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1. Introduction

An independent set in a graph is a subset of vertices not containing any two neighbors.
Establishing asymptotics of the maximum independent set size (the independence num-
ber) on random graphs is a classical problem in probabilistic combinatorics. On the
random d-regular graph %, ,,, the independence number grows linearly in the number n
of vertices. Upper bounds were established by Bollobds [13] and McKay [35], and lower
bounds by Frieze-Suen [26], Frieze-Luczak [25] and Wormald [43]. These were obtained
by using a combination of techniques, including first and second moment bounds, differ-
ential equations, and the switching method. (For a more complete history and discussion
of many related topics see the survey of Wormald [44].) The bounds are close, with the
maximal density of occupied vertices (the independence ratio) asymptotic to 2(logd)/d
in the limit of large d(*)—however, for every fixed d, a gap in the bounds remains.

By a classical martingale argument, the independence ratio is well-concentrated
about its mean, with only O(n‘l/ %) fluctuations. Nevertheless, it was a long-standing
open problem (see [7], [9]) to determine if there even exists a limiting independence ratio.

This was recently established by Bayati-Gamarnik—Tetali [11] using a super-additivity
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argument. Though their method proves the existence of thresholds in a quite general
class of problems, it yields no information either on the threshold value or the order of
fluctuations.

In this paper, we determine for all large d the value of the limiting independence

ratio.

THEOREM 1. The independence ratio IR, of the random d-regular graph 94, con-

verges in probability to an explicit constant a,=ay(d), defined below.

(We write a=b to indicate that a and b are defined to be equal.) The constant c,

can be found as follows: solve for the largest root ¢g=¢, <2(log d)/d of the function

S R (R P PP | RO S

where A and « are defined in terms of ¢ by

1-(1-¢)*!
(1—q)

Then a,=a(g,). This value was predicted in the statistical physics literature using the

1—g+dq/2X
and «a(q)= a+da/

Ma)=q ZQW- (2)

heuristic methods of the one-step replica symmetry breaking framework [29], [41]. By
confirming this prediction, our theorem solves a long-standing and fundamental problem

in probabilistic combinatorics.

Remark 1.1. Let MIS,,=n-IR,, denote the non-normalized maximum independent
set size in 9 ,,. Theorem 1 asserts that MIS,,=[1+0,(1)]na, with high probability. The
analysis of this paper, together with the well-known bound(?)

IE2
P(IMIS,, —EMIS,,| > x) < -——
( >0 <e(- 1)

will show that
lim limsup P(|MIS,, —na,| > Cn'/?) =0.

C—00 n—oo
In fact, by adapting methods from [24], we can obtain the stronger result

im lim sup P(|MIS,, —na, +c¢, logn| > C) =0, (3)

l
C—00 pooco

for a, as before and c,=[2log A(¢,)]~. That is to say, MIS,, has only constant-order
fluctuations around a,=na,—c,logn. The proof of (3) is omitted here, but will be

given in full in the online manuscript.

(?) This can be seen by taking the Doob martingale of MIS,, with respect to the edge-revealing
filtration of ¢ ,, and applying the Azuma-Hoeffding inequality.
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1.1. Constraint satisfaction problems

The problem of finding an independent set of given size in a graph is a classic example
of a constraint satisfaction problem (CSP), and is well known to be NP-hard [31]. The
limiting independence ratio «, in a sparse random graph ensemble is one example of
an extensively studied phenomenon of satisfiability thresholds in random CSPs. (The
analogous “constraint parameter” « in the random k-satisfiability (k-SAT) problem, for
example, is the ratio of clauses to variables.) For a recent survey see [3].

A major early advance in this area was the realization (see [37], [27]) that many
hard CSPs can be recast as spin glasses, and analyzed by methods of statistical mechan-
ics. Since these pioneering works, statistical physicists have developed an extensive, but
largely non-rigorous, theory around CSPs as models of disordered systems (see [33], [36]
and references therein). For a broad class of CSPs, the theory yields a detailed under-
standing of the phase diagram, including exact predictions of the satisfiability threshold.

Some aspects of this rich picture have been established, including such celebrated
results as Aldous’s solution to the random assignment problem [6] and Talagrand’s proof
of the Parisi formula for the Sherrington—Kirkpatrick model [42], both on the complete
graph. However, many of the most important ideas remain at the level of conjecture,
particularly in sparse ensembles (dilute spin glasses). A principal aim of this work is
to advance the mathematical understanding by establishing for the first time an exact
satisfiability threshold for a sparse random CSP exhibiting replica symmetry breaking
(RSB)—describing a broad class of problems which includes independent set, k-SAT (for
k>3), coloring, and MAX-CUT. We believe that the approach developed here gives some
rigorous validation to the physics formalism and supplies a framework for establishing
other thresholds of interest.

In the remainder of this introductory section, we review the concept of RSB and
explain why it obstructs the standard techniques for locating thresholds, then present a
brief overview of our solution. As an illustration of the robustness of our methods, in a
companion paper [24] we apply the same techniques to determine the exact satisfiability
threshold for another CSP in this class, the random regular NAE-SAT problem. Our
intention is that these methods may eventually be extended to other combinatorial prop-
erties such as the chromatic number or maximum cut, and to the sparse Erdos—Rényi

random graphs.

1.2. Moments and non-concentration

The natural approach to studying the independence ratio is the (first and second) moment

method applied to the number Z,, of independent sets of fixed density a. Indeed, this
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approach successfully determines the asymptotics of the independence number for the
dense Erd6s—Rényi random graph [28]. On sparse random graphs, the moment method
fails to locate the sharp transition. The first moment of Z,,, over ¥ ,, is straightforward

to calculate [13], and scales exponentially in n:
EZpo =n°W exp(ng(a)),

where ¢ is a smooth function of a (we supply the explicit calculation in §1.5 below). The
first moment threshold ag=sup{a>0:¢(a)>0} occurs at [35]

2 e loglog d
== |logd—logl log| = ——— . 4
ag=- og d—log log d+ og<2>+0< og d )] (4)

Since P(Z,,>0)<EZ,, is exponentially small above ap, clearly

limsup IR, < ap
n—0o0

with high probability.
A standard approach for lower bounds is the second moment method: for any non-

negative random variable Z, the Cauchy—Schwarz inequality gives

(EZ)*
E[Z2]

P(Z>0)> ; (5)
apply this with Z=2,, to bound IR,, from below. On % ,,, however, this approach fails
to match the first moment bound: there is a regime as<a<ap, where Z,, is highly
non-concentrated, with E[(Z,4)%]>(EZ,4)?>1; and in fact limsup,,_, . IR,<ag (see
e.g. [35]).

This non-concentration of Z,,,, is caused by a particular geometry within the space of
independent sets: we will see that, due to the sparsity of the graph, most independent sets
can be locally perturbed in a linear number of places. Specifically, given an independent
set S, wherever an unoccupied vertex u has a single occupied neighbor v, the states of
the neighbors v and v can be exchanged to obtain a new independent set S’. We say in
this case that u and v are “free” (with respect to S), and that S’ is connected to S by
an edge-swap.

It has been previously observed that edge-swaps are a source of correlation in the
space of independent sets (see e.g. [35, Lemma 2.1]). If, given S, we have a subset UCV of
free unoccupied vertices such that every pair u#u' in U lies at graph distance d(u, u’)>2,
then there are at least 2/Y1 distinct independent sets S’ which are connected to S by edge-
swaps. If U is of linear size, this means we have found a cluster of exponentially many

closely correlated independent sets, all of the same size.
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We can decompose Z,,,=Z, ., +2/

! ., where Z!  counts all independent sets where

it is possible to find U as above with |U|>nc. We claim there is a constant ¢ (depending

only on d) so that Z/, (which counts independent sets without |U|>nc) has expectation
EZ', <EZ,, (6)
up to and even beyond the first moment threshold. This implies
E(Z,,)? >E(Z. ) >2"EZ! , >2"/*EZ,,,,.

Meanwhile, by definition of the first moment threshold o, there is a regime of « slightly
below ag where 2"/2>EZ,,,>>1, implying that E(Z,4)*> (EZ,.)%.

Let us now argue (6). Consider any fixed subset SCV of size na. In the random
regular graph ¥ ,,, conditioned on the event that S is an independent set, the nda half-
edges leaving S are matched to a uniformly random subset of the nd(1—«) half-edges
leaving V5=V'\S. For veV; let D, count the number of edges from S to v, and note

that S can contribute to Z//, only if
{veVy: D, =1} < 2ncd.

For any p€ (0, 1), (D,)vev, has the same distribution as a vector (B, )yey, of indipendent
and identically distributed (i.i.d.) Bin(d,p) random variables conditioned to have sum
nda. Let us choose p=a/(1—a), so that the B, sum to nda with probability n®®).

Then

" P(|{ve%:Dv:1}\<2ncd;zv sznda)
EZ7L(X :]EZTLCK _
P>, By =nda)

<n®WEZ, P(|{veVo: X, =1}| < 2ned).

It is clear that the right-hand side can be made exponentially smaller than EZ,, by
choosing ¢ appropriately (depending on d). Indeed, our argument implies that the ratio

between E[Z2_] and (EZ,,)? is exponentially large in n.

1.3. Replica symmetry breaking

Statistical physicists have developed a deep heuristic for these problems, the so-called
RSB formalism, which posits a few structural assumptions on the CSP solution space,
and from them deduces precise quantitative predictions (for the sparse setting see [38]).
These methods have yielded an understanding of the non-concentration phenomenon

as fitting into a much fuller picture. The independent set problem is one of a broad
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class of CSPs conjectured to have the following “phase diagram” [33]: as the constraint
parameter o exceeds a certain threshold ag, the solution space becomes shattered into
exponentially many well-separated clusters, with each individual cluster comprising an
exponentially small fraction of the total mass. This geometry persists up to a further
structural transition a. where the solution space condensates onto the largest clusters.
The regime a <. exhibits correlation decay properties [33, equation (5)] known loosely
as replica symmetry. The condensation transition a. marks the onset of long-range
correlations (RSB). In the regime o <a <o, most solutions are concentrated within a
bounded number of clusters: the within-cluster correlation then dominates the moment
calculation, causing the failure of the second moment method.

The satisfiability transition has been exactly located in some sparse random CSPs
without an RSB regime, e.g. 2-SAT [16], 1-in-k-SAT [1], and k-XOR-SAT [23], [40]; for
2-SAT, even the finite-size scaling has been successfully characterized [14]. In contrast,
no exact satisfiability threshold has been previously located in a sparse random CSP
exhibiting RSB, despite a long series of works giving improving bounds in various mod-
els within this class, including k-SAT (for k>3) [32], [4], [18], coloring [2], [17], and
independent set.

Many of these models are believed to exhibit a one-step replica symmetry breaking
(1RSB), in which clusters are replica symmetric though the individual solutions are not.
In 1RSB models, physicists can predict exact satisfiability thresholds by applying replica
symmetric heuristics at the cluster level [36, Chapter 19]. Our main result Theorem 1
confirms the 1RSB prediction for independent sets, which has been derived by [29], [41].
Further, our proof gives some validation to the 1RSB formalism, by locating «, as the
first moment threshold in a model of independent set clusters.

A natural question is whether the 1RSB prediction holds for independent sets on
low-degree regular graphs. Though it is in principle possible to determine from our proof
an explicit lower bound dy in Theorem 1, we have not done so because the calculations
in the paper are already daunting and have not been carried out with a view towards
optimizing dy. More importantly, calculations suggest that 1RSB at some point breaks
down and the low-degree graphs instead exhibit full RSB [10], meaning that one ex-
pects to find an infinite-depth hierarchy of clusters as is observed in the low-temperature
Sherrington—Kirkpatrick model (see [39]). In this regime no formula is predicted even at

a heuristic level.
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1.4. Overview of our approach

We determine the sharp threshold for independent sets on random regular graphs by a
novel approach which rigorizes the 1RSB heuristic from statistical physics, by applying
the moment method to count clusters of independent sets rather than the sets themselves.
We briefly describe here the key new ideas in our proof; a more detailed outline is
presented in §2.

Firstly, we establish a simple combinatorial description for clusters of maximal (or
locally maximal) independent sets. On a graph G=(V, E), a (locally) maximal indepen-
dent set cluster is encoded by what we call a “frozen configuration”: an ordered pair
n=(n, m) with ne{0, 1,£}V and mCE, where

e a l-vertex (interpreted as “occupied throughout the cluster”) can only have 0’s
as neighbors;

e a O-vertex (interpreted as “unoccupied throughout”) must have at least two 1’s
as neighbors;

e m is a perfect matching on the f-vertices (interpreted as “taking both states” or
“free”), and the total density of f-vertices is <d 32,

We shall prove that this model effectively encodes the independent set clusters.

Having established this combinatorial description, the main technical component
of this work is to locate the sharp threshold in the cluster model. Importantly, the
requirement that each 0 neighbor at least two 1’s makes frozen configurations much
more difficult to perturb locally compared with the original independent sets. This local
rigidity hints that applying the moment method in this model does locate the exact
threshold—that is to say, the asymptotic density «, appearing in Theorem 1 is the first
moment threshold of the cluster model, as is precisely in line with the 1RSB heuristic.

To prove this, we compute the first and second moments of our cluster model up to
constants. This calculation is technically challenging, and our solution builds on some of
our previous work [21], [20]. Like the original independent set model, the cluster model
defines a Gibbs measure (Markov random field) on the random graph—albeit a slightly
non-standard one, the most natural form having spins on directed edges rather than on
vertices. The (first or second) moment can be understood as an optimization of a rate
function ® over a simplex of empirical measures, which turns out to have high dimension,
growing with d, due to the unusual form of the Gibbs measure. However, by a certain
“Bethe variational principle” we are able to characterize local maximizers of ® via fixed
points of certain tree recursions, reducing the optimization to a dimension constant in d.
Even so we are tasked with eliminating a possible multitude of local maximizers, partic-
ularly in the second moment which reduces to a fixed-point problem in 81 real variables.

This is resolved in the physics folklore by invoking a “causality principle” (cf. [36, equa-
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tion (19.26)]) which imposes symmetries among the variables, drastically reducing the
dimension. Through delicate a-priori estimates we rigorously establish these symmetries,
and thereby pinpoint the global maximizer of ®. This computes the moments up to
polynomial corrections, and we improve the calculation to within constant factors by
establishing that ® has negative-definite Hessian at its global maximizer.

The moment calculation itself only establishes the existence of clusters with asymp-
totically positive probability, but combined with the classical martingale bound this im-
plies that MIS,, =na, +O(n'/?) with high probability, which in turn implies Theorem 1.
Our final innovation is a method to improve positive probability bounds to high proba-
bility, which proves the stronger result stated in Remark 1.1. The approach is based on
controlling the incremental fluctuations of the Doob martingale of a log-transform of the
partition function.

The same broad outline of proof applies to our computation [24] of the satisfiability
threshold in random regular NAE-SAT. The proof of this paper is more difficult because
the cluster representation has additional complications, and also because we require more
precise estimates to achieve a sharper bound on the fluctuations (Remark 1.1).

1.5. Configuration model for random regular graphs

Unless indicated otherwise, graphs are permitted to have self-loops and multi-edges. On
any graph G=(V, E), say that x€{0,1}V is an independent set if x,2,=0 on every edge
(uv) € E—in particular, a vertex with a self-loop cannot belong to any independent set.

