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The Melin calculus for general homogeneous
groups

Pawe�l G�lowacki

Abstract. The purpose of this note is to give an extension of the symbolic calculus of Melin

for convolution operators on nilpotent Lie groups with dilations. Whereas the calculus of Melin is

restricted to stratified nilpotent groups, the extension offered here is valid for general homogeneous

groups. Another improvement concerns the L2-boundedness theorem, where our assumptions on

the symbol are relaxed. The zero-class conditions that we require are of the type

|Dαa(ξ)| ≤Cα

R∏

j=1

ρj(ξ)−|αj |,

where ρj are “partial homogeneous norms” depending on the variables ξk for k>j in the natural

grading of the Lie algebra (and its dual) determined by dilations. Finally, the class of admissible

weights for our calculus is substantially broader. Let us also emphasize the relative simplicity of

our argument compared to that of Melin.

The purpose of this note is to give an extension of the symbolic calculus of
Melin [7] for convolution operators on nilpotent Lie groups with dilations. The
calculus can be viewed as a higher order generalization of the Weyl calculus for
pseudodifferential operators of Hörmander [3]. In fact, the idea of such a calculus
is very similar. It consists in describing the product

a#b= (a∨�b∨)∧, a, b∈C∞
c (g�),

on a homogeneous Lie group G, where f∧ and f∨ denote the Abelian Fourier
transforms on the Lie algebra g and its dual g�, and its continuity in terms of
suitable norms similar to those used in the theory of pseudodifferential operators.
An integral part of the calculus is an L2-boundedness theorem of the Calderón–
Vaillancourt type.

This has been done by Melin whose starting point was the following formula

a#b(ξ) = U(a⊗b)F (ξ, ξ),



32 Pawe�l G�lowacki

where

U(F )∨(x, y) =F∨
(
x−y+xy

2
,
y−x+xy

2

)
, x, y ∈ g.

Melin shows that the unitary operator U can be imbedded in a one-parameter
unitary group Ut with the infinitesimal generator Γ which is a differential operator
on g�×g� with polynomial coefficients, and he thoroughly investigates the properties
of Γ under the assumption that G is a homogeneous stratified group. From the
continuity of U he derives a composition formula for classes of symbols satisfying
the estimates

|Dαa(ξ)| ≤Cα(1+|ξ|)m−|α|,(0.1)

where | · | is the homogeneous norm on g� and |α| is the homogeneous length of
a multiindex α. He also proves an L2-boundedness theorem for symbols satisfying
(0.1) with m=0.

Our extension goes in various directions. First of all the calculus of Melin is
restricted to stratified nilpotent groups, whereas the extension offered here is valid
for general homogeneous groups. Another improvement concerns the L2-bound-
edness theorem, where our assumptions on the symbol are less restrictive. The
zero-class conditions that we require are

|Dαa(ξ)| ≤Cα

R∏

j=1

ρj(ξ)−|αj |,

where ρj are “partial homogeneous norms” depending on the variables ξk for k>j
in the natural grading of the Lie algebra (and its dual) determined by dilations, and
α=(α1, α2, ..., αR) is the corresponding representation of the multiindex α relative
to the grading. This direction of generalization of the boundedness theorem had
been suggested by Howe [5] even before the Melin calculus was created. Finally,
the class of admissible weights for our calculus is substantially broader. Let us also
emphasize the relative simplicity of our argument compared to that of Melin.

Most of the techniques applied here have been already developed in a very
similar context of [2]. They heavily rely on the methods of the Weyl calculus of
Hörmander [3]. We take this opportunity to clarify some technical points which
remained somewhat obscure in [2]. One major mistake is also corrected. Some
repetition is therefore unavoidable. In [2] the reader will also find more on the
background and history of various symbolic calculi on nilpotent Lie groups.
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1. Preliminaries

Let X be a finite-dimensional Euclidean space. Denote by 〈 · , · 〉 and ‖ · ‖ the
scalar product and the corresponding Euclidean norm. These are fixed through-
out the paper. Whenever we identify X� with X , it is by means of the duality
determined by the scalar product. Let X=

⊕R
j=1Xj be an orthogonal sum and

δtxj = tdj , xj ∈Xj ,

be a family of dilations with eigenvalues D={dj}R
j=1, where

1 = d1<d2< ... < dR.

