥1 there

are 2n−1 open intervals of length 3−n in F . For every I∈F , rk(I) is the rank of I
in the triadic net, that is the integer such that L(I)=3− rk(I).

LetKn be the set obtained by removing the first 2n−1 intervals of F from [0, 1]:
Kn is the union of 2n closed intervals of length 3−n, Kn⊃Kn+1, and

⋂
n≥1Kn=K.

Let {an}n≥1 and {bn}n≥1 be two sequences of N such that n≤an<bn, an/bn!0,
and bn/an+1!0 (for example, take an=2n

2
and bn=2n

2+n). Let a0=0.
Construction of the subset K ′⊂K. The set Kan is made up of a finite number

of intervals. We can consider all points in Kan which are at distance ≥εn from the
boundary, for εn small enough. We choose εn=3−bn and construct the closed set

En = {x∈K :B(x, εn)⊂Kan}.
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It is made up of 2an intervals of length 3−an−2εn. Let

K ′ =
⋃
n≥1

⋂
k≥n

Ek = {x∈K : there exists an n such that k≥n⇒B(x, εk)⊂Kak
}.

Showing that dim(K\K ′)=0. Let α>0. The set K\Ek is a subset of Kak
\Ek,

which itself is covered by 2ak+1 intervals of length εk. Since K\K ′⊂⋃
k≥n(K\Ek)

for all n,

Hα
2εn

(K\K ′)≤Hα
2εn

( ⋃
k≥n

(K\Ek)
)
≤

∑
k≥n

2ak+1εαk .

Since bk≥k and ak/bk!0, the series
∑

k≥1 2akεαk converges, so that Hα2εn
(K\K ′)!0

as n!∞. This proves that Hα(K\K ′)=0, and dim(K\K ′)≤0.
Construction of the open set V . Let

F1(k) =
⋃

{I ∈F : a2k≤ rk(I)<a2k+1};
F2(k) =

⋃
{I ∈F : a2k+1 ≤ rk(I)<a2k+2};

G(n) =
⋃

{I ∈F : rk(I)≥n}.

We define V =
⋃
k≥0 F1(k) and W=

⋃
k≥0 F2(k). These are two disjoint open sets

such that K=∂V =∂W and K∪V ∪W=[0, 1]. For all n, Kn=K∪G(n+1) and
L(G(n))=(2/3)n−1.

The interior and exterior dimensions of K ′. Let x∈K ′. There exists n such
that k≥n ⇒ B(x, εk)⊂Kak

. Let k≥n. Then the following are true:
(i) B(x, ε2k)⊂K∪G(a2k+1), so that B(x, ε2k)∩W⊂⋃

i≥k F2(i)⊂G(a2k+1).
Thus L(B(x, ε2k)∩W )≤(2/3)a2k+1−1.

(ii) B(x, ε2k+1)⊂K∪G(a2k+1+1), so that B(x, ε2k+1)∩V ⊂⋃
i≥k+1 F1(i)⊂

G(a2k+2). Thus L(B(x, ε2k+1)∩V )≤(2/3)a2k+2−1.
Let ν be the canonical measure on K: For any x∈K, ν(B(x, ε))�εlog 2/ log 3, so

that ν(B(x, εn))≥c2−bn for some constant c. Since a2k+1/b2k!∞, we deduce that

lim sup
k!∞

(
log ν(B(x, ε2k))

log ε2k
+1− logL(B(x, ε2k)∩W )

log ε2k

)

≤ lim
k!∞

(
1

−b2k log 3
(−b2k log 2−a2k+1 log 2

3

))
+1 =−∞.

Since this is true for any x∈K ′, dimext(K ′)=−∞.
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Similarly,

lim sup
k!∞

(
log ν(B(x, ε2k+1))

log ε2k+1
+1− logL(B(x, ε2k+1)∩V )

log ε2k+1

)

≤ lim
k!∞

(
1

−b2k+1 log 3
(−b2k+1 log 2−a2k+2 log 2

3

))
+1 =−∞,

so that dimint(K ′)=−∞.
Conclusion. Using the stability of dimint,

dimint(K)= max{dimint(K ′), dimint(K\K ′)}≤max{dimint(K ′), dim(K\K ′)}= 0.

Similar methods give dimext(K)≤0.

Example 4. From Example 3, we can derive an example in R
2 with the help of

Cartesian products. Let us construct an open set V such that

dimint(∂V )= dimext(∂V )= 1 and dim(∂V )= 1+
log 2
log 3

.