Let ¢, ,, denote the uniformly random d-regular graph on n vertices, sampled ac-
cording to the standard configuration model—that is, start with n isolated vertices each
equipped with d labeled half-edges, and form the graph by taking a uniformly random
matching on the nd half-edges (where nd is assumed to be even). We denote the falling

factorial by (A), and the falling double factorial by [A],, namely

b—1 b—1
(A)y= H(A—i) and [A],= H(A—1—2i).

The first moment of Z,,, over ¥ ,, is given by

n (nd(l—a)nda)nda _no(l) (l—a)(dfl)(lfa) n (7)
no [nd]nda N a® (1 — 2&) (d/2)(1—2a) ’

]EZna = (

=exp(¢(a))
where ¢ is calculated from Stirling’s formula.
Conditioned on the event that ¢, ,, is free of self-loops and multi-edges, it has the

law of the uniformly random simple d-regular graph, G4 ,,. This event occurs (for fixed d)
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with uniformly positive probability in the limit n— oo (see e.g. [30]), so once Theorem 1 is
established for ¥ ,, it immediately follows for G, ,, as well. We therefore work throughout

with the configuration model ¥ ,,.

Notational conventions

For non-negative quantities f=f4, and g=gq,, we use any of the equivalent notations
f=0a4(9), 9=24(f), f<ag, and g=4f to indicate that for each fixed d>dp,

lim sup i <0
n—oo g

(with the convention 0/0=1). We drop the subscript d to indicate

lim sup (lim sup f) < 00.
d—o0 n—oo 9

We write f<4¢ to indicate that both f<;¢ and g<4f hold, and drop the subscript d if
both f<gand g<f hold. Lastly, we use any of the equivalent notations f=o0(g), g=w(f),
f<g, and ¢g> f to indicate that for each fixed d>dy,

limsup = =0.
n—oo g
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2. Model of independent set clusters

In this section we present the combinatorial characterization of independent set clusters.

2.1. Combinatorial representation of clusters

Our first task is to obtain a simple encoding of these clusters. In the geometry of each
individual cluster, the main source of complication is that making one edge-swap can free
up room for another edge-swap which was not previously permitted, so the minimal chain
of edge-swaps joining two independent sets in the same cluster may be extremely long.

Indeed, since the local structure of ¥, ,, is that of the d-regular tree, the propagation
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of edge-swaps (at least at short distances) behaves as a branching process. A useful
heuristic is that, for independent sets at density y(log d)/d with y<2, the branching rate

will approximately be

(d—l)IP’(Bin (d—l, yl‘;gd> - 1) = ydlfld {Ho((logddfﬂ. (8)

The transition between supercritical and subcritical branching occurs at y~1. In the

near-maximal regime y=:2 the branching will be quite subcritical: this key fact makes it
possible to understand the cluster geometry in a relatively straightforward way.

Our first step in modeling the clusters is to consider the following procedure (cf. [5]):
it takes as input a graph G=(V, E) together with an independent set z€{0,1}". The
output is a configuration n€{0,1,£}" (£ denoting “free”) together with a subset mCE
forming a perfect matching on a subset of the f-vertices (indicating edge-swaps).

Definition 2.1. Given an input graph G=(V, E) and an independent set z€{0,1}V
of G, the coarsening algorithm proceeds as follows:

(1) Form free pairs (iterate for 0<s<t): take the first vertex u with 7, =0 and a
unique neighbor v with n,=1. Set n,=n,=f and add (uv) to m. Iterate until the first
time ¢t that no such vertex u remains.

(2) Identify single frees: for all vertices v which have state 0 and no neighboring 1’s
under 7, update 7, to state f.

At the end of this procedure output the pair =(n,m).

(In the first step, vertices are processed in order with respect to the given ordering
on the vertices V=[n]={1,...,n}.) We shall see that the correspondence between clus-
ters and coarsenings is sufficiently close to a bijection for our purposes. The following
proposition, whose proof is given in §2.3, is a rigorous version of the heuristic estimate

(8) on the subcritical propagation of the edge-swaps.

PROPOSITION 2.2. Recall from (4) that ag denotes the first moment threshold for
independent sets on 9y, and let a_=an—d /3. Let F denote the event that any inde-

pendent set on 94, with density >a_ has, after coarsening, a density of frees >d3/2,
Then, for d>=dg, lim,,_,., P(F)=0.

We can model the clusters of large independent sets in a simple manner in large part
because the frees are so subcritical. The first coarsening step (forming pairs) is the main
one conceptually, and the intuition is that the resulting frees—since their density is so
low—will occur predominantly in isolated pairs or small trees of linked pairs, reflecting

a relatively tractable geometry within the cluster. The second coarsening step (forming
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single frees) is a clean-up procedure: if we only consider the coarsening applied to maxi-
mum independent sets, this step becomes relevant only when a chain of edge-swaps can
be made along an odd-length cycle. (This is also a case in which configurations in the
same cluster may have different coarsenings.) We shall show that we can discard these

odd-cycle scenarios and still recover the sharp asymptotics for MIS,,.

Definition 2.3. A frozen configuration on a graph G=(V, E) is a pair n=(n, m), with
n€{0,1, £}V and mCE, satisfying the following:

(1) The 1-vertices neighbor only O-vertices;

(2) Each O-vertex has at least two 1-neighbors;

(3) The total density of f-vertices is <fmax=d >/

(4) The edges m form a perfect matching on the f-vertices.

The frozen model is the counting measure on frozen configurations.

The frozen model is our independent set cluster representation: clearly, a frozen
configuration is an idealized coarsening of an independent set, in which the second step
of forming single frees is not needed. The truncation at Bmax=d 3/2 is justified by
Proposition 2.2. Write V;, ={v:n,=n}, n€{0,1,f}, and define the intensity of n by

i(m) = [Va|+ 3| Vz| (9)

(corresponding to the size of the original independent set). We shall always assume that

the intensity lies in a restricted regime:

510gd< <210gd
Qlpd = <a< = Qubd;
Ibd 3d d bd

and occasionally we will restrict further a>a_=an—d~%/3 (as defined in Proposition 2.2).
Let Z,, count the frozen configurations on ¥, of intensity exactly no, while Z5,,
counts the configurations of intensity at least na. Explicitly, writing Z,,, », for the num-

ber of frozen configurations =(n, m) on ¥, with [Vi|=n; and |[Vz|=n¢, we have

g max»
Za= Y 1{ nz <1 }Znn and Zsna= Y Zuw  (10)

2na=2n1+n¢

ni,ne 20 aga’

The following theorem validates the 1RSB hypothesis by establishing that the threshold

for the existence of clusters occurs precisely at the first moment threshold.

THEOREM 2. For d>=dy and a,=na,+cclogn as in Remark 1.1, the following
statements hold:

(a) The gap ag—ay is of order [(logd)/d]?, so a_=an—d =5/ lies below a,.
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(b) For any constant C, limsup,, ,.cEZ>q, _c is finite. We have the upper bound

lim limsupEZ>,, +c =0,
C—00 psoo

as well as the lower bound
liminfP(Z>,, >1)>0.

n—+oo

In the rest of this section we explain how this implies our main result Theorem 1.

The proof of Theorem 2 occupies the remainder of the paper.

2.2. Independent set threshold from cluster threshold

The coarsening algorithm outputs a pair (1, m), where n€{0,1, £}V and m is a match-
ing on (a subset of) the f-vertices. Discarding the matching m leads to the following

definition.

Definition 2.4. On a graph G=(V, ), given a spin configuration n€{0, 1, £}V, write
§(n) for the subgraph induced by the f-vertices. An unweighted coarsening on a graph
G=(V,E) is a spin configuration ne{0,1,£}" satisfying conditions (1)—(3) in Defini-
tion 2.3, such that every acyclic component of F(n) has a (necessarily unique) perfect

matching.

Let Zp, n, count unweighted coarsenings 7 of %, with |Vi|=n; and |V¢|=ns. Let
also Zp, n,(O) denote the contribution from those 7 with exactly O odd-sized compo-
nents; from the preceding definition, each such component must contain a cycle. For
a>an—d 5/3, if MIS, >na then either the event F of Proposition 2.2 occurs, or the

random variable
ng g nﬂmax;
Zena=) D 1{ }znmf(o) (11)
030 nimeo U 2na+0 <20y 40y
is strictly positive. Recalling the remarks below the statement of Proposition 2.2, let

Z'ree = contribution to Z from configurations whose f-subgraph is acyclic;

Z"™¢ = contribution to Z from configurations whose f-subgraph contains (12)

only trees and unicycles.
The following proposition will be proved in §2.3.

PROPOSITION 2.5. For d>=dy, the following hold uniformly over ajppg<a<aubq:
(a) E2%c >1E2. ., for large n (depending only on d); and

>na® 2

(b) EZ;‘Eg:[l—o(l)] EZ> o, where o(1) denotes an error tending to zero as n— oo.
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Our main result follows from Theorem 2 combined with Propositions 2.2 and 2.5.

Proof of Theorem 1. Recall the notation a_=an—d /3. For the upper bound,
note that for a>a_ we have {MIS,,>2na} CFU{Z>,q >0}, where P(F)=0(1) by Propo-

sition 2.2. Markov’s inequality and Proposition 2.5 (a) give, for n large, that

P(Zsna > 0) <EZsna < 2E2T < 2EZ5 pa,

>na

where 24%¢ <Z>nq by comparing Definitions 2.3 and 2.4. Since Theorem 2 (a) gives

ay,>a_, the above applies with na=a,,, and we conclude that
P(MIS,, > a,+C) <0o(1)+2EZ>q, +c-
It then follows from the upper bound in Theorem 2 (b) that

lim limsup P(MIS,, > a,+C)=0.

—0  p—oo

For the lower bound, note that {MIS, >na}2{Z%¢ >0} and by Proposition 2.5 (b) we

>na

have that P(Z25€ < Z5, ) =0(1) EZ5yo. This implies

>na
P(MIS,, = na) > P(ZY > 0) 2 P(Z>na > 0)—0(1)EZ> pa-

>na

Taking na=a,, and applying Theorem 2 (b) on the right-hand side above gives

lim inf P(MIS,, > a,,) > 0.

n—oo
Recalling the classical bound P(|MIS,, —EMIS,,| >)<exp(—z?/nd) (see Remark 1.1), we
conclude that EMIS,, must lie within O4(n'/?) of a,,, and the result follows. O

2.3. Large components and trees with matchings

We now turn to the proof of Proposition 2.5. First let us fix some notation. For any
measures p and ¢ defined on a discrete space . we denote the entropy by H(p), and the
relative entropy by H(q|p):

H(p)=—Y_ p(z)logp(x) and H(q|p)= > q(x)log Z(?-

zeS €S ( )

If p and ¢ are probability measures on the binary set {0, 1}, then we may abuse notation

and represent the measures p and ¢ by the scalars x=p(1) and y=¢(1):

1—
H(z)=—-xzlogz—(1—x)log(l—x) and H(y|:z:):ylogg+(lfy)log1 Y.
x —x

In a graph G, if U is any subgraph or subset of vertices, we write |U| for the number of
vertices in U, and QU for the set of vertices in G\U that are neighboring to U. We write

E(U) for the number of internal edges of U (counting self-loops and multi-edges).
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LEMMA 2.6. For any s>1, there is a bounded constant C=C(s) such that, with high
probability, the random d-regular graph contains no subset of n/d® vertices having more
than Cn/d® internal edges. (In particular, C(s)=(s+1)/(s—1) suffices.)

Proof. Fix a subset S of ng vertices, where 5=1/d°. Generate the random graph
according to the configuration model. The number of internal edges of S is stochastically
dominated by a binominal random variable,

. ndp
X ~ Bin (ndﬁ7 'nd—27’Ld/8> 5
which has mean EX <2ndj32. By the Chernoff bound,
1
P(X > Cnp) <exp (—nﬁ (C’ log e —O(l)) ) .

The number of subsets S of size ng is given by

(n”6> —exp (nﬂ <10g ;+0(1)) > .

If we set C=(s+1)/(s—1) and take a union bound over the subsets S, we find that the
chance for any S of size n/d® to have more than Cn/d® internal edges is bounded from

above by

exp(;s (c log d— (C'—1)slog d+O(1))> <exp (-W) .

For d exceeding an absolute constant, the above is clearly o,,(1), proving the lemma. O

Proof of Proposition 2.2. Fix a subset V; of na vertices, and let Vo=V\V;. Sup-
posing that V; forms an independent set in the graph, perform the coarsening algorithm
and let S’ denote the resulting subset of vertices set to £. For any subset S, CS'NV,
let Sy denote the subset of vertices in V; neighboring to Sy; the definition of coarsening
implies that S;CS” and |S1|<|So|.

For each veV; let d,, count the number of edges between v and V3. As before, for any
SoC.S'NVy, let Sy denote the neighbors of Sy in Vi. Then either the vector (d,)yes, must
have sum at most 10|S|, or the number of internal edges in S=S,US; must be more than
10]So|, which in turn is at least 55| since |S1|<|So|. We saw in Lemma 2.6 that, with
high probability, there is no subset S of size |S|=n/d*>/? with more than 5|S| internal
edges. Tt therefore remains to rule out the case where (d,)yes, has sum at most 10|.Sp|.

By the same considerations as in the proof of (6), the vector (d,)yeyv, has the same
distribution as a vector of i.i.d. Bin(d,«/(1—«)) random variables D;, 1<i<n(1—a«),
conditioned to have sum nda. With 3=1/d/2, we have

np
IE”( > D;<10n3
i=1

n(l—a)

nf
3 DizndOc)énO(l)P( Di<10nﬁ).
i=1

=1 =
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For a=y(logd)/d, it follows by a Chernoff bound that the right-hand side above is less

than or equal to
exp(—nf(ylog d—O(loglogd))).
For 3=1/d%/?, the number of subsets S, CV; of size n3 is bounded from above by

(") = (i) sl (55 om))

It follows by a union bound that, with high probability, no such Sy occurs for the entire

range

c [1.55 logd 2log d}
d Tod
which is clearly a superset of the range [ag—d*‘r’/ 3 ap]. Finally, we saw previously that
MIS,, <an<2(logd)/d with high probability, so the result of the proposition follows. [

We turn now to the proof of Proposition 2.5. Recall from Definition 2.4 that for
ne{0, 1, £}V, we use §(n) to denote the subgraph induced by the f-vertices. That is
to say, §(n)=(Vz, Eg), where VzCV is the subset of f-vertices, and Ejy is the subset
of edges with both endpoints in V. Recall that in the d-regular configuration model,
each edge is a matching of two half-edges from [nd]. Let Hz C[nd] denote the half-edges
involved in Ez. We can then encode the subgraph § alone (removing all other edges of
the graph) as the subset Hg together with a perfect matching on Hgz. Note that given
Hz we can determine V;=V3 to be the subset of vertices having an incident half-edge
in Hg.