Let

|x|=
( R∑

j=1

‖xj‖2/dj

)1/2

be the corresponding homogeneous norm and

ρ(x) = 1+|x|.

Let us define a family of Euclidean norms

px(z)2 =
R∑

j=1

‖zj‖2

ρ(x)2dj
, x∈X.

Lemma 1.1. We have

1
2
≤ ρ(x)
ρ(y)

≤ 2 if px(x−y)<
(

1
2
√
R

)dR

(1.2)

and

ρ(x)≤ (√
R+1

)
ρ(y)(1+py(x−y)).(1.3)

Proof. Observe that px(x−y)<
(
1/

(
2
√
R

))dR yields

‖xj−yj‖1/dj ≤ ρ(x)
2R

, 1≤ j≤R,

so

|x−y| ≤ 1
2ρ(x),
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and consequently

ρ(x)≤ ρ(y)+|x−y| ≤ ρ(y)+ 1
2ρ(x),

ρ(y)≤ ρ(x)+|x−y| ≤ 3
2ρ(x),

which implies

1
2
≤ ρ(x)
ρ(y)

≤ 2.

We also have

‖xj−yj‖1/dj

ρ(y)
≤ ‖xj−yj‖

ρ(y)dj
+1,

so

|x−y|
ρ(y)

≤
√
R+py(x−y),

and finally

ρ(x)≤ ρ(y)+|x−y|= ρ(y)
(

1+
|x−y|
ρ(y)

)
≤ (√

R+1
)
ρ(y)(1+py(x−y)),

which completes the proof. �

For 0≤j≤R, let

ρj(x) = ρ(xj) = ρ

( R∑

k=j+1

xk

)

and let

qx(z)2 =
R∑

j=1

‖zj‖2

ρj(x)2dj
, x∈X,

be another family of norms on X determined by ρ.

Lemma 1.4. There exist constants C,M>0 such that

ρj(x)≤Cρj(y)(1+qy(x−y))(1.5)

and

ρj(x)≤Cρj(y)(1+qx(x−y))M .(1.6)

Proof. Inequality (1.5) is proved in the same way as (1.3). The second in-
equality is proved by induction. In fact, if j=R, there is nothing to prove. Assume
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that (1.6) holds for k>j with 1≤C=Ck≤Cj+1 and M=Mk≤Mj+1. Then

ρj(x)≤ ρj(y)+|(x−y)j| ≤ ρj(y)
(

1+
|(x−y)j|
ρj(y)

)

≤ ρj(y)

(
1+

√√√√
R∑

k=j+1

‖xk−yk‖2/dk

ρk(y)2

)

≤
√
R−jρj(y)

(
1+

√√√√
R∑

k=j+1

‖xk−yk‖2

ρk(y)2dk

)

≤Cjρj(y)

(
1+

√√√√
R∑

k=j+1

‖xk−yk‖2

ρk(x)2dk

)
(1+qx(x−y))dj+1Mj+1

≤Cjρj(y)(1+qx(x−y))Mj ,

which shows that (1.6) holds also for j with

Cj =
√
R−jCdj+1

j+1 ≥Cj+1 ≥ 1, Mj = dj+1Mj+1+1≥Mj+1. �

A family of Euclidean norms (a metric) g={gx}x∈X on X is called slowly
varying if there exists 0<γ≤1 such that

γ≤ gy

gx
≤ 1
γ
, if gx(x−y)<γ.(1.7)

A metric g on X is called tempered with respect to another metric G, or briefly
G-tempered, if there exist C,M>0 such that

{
gx

gy

}±1

≤C(1+Gx(x−y))M , gx ≤Gx.

Note that a self-tempered metric is automatically slowly varying.

Lemma 1.8. If g is a self-tempered family of norms with constants C and M ,
then for every x, y, z∈X,

1+gx(x−y)≤C(1+gy(y−x))M+1,

1+gx(x−y)≤C2(1+gx(x−z))M (1+gy(y−z))M+1.

Proof. In fact,

1+gx(x−y)≤ 1+Cgy(y−x)(1+gy(y−x))M ≤C(1+gy(y−x))M+1,
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as required. Moreover, by the first inequality,

1+gx(x−y)≤ 1+gx(x−z)+gx(z−y)

≤ 1+gx(x−z)+Cgz(z−y)(1+gx(x−z))M

≤ (1+gx(x−z))M (1+Cgz(z−y))

≤C2(1+gx(x−z))M (1+gy(y−z))M+1,

which completes the proof. �

Corollary 1.9. The metrics p and q are slowly varying and q-tempered.