Let K, K ′, F1(k), and F2(k) in [0, 1] as before. Let us define

E=K×[0, 1], F̃1 =
⋃
k≥0

F1(k)×{0} and F̃2 =
⋃
k≥0

F2(k)×{1}.

The sets F̃1 and F̃2 are unions of horizontal segments making “bridges” between
the vertical segments of E, at levels 0 and 1, respectively.

We complete the closed set E∪F̃1∪F̃2 by some arc with endpoints (0, 0) and
(1, 0), so as to form a closed curve of interior V which looks like a “comb” with
irregular teeth (Figure 1). The open set W is R

2\V .
Let ν1 be the canonical measure on K, ν2 be the Lebesgue measure on [0, 1],

and ν=ν1×ν2. Then ν has support E and for all x∈E, ν(B(x, ε))�ε1+log 2/ log 3.
Using ν and Theorem 6.1, calculations give

dim((K\K ′)×[0, 1])= 1 and dimint(K ′×[0, 1])= dimext(K ′×[0, 1])=−∞,

so that

dimint(E)= dimext(E)≤ 1,

whilst dim(E)=1+log 2/ log 3. The same results are true for ∂V .
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Figure 1. A fractal comb, enclosed by a closed curve Γ=∂V . The one-sided dimensions dimint(Γ)
and dimext(Γ) are 1, whilst dim(Γ)=1+log 2/|log a|. Here we chose a>1/3 to make the picture
more legible.

7. Using other determining functions

In the last section we used the determining function φα defined as φα(B)=
VolD(B∩V ) diam(B)α−D to obtain one-sided measures and dimensions. This is
not the only possible choice. For example, let us take p(B)=1 and q(B)=VolD(B∩
V )1/D, so that

φα(B)= VolD(B∩V )α/D.

For any E⊂V , the family {φα}α∈R will provide measures and dimensions equivalent
to the classical ones. It fulfills Assumption 2, with α0=1. Since p and q are
increasing (a1=a2=1), Assumption 3 is also satisfied, which means that all the
previous results and definitions remain valid, up to and including Section 5.2. In
particular, the set function αμ in Theorem 4.3 may be written as

αμ(B)=D
logμ(B)

log VolD(B∩V )
.

New notions of interior and exterior dimensions in ∂V stem from this determin-
ing function. As could be expected the dimension values are not the same as in
Section 6. A major difference lies in the following result:

Proposition 7.1. With V and φα as above,

0≤ dimint(E)≤Dimint(E)≤Δint(E)≤D

for any E 
=∅, E⊂∂V .
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Proof. Since VolD(B∩V )≤VolD(B), we find easily that Δint(E)≤D. Therefore
it suffices to show that dimint(E)≥0. Since dimint is increasing, all we have to do
is to prove this inequality when E={x0}, x0∈∂V .

Indeed, for such x0 we have VolD(B(x0, ε)∩V )>0 for any ε>0, so that
C0({x0})=1. This implies that c0({x0})=1, and dimint({x0})=0. �

From the last result we could find this new determining function more “natural”
than the one studied in Section 6. One drawback is that there is no such simple
formula as (30) for Δint.

For a set E consisting of one point, dimint(E)=Dimint(E)=0, and the same
is true symmetrically for dimext and Dimext. For the Cantor set K of Example 3
(Section 6), we may verify that dimint(K)=dimext(K)=0 and dim(K)=log 2/ log 3.
For the fractal comb of Example 4, dimint(∂V )=dimext(∂V )=1 and dim(∂V )=
1+log 2/ log 3.

As a final remark, if two families of determining functions φα and ψα satisfy
Assumptions 2 and 3, then the same is true for any product of the kind φrαψ

s
α, where

r>0 and s>0. In theory we could find many suitable types of determining function,
each of them giving rise to a notion of one-sided dimension. But let us keep in mind
that a determining function φα has an interest only when it is a generalization of
the classical one, more precisely when the following condition is verified:

There exists constants 0<c1≤c2 such that for any ball B⊂V ,

c1 diam(B)α≤φα(B)≤ c2 diam(B)α.

We could call a family of such Hausdorff functions normal. Both families
tackled in Sections 6 and 7 are normal. If φα and ψα are normal, then φrαψ

s
α is

normal only if r+s=1.
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Université Clermont-Ferrand II
FR-63177 Aubière
France
claude.tricot@math.univ-bpclermont.fr

Received January 21, 2008
published online September 26, 2008



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