Let Z,, (&) count unweighted coarsenings n of ¢ ,, that have |Vi|=n; and §(n)=3.
In particular, we must have Z,,(§)=0 except on the event By that § is precisely the
subgraph induced by its incident vertices Vz. Then

an;nf: Z Z’n1(3) a'nd Z’ﬂunf: Z m(g) Zn1(3)’ (13)
|S‘:nf ‘:ﬂ:nf

where m(§) counts the number of perfect matchings of V; contained in §.(*) For a given
n—ms
ny

]E[an(%)] = C(TL, ny, nf)]P’(Bl mBome),

5, write c(n, nq, nf)E( ) for the number of choices for V;. Fixing any such Vi,
where

B; ={all edges leaving V; go to V,},

By ={each vertex in V, has at least two edges coming from V;},

B; ={F is the subgraph induced by V;}.

(3) We emphasize that m(§) refers to perfect matchings on the vertices of V%, in contrast with §
which is a perfect matching on a subset of labeled half-edges incident to V.
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We now observe that the quantity E[Z,,(§)] depends on § only through the number
of vertices ns=|F|, and the number of internal edges E=E(F). To see this, abbreviate
E,=ny,d and E=nd, and first note that

Ey—1

Eo—i _ (Eo)m,
P(By)=gi(E, B, B) = [[ 1= ([Eo])EE '
=0 '

(14)

Next, it is clear that P(By|B;) can be expressed as a function g of (ng, F1) only. Lastly, if
we condition on B;N By, then all E; half-edges leaving V; have been assigned, matching
with a subset of Fj half-edges leaving V5. Out of the F: half-edges leaving V%, the
specification of § fixes the assignment of 2 half-edges. Then E:—2E half-edges remain
to be assigned, and these must match to half-edges from V, (by the assumption that §
is the induced subgraph on V;). Therefore

(E—2E:—FE¢)p, ok
[E—2F\]g, E

P(B3:|BimB0) gf(E ElaEf7 )—
This verifies the claim that E[Z,,(§)] depends only on n:=|§| and E=E(F):
E[Zn,(3)] = c(n, n1,n¢)g1 (E, E1, Et)go(no, £1)8:(E, E1, Es,E) =g(n,n4,n5,E).  (15)

As ¢, g1, and go do not depend on E, we find crudely that the function g of (15) satisfies

4 5
g(n7nlvnf7E+5) < <7’ld) g(nvnlvnfvE) (16)

throughout the regime ap,q<a<aypq, indicating that excess internal edges in § are
costly. On the other hand, let us note that g is much less sensitive to small shifts in mass
from V4 to V; or vice versa: for §<n/d we estimate
(1) c(n,ny,ne+6)=c(n,ny,ng)e’®,
(2) g1(E,Eq, Es+db)<gi(E, El,Ef)
(3) &:(E, E1, Es+d6,5)=g:(E, Ei, B¢, E)e?),
(4> (n0_67 El):go(n07E1)eO(5)7
SO
g(n, n1, ns+0,E) <00, (17)

g(n,nq,ng,E)
Estimates (1)—(3) follow straightforwardly from the explicit expressions given above; the
proof of (4) is deferred to §2.4.

Fix any k>2 (odd or even), and let f be a subgraph having no size-k components and
no components consisting of a single isolated edge. Let Qf 4(ng; ) denote the collection
of subgraphs § such that

e § contains f and has |§|=n; vertices;
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e §\f has exactly ! components of size k (not isolated edges), with all remaining
components isolated edges; and

e the size-k components have q=I(k—1{k even})+ A internal edges.

Recall from Definition 2.4 that any odd-sized component must contain a cycle, so
we see that A is non-negative. In the special case k=2, F\f consists of a collection of
isolated edges along with [ size-2 components each having at least two internal edges, so
A=l

We will argue below that in the first moment calculation, it is more efficient to
break up the components of §\f into isolated edges. To this end, let fig=ns+1{T odd},
and note that each FEOF ((7ie;f) has the same number E of internal edges, while each

S’GQﬁA(nf; f) has the same number E” of internal edges:
e=E(f)+5(n:—|f])=[37| and E”=t(f)+3t+q=Ee+q—1lk—11{T odd}.
To compare the two scenarios, define

| A (e )| g(n,n1, e, &) [max{m(F') :§ € (3 )}
196 0(ne: )] &(n,n1,7,E) | minfm(§):§ € Qf o(ns; )} |’

R ()=

where we include the ratio in square brackets in order to simultaneously address un-
weighted coarsenings and the frozen model. This last ratio will not have a substantial
effect: first note that if m(f)=0, then we must also have m(gF")=0 for any S’GQﬁA(nf; f); in
this case we shall define the ratio to be 1. In general, if FeQf ;(n¢;f), then m(F)=m(f),
while if S’eQﬁA(nf;f), then m(F)<2%m(f). Therefore in any case the ratio in square
brackets is <29, and we will see in the calculation below that e?(@ factors can be ig-

nored.

LEMMA 2.7. For d>dy, ns <nBmax, (2n1+ns)/2n€[pd, Quba], and n>=ng(d), there

exists an absolute constant ¢ such that

d o k/2 1{k even}\l Ak A
ryyi < (Pl (1)) () (18)

n

Proof. Given f, an element of QfA(nf; f) is obtained as follows: first, from the n—|f]
vertices that lie outside f, choose T'=ns—|f| vertices to belong to F\f. From these we
choose a further subset of t=T—[k vertices to belong to the isolated edge components.
For each of these ¢ vertices we choose one of the d incident half-edges, then take a perfect
matching on the ¢ chosen half-edges to form the isolated edge components. Next we turn
to the remaining [k chosen vertices, and divide these into [ groups of size k; the number of
ways to do this is (1k)!/l!(k!)'. To determine the internal edges among these components,
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we can first choose an ordered list of half-edges ay, ..., aq from the lkd half-edges available.
Each half-edge a; must match to a partner b; which is one of the <kd half-edges available
within the same component of k vertices. There are g!29 lists of ordered pairs (a;, b;)i<q

yielding the same set of internal edges, so altogether we have

108 4 (nes )] < (n;m) [(f)dt(tl)!!} Lfé:?)’l (lkdci;‘;fd)q

size-2 components size-k components (19)

(n—|fihr d™> (k)2 k2 o (n—|fr d™2 ke
(Le)r 207 q Dk (5t)! 2t/ (UkR)V

where the last bound uses q=1(k—1)>3lk. For T even, combining (16) and (19) gives

1
2

Lo (12t 1y
(n}|f‘)dT(T—1)!! b (%t)! (kR \ n .

Since T'=t+1k<nPmax, the first factor is <le/2<(n5max)lk/2. It follows that for some

absolute constant ¢ (not depending on d),

e (T even) (CdBmax)k/z n 1{k even}\! cdk A
RyyA() < — |\ .

n

Rpis(f) <

For T odd, combining (16), (17), and (19) (and adjusting the constant ¢ as needed) gives

Ry S 197 4 (ne; D|O[(4/nd)2 /2 71/2] _ (cdBumax)) ¥/ [ cdk \*
k,l,A(f) X (r};\i\)dT“(T”) ( l ><n) )

concluding the proof. O

LEMMA 2.8. Write Z;’na for the contribution to Z>pno from configurations having
at least one f-component which either has an odd number of vertices, or has two vertices
with more than one internal edge (meaning it must contain a self-loop or doubled edge).
For d>dy, apa<a<aypg, and n=ng(d), we have

E[Z22,.] <d Y3 EZspna.

>na

Proof. Recall the notation of (13) and (15). Let Z,,, »,(Lr=[) denote the contribu-
tion to Z, », from configurations whose f-subgraph has exactly [ components of size k

that are not isolated edges. For the case k=2, applying Lemma 2.7 gives

Zl}l E[Zn, n: (L =1)] < 2121 Zf ZA)I |Q§,0(nf§ f)lg(n,ny,ng, ")
E[Zn,n(Le=0)] 221 196 o (nes ) lg(n, mua, e E)

SdBmax-  (20)
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Next assume that k is odd, and let Zy,, n,(O; Ly =[) denote the contribution to Zy, n,(0)

from configurations having exactly | £-components of size k (where [<O). Then

E[Zn, 5, (0; Ly =1)] _ Zf:O(T)H:O ZA;O |QﬁA(”f§ f)lg(n,ny, ne, E”)
E[Zm,ﬁf (0—1; L =0)] Ef;o(f)+l:0 |Q§,0(ﬁf§ f)lg(n, ny, ne, E) ’

and applying Lemma 2.7 gives (for [>1)

E[Zny e (05 Li, = 1)] < (cdBmax)*/ *E[Zn, 7, (O—1; Ly, = 0)].

For k>3 odd and [>1, summing both sides of the above over ny, ng, and O with O>1
and 2na+0<2ny +ns gives E[Zspa; Li=I] <d‘lk/5EZ>na (cf. (11)). The claimed bound
now follows readily by summing over odd k>3 and [>1, and combining with (20). O

We turn now to the components of even size k>4. Recall that L; counts the number

of size-k components in the f-subgraph, and define
Ik = [(cdBumax) 30/ dk]V 1,
z=7Z(Ly <l for all k>4 even); (21)
2V =2V (L <l for all k>4 even), where 2 =2(0=0).
LEMMA 2.9. For d>=dy, ajpa<a<aypd, and n=2ng(d),

E[=30] > (1-n"VAERS L] and  Elzyn] > (1-n"?)E[Z50a].

>na
Proof. For k<nfmax and 1>1, (18) gives RZ}I’YX (f) < (cdBmax) B/BH*+A 50

E[Zi‘i,nf(Lk =) < ZO(f):O Zl)lk ZA;O |Qf€,A(nf? f)lg(n,ny,ne, ")
E[Z%\L"f (Lk = O)] - Zo(f):o |Q§,O (nf; f) |g(n7 N, N,y E)
< 2(cdBmax) PO,

We claim that the above is <n~%/2. If I;,k>log n this clearly holds. If Ik <log n, then by
definition of I;, we have (cdBmax)*/®<d(logn)/n, so the above is <[d(logn)/n]** <n~=5/2,
verifying the claim. Summing over even k>4, and ny and ng with 2n, +ns>2na proves
the bound for Z. The bound for Z follows in exactly the same manner since the effect

of reweighting by the number of matchings was already accounted for in (18). O

Proof of Proposition 2.5. Fix k>4 even and assume the quantity [ of Lemma 2.9
to be strictly greater than 1. For a subgraph {* having no components of size k, let
Efm 4 (ng; ) denote the collection of subgraphs § such that

(1) §F contains f and has |§|=n¢ vertices; and

(2) F\f* consists of [ size-k components, of which [—r components are trees with
(unique) perfect matching, while the remaining r components are not trees and have

q'=rk+A’ internal edges.
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Note that each SGEﬁO7O(nf; ) has the same number E of internal edges, while each

FE€EL, 4 (ng;§*) has the same number E” of internal edges:
E=E(f)+l(k—1) and E'=©e(f)+({-7r)(k—1)+q =e+r+A".

Similarly as before, define the ratio

N1, (f*) — ‘Eﬁr,A’ ({n‘f; f*)| g(nh ng, E”) 1\/max{m(&) Fe Eﬁr,A’(nf; f*)}
wlird 1=F0,0(nes )] g(na, ne,E) 1vmin{m(§) : § € Zfg o (ne; )}

Given k isolated vertices each equipped with d half-edges, let TPM ;; denote the number
of ways to match up k—1 pairs of half-edges such that the resulting graph is a tree on k
vertices with a (unique) perfect matching.(*) We crudely bound the number of spanning
trees from below by the number of line graphs, which clearly have a perfect matching as
k is even: TPMg > 2k!dF (d—1)k2>e0® kFq2(k=1)  Combining with (16) gives

(D) (TPMa )T (rkd)Y (kd)Y ( 4 )”A’

(Pvan)  2¢(q)) \nd

Skima () <29
(similarly to the derivation of (19)). Simplifying, we see that

e er [ CRAN [ CdE Y
Skima (F) < ( ) <>

n n

for C' an absolute constant. Recall that we assumed I, = (cdfmax)*/®n/dk>1; as a result
it suffices to consider k<C~'logn, so

d(logn) A

ST ) < ()70 | 222

Decompose the quantities appearing in (21) as
2OV = Ztree_’_zcyc and z = Zunic+Zbic

tree

where 2! and z"%¢ are defined analogously to (12). Then

E[z,,] < Z D f0(7)=0 2or<r<i<iy 2oArs0 |20 (nes ) &(n, nay mg EY) -1/

DEE > > =7 0,0(n2:§%)|&g(n, 1, e, E) h ’
LRI k>4 even F*:0(f*)=0 1<I<ly, =100\ gn,nq, ns,

thus E[=2r ]<d"'/°E[2%,,]. A very similar calculation shows E[z2¢ |=0(1)E[z,,,]

(in this case we sum over A’>1 instead of A’>0). Combining with Lemmas 2.8 and 2.9

concludes the proof. O

(%) This means a perfect matching of the tree’s vertices, not to be confused with the matching of
half-edges.
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2.4. Estimates on forcing constraints

In this subsection we calculate the probability cost of the constraint that each 0-vertex is
forced by at least two neighboring 1-vertices—that is, the function go(ne, E1) appearing
in (15) is equal to P(By|B;). To be slightly more general, for a fixed positive integer
£, write go ¢(n, Ey) for the probability, with respect to a uniformly random assignment
of E; half-edges to n vertices of degree d, that each vertex receives at least £ incoming
half-edges (so go=go.e=2)-

We also analyze a bivariate analogue goo ¢ which will be used in our second moment
analysis §4. Let 2 ={0,1}?\{00} and write 0=(0,).,c2 . If the three entries of § are

positive and have sum strictly less than 1, then

<9117 01079017 1- Z aw)

wex

defines a probability measure on {0,1}? with full support. We take @ to be a {0,1}%-
valued random variable with law given by this measure. Take (w,),;>1 independent
random variables identically distributed as w, and define the multinomial random vari-
able

XE(XW)wEU”&’E(‘{lgjgd:wjzw}”we%- (22)

Though we always use # and X to denote three-dimensional vectors indexed by we 2,

we also use the abbreviations

Opo=1— Z 0, and Xgp=d— Z X..
weX weX

Let pg denote the law of X. Let X i 1<i<n, be independent random variables identically
distributed according to pg, and write Py for their (joint) law:

T ; iy dl(011)% (010) "% (Bo1) ™" (Foo )™
Po(g) :Hpe(x )7 pg(x ) 211110 %012 00! -

i=1

Write o for {0,1,f}, e.g. ©1_=x10+x11+21¢. Then, with Q={z:2;_Az_3<l},
>oxi=5)

i=1

> x'-E).

i=1

goe(n, E1) =Py (Xfu =L fori=1,...,n

gooe(n, E) =Py (Xi ¢Q fori=1,..,n
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Further, write X ~v to indicate that (X?);<, has empirical measure v, and likewise write

X;_~1/' to indicate that X;_=(X?! ),<, has empirical measure /. Define

n
ZXL:EuXL}E for izl,...,n),

pO,i(na E17 l//) E]P)Q (XluNV/
i=1

ZXi:E7Xi¢Qfori:17...,n).

POO,Z(na b, V) =Py (X ~U
=1

PROPOSITION 2.10. Let € be a small constant uniform in d, and suppose that

10log d

< Clua Cul < d .

elogd
d

(a) Let a and y be defined by ¢1_=a(logd)/d and {;_N( 1=y(logd)/d. Then

8o.e(n,nd¢;_) =exp(O(nd~*(log d)l)),
800,0(n, nd¢) = exp(O(nd™Y(log d)e)).