Proof. This follows immediately from Lemmas 1.1 and 1.4. �

A strictly positive function m on X is a weight on X with respect to the
G-tempered metric g, if it satisfies the conditions

{
m(x)
m(y)

}±1

≤C if gx(x−y)≤ γ(1.10)

and
{

m(x)
m(y)

}±1

≤C(1+G(x−y))M(1.11)

for some C,M>0. The weights form a group under multiplication. A typical
example of a weight for p or q is m(x)=ρ(x). A universal example is

m(x) = gx(x−x0),(1.12)

where x0 is fixed.
Let m be a weight with respect to a metric g. For f∈C∞(X) let

|f |m(k)(g) = sup
x∈X

gx(Dkf(x))
m(x)

,

and

|f |mk (g) =
k∑

j=0

|f |m(j)(g),

where D stands for the Fréchet derivative, and

gx(Dkf(x)) = sup
gx(yj)≤1

|Dkf(x)(y1, y2, ..., yk)|.
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Let

Sm(X,g) = {a∈C∞(X) : |a|mk (g)<∞ for all k ∈N}.
Sm(X,g) is a Fréchet space with the family of seminorms | · |mk (g). Thus f∈C∞(X)
belongs to Sm(X,p) if and only if it satisfies the estimates

|Dαf(x)| ≤Cαm(x)ρ(x)−|α|,

where |α| is the homogeneous length of a multiindex α. The estimates for f∈
Sm(X,q) are

|Dαf(x)| ≤Cαm(x)
R∏

j=1

ρj(x)−djαj .

Note that every p-weight m is also a q-weight and Sm(X,p)⊂Sm(X,q). Moreover
for every k,

| · |mk (q)≤ | · |mk (p)(1.13)

so the inclusion is continuous.
Apart from the Fréchet topology in the spaces Sm it is convenient to introduce

a weak topology of the C∞-convergence on Fréchet bounded subsets. By the Ascoli
theorem, this is equivalent to the pointwise convergence of bounded sequences in
Sm. Following Manchon [6] we call a mapping T : Sm1!Sm2 double-continuous, if
it is both Fréchet continuous and weakly continuous. Moreover, C∞

c (X) is weakly
dense in Sm(X,g). The last assertion is a consequence of Proposition 2.1 (b) below.

2. The method of Hörmander

The following construction of a partition of unity is due to Hörmander [3]. Also
the lemma that follows is an important principle of the Hörmander theory. For the
convenience of the reader we include the proofs here.

Proposition 2.1. Let g be a metric on X.
(a) For every 0<r<γ there exists a sequence xν∈X such that X is the union

of the balls

Bν =Bν(r) = {x∈X : gxν (x−xν)<r}
and no point x∈X belongs to more than N balls, where N does not depend on x.
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(b) There exists a family of functions φν∈C∞
c (Bν) bounded in S1(X,g) and

such that
∑

ν

φν(x) = 1, x∈X.

(c) For x∈X let

dν(x) = gxν (x−z).

If the metric g is self-tempered, then there exist constants M,C0>0 such that
∑

ν

(1+dν(x))−M ≤C0, x∈X.

All the estimates in the construction depend just on the constant γ in (1.7) and the
choice of r.

Proof. (a) Let 0<r<γ. Let {xν}ν be a maximal sequence of points in X such
that

gxν (xµ−xν)≥ γr, µ �= ν.

Let x∈X . Note that

gx(x−xν)<γr implies gxν (x−xν)<r.

Therefore, either gxν (x−xν)<r for some ν, or

gx(x−xν)≥ γr and gxν (x−xν)≥ r≥ γr.

The latter contradicts the maximality of our sequence. The former implies that
X⊂⋃

ν Bν .
To show that the covering is uniformly locally finite suppose that x∈Bν . Then

gxν (x−xν)<r, which implies gx(x−xν)<r/γ<1. On the other hand

gx(xµ−xν)≥ γr for µ �= ν.

The number of points from a uniformly discrete set in a unit ball is bounded inde-
pendently of the given norm gx so we are done.