Further, poe(n,ndi_,v") and poo.e(n,nd¢,v) are exponentially small in n, unless

o(1)
/o) =ep( L

0o d)O)
v(z) =exp ((lgdd3> 1{z € Q}p(z).

) 1{z>€}P(Bin(d, (; ) =),

(b) If & is another vector with |€,/Cu—1|<e™ ! for all we X", then

go,z(n, nd§1_) = go,e(n, nd<1_) exp(O(nd|§1_ _Clu‘))a
8o0,¢(n, nd§) = goo,e(n, ndC) exp(O(nd||E—C|l1))-

LEMMA 2.11. For the multinomial random variable X defined by (22), consider
the cumulant generating function Ag(y)=logEg[e{"X)| X ¢Q)], defined for vER3. For

positive vectors 6 and ( in the regime

elogd 10logd

d )

< 91.47 9.417 Cl._J Cul <

there exists a unique yER3 with Ay(v)=d(; and this v satisfies

900 Cw
COO ew

£—1
- (logd)
S0

Yo —log for all we Z .
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Proof. If ~ exists, then it is clearly unique by the strict convexity of the cumulant

generating function on R3. To see existence, first note that

0&) ew . 00.) ew
20,y Oo0+> e g OneT™

Ay(v)=E,[X|X ¢Q] for p,= weZ.

In particular, each entry of Aj(y) lies between 0 and d. Now, for £>0 small, consider the
g-perturbed cumulant generating function Ag(’y)+%€||’y||2, corresponding to the random
variable X 4+¢'/2Y for Y a standard Gaussian in R3. For any fixed £>0 this is a smooth
convex function on R3, with gradient Aj(y)-+ey tending in norm to oo as ||vy||—oo.
It follows from Rockafellar’s theorem (see e.g. [22, Lemma 2.3.12]) that there exists a
unique v =(Ve,w )we 2 such that Aj(v.)+ev.=d¢. We shall show by some rough estimates
that 7. must remain within a compact region as ¢ tends to zero. We claim first that
Ooo =0,€7=+ for all we Z": if not, then for some we 2" we must have zg ., <46,e7e,

implying (in the stated regime of 6, () that
Ye,w = 571 (de 76&1A9 (’VE)) g 571 (dCW - %d) < 0’

contradicting the hypothesis that o0 <6,e7=~. Thus limsup, ;e must be finite for

each we Z". In the other direction, the trivial bound zg ,>60o gives

Ye,w
'Ys,w:571(d<w_8wA9(’76))>€7lde <1_60 )a
00

so clearly liminf, o v ., must also be finite. It follows by an easy compactness argument
that 7. converges in the limit €0 to the required solution ~ of Aj(vy)=d(.

To control the norm of the solution ~ of Aj(y)=d(, we shall argue that for ¢ in the
stated regime, u, is close to (,, for each w. The bound for w=11 is easiest: consider X
as the dth step of the random walk

Xi=(Xrwwer =(I1<j<t:wj=w|)uea

Define the stopping time 7=inf{t>0:X,¢Q}, so {X¢Q}={r<d}. Since X, 11<¥, ap-
plying the Markov property gives

dCi1 =E,[X11| X € Q) <U+E,[Xg 11— X711 |7 <] SLHE, [ Xgr 1] <L+dpgy. (24)

Next observe that for the multinomial random variable X defined by (22), and for any
w# the conditional expectation Eg[X,, | X,=k]=(d—k)0,/(1—0;) is decreasing in k, so

Eo[Xu | Xn 2 1= P(Xr =k|Xr 2 DEg[ Xy | Xr = k] <EgX,, = db,. (25)
k>l
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Define stopping times 73_=inf{t>0:X;_(¢)>£} and symmetrically 7_;; then 7=71_V7_4.
Since X, 10<¥,

Eu[X1ol{r <d}] <£+EM[(X10_X7'1H,10)1{Tgd}]
Pu(r<d) P, (T <d)

Pu(Tlu:kaXnH:xa)?dfk,_l >£—$_1) ad ad
:E—'_ZZ Pu(ng) Eu[dek,1o|Xd7k,_1 >£—$_1],

dCio=E,[X10| X ¢ Q] =

where ()N(t)t>o is an independent realization of the random walk X. Maximizing over all

possible k and x and applying (25) gives
< E[Xa—r,10]| X1 >1] < ,
dCio e+k$fz)ée [ Xd—k10]| Xa—p,_1 > 1] <L+dpo

and symmetrically
dCor <L+dpio;.

Thus for  in the stated regime we conclude that dpu,, >d(,—O(1) for all we 2", and thus
dtoo <dCoo+O(1).
From these bounds we see that, with y defined by (;_A{ 1=y(logd)/d,

P.(X €Q)<P,(X;. <) +P, (X 1 <€) <d Y(logd)* .
Write p,, for the law of X=X, and ¢, for that of X4_;, and observe that
Copu(r) = dpgu(r—1y)
(with both sides zero for x,=0). We then calculate

. ]E,U.XUJ —d, ZzEQ q#(x_lw)

¢, = =dp,, [1+0(d ¥ (logd)*~* 26
¢ _P,(X€0) fo [1+0(d™Y (log d)™ )] (26)
for all we{0,1}?. Summing over we 2 gives
0 0
207 = 0280 00 40 (a Y (log )] 21)
Coo too oo
implying the stated bound on ~,=log(zp ~1tw/0.,), weZ . O

It follows (see e.g. [22, Lemma 2.3.9]) that, with 6 and ¢ in the stated regime,
the Fenchel-Legendre transform Aj(d¢)=sup., [(y, d() —Ag(7)] of the cumulant generating
function is given by

AG(d¢) = (v, d¢)—A(), (28)

where « is the solution of Aj(y)=d(. Since Ag is strictly convex, we find by implicit
differentiation that + is differentiable with respect to ¢ (in the stated regime). We then
see from (28) that A} is differentiable with respect to ¢, with gradient (A})'(d¢)=".
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Proof of Proposition 2.10. Let goo.¢(n,nd(,v) be the contribution to goo¢(n, ndC)
from the event that X ~wv. This can be positive only if ¥(Q)=0 and 7=d(, in which case

]P)g (X ~ I/)
Po (>0, Xi=nd()

By Stirling’s formula, the denominator is <4n~3/2 exp(—ndH((|0)). Fixing 6, we opti-

goo,e(n, ndg, ) 8oo e(n NdC)poo e(n ndg, )

mize the numerator over v, introducing a Lagrangian term for the constraint on :

Po(X ~v) = <m/> Hpa )@ eXp< <% qu >>
— O exp< .o 3 vt g ) og(puta) (L o))

For any fixed 6 and ~, over the space {v:v(2)=0} (without the constraint on o), the

exponent of Pg(X ~v) is maximized at

1 ¢ W) expl(7. 1))
)= e pel) exp((m, ) (29)

If we take v to be the unique solution v given by Lemma 2.11 of Aj(y)=d(, then (29)

gives a measure v that satisfies 7=d(. Thus, recalling (28),
800,¢(n, ndC) =<4 [1=Py()]" exp(—ndy(dC)+ndH(C|0)).

We can estimate this by taking §=(. Since pp(x)exp((y,z))=p,(z)(20,)?, it follows
from (26) and (27) that

Py (X ¢Q)
Ac(y) = dlogzcﬁ—l—logp (X 29 =0(d Y(logd)*) for A% () =dg.
Combining with (28) and the bound of Lemma 2.11 gives AZ(d()=0(d™¥(log d)*?). More-
over, the estimate for peg¢(n,nd(,v) in Proposition 2.10 (a) follows from (29) together
with the estimate on «y given by Lemma 2.11. To compare goo ¢(n, nd¢) with goo.e(n, ndf),
where £,=(,[1+0(d/n)], let §=(. Recalling (A})'(d{)=", the bound of Lemma 2.11
gives

In[AL(d€)—AZ(dQ)]| Snd ¥ (log d)* || dé—d(|:.

For |¢,/¢u—1|<e™! it is straightforward to estimate ndH (€]¢)<nd||€—(]|1, and com-
bining these estimates concludes the proof of the proposition. ]

The remainder of this paper is occupied with the proof of Theorem 2. From now on
it is assumed, even where not explicitly stated, that ajpq <a<auba, d=dp, and n>ng,

where ny may depend on d.
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3. First moment of frozen model

In this section we identify the leading exponential order of the first moment of the frozen

model partition function (10),

d(a) = lim n 'logEZ,,.

n—oo
Recall the definitions in equations (1) and (2).

THEOREM 3.1. For d>dy and appa<a<aybd, ¢(a) is given by f(q) evaluated at
the unique solution g€[1.6(logd)/d,3(logd)/d] of the equation o(q)=c. The function
¢(a) is strictly decreasing on this interval of «, with a unique zero oy in the interval’s

interior. The gap between «, and the first moment threshold ag from (4) is given by

2
o, = glogd 140 loglogd .
e logd

Note that Theorem 3.1 implies Theorem 2 (a).

3.1. Gibbs measures on message configurations

In [20] and [21] we established a variational principle for calculating the expectation over
4., of the partition function Z for a Gibbs measure (also termed Markov random field
or factor model). By decomposing Z as a sum of the contributions Z(h) from all possible
edge empirical measures h, each EZ(h) can be calculated simply as a product of multi-

nomial coefficients, and is found to scale exponentially in n (up to nPM

corrections) with
a rate ®(h) which varies smoothly with h. Thus, disregarding polynomial corrections,
the moment calculation reduces to optimization of ® over the simplex of edge empirical
measures. We then showed that interior stationary points of ® are in bijective correspon-
dence with fixed points of the belief propagation or Bethe recursion for the corresponding
model on the infinite d-regular tree—thereby reducing an optimization to a fixed point
problem, generally in a lower-dimensional space.

To count frozen configurations of a particular intensity, we shall introduce in the
frozen model a fugacity parameter A>0, where log A will serve as a Lagrange multiplier:
under the A-weighted frozen model, each valid frozen configuration n=(n,m) receives

weight A where i(7)= Vi|+£|Ve| as defined in (9).(°) The partition function of this
g n 2 p

(%) We call X\ the fugacity in accordance with standard terminology—the hard-core model at fu-
gacity A is the measure supported on independent sets of a given graph, in which each set S appears
with weight AlSI.
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model restricted to configurations of intensity no is simply Z} =\"*Z,.; and the un-

noa

restricted partition function is
Zr= N Zpq.
[e%

Given o we will adjust A appropriately so that the dominant contribution to EZ* comes
from the configurations of intensity na.

Some difficulty is also posed by the fact that the frozen model is not a Gibbs mea-
sure in the most conventional sense of variable spins coupled only by edge interactions.
However, we describe two (closely related) ways to recast the frozen model as a Gibbs
measure, although with spins located on the edges of the graph. One way to do this,
which has been introduced in the physics literature [38] (see also [15], [34] and [36, Chap-
ter 19]), is by way of message configurations or auziliary configurations o,(°) where each

directed edge v—w carries the message
Oow: “state of v in absence of w.”

Note that, in a valid message configuration, o, ., will be a certain function of the
messages (0 v)ucov\w iNcOming to v from its other neighbors. The actual state 7, of
v will then be a function of all its incoming messages ¢4, ,, =(0u—v)ucov. The model is
formally defined as follows. Let {0,1,£}* be the union of {0,1,£}! over [>0. We then

define the message-passing rule

1, if {i:m;=1}=0,
m: {0,1,£f}* —{0,1,£}, Ih(ﬁ.)z £, if |[{i:n;=1}=1,
o, if[{i:m;=1}>2.

Definition 3.2. A valid message configuration on 9y, =(V,E) is a vector (oy_w),

indexed by all pairs of neighbors v, weV, that satisfies the message-passing rules
Oypsw =M[(Tus0)ucon\w] for all (vw) € E.
Its corresponding frozen configuration n=(n,m) is given by setting

Ny = m[(guﬁv)ueav} for all v e V,

m= {(UU) 0y = Opsu — 1}

(6) In the literature, this formalism is sometimes also called “warning propagation,” and the con-
figurations o are called “warning configurations.”
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Let us check that if a message configuration maps to 7 under Definition 3.2, then i

is in fact a valid frozen configuration according to Definition 2.3, assuming
{U My = f} < nﬁmax-

— If n,=1, then all messages incoming to v are 0 or £, so all outgoing ones are 1.

— If n,=£, then all incoming messages are 0 or £ except for a single incoming 1 from
some u€ v, so all outgoing messages are f except for the return message o, ,,=1.

— If n,=0, then there are at least two incoming 1-messages. If there are more than
two then all outgoing messages are 0, and we term this a robust zero, labeled 0*. If v
receives exactly two incoming 1-messages from u, w € 0dv, then all messages outgoing from
v are 0 except 0, .y =0y 5 =%. We term this a susceptible zero, labeled 0%.

We see from the above that if o, =1 and o,_,,#1, then n,=1 and 7,=0. If n,=0
then it has no outgoing 1-messages, so we see that for u€dv, n, =1 if and only if o, _,, =1.
This verifies the condition that [{u€dv:n,=1}|>2 whenever 7, =0, as well as the condi-
tion that {|{v€du:n,#0}|=0} whenever n,=1. Lastly it is clear that whenever 7, =%,
u is matched under m to the unique neighboring f-vertex v for which o, .,=0, ., =1.

We will see below that this is one way of expressing the frozen model as a Gibbs
measure. A second way, which is slightly more direct but less standard, is to start with
a frozen configuration 7, and simply set oy, =7, except for when v is matched to w, in
which case set o, ., =£. This defines a different vector (o, ), which we term a vertez-

message configuration. It is clearly simply a rewriting of the original configuration 7.

PROPOSITION 3.3. There is a one-to-one correspondence between (i) frozen config-

urations, (ii) vertex-message configurations, and (iil) message configurations.

Proof. 1t is clear from the definition that frozen configurations are in bijection with
vertex-message configurations: for any edge (vw), the vertex spin 7, can be read off from
Oy—w, and (vw) participates in a matching if and only if o, ,=%f. In the discussion
following Definition 3.2 we saw that message configurations map to frozen configurations
(equivalently, to vertex-message configurations). To invert the mapping, (i) change every
f-message in the vertex-message configuration to 1, and (ii) change the u—v message

from 0 (in the vertex-message configuration) to £ whenever 7, =0°% and n,=1.(") O

Let us introduce some convenient notation. We bisect each edge in ¢, by a new
clause vertex a, and refer to the resulting graph as the (d, 2)-regular bipartite factor graph:

this graph has vertex set VUF' with bipartition into the set V' of variables (vertices in

(7) The correspondence remains valid even when the graph has multi-edges, provided we count
neighbors with edge multiplicity—e.g. if a 0 neighbors a single 1-variable via a doubled edge, we consider
it as neighboring two distinct 1-variables.