(b) Let 0<r<r1<γ. Let ψ∈C∞
c (−r21 , r21) be equal to 1 on the smaller interval

[−r2, r2]. If

ψν(x) =ψ(gxν (x−xν)2),



The Melin calculus for general homogeneous groups 39

then, by part (a),
∑

µ ψµ(x)≥1 for every x∈X , and it is not hard to see that

φν(x) =
ψν(x)∑

µ ψµ

has all the required properties.
(c) Let r<γ. Let x∈X . For k∈N let

Mk = {ν : dν(x)<k}.

It is sufficient to show that the number |Mk| of elements in Mk is bounded by
a polynomial in k. Let ν∈Mk and let

Vν = {z∈X : gx(z−xν)<rk},

where

rk =
r

C(1+k)M
.

Observe that Vν is contained both in Bν (see part (a)) and in the ball

V = {z∈X : gx(z−x)<Rk},

where Rk=rk+C(1+k)M+1. In fact, if gx(z−xν)<rk, then

gxν (z−xν)≤Cgx(z−xν)(1+k)M <r,

and

gx(z−x)≤ gx(z−xν)+gx(xν−x)<rk+Cgxν (xν−x)(1+gxν (xν−x))M

<rk +C(1+1+gxν(xν−x))M+1<rk +C(1+k)M+1

Hence

C1|Mk|rdim X
k ≤

∑

ν∈Mk

|Vν | ≤N

∣∣∣∣
⋃

ν∈Mk

Vν

∣∣∣∣≤N |V | ≤C1NR dim X
k ,

which immediately implies the desired estimate

|Mk| ≤N

(
1+

Rk

rk

)dim X

. �

Lemma 2.2. Let X be a finite-dimensional vector space with a Euclidean norm
‖ · ‖. Let r1>r>0. Let L be an affine function such that L(x) �=0 for x∈B(x0, r1).
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Then for every k∈N,
∥∥∥∥D

k 1
L

(x)
∥∥∥∥≤ k!r1

(r1−r)k+1|L(x0)| , x∈B(x0, r).

The estimate does not depend on the choice the norm.

Proof. We may assume that x0=0 and L(0)=1. Let ξ be a linear functional
on X such that L(x)=〈ξ, x〉+1. Since

L(x) = 〈ξ, x〉+1> 0, ‖x‖<r1,
it follows that ‖ξ‖≤1/r1 and

L(x)≥ 1− r

r1
, x∈B(0, r).

Consequently,
∥∥∥∥D

k 1
L

(x)
∥∥∥∥≤ k!‖ξ‖k

|L(x)|k+1
≤ k!(1/r1)k

(r1−r/r1)k+1

≤ k!r1
(r1−r)k+1

for x in B(0, r). �

For the general theory of slowly varying metrics and its applications to the
theory of pseudodifferential calculus the reader is referred to Hörmander [4], vol. I
and III.

3. The Melin operator U

Let g be a nilpotent Lie algebra with a fixed scalar product. The dual vector
space g� will be identified with g by means of the scalar product. We shall also
regard g as a Lie group with the Campbell–Hausdorff multiplication

x1 �x2 = x1+x2+r(x1, x2),

where

r(x1, x2) = 1
2 [x1, x2]+ 1

12 ([x1, [x1, x2]]+[x2, [x2, x1]])+ 1
24 [x2, [x1, [x2, x1]]]+...

is the (finite) sum of terms of order at least 2 in the Campbell–Hausdorff series
for g. Let {δt}t>0, be a family of group dilations on g and let

gj =
{
x∈ g : δtx= tdjx

}
, 1≤ j≤R,
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where 1=d1<d2≤...<dR. Then

g = g1⊕g2⊕...⊕gR(3.1)

and

[gi, gj ]⊂
{

gk, if di+dj =dk,

{0}, if di+dj /∈D,
where D={dj :1≤j≤R}. Let x 
!|x| be the homogeneous norm on g as defined in
Section 1.

For a function f∈C∞
c (g×g) let

Uf(y) =
∫∫

g×g

e−i〈x,y〉f∨(x)e−i〈r(x),ỹ〉dx,

where x=(x1, x2), y=(y1, y2)∈g×g, and ỹ=(y1+y2)/2. We shall refer to U as the
Melin operator on g. The importance of U consists in

f̂ �g (y) = U(f̂⊗ĝ)(y, y), y∈ g,(3.2)

which is checked directly.
Let

g′ = g1⊕g2⊕...⊕gR−1.(3.3)

The commutator

g′×g′ � (x1, x2) 
−! [x1, x2]′ ∈ g′,

where ′ stands for the orthogonal projection onto g′, makes g′ into a Lie algebra
isomorphic to g/gR with x 
!x′ playing the role of the canonical quotient homomor-
phism. The group multiplication in g′ is

x1 �

′ x2 = x1+x2+r(x1, x2)′.