MAXIMUM INDEPENDENT SETS ON RANDOM REGULAR GRAPHS 291

the original graph) and the set F' of clauses (edges in the original graph). We will denote
variables generally by u, v, w, and clauses by a, b, c. The new graph has edge set E, where
(av)=(va)€ E indicates that in the original graph, vertex v is incident to edge a. These
edges are labeled, so the enumeration of graphs is now (nd)! rather than (nd—1)!!, but
clearly the problem remains unchanged. We denote the bipartite graph (V| F, E).
Given a valid auxiliary configuration on %, ,, we define a auxiliary configuration on

the bipartite graph simply by setting
Oyp—w = Ov—a =0a—v;

whenever the variables v,we&V are joined by the clause a€F. That is to say, in the
bipartite graph, variables pass messages using the same rule m as above, while clauses
act trivially by passing on the same message. We write 0,,=0,, for the pair of messages
(Ov—sas Ta—sv) on the edge (av), where in the pair we always write the variable-to-clause
message first, and the clause-to-variable messages second. Let .# denote the space of
all possible values for o, in an auxiliary configuration, and let .#, denote the space of
values in a vertex-auxiliary configuration. The mapping from message configurations to
vertex-message configurations is given simply by coordinatewise application of the map
proj,: A — #. which takes

11— ff, {10,1f}—>10, {01,f1}+— 01, (30)

and acts as the identity on the remaining spins.

Remark 3.4. In the remainder of the paper we will work with both the original
graph ¢, ,, and its (equivalent) bipartite version (V, F, E). To avoid confusion, we refer
to elements of E as variable-clause edges. When we say simply “edges,” we mean the

edges of the original graph ¥ .

Given a message configuration o on (V| F, E), write ¢, for the d-tuple of spins
incident to variable veV, and write &, for the pair of spins incident to clause a€ F'. The

counting measure on valid message configurations ¢ of (V, F, E) is given by

(o) =[] ¢, [ 26.), (31)

veV acF

where the variable factor ¢(g,) checks the message-passing rule at v, and the clause
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factor ¢(g,) checks the message-passing rule at a. Explicitly,
$(0,0')=1{c"=Ro}, where R:.A — .4, '~ n'n (reflection map),

@(Qv) = H l{avﬁw:m[(o—u%v)u&?v\w}}

we
1, g€ Per[(le, 1fd7j)0<j<d} =1, (32)
1, &€Per[(11,£07,££97177) o icq 1] 0y =1,
=<1, g€Per[(£12,007,0£97277) o< ica2] 7, = 0° (susceptible),
1, &€Per[(01%,007, 08 7)o ica ka<k<d) 7w =0% (robust),
0, otherwise,

where Per denotes the set of all permutations of the tuples listed. The measure (31) is a
Gibbs measure or factor model, meaning that it is specified by a product of local factors.
Note that the vertex-auxiliary configurations also define a Gibbs measure, with factors
ov=(¢v, @)y obtained by applying the weights p=(¢, $) of (32) to the pre-image under
proj,. Extending the above discussion to the A-weighted model we have the following

result.

PROPOSITION 3.5. The \-weighted frozen model is in measure-preserving one-to-one

correspondence with the Gibbs measure on message configurations with weights

o) = [ ¢ [] €2 6.) =X ] ¢6,) [] ¢(6.) =X ¥(0),  (33)

veV a€F veV a€F

where i(a)=i[7(a)] and P =($*, $) are A\-weighted versions of the indicator functions

p=(¢, ) defined in (32):
Mo,o') = M=o (5 6')  and M) = AHMO=15(5).

Definition 3.6. The A-weighted auziliary model is the Gibbs measure (33) restricted
to configurations with <nfBnax f-variables. Its image under proj, is the A-weighted vertex-

auziliary model. The model partition function is the normalizing constant

7= Y {[{vin, = £} <nfBma} ¥(0).

occHME
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3.2. Bethe variational principle

Write m= %nd for the number of clauses. Given a message configuration o €.# ¥, consider

the normalized empirical measures

y=n"t Z 1{¢c, =07}, ge.#? (variable empirical measure);

veV
5)=m~! Z 1{6,=6}, o€.#4* (clause empirical measure);
acF
h(o) = (nd)~ Z 1{o.=0}, ocec.# (half-edge empirical measure).
ecE

We regard hE(i‘L, fl) as a probability measure on supp ¢ (meaning that hisa probability

measure on supp ¢, while hisa probability measure on supp ¢). Let
ng = number of appearances of ¢ in g,
H, s = number of appearances of ¢ in &.
Write $§=|supp ¢| and $=|supp ¢|=|-#/|, and write
H
H

(HU7Q:0€///,Q€supp ¥) € Z5%3,

(Hy4:0€.4,6 € supp p) € Z°%%.

For h to correspond to a valid configuration ¢, the variable and clause empirical measures

must give rise to the same non-normalized marginals, ndh=nHh=mHHh.

Definition 3.7. Let A denote the simplex of probability measures h on supp ¢ such
that h(n:f)éﬁmax, and (h, %dﬁ) lies in the kernel of HAE(H —ﬁ)eZgX(é"‘g). For
he A, we say that the normalized intensity of h is

i(h)=h(n=1)+3h(n=£) =h(12)+1dh(11). (34)

Let Ala] denote the subsimplex of measures h€ A with normalized intensity i(h)=a. We
shall show (Lemma 5.4) that Ha is surjective, implying that A is an (§—1)-dimensional

simplex with Ala] an (§—2)-dimensional subsimplex.

Let Z(h) denote the contribution to the partition function from message config-
urations g €.#F with empirical measure h, so that Zna=)_penfa) Z(h). Calculating
configuration model probabilities (cf. [20, §2.1]) gives, with the usual multi-index nota-

tion,

" m . o~ nlml
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Stirling’s formula gives IEZ(h):nO(l) exp(n@(h)), where
. o(0)
= h(g)lo
o 1o

In the above, the first sum goes over all & in supp ¢, the second sum goes over all & in

log (35)

supp ¢, and the final sum goes over all ¢ in .Z. If further min h=>41, then

%D p(h) _ [1, dh(o) /2
EZ(h)f—(zﬂn)(é_l)/z exp(n®(h)), @(h)—(mdh(d)ngédﬁ(&)) . (36)

Clearly an analogous expansion holds for the expectation of the A-weighted partition
function Z*(h)=\"1" Z(h); we write ®*(h)=®(h)+i(h)log A for the associated rate
function (with ¢* in place of ). We shall compute the first moment exponent ¢(a) by

using the Lagrangian method to locate
*hla] =argmaxy e afq) B(R). (37)

If h is a stationary point of ® restricted to Ala], then for some A=MA(«) it must be a

stationary point of ®* on the unrestricted space A.

Remark 3.8. Observe from the functional form of ®* that *h=*h[a] and *h=*h|n]

must be symmetric functions on .#Z? and .#?, respectively, that is,

*h(6) = h(0n(1), -, On(a))

for any permutation 7 of [d], and similarly *h(c, Ro)=*h(Ro,¢), where R is the reflection

map from (32). Thus we have ﬁ:ft(m Ra), so we can simplify ®* as

(6) d - 1
h(o — h(o)log =——————. 38
)= h@os T =5 D K o8 e R (3)
In the unweighted setting A=1, we simply have
. . d _
h)=> h(5) log _,Z :H(h)—iH(h),

under the assumption that supp ﬁgsupp P

The belief propagation or Bethe recursion for the A\-weighted auxiliary model acts

on probability measures h and h on A , with £ mapping to h and vice versa:

d
‘ého Z H }AL 73;7«7 = Z @A (é) h<72 . (39)

g:01=0 J:01=0

variable Bethe recursions, clause Bethe recursions,
with normalizing constant 2 with normalizing constant 2
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LEMMA 3.9. If a measure h in the interior A° of A is stationary for ®*, then h

corresponds to a solution h=h> of the Bethe recursions (39) via
d ~ . — ~ .
2h(6) =N &) [ hoir  2R(6)=9*(8) [[ o and zh(0)=hohs,  (40)
i=1

with 2, 2 and Z normalizing constants satisfying Z=2/2=2%/% for z and % as in (39).

Proof. First consider optimizing (40) over il, subject to fixed marginals h, but we
require h to be a feasible edge marginal, meaning we have Hh=h=Hh for some h. This

imposes linear constraints on h: in this particular setting we must have

h(c)=h(Ro) and (d—1)h(11)=h(£0)+h(£f). (41)

Let M be any minimal subset of .# satisfying the property that if h(c) is given for all
o€ M, the remaining values h(c”), o’ €.4\ M, are determined using (41). Let H, denote
the submatrix of H formed by the rows with indices in M, and note that, by definition,
the matrix H. is surjective.

Now consider differentiating (38) in the direction of some signed measure §=(h, h)
such that h+td €A for small enough ¢: this means that we must have

(6,1)=0 and (o) =6(Ro). (42)

Since h is stationary, we must have

0= 0,8 (h+1) Za log + Zé )log[h(c)p* (o, Ro)]. (43)

First choose § such that §=0—equivalently, such that H.,5=0. Then (43) simplifies to

0:25@)@@, where d(g)zloggb.

Since 6=0, we furthermore have for any vector p€RM that

0=Z$(Q)é(g), where é(')_log —|—Zugll{azeM}

(Q)
Noting that é=a+(H.)! 11, we now solve for & to have zero marginals:

0=H.é=H.a+H,(H) 1.
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Since H., is surjective, this has a unique solution u. If we set d=¢ for this value of p
and substitute back into (43), we find that zero equals a sum of squares, so the only

possibility is to have € identically zero. This proves that we can write

d
h(3) = M (6) H ho, (44)

for some probability measure hon . Taking the marginal of (44) gives

d
=he Z 1{o1 =0} (6) [ [ ho. = 2hoho. (45)

We now return to the derivative (43) for general §. Substituting in (44) and (45) gives

URUzhh ¢*(0,Ro)hy
0= 26 log + Z& —_— 25 10gh7>

o

using (9, 1)=0 to eliminate £ and 2. As h is invariant under R, we see using (45) that

hl _ haﬁa _ hRUﬁRU

he  hohy  hohy

Then, since J is also invariant under R, we can re-express the stationary equation as

oRahUhU (0,Ro)hRrs
0= Zé log i Ro TR Zé loghi)R,

O’R o

x(0)

where s is also invariant under R. Again, using (5, 1)=0, we have
_ 1
0= Z d(0)x(c) where x(0)=x(0)— ™l Z »#(o’

Note that 6= 25z satisfies the requirements of (42), and substituting into the above we see
that the only possibility is to have 3#(c)=0 for all c€.#. This proves that

shy = hre @ (0,Ro). (46)

Now (45) and (46) together constitute the belief propagation equations. Note also that
combining (45) and (46) gives
thohey B thghre$™ (0, Ro)

P zZ '

h(o,Ro)=h(0) =

Together with (44) and (45), this proves (40) with z=2/2=2/2%. O
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While the optimization (37) is over the space A[a] whose dimension grows with
d, the Bethe recursions act on probability measures h and h over .# whose dimension
clearly does not depend on d. (Boundary maximizers will be ruled out by a-priori es-
timates in §4.2.) Even with this reduction, however, we are tasked with eliminating a
potential multiplicity of fixed points (local maximizers). In the physics literature this has
been resolved by prescribing that ﬁn’n depends only on the clause-to-variable message 7,
justified by appealing to some notion of “causality” (cf. [36, equation (19.26)]). We prove
a rigorous version here via the interpretation for Bethe recursion fixed points in terms of
(infinite-volume) Gibbs measures on the d-regular tree T, which we now describe.

We have commented already that the local structure of the random d-regular graph
94 is that of Ty. More precisely, it is well known that %, converges locally to T, in
the sense of [12] and [8] (see e.g. [19]). Bisect each edge of Ty by a new clause vertex (as
done above for ¥;,,), and refer to the resulting graph as the (d,2)-regular tree T=Tg 5.
Thus the leaf vertices of the depth-t subtree T'(¢) are variables for ¢ even, clauses for
t odd; we write E(t—1,t) for the half-edges joining levels t—1 and t. We let o denote a
message configuration on T', with .Z-valued spins located on the edges of the tree.

Given a finite subtree U of T, let U° denote the interior vertices of U (that is, the
variables and clauses having no neighbors outside U). Let §U denote the internal edge
boundary of U, that is, the edges (xy) where x€U° and yeU\U°. Let 6,y U CoU denote
the subset of such (zy) where €V, and let §pU denote the rest, with z€F. Given

probability measures i and h on .# we define the measures

Zyvy(op)= [ ¢e) [I @6 [[ be II Po. (47)

veVNU® a€FNU° ecdy U ecorpU

with Z7} the normalizing constant that makes v} a probability measure over valid mes-
sage configurations ¢ on U. Then h=(h,h) satisfies the Bethe recursion (39) if and
only if (v}})y is a consistent family of finite-dimensional distributions, meaning that
v} is a projection of v} for any SCU. It follows by the Kolmogorov extension theo-
rem that the collection (v7})y defines an infinite-volume Gibbs measure v* on T with

finite-dimensional marginals v/}.

3.3. Bethe recursion symmetries

Observe that on any subtree U of T', the entire message configuration g;; on U is com-
pletely determined by the incoming boundary messages oy, from yeU\U" for z€U°—
given the incoming messages, g;; can be recovered by iterating m from the boundary

inwards. Thus a natural special case of (47) is to take iLn/n to depend only on the
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clause-to-variable message 7, that is, 3 En’n:qn for a probability measure ¢ on {0,1,f}.
Then

AM1—q1)? dgi(1—gqq)42
(A=1)(1—=q1)?+1 A=1)(A—g1)?+1’

with the remaining probability going to 1,=0. The (ug)U are consistent if and only if ¢

Vi\(nozl): and Vi\(no:f):

satisfies the frozen model recursions

A=) ~ ([d=1D)qi(1—g)*?  (d=1)(q1)?
G D) T T D) Mg )

and go=1—¢1—¢s.(®)

Since a solution of (48) is fully determined by ¢, we hereafter abuse notation and
use ¢ to denote both the measure (g1, ¢s,qo) and the value g;. The value g=¢; must
be a root of the function f(q)=(1—¢q)? '(A\+qg—Aqg)—q which, for 0<¢<1 and A>1, is
decreasing in ¢ and increasing in A. Therefore f has a unique root 0<g<1 which is
increasing in A, and (2) expresses A in terms of ¢. In the following, to emphasize the
dependence on \ we sometimes write ¢=¢*.

The full Bethe recursions (39)—a generalization of (48)—read explicitly as follows.

The clause Bethe recursions are simply
She = hpe A= with 2=14(A—1)hyy. (49)

Write Z={0, £}, for example Blzzﬁio+ﬁ1f. Recall also from §2.4 that we use _ to denote
{0,1,f}. The variable Bethe recursions are

(a) Shyg=3hys = A(ﬁlz)d_l, Aihyy = )\U:sz)d_la

theo=ihes = (d—1)has(hez)?2,  Zhes = (d—1)hes (hog)? ™2
(B)  2hor = (ho. )d_l—(BOZ)d_l—(d—l)ilm(hOZ) -2
() zhoo= Zhos _(ho )41 — (hoz) 4™t — (d—1)hot (hoz)? 2
+3(d=1)(d=2)[(hs1)* = (ho1)?](hoz)*

We immediately have flmzﬁﬂ, Hofzﬁff, and hoo=hso. Comparing (B) and (c) then
gives hio=hoo=nhso. It then follows from (A) that the following are equivalent (with the

symbol « indicating the identities we already know):

hfl = th é hffa Blf = iLOf é ilffv )\hll = th é hlfa ;Lll = EOl é ;Lf1~ (50)

(®) For comparison, the corresponding recursion for the hard-core model at fugacity \ is

_ A(—g)*!
T A1—g)d-1417
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If (50) holds, then (39) reduces to the frozen model recursions (48) with
3hn’n =n;

and therefore, substituting into (49),
. ’ q 1 -t
Bhyy = A\"HM =g 5 with 2= {1-5(1—)] : (51)

Write A°[a]=ANA[a], and suppose h€ A’[a] is a stationary point for the restriction
of ® to Ala]. By the method of Lagrange multipliers, there exists A (unique given h)
such that h is an interior stationary point for ®* on the larger space A: therefore h
corresponds, via (40), to a solution h of the Bethe recursions (39) for the A-weighted

model.

PROPOSITION 3.10. For d>dy and apg<a<ayubd, let h be any solution of the Bethe
recursions (39) which corresponds in the manner described above to an interior stationary
point h for the restriction of ® to Ala]. Then h satisfies the symmetries (50), and
corresponds via (51) to a solution g=q; of (48) with g=a+0(d™1).

Ruling out boundary maximizers for ® on Alx] is relatively easy, so we defer the
proof to §4 where we will use the same argument to rule out boundary maximizers for

the second-moment exponent ®,. We therefore conclude the following.

THEOREM 3.11. For d>dy and amg<a<aypd, the restriction of ® to Ala] has
a unique global mazimizer *hla], which is also the unique interior stationary point. It
correponds, via (40) and (51), to the unique g€ [1.6(logd)/d,3(logd)/d] for which a(q),

as defined in (2), evaluates to a.

Proof. We assume that any global maximizer h of ® on Alq] lies in the interior
A’[a], deferring the proof to §4 (see Proposition 4.13 and Corollary 4.17). Therefore, as
described above, h corresponds via (40) to a solution h of the Bethe recursions (39) for
a particular A. Proposition 3.10 implies that A corresponds via (51) to a solution g=g¢;
of the frozen model recursions (48) for this value of A\. Rearranging (48) shows that A
must equal the expression A(q) defined by (2). In §3.4 below we shall calculate (from
(40) and (51)) that i(h) equals the expression a(g) of (2). The mapping g— a(q) is not
one-to-one on the entire interval 0<g<1, but if g=xz(logd)/d with 1.6<z<3 then we
can easily compute the derivative o/(q)=1+0(d~'/?). Since Proposition 3.10 also gave
the estimate g=a+O0(d~!), this clearly uniquely identifies ¢. Thus we have located the

unique global maximizer of ® on Ala] as the unique interior stationary point. O
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L A
0:0 0 1f;

(no further changes)

Figure 1. Change of message incoming down to é is passed down T
(77:7) means message 1 up, message 77 down in o, message 1} down in ¢’).

It remains to prove Proposition 3.10. Recall that T=T, 2 denotes the (d, 2) -regular
tree. Let 7" denote T with the subtree descendant from one of the root neighbors removed,
so that 7" has one clause a which is joined to the root variable o and to an unmatched
half-edge ¢ (Figure 1). Define a Gibbs measure £* on 1" in the manner of (47), via its
finite-dimensional marginals 7}, with factor weights ¢* and boundary law given by h. If
h solves the Bethe recursions (39), then the resulting marginal law on o¢ will be simply
fl, and the marginal law of the d-tuple of spins incident to any given vertex will be h.

Write os=t0 where 4 is the incoming (variable-to-clause) message and o is the outgo-
ing (in Figure 1, o is directed upwards, ¢ downwards). Given any message configuration
oconT, changing ¢ and passing the changed message through the tree (via m) produces
a new configuration o’ (Figure 1). Proposition 3.10 will follow by showing that for any
fixed o, the effect of changing i is measure-preserving under the Gibbs measure *.
Since the finite-dimensional marginals of #* are defined (in the manner of (47)) from the
boundary law, the measure-preserving property will follow by showing that the effect of
changing ¢ almost surely does not percolate down the tree.

Indeed, recall that we already saw directly from the Bethe recursions that ﬁon:ftm
for any n: this corresponds to the fact that m does not differentiate between incoming
messages 0 and f, so changing ¢ from 0 to f or vice versa has no effect at all below é.
We also found that ilno does not depend on 7: if 0=0 then all messages outgoing from

the root must be 0 or £, so changing 7 can have an effect at most one level down.

Proof of Proposition 3.10. To prove (50) it remains to verify that hir=he:. Chang-
ing Zo from 11 to f1 induces a mapping ¢ on messages configurations o of T; likewise
changing 2o from f1 to 11 induces a mapping z. From the above discussion, we must

prove that the maps ¢ and ¢ have a finite-range effect.
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Figure 1 shows that the effect of changing 11 to f1 can only propagate through
components of f-variables, while the effect of changing f1 to 11 can only propagate
through chains of alternating 1-variables and 0°-variables (with 0% as defined in (32)).

We claim that both propagations are subcritical under *. Observe that a sample

from o*

can be generated in Markovian fashion: start with spin o¢ distributed according
to fz, generate the messages on the other d—1 half-edges incident to o according to the
conditional measure h(¢ | o1 =0¢), and continue iteratively down the tree. It follows from
(40) that if we condition on os=£1, the expected number of children with spin £1 will be
(d— l)izlf/iziz; likewise, if we condition on ogg=11, the expected number of children with
spin £ will be (d— l)ﬁff/fzfz:(df 1)7Lof/ﬁoz. We now show that both these quantities are
less than one, meaning that with probability 1 (under %) the changes do not percolate
through the tree. This implies the claimed result: writing " for the marginal of * on

the depth-t subtree T(t) of T', we have

hy=0Moe=11)=Y  1{os=11}5)(0)
g
where the sum is taken over message configurations ¢ on T(t) From the above description
of how ¢ propagates, and from the definition of ', we have ¥ (¢)=v}(10) as long as o

and (o agree at depth ¢, which holds with probability 1—o0;(1) under . Therefore

iLll ZOt(1)+Z 1{O'é = 11}1);‘(LQ) < Ot(1)+iL1f,

and taking t— o0 proves ﬁilgﬁlf. Repeating the same argument with ¢ in place of ¢
proves the reverse inequality ﬁif gl}u, concluding the proof.

It remains to verify the subcriticality of the propagations. Recall V,,={veV:n,=n}.
For S, S'CV write £(S, S’) for the number of clauses joining S to S’. The number g(Vg, V5)
of edges internal to V; is n[3d—O(logd)]. By (39), (40), and the trivial symmetry
flon:ﬁf,, already noted,

hos _ @ _ heohos _ h(£0,0£) _ E(Vs, Vo) < ndBmax <28
hoo hoo  hoohoo H(OO, 00) 2E(Vo, Vo) ~ n[d—O(logd)] =~ ="
Next, since OV; C Vg, E(Vi, Vo) =E(V1, V) =d|Vi|=nd(a—O(Smax)). Also, since each vertex

<2n. Therefore

in Vo= can have at most two neighbors in Vi, crudely e(Vy, Vo) <2| Vs

hor _ h(10,01) _ E(Vi, Vo) _ nd(a—O(Bmax)) —O(n)
hoo  R(00,00) 2E(Vo,Vo)  n[d—O(logd)]

Applying (39) again gives

=a—0(d™). (52)

@ - @ — (d_{)il°?(}:z02)d_l : :P(Bin(d—l, @"1) = 1) <d b,
hio  hio Zj>2(h01)9 (hoz)d—1-7 ho.
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Therefore, writing f<4g to indicate limg_,o, f/g=0, we have shown ﬁof/ﬁoo <qd~ ! and
hig /h1o<qd ™", implying (50). Thus h corresponds via (51) to a solution ¢ of (48), and
we conclude a posteriori from the two preceding estimates that qlziLm / Bou:a+0(d’1),

concluding the proof. O

3.4. Explicit form of first moment exponent
We conclude this section by giving the explicit form of ¢(a).

Proof of Theorem 3.1. The result follows from Theorem 3.11 together with a few
straightforward calculations. Recall from the proof of Theorem 3.11 that if h is an
interior global maximizer for ® on Ala], then, by Proposition 3.10, h corresponds to a
solution ¢ of the frozen model recursions for this value of A, from which we conclude that
A=X(q) as in (2). Writing ¢g=x(log d)/d we estimate

A=A(g) = dq[1+0(d " (log d)?)].
Since he Ala], we have
a=h(n(s) =1)+h(n(s) =1£), (53)

where the right-hand side can be explicitly calculated from the relations (40) and (51)
for h.
Explicit Bethe prediction. Substituting (40) into (35) and rearranging gives

hohy
h(o)

&> (*h|a]) =log z+g log £—d Y h(c)log :10gz'+g log 2—dlog z.

We use (40) and (51) to calculate z, 2, and 2 in terms of ¢ and A:

z:g[l—(f(l—i)], 2=173%, z‘:m:zz.

Recalling (53) we can also calculate «v in terms of ¢ and A:

oo 1—qg+dg/2X
ety

completing the verification of (2). The recursion (48) also gives the expressions in (2)

for A and « solely in terms of q. It then follows from Theorem 3.11 that

¢(a) = @*(*ha]) —alog A
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is given by (1). We note also that ¢'(a)=—1log A, and therefore
¢" () =—[a/(q)] " [(log A)'(¢)] = —d[1+O((log d) 1)].

Comparison of first-moment exponents. By contrast, the original independent set parti-
tion function has first-moment exponent ¢(«) calculated in (7).(°) This exponent also
has a Bethe variational characterization, which can be expressed in terms of the fixed

point ¢’ of the hard-core tree recursions:
¢(@) =log(1+¢") —3dlog(1—(¢')*) —alog X',
where

)\l(l—q’)d B q/
1+XN(1—¢)d  14¢"°

)\/(1 _ q/)d—l

! _\/ nd _

q _—1—|—/\’(1—q’)d—1_>\(1_q) and a=

This formula can be derived heuristically in the same manner as (1); its correctness can

be checked simply by verifying that it agrees with (7). We then compare ¢(«) and ¢(a)

by expressing both in terms of ¢: then ¢ and ¢ are related via a(q)=a=a’(¢’), explicitly
, ! 1—q+dq/2)

L S S e

A little algebra then gives

o l—gtg/X [d 1—-¢*+¢*/\ N
(p—¢)(a) =log ?q’—i_ (2—1> log 1_((1/)2—alog<>\)

e )25
(1452 - 28) o (3)
Recalling that g=x(logd)/d and A=d®q[1+0(d~'(log d)?)], we expand

X\ g0 g (04 (dg)2¢?
abg(A)‘ 8 02 Ng/ )~ 2A (dq“”0< \2 )

Substituting into the above expression for (¢—¢)(a) and expanding the other terms gives

(dg+2) +O<(d+k)(dq)2q2

(p—)(a) =1

7 2 > =d " logd. (54)

(°) Recall that in the original independent set model « refers to the set density, while in the frozen
model it refers to the intensity (9).
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Comparison of first-moment thresholds. It is clear from the above that ¢ has a
unique zero apg <y <o, with ag the first moment threshold of the original independent
partition function. Let ¢o and Ag denote the solution of (2) for a=an, and note that

62

) log d
Consider 0<d < (logd)?/d?: applying (54) with the above estimate of ¢ («) gives

Ao and ¢o=ap[l+0(d"*(logd)?)].

d(an—0) = ¢p(an)+dlog Ag+0(ds?)
=—(2\0) tan(dag+2)[1+0(d"* (log d)*)]+6 log A,

so the gap between the thresholds is given by

_ dan+2) 2logd \’ log log d
—a,=|1 L 3y)20(den == 1 —_—
an—a, =[14+0(d” " (log d)’)] o102 n -4 +0 log d ,

concluding the proof. O

4. Second moment of frozen model

In this section we compute the exponential growth rate ¢o(a)=lim,, ,oo n = log E[Z2,] of
the second moment of the frozen model partition function (10). This will be done within
the framework introduced in §3, regarding the second moment as the first moment of the
pair model: given a graph G=(V, E), a pair frozen configuration is a pair (ﬂl,ﬂg) where
each ﬂiz(ﬂi7 m?) is a valid frozen configuration (Definition 2.3) on the same underlying
graph. Thus E[Z2 ] is the first moment of pair frozen configurations at intensity na
(see (9)).

Recall from Proposition 3.3 that each frozen configuration ﬂ’ corresponds bijectively
to a message configuration o®. We say that 7=(c',0?) is a pair message configuration.
Following the discussion of §3.1, the pair frozen model can be recast as a Gibbs measure
on pair message configurations, expressed as in (31), but with ¢ and ¢ replaced by the
factors

P2 =9p®¢ and @2=9RQ,
respectively. We refer to this as the pair auxiliary model. Following §3.2, we decompose

E[Z7,]=) E[Z°(h)] =) exp(n®s(h)), (55)
h h

where hE(il, iz) now denotes a pair empirical measure:

h is a measure on pairs (QI,QQ) with &' e 29, (56)
- ) 56
h is a measure on pairs (',5?) with &° € .2
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Write k! for the marginal of A on &°, write h? for the marginal of h on &°, and write
h for the pair (h' h’). The rate function ®; is the obvious analogue of (35) for the
pair auxiliary model. The sum in (55) is taken over the space Agla] of pair empirical
measures h such that h'€ Ala] for both i=1,2. Let ®h[a] denote the product measure
*hla]®*h[a], and let '9h[a] denote the measure with marginals *h[a] which is supported

on pair configurations 7=(g, o).

THEOREM 4.1. For d>dy and ajpa <a<aupd, the restriction of ®o to Aqla] satis-

fies
®,(h) <max{®(h'):h' € As[a]} for all h € Agla]\{®h[a],"h[a]}.

Thus ®5 achieves its mazimum on As|a] at ®hla] with value 2¢(a), or at “Yh[a] with

value ¢(«), depending on the sign of ¢(a).

Definition 4.2. For heAs[a], we write o(h)=h(n'=n?=1), and define the near-

independent regime and the near-identical regime, respectively, by

IND[a] ={h € As]a]: 0< o(h) <d 1},

EQ[a] = {h € Asla):a— = lzgd <o(h)< a},

where £,>0 is a small absolute constant.

4.1. Intermediate overlap regime

Write Z2,,(no) for the contribution to (Z,q)? from pairs (', 7?) in which exactly no
vertices take spin 1 in both ﬂi, 1=1,2. We call g the overlap. In this subsection we
show that the value of p maximizing E[Z2(ng)] must either be very small (indicating
proximity to ®h[a]), or very close to a (indicating proximity to h[a]). This will be done
by comparison between Z2_ (ng) and Z2_(no), where the latter denotes the contribution
to (Zna)? from pairs (z!, 22) of independent sets with overlap o.
Write 22={0, 1, £}?U{£!f}. Given a pair (7',%?), we associate a configuration

Ln?) eV (57)

w=w(

|3

by setting w,=(n},n?) unless (n},n?)=£f and v is matched to different vertices under
m! and m?, in which case we set w,=£!f. For SCV and weZ let S,={vES:ws;=w}.
Recall that _ is shorthand for {0, 1,£}; and for ne{0, 1, £} write

S,.={veS:ni=n}, S,={veS:ni=n}, S,=5,.US,,. (58)
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In the case S=V we further set the following notation:

ny=nm, =|Vy|={veV iw, =w}|, forwe 2,

ny=nm,=|V={veV:w, e £}, forne{o,1,£}.