Proposition 3.4. For f∈C∞
c (g×g),

Uf(y, λ) = U′(Pλf( · , λ))(y), y∈ g′, λ∈ gR,(3.5)

where
Pλg(y) =

∫∫

g′×g′
e−i〈x,y〉g∨(x)e−i〈r(x),λ̃〉 dx, g∈C∞

c (g′×g′),

is an integral operator on C∞
c (g′) invariant under Abelian translations, and U′

stands for the Melin operator on g′.
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Proof. In fact,

Uf(y, λ) =
∫∫

g×g

e−i〈x,y〉e−i〈t,λ〉f∨(x, t)e−i〈r′(x),ỹ〉e−i〈r(x),λ̃〉 dx dt

=
∫∫

g′×g′
e−i〈x,y〉(f(x∨, λ)e−i〈r(x),λ̃〉)e−i〈r′(x),ỹ〉 dx

=
∫∫

g′×g′
e−〈x,y〉(Pλf( · , λ))∨(x)e−i〈r′(x),ỹ〉 dx

= U′(Pλf( · , λ))(y)

for all f∈C∞
c (g×g), y∈g′×g′, λ∈gR×gR. �

The reader who is familiar with our previous paper may be surprised that
(3.5) differs from an analogous formula in [2] by the order of the operators Pλ

and U′. As a matter of fact, (3.4) in [2] is false and we take this opportunity to
correct it. Fortunately only the proof of Proposition 5.1 in [2] requires some obvious
corrections. This mistake has been brought to my attention by Jacek Dziubański.

For the background on homogeneous groups we recommend Folland–Stein [1].

4. The inductive step

In what follows we apply the notation of Section 1 among others to X=g

and X=g×g. In the latter case we employ the product norm ‖x‖2=‖x1‖2+‖x2‖2,
the product dilations δtx=δtx1+δtx2, and the product homogeneous norm |x|2=
|x1|2+|x2|2. In addition, ρ(x)=1+|x|.

From now on, g always denotes a metric of the form

gx(z)2 =
R∑

j=1

‖zj‖2

gj(x)2dj
,

where gj(x)≥ρj(x). We also assume that g is q-tempered. Of course, what we
focus on is g=p or g=q.

Let λ∈gR×gR (see (3.1) and (3.3)). It is easily seen that the family of metrics

gλ
x(y) = g(x,λ)(y, 0), x,y∈ g′,

is uniformly slowly varying and uniformly qλ-tempered. In particular qλ are uni-
formly slowly varying. Let γ be a joint constant for all the metrics gλ and qλ. Let
Bν =Bν(xν , r)⊂g′×g′ be the common covering of Lemma 2.1 for all these metrics.
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Let

dλ
ν (y) = qλ

xν
(y−xν)

(cf. Proposition 2.1). Let ρλ(x)=ρ(x, λ) and gλ
j (x)=gj(x, λ).

Here comes the crucial step in our argument.

Lemma 4.1. For every N , there exist C and k such that

|Pλf(y)| ≤C|f |1k(gλ)(1+dλ
ν (y))−N(4.2)

for f∈C∞
c (Bν) uniformly in λ∈gR×gR and ν∈N.

Proof. Let f∈C∞
c (g′×g′) be supported in Bν . There exist C and k such that

|Pλf(y)| ≤
∫∫

g′×g′
|f∨(x)| dx= ‖f‖A(g′×g′) = ‖fλ‖A(g′×g′) ≤C|f |1k(gλ),(4.3)

where

fλ(y) = f

(R−1∑

j=1

gλ
j (xν)djyj

)
,

and ‖ · ‖A(g′×g′) stands for the Fourier algebra norm. The last inequality is achieved
by the Sobolev inequality

‖f‖A(g′×g′) ≤C(s)
∑

|α|≤s

‖Dαf‖2

applied to fλ which is supported in a ball of radius 1 with respect to the norm ‖ · ‖.
Assume now that (4.2) is true for some N . Let dλ

ν (y)=a>1. Note that other-
wise the estimate is easy. Therefore there exists ξ∈(g′×g′)� of unit length with
respect to the norm dual to qλ

xν
such that ξ(y−x)≥a for x∈B(xν , r1), where

0<r<r1<γ. The norm one condition reads

1 = (qλ
xν

)�(ξ)2 =
∑

1≤j≤R−1

(ρj)λ(xν)2dj ‖ξj‖2 ≥
∑

1≤j≤R−1

(1+‖λ‖1/dR)2dj ‖ξj‖2.

Then L(x)=〈x−y, ξ〉 does not vanish on B(xν , r1) so, by Lemma 2.2,

gλ
xν

(
Dk 1

L
(x)

)
≤ Ck(r, r1)

a
, x∈B(xν , r).

Note that L(y)=0. Therefore,

Pλ(Lf)(y) = [Pλ, L]f(y) =
R−1∑

j=1

ξj(1+‖λ‖1/dR)djPλ(fλ,j)(y),
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where

fλ,j(z) =
1
i
(1+‖λ‖1/dR)dR−dj

〈
rj(iD),

λ̃

(1+‖λ‖1/dR)dR

〉
f(z),

and

rj(x, λ) =D(x1)j
r(x, λ)+D(x2)j

r(x, λ)

is a homogeneous polynomial of degree dR−dj . It follows that

|Pλ(f)(y)| ≤
(R−1∑

j=1

∣∣∣∣Pλ

((
1
L
f

)

λ,j

)
(y)

∣∣∣∣
2)1/2

,

and consequently, by Lemma 2.2 and the induction hypothesis,

|Pλf(y)| ≤ Ck(r, r1)
a

|f |1k(gλ)(1+dν(y))−N ≤Ck(r, r1)|f |1k(gλ)(1+dν(y))−N−1,

which completes the proof of (4.2). �

Let m be a g-weight. Then mλ(x)=m(x, λ) is a weight on g′×g′ with respect
to gλ (which is qλ-tempered), and the family of weights is uniform in λ. Let
φλ

ν∈C∞
c (Bν) be the partition of unity on g′×g′ for gλ. By Proposition 2.1, φλ

ν are
bounded in S1(g′×g′,gλ) uniformly in ν and λ.

Observe that

mλ(y)≤C1mλ(xν)(1+qλ
xν

(y−xν))M ≤C1mλ(xν)(1+dλ
ν(y))M .(4.4)

Proposition 4.5. For every λ there exists a unique double-continuous exten-
sion of Pλ to a mapping

Pλ : Smλ(g′×g′,gλ)−!Smλ(g′×g′,gλ).

All the estimates hold uniformly in λ.

Proof. By Lemma 4.1 and (4.4),

|Pλ(φλ
νf)(y)| ≤C1|φλ

νf |1k(gλ)(1+dλ
ν (y))−N

and

mλ(y)−1|Pλ(φλ
νf)(y)| ≤C2mλ(xν)−1(1+dλ

ν (y))M |Pλ(φλ
νf)(y)|

≤C3|f |mλ

k (1+dλ
ν(y))−N+M .
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Let N be so large that

∑

ν

(1+dλ
ν(y))−N+M <∞,

see Proposition 2.1 (c). Then our estimate which remains valid for f in a bounded
subset of Smλ(g′×g′,gλ) without any restriction on the support implies that for
every y∈g′,

f 
−!
∑

ν

Pλ(φλ
νf)(y)

defines a weakly continuous linear form on Sm(g′×g′,gλ). Consequently, Pλ admits
a (unique) weakly continuous extension to the whole of Sm(g′×g′,gλ), and

|Pλ(f)(y)|=
∣∣∣
∑

ν

Pλ

(
φλ

νf
)
(y)

∣∣∣≤C5|f |mλ

k mλ(y).

The estimates for the derivatives of Pλf follow from the fact that Pλ commutes
with translations, and hence with differentiations. �

5. Continuity of U and symbolic calculus

Recall from Section 4 that the Melin operator U has been defined for
f∈C∞

c (g×g).

Theorem 5.1. Let m be a g-weight on g×g. There exists a double-continuous
extension of the Melin operator to

U : Sm(g×g,g)−!Sm(g×g,g).