In particular, (7, ), defines a probability measure on &2.
If we write M (na, np) for the space of empirical measures 7 on {0,1}? with ;=0

and T;_=a=7_;, then we have the decomposition

E[Za,(no)]= Y E[Z*7)]. (59)

TEM (na,np)

Similarly, in the frozen model we have

E[Z7.(no)l= Y E[Z*(n), (60)
€M (na,ne)
where M (na, ng) is the space of empirical measures m on & such that w11 =p, and the
marginal distribution 7% on w? satisfies (for both i=1,2) that 7% < Bmax, With normalized
intensity i(m)=n}+4mi=a (cf. (34)). Note that 7 is simply a projection of the measure
h appearing in (55).
We calculate E[Z?(r)] as follows. The pair of frozen configurations §'=(n’, m") is

encoded by (w,m) where w is as above, and m=(m!, m?). Then

E[Z?(7)] = Z]P’(l{(%m) is valid on G}) (61)
w,m

where the sum is taken over all (w,m) consistent with 7, and the probability is with
respect to the randomness of G. In the literature, this representation sometimes goes by
the name “planted model.” In the original setup, we first sample the random graph and
then consider the configurations valid on the graph. In the planted setup, we first plant
a configuration (w, m), and then sample the random graph and consider the probability

for the configuration to be valid.
Let us write mCG to indicate that the edges of m!, m? are present in the graph G.

Conditioning on this event gives

E[Z? ()] = Z P(m CG)P(1{(w,m) is valid on G} |m C G),
. G(m)

where it follows by symmetry considerations that the second factor is a function of 7

alone, so we denote it G(7). Therefore

E[Z(r)]=G(r) Y P(mCG)=G(m)c(m)js (), (62)



MAXIMUM INDEPENDENT SETS ON RANDOM REGULAR GRAPHS 307

where c(7) denotes the multinomial coefficient

)= () = [

and jg¢ () is the expected number of matchings on the free vertices in w, where we 22V
is an arbitrary fixed configuration with empirical measure 7.

We now estimate the terms appearing in (62). It will be useful to let Ups CVis
denote the set of 0f-vertices whose matched partner under m? does not have spin 1f.
Symmetrically, let UsoCVzo denote the set of £0-vertices whose matched partner under

m' does not have spin £1. Write

_ __ Uos
uot = |Uot| = ot —n1s, Pot = —= = Tos — 1,

— _ Usgo
uso = |Uso| =nso—ns1, Pgo= n =Tgo—T£1-
LEMMA 4.3. Given m€ M (na,np), let js(m) be the expected number of matchings on
the free vertices in w, with w€ P2V being an arbitrary fived configuration with empirical
measure 7. Then (2n) 'ke(7) <je (7) <ke(7), where

dnf+nf!f (nff — 1)!!(n0f)nlf (’nfo)nﬁ (Uof +ngrg— 1)”(Ufo +nsrs— 1)”
[d/(d_l)}nf!f [nd](nf+nf!f)/2

Proof. The upper bound is easy to see: for each vertex in Vz\V;i; we distinguish one

kf(’ﬂ')

half-edge to participate in the matching. For each f!f-vertex we distinguish an ordered
pair of half-edges, the first to participate in m' and the second in m?. There are ne+n+is
distinguished half-edges in total. If ngie <2 then js(m)=Lks(7); in general, k¢ provides an
upper bound for j¢ because it counts matchings without enforcing the constraint that
two flf-vertices cannot be matched in both m! and m?2.

For the lower bound when nsis >2, suppose without loss of generality that uso>uos,
and note that this implies that a=uso+ns¢s must be at least 4—otherwise ns s =2 while
uos =uso=0 so there is no valid matching on the f!f-vertices. Of the half-edges chosen to
participate in either m; or m,, suppose that all have been matched ezcept for the a half-
edges incident to UsoUVzis which were chosen to participate in m!. Now match these re-
maining half-edges one pair at a time, but avoid forming pairs already present in m?. The
number of choices for the first (a/2)—1 pairs is >(a—2)(a—4)...2>(a—3)!!>(a—1)!!/n.

The procedure succeeds if and only if the final pair remaining is not already present

2. To bound the probability that it fails, note that if given a failed matching in

2

in m
which the final pair is already present in m*, we can choose any of the first %af 1 pairs,
and switch the half-edges in one of two ways to produce a valid matching (Figure 2).

Thus each failed matching maps to a—2 valid matchings.
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- N - N -

(a) Matching of final a half-edges fails because final (leftmost) pair already present in m?2.

o(\-\o\\ /,o /p/-\o\ /,o o(-\o\\”,o ‘—’,/—\o\\ /,o

(b) One valid switching. (c) A distinct valid switching.
Figure 2. Two valid switchings of a failed matching (dashed lines m?, solid lines m?).
In the reverse direction, given the final pair the failed matching can be uniquely

recovered from the valid matching, so each valid matching has at most %nfgf preimages.

Thus the ratio of failed-to-valid matchings is (recalling that a>4) at most
1 -1
L <24) <l
a—2 a

This proves that the matching procedure succeeds with probability at least %, and the

claimed lower bound follows. O

COROLLARY 4.4. For me M (na,np), let 7€ M(na,np) be defined by
Ti1 =M1y, Mo=Tio+Tis+2Te., Tor = Mor+Te1+ 37,
with the remaining probability going to Too. Then c(m)js(m)=dOPmax)c(7).

Proof. Let us first compare c(m)js () against

n—mns
1 —
Moo Mo1:M10:M11-

It follows from Lemma 4.3 and Stirling’s formula that
C(ﬂ')jf (7T) :no(l) dnf (d_l)nﬁf (n)f (nff_l)”(UOf +’I'Lf!f —1)”(Ufo+nflf—1)”
C/,(ﬂ') [nd](nf+nf!f)/2 nlf!nﬂ!uof!ufo!nff!nﬂf!
— JOns) (Pog +7mete) Mor Tre0)/2(p g 4 rgyg ) (ot mnie) /2 — 10(nBmax)

(115 )"3e (g1 )1 (Pog ) ot (Pgo ) Ux0 (e )t/ 2 (mgng ) e

where the last estimate uses that for 6<1/e, max{|zlogz|:0<z<d}=|dlogd|. Note also

(63)

)

that, for 0<z—d<xr<1/e, we have the elementary inequality
[(x—6)log(z—0)—zlog x| < min{|z log z|, §|1+1og(z—0)|} S |6 log 4.

From this it is easily seen that
C// (’/T)
c(7)

concluding the proof. O

= eXp(O(nﬂmax log d))a
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We now return to equation (62) and the calculation of E[Z?(r)]. From now on, let
(w, m) be a fixed configuration consistent with 7. With respect to this fixed configuration,
define J; to be the indicator that 1-vertices neighbor only 0-vertices. Define J, to be the
indicator that every O-vertex is forced, that is, has at least two neighbors with spin 1.
Then
G(m)=E[J1Jo].

Now recall the notation of (58), and recall also that we use Z to denote {0,f}. For an

integer K and a pair of integers F=(Fy, F3), define

E(V107V01):K7
Z2(7T>K7F)EZ2(7T)XK,F7 where XK,FEl E(Vlzv‘/of)*nlf:Flv
E(V21,Vfo)*nf1:F2

That is, K counts edges between Vi, and Vp1, F} counts non-matching edges between
VioUVis and Ve, and F5 counts non-matching edges between Vo1 UV and Vzo. Recall
that each 0-variable must have at least two edges going to 1-variables, which implies that
K >2max{nio,no1 }, F1>=2n0s —n1s, and Fr>2ns0—ngs. We decompose E[Z?(r)] as the

sum over K and F' of

G(m,K,F)
E[Z*(r, K, F)] =c(r)j:(7) E[Jixk,p] E[Jo|J1=1=xx F]. (64)
ji(m,K,F) Jo(m,K,F)

For we & write E,, for the number of unmatched half-edges incident to V,,, not counting
half-edges participating in m. Likewise, for n€{0,1,f} write E, for the number of un-
matched half-edges incident to V;,. The total number of unmatched half-edges remaining
after the placement of m is E:Zw E,=nd—ns—ngs;:. Note that if these half-edges are
matched uniformly at random without regard to the model constraints, we would expect
K=~K, and F~F,, where

_ E10 E01

K*:

EizEos EzE
and F*E(Fl,Fg)*E(HOf 21f0>

E ' E
Note K,=ne?(logd)?/d while F; ,<neselogd and Fy,=<nsoelogd. In what follows we
will show that the main contribution to E[Z?(7)] comes from (K, F) near (K, F),.

LEMMA 4.5. Let o=a—c(logd)/d, where e>¢. for an absolute constant £,>0.(1°)
Then, for all m€ M (na, np), we have

E(Z*(n)| =) E[Z*(r,K,F)]< > E[Z*(r, K, F)], (65)
K,F K,F

(1%) The lower bound dy may depend on &., but we will ultimately take €, to be an absolute
constant, so that dg is also an absolute constant.



310 J. DING, A. SLY AND N. SUN

where * indicates that the sum is restricted to

[1—(logd) 'K, = Kipa < K < Kypa = [1+(logd) 1K,
(loglogd) ' F, = Fipg < F < Fypq = F.(loglog d).

Further, for K and F in the restricted regime we have

E[Z*(r, K, F)| ~1/,7-0.49 | 7-3
N R S
with T€ M (na, no) as defined in Corollary 4.4.
Proof. Recalling (64), we now estimate j; (7, K, F') and jo(m, K, F).

Edges from 1-vertices. First assign the E;=mn;d—nqs —ns; unmatched half-edges

from Vi:

(E10)x (Eo1)k (Eoe)r, (Eiz—K)pr, (Ez0)ry (Ezi —K) R, (Eoo)EﬁszFlsz.

Ji(m, K, F) = i (F)! (Fy)! [Ele, -k

‘We then estimate
ji(m, K, F)=dO"Pma) g, (B Ey, Ego)ay (m, K)by(m, K, F),

where g1 (E, E1, Eoo)=(Eoo)g, /(E)E, as defined by (14), and

_ (Ex0)r (Eot)x/K! _ (Es0) (Eos) i/ K!
a(m, K)= [Eoo—E1+2K]x  (n[d—O(logd))) K’ (67)

(Eot)ry (Biz—K)py (Eeo)m(Ezi —K)p, _ o(m+m).]
= < 1 2)xl,
b1(7T7K7 F) (Fl)!(Eoo)Fl (FQ)!(EO())F2 X€ (68)

Forcing of 0-vertices. Recall from (15) that go(n, nd¢;_) denotes the probability, with
respect to a uniformly random assignment of nd(;_ half-edges to n degree-d vertices, that
each vertex is forced (that is, receives at least two of the incoming half-edges). Similarly:

(1) Let go(n,u,nd;_) denote the probability, with respect to a uniformly random
assignment of nd(;_ half-edges to n vertices of degree d—1, that each vertex 1<i<u
receives at least two incoming half-edges, while each vertex u<i<n receives at least one.

(2) Writing (=(C11, €10, Co1), let goo(n, nd() denote the probability, with respect to
a uniformly random assignment of nd¢ half-edges to n degree-d vertices, that each vertex
is forced in both coordinates (that is, receives at least two of the incoming half-edges
both from {11,10} and from {11,01}).
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Thus jo(m, K, F') can be written as
(a) (B)
jo(W, K, F) = go(nm, K) go(nou K) go(non Uof, Fl)go(nfo, Ufo, FZ)

><goo(noo, (n11d, Nizd— K —nqys — I, nZl_nfl_K_F2)) .
(©)

The functions go and goo were estimated in Proposition 2.10. It is clear that g satisfies

the same estimates as those stated for g, in Proposition 2.10 (a), so we conclude that

(A): exp(O((nloJrnm)d*‘lE/S)) for K > iK*;

Z 10
(B)=exp(O((nos +ns0)d—*/5))  for F > %F*; (69)
(c)=exp(O(nd=1:6%)) for K <min{nqo, no1}-

Note also that, if we fix K and vary only F', Proposition 2.10 (a) gives

jO(ﬂ-aKa F/)

Jo(m, K, F) =exp(O(|[F'=F1)). (70)

Mazimization over K. If K ¢[Kiba, Kubd] then, recalling (67) and (68), we have

jl(']T,K, F) :do(nﬁmax) al(ﬂ',K) b1(7'f',,K'7 F) <do(n6nlax) 31(7T7K)

jl(ﬂ-aK*vF*) al(ﬂ-aK*) bl(Tr)K*aF*) 31(7T7K*)

10) K* n€2
< (nBmax) _ - < _ __ .
<d exp< Q((l )2)>\exp Q

Meanwhile, trivially jo<1. We have also seen above that jo(7, K, Fy) is not much smaller

than 1 (in the sense that there is a small exponential gap). Thus, for all K ¢ [Kiq, Kubd],

E[ZZ(T(’Kv F)] _ jl(ﬂ—aKa F) jO(ﬂ-aKaF) < jl(’/TaKa F) 1
E[Z2(7T7K*?F*)] jl(ﬂ-aK*7F*)j0(7T7K*7F*) \jl(ﬂ-aK*7F*)j0(7T7K*;F*>
. exp(O[nd=1(d=%% +-d=*¢/5log d)])

S xp(Q(ne2/d)) <l

Mazimization over F. Now suppose K € [Kipa, Kybd] but F1 >F1 ypa=F1 . (loglogd),
and let F'=(F} 4, F»). Then combining (68) with (70) gives
E[ZQ(T(vaF)] b1(7T,K,F) jO(ﬂ—vKaF) eO(Fl)

= < 1.
E[Z2(r, K, F)]  by(m, K, F') jo(m, K, F') ~ (loglog )20 <

If instead Fy <Fy1ba=1F1+/(loglogd) then, letting F'=(2F 1a, F2), and applying (68)
and (70), again gives

E[Z*(m, K, F)] < exp(O(F1,1ba))

< 1.
E[Z%(m, K, F")] S exp(Q[FLpa(logloglog d)])
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The same argument applies if F»&[F3 b4, F2,ubd], and this concludes the proof of (65).
Comparison with second moment of independent sets. We have

E[Z*(m, K, F)] _ e(m)je(r) i (7, K, F) jo (7, K, F)

E[Z2(7_T5K)} C(ﬁ') jl(ﬁ-aK7O) jo(ﬁ',K, O) 7

where Corollary 4.4 implies that the first ratio is exp(O(nfmax logd)). Let E,, and E,, be
defined as E, and E,, above, but with 7 in place of 7. Then

ji(m, K, F) g1(E E:,Eoo) as(m, K) by(m, K, F)

J1(7, K,0)  gi(E,Eq,Eo0) a1 (7, K) by(7,K,0)

exp(O(nBmax log d))

Recall from (67) that
by (7, K, F) < d0(Mhma)

always. For KG[Klbd, Kubd] and FE[.Flbd, Fubd]a
by (7, K, F) > (loglog d)~©(Fuba) > exp(—F, (loglog d)?).
Combining this estimate with (69) gives (66), as claimed. O

COROLLARY 4.6. Let p=a—e(logd)/d, where € =€, for an absolute constant €,>0.
Then
E[Z3.(n0)] =E[Z3,(no)] exp(Olnd (4~ **+d /1)), (71)

and the ratio E[Z2  (no)]|/E[Z2,] is exponentially small in n for
o€[d ' a—e.(logd)/d].

Proof. The first assertion (71) follows by combining (59), (60), and the estimate
(66) from Lemma 4.5. We now show that the ratio of E[Z2_(ng)] to max, E[Z2_ (nr)] is
exponentially small in n for all d~14° <p<a—e.(logd)/d. Let us begin with an analogous

calculation in the independent set model:

[¢]

(m)E[J4]
WE]\/[(na7nQ (n )gl nd ndOé 0)

(
_ c(m)gi(nd,n1d,0) -, ay (m, K)
B Z (W)gi (nd, nda, 0)

E[Z3a(no)] _
E[Zna] 2

)

TEM (na,ng)

with a; (7, K) as defined in (67). We then estimate

2
g1 (nda n1d7 O) = €exp <—7;1d —|—O(7’Ld72(10g d)3)> ’

Zai(mm=exp(”1°”°1d+o<nd <1ogd>3>),
K




MAXIMUM INDEPENDENT SETS ON RANDOM REGULAR GRAPHS 313

so altogether we find
E[Z;.(n0)] = E[Zya] exp(nga(0)+0(nd*(log d)°)),

where ga(g)_aH(§>+(1Q)H<(fg)Z(QQQQ)'

The function g, has first and second derivatives

2log(a— ) —log o—log(1—2a+0)+do,
d—2(a—0) t—o ' —(1-2a+0)" !,

9u(0)

gul(0)

so we see that g, is strictly convex on the interval 2/d<o<a—3/d. From the expression
for g/, we see that the (unique) minimizer g, of g, on this interval must lie near (log d)/d,

and so applying Corollary 4.6 gives

SUPgg—1.48 <0, E[me (no)] SUP2g-1.48 L p< 0, ]E[Z%a (no)]

_ —1.49
Bz, mdw) PO T g ) ()
Supgnggga—eﬂ(logd)/dE[Zrzba(ng)} —exn( O ﬁ Supgnégga—an(logd)/dE[Z?la(ng)]
E[Z2, (na—ne.(logd)2d)]  PA7\4 E[Z2,, (na—ne. (log d)/2d)]
(73)

We estimate g’a(g)gfl—lo log d for d=1%59<100/d, and similarly we have g(;(g)}l% logd
for 1.6(logd)/d<o<a—d~1-?5. Thus the quantity in (72) is bounded from above by

exp(n[ga (2d_1'48) —Ya (d_1'48)} +O(nd_1'49)) < exp(—nd_l-‘lg)’

and the expression in (73) is bounded from above by

ne, logd ne, logd n ne, logd
e e ) e 5T “)) < =57,
o (o= ) (o255 [ 0() ) <o ()

These estimates cover the full interval d—14° < o< a—e.(log d)/d, implying the result. [

4.2. Boundary estimates ~
PROPOSITION 4.7. There are constants d4,4>0, depending on d but not on n, such

that
(a) arg maX{E[Zn(oz—B/m,n,B] :Ogﬂgﬁmax} 255[;
(b) argmax{Z2_(no):0<o<a—ec.(logd)/d}>64;

(c) for 64<o<a—e.(logd)/d, any m€ M (na,no) mazimizing E[Z?(r)] must have
either (i) %Bmaxgmax{ﬂf_,wi}gﬂmax, or (il) min{{m, }we 2 U{Pos, Pso} } =04, where we
recall that pos=uos /Nn=Tos — 71z, and pso is defined symmetrically.
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Proof. The result follows by a series of comparison estimates. The general strategy
is to show that, if some =, is too small, then making a tiny increase in 7, gives an
entropy gain which is much larger than any probability costs that may be incurred.
We first address (c), which is the most difficult. Take w€ M (na,ng), and assume that
max{7ms_, T _f}<% Bmax, since otherwise (i) holds and we are done. We must then show
that 7 satisfies all the properties listed under (ii). For each of these claimed properties,
we will show that if the measure 7€ M (na,np) fails to satisfy the property, then we
can find another measure 7€ M (na, ng) such that E[Z?(7)]>E[Z?(r)], proving that 7
is not a maximizer. Take §=04=1/exp(exp(9)); we will always arrange for ||7—7||; <4.
Recall from (62) and (64) that

E[Z*(7)] =c:(7)G(7), where { c(m) = C(ﬂ-)']f(_ﬂ)’ .
G(ﬂ-) EZK7FJ1(7TaK7 F).]O(ﬂ-vKa F)
It follows by crude estimates that for ||7—7||<d we have G(7)/G(m)=exp(O(nd?é)). In
what follows we will, given 7, find 7 such that the ratio c¢(7)/cs(7) is much larger—on
the order of (1/6)?(") reflecting the entropy gain. The estimates are derived from the

expression (63) which we repeat here for convenience:

Cf(ﬂ') _ no(l) dnf (d_ 1)nf!f (n)nf (nff — 1)”(U0f +nf!f —1)”(Uf0+nﬂf — 1)”

74
CN(ﬂ') [nd](nf+nf!f)/2 nif! Tlf]_! Uof! Ufo! nff! ’I’Lf[f! ( )
Note that for ||7—m]||1 <6 we have ¢”(7)/c” (7)=exp(O(nd logd)).
(1) Suppose pys=uos/n<d?, and consider the measure
T=n+0(2-1{0£}—1{00,01}). (75)

(As we assumed that max{ms_, 7_¢} < % Bmax, we certainly have max{7ms_, T_s } < Omax and
therefore m€ M (no, ng).) Then from (74) we have

Cf(ﬂ') n (U0f+n6)! (nflf—l)”
—_— ———

>1

Cf(’ﬁ') do(né)nné(UOf!) (nof -l—nf!f—l)!! >do(”5) <l)n6

Therefore E[Z?(7)]>E[Z?(r)], so 7 is not a maximizer.
(2) If m5r <62, take T=7+08(2-1{££}—1{10,01}). Then (74) gives

Cf(ﬁ-) _ do(n6)nn6(nff!) (nff+n(5—1)" >d0(7l5) (1>n5
Cf(’/T) o (nff+n5)' (nff*].)” ~ '

0
>1

We hereafter assume that min{py;, pso, 7es } = 6°.
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(3) If meie <%, take T=m+~v(2-1{£!£} —1{0£, £0}) with y=§3. Then (74) gives

€2 (T) _ jo(ny) (Uoz)"™ (us0) ™ muste! (og +11e)" 1 (Uog +ng1g) ™/
ce(m) (nere+2n7)! nm
3n’y/2(p 0)3n’y/2

3\ ny
f > @) <5> — JOn) <1> .
(v)2 2 ¥

(4) If mys <64, take T=m+~(1{1£,0£f} —2-1{ff}) with y=63. Then (74) gives

_ ny 2\"Y ny/3
Cf<“;:d0<m)(”ff> >d0(m)(6> :dom)(l) _
Y

ce(m y ¥

— dO(n’y) (pOf)

This concludes the proof of (¢). The proofs of (a) and (b) are similar but much
simpler: for (a), going from (mo, 71, ms)=(1—0a, ,0) to (7o, T1,7e)=(1—a—0,—0,20)
gives a large gain in the first moment for ¢ sufficiently small (depending on d). For (b),
if moo=0, then there is a large gain going from 7 to 7=7+4§(1{00,11}—-1{01,10}). O

We now turn our attention to the maximizer(s) h for ®5 restricted to Aq[a]\EQ|a:
h € argmax{®3(h'): h’ € Az]a]\EQ[a]}. (76)

The tuple (m, K, F') introduced in (64) is simply a projection of h, and up to now we
have proved estimates concerning

lim n~'logE[Z?%(r, K, F)] = max{®,(h) : h projects to (r, K, F)}.

n—00

Of course, h contains richer information than (7, K, F'), and we now turn to estimates
for this additional information. To this end, let us say that a Of-variable is of type 0f
if the matched partner of v lies in Vi¢, and of type 0%f otherwise. (Recall that we used
Uopt to denote the subset of 0zf-variables.) Recall also from (32) that the 0 variable spin
can be further subdivided into 0% and 0%; and let us further subdivide 0*f into 0%!f and
051f. Let II be the measure induced by h on the expanded alphabet

2= ({07,0%, 1} x {07, 0°})U({07,0°} x {07, 0%, 1})U{£ £, £!£}

U({0z,07%, 0%} x {2} U({£} x {0z, 07%,0%1}).

Thus h projects to II, which in turn projects to a measure 7 on & as considered above.

LEMMA 4.8. Let h be a maximizer as in (76), with edge marginal h. Let I be the
measure on 2 induced by h. Then supp [I1=2, and

h(c',0*)=h(c? ') >0 for any o €{10,1£,01,£1} and 0% =11. (77)
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Proof. Recall from Lemma 4.5 that there are K edges between V5, and Vio, where we
have K /|Vyi|=<elogd=<K/|Vi| or else the contribution to E[Z?(7)] is negligible. Simply
by the pigeonhole principle this implies that V5,; has a positive fraction of variables with
more than two edges going to Vio, meaning Iy >6 for some constant §=4§,>0, which
can depend on d but not on n.

On the other hand, conditional on each v€Vy; receiving at least two edges from Vi,
these edges are uniformly assigned. (As in (61), we are considering the distribution of
the random graph G given a planted solution (w,m) consistent with 7.) Thus, with this
conditioning, for § small enough it is exponentially unlikely for fewer than nd vertices
in Vb1 to receive exactly two neighbors from Vig. We therefore conclude that at any
maximizer of @5 we must have IIp:1 >4. By symmetry we also have min{II;o-, ITj0s } >4.

Similarly, given the matching m, Vo is divided into variables of type 0;f and 0zf. We
saw in Proposition 4.7 (¢) that each of these types occupies a positive density of variables.
Each veVys has d—1 remaining half-edges that do not participate in the matching, and
F of these will match to half-edges coming from Vjz. These edges are uniformly assigned,
conditioned on the requirement that each 0 is forced by at least two neighboring 1’s. We
saw in Lemma 4.5 that F/|Vo¢| equals elogd up to a factor of loglogd, or else the
contribution to E[Z?(r)] is negligible. Thus it follows by the same considerations as
above that II, >4 for all we ({07,070} x {£})U({f} x{0z,0%*,0%'}). The assertion
in (77) is an immediate consequence.

Lastly, recall that Vi receives nod edges from Vi1, and <nelogd edges each from
Viz and Vz;. These edges are uniformly assigned, conditioned on the requirement that
each 0 is forced by at least two neighboring 1’s. Thus, with this conditioning, for § small
enough it is exponentially unlikely to have |V,,/|<né for any n,n"€{0%,0%}. This proves
the assertion that II has full support. O

LEMMA 4.9. Let h be a mazimizer as in (76), and let h be the edge marginal. Let
f be the projection of h under the mapping proj, of (30). Then

f(ereR' 0 € R >0

for all subsets R' and R? in the partition {10},{01}, {££}, £Z={£0,££},0Z={00, 0f}.

Proof. In the pair vertex-auxiliary model, the spin on a variable-clause edge can
be written as T=o0i, where 0=(0',0?) is the pair of variable-to-clause messages, and
i=(i',42) is the pair of clause-to-variable messages. All messages o' and i’ take values
in {0,1,£,f}, and we write c’=0"4’. Abbreviate f(R', R?)=f(c'€R', 62 R?). From
(32) and the definition (30) of proj,, we see that if ¢ is a valid configuration of the vertex-

auxiliary model, then the tuple of spins ¢, around a variable v€V must satisfy one of
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the following:
(109), if 1, =1,
¢, €4 Per[(ff,£z471)), if 7, = £,
Per[(01%,02% %)y ca], if m, =0.
Note that f(0Z,0Z)> f(00,00) >0, simply because the vast majority of edges in the graph
must be internal to Voo—there are nd/2 edges total, and only O(nlogd) can be incident
to {V}wzoo. We now finish the proof by making deductions from the conclusions of

Lemma 4.5 and Proposition 4.7. The conclusions are summarized in the following table:

10 ff £Z 01 0z
10| w1 >0 e >0 e >0 K>0 K < Kupg
| me >0 e >0 e >0 e >0 Pso >0
£z | e >0 T >0 e >0 Pso >0 Pso >0
01 K>0 e >0 Pos >0 11 >0 K< Kupg
0z| K<Kypa Pos>0 Pos >0 K < Kupa (see above)

where the row index is R!, the column index is R?, and the (R!, R?) entry in the ta-
ble gives the explanation for why f(R!, R?) is positive. Most of the entries are self-
explanatory, but we supply some detail for the three entries labeled pye >0. Recall that
Pos =Uot /1, Where ugs =nos —n4¢ counts the variables v€Vos whose partner w under m?
is not in Vi¢. Therefore, if a denotes the clause joining v to w, on the edge (av) we see
the spins o' €0Z, 0?=%f, proving the first assertion that f(0Z,ff)>0. Further, at least
two non-matching edges leaving v must lie in V;z, proving f(01, £Z)>0. Finally, recalling
from Lemma 4.5 (see (65)) that the contribution to E[Z?(r)] is negligible for F1 > Fy upa,

we see that most of the edges leaving Vo: must go to Vzz, proving f(0Z, £Z)>0. O

COROLLARY 4.10. In the setting of Lemma 4.9, supp f=(#,)>.

Proof. As above, use 7=(c',0?) to denote an edge spin in the pair vertex-auxiliary

model. We can express 7=0i, where 0=(0',0?), i=(i',4?), and o'=0"i'. If f(0i)=0,
then Lemma 4.9 implies f(0i')>0 for some i'#4. Moreover f(i0)=0 by symmetry of f
under R, so another application of Lemma 4.9 gives f(i0')>0 for some o’ #o0, and again
by symmetry under R we have f(0'i)>0.

This means that under the configuration 7=(g',0?) we have a positive density
of variable-clause edges (av) with 7., =04, as well as of variable-clause edges (bw) with
Topw =0"1. If we cut the edges (av), (bw) and replace them by the switched edges (aw), (bv),
then a valid configuration on the new graph is given by taking 7, =0t and 7,,=0'%,
and keeping the same spins as before on all the other edges.

In preceding arguments (see (61) and the proof of Lemma 4.8), we drew conclusions

about E[Z?(r)] by considering the random graph G given a planted configuration (w, m)
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consistent with 7. We can now draw further conclusions about E[Z2(h)] by considering
a richer planted configuration, as follows. Suppose a variable v has incident spins g,,,
and take a half-edge incident to v with outgoing messages o’ and incoming messages °.
Define modified incoming messages m*€{0,1,f,Z}, i=1,2, by setting m’=4' unless i’
is free to take either value in {0, £}, in which case we define m‘=2.

Each veV has d incident half-edges, and we now plant messages o and m on all
half-edges in a manner consistent with h. We can then consider sampling a random graph
given the planted configuration: if v has an incident half-edge labeled o,m, and w has
an incident half-edge labeled o,,m,,, we can join up the half-edges provided o, €m,, and
0, €m,,. If a denotes the clause joining these half-edges in the resulting graph, then we
will have 74,=0,0, and T4, =0,0,.

Now take ¢, i, 0, and o’ as above, let O be the m-message associated with o and
o', and let I be the m-message associated with 7 and #’. In the planted configuration
we have a positive density of half-edges with each of the labels oI, o'I, 