Proof. Suppose that g is as in (3.1) and proceed by induction. If R=1, g is
Abelian and U=I so the assertion is obvious. Assume that our theorem is true
for g′ as in (3.3) and U=U′. For λ∈gR and f∈Sm(g×g,g) let fλ(y)=f(y, λ),
(ρλ)(y)=ρ(y, λ), and mλ(y)=m(y, λ).

By hypothesis, fλ=f( · , λ)∈Smλ(g′×g′,gλ) uniformly in λ (cf. the previous
section). Now Proposition 4.5 yields

Pλfλ ∈Smλ(g′×g′,gλ)
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uniformly in λ so, by the induction hypothesis,

U′Pλfλ ∈Smλ(g′×g′,gλ)

uniformly in λ. The same holds true for the derivatives (∂/∂λ)jU′Pλfλ which is
checked directly. Thus, by (3.5), we get the desired estimate: There exists C>0
such that for every k1∈N, there exists k2∈N such that

|Uf |mk1
(g)≤C|f |mk2

(g), f ∈Sm(g×g,g).

This proves our assertion. �

Corollary 5.2. Let m1 and m2 be g-weights on g. Then

C∞
c (g)×C∞

c (g)� (a, b) 
−! a#b= (a∨�b∨)∧ ∈S(g)

extends uniquely to a double-continuous mapping

Sm1(g,g)×Sm2(g,g)−!Sm1m2(g,g).

Proof. This is a straightforward consequence of (3.2) and Theorem 5.1 applied
to the metric g⊕g on g×g. �

Let φν be the standard partition of unity for the metric q on g. Let Φµν(x)=
φµ(x1)φν(x2), where x=(x1, x2)∈g×g. Let Q=q⊕q. Note that, by Lemma 1.8,

1+qxν (xν−xµ)≤C2(1+qxµ(xµ−y))M (1+qxν (xν−y))M+1(5.3)

for every y∈g and every µ and ν.

Corollary 5.4. Let f∈S1(g×g,Q). Let

fµν(y) = U(Φµνf)(y, y)

be a function on g. Then, for every N, there exists a norm | · |1(Q) in S1(g,Q)
such that for every µ and ν,

‖fµν‖A(g) ≤ |f |1(Q)(1+qxν (xµ−xν))−N .

Proof. If

mµν(y) = (1+qxν (xµ−y1))−N(M+1)(1+qxν (xν−y2))−NM ,

where y=(y1, y2), then, of course, mµν is a weight (see (1.12)), and

Φµνf ∈Smµν (g×g,Q)
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uniformly so, by Proposition 5.1,

U(Φµνf)∈Smµν (g×g,Q)

uniformly in µ and ν. Hence, by (5.3),

|Dα
y fµν(y)| ≤ |f |mµν

k mµν(y, y)≤ |f |1k(1+qxν (xµ−xν))−N

for |α|≤k. If k is large enough, our assertion follows by the Sobolev inequality. �

We conclude with the L2-boundedness theorem for a∈S1(g,q). Recall that
S1(g,p)⊂S1(g,q) and, by (1.13), the inclusion is continuous.

Theorem 5.5. Let a∈S1(g,q). The linear operator f 
!Af=f �a∨ defined
initially on the dense subspace C∞

c (g) of L2(g) extends to a bounded mapping
of L2(g). To be more specific, there exists a norm | · |1(q) in S1(g,q) such that

‖Af‖L2(g) ≤ |a|1‖f‖L2(g), f ∈C∞
c (g).

Proof. Let

Avf = f �(φva)∨, f ∈L2(g).

Since φv∈C∞
c (g), the operators Av are bounded. Furthermore, by (3.2) with the

notation of Corollary 5.4,

A�
uAvf(y) = (a⊗a)∨u,v�f, AuA

�
vf(y) = (a⊗a)∨u,v�f,

so that, by Corollary 5.4,

‖A�
uAv‖+‖AuA

�
v‖≤ (|a|1(q))2(1+gxν (xν−xµ))−N ,

where N can be taken as large, as we wish, and | · |1(q) is a norm in S1(g,q)
depending only on N .

On the other hand,

a=
∑

u

φua,

where the series is weakly convergent in S1(g,q) so that

Af =
∑

u

Auf, f ∈C∞
c (g).

Thus, the sequence of operators Au satisfies the hypothesis of Cotlar’s Lemma (see
e.g. Stein [8]), and therefore the series

∑
u Au is strongly convergent to the extension

of our operator A whose norm is bounded by C0|a|1 (see Proposition 2.1). �
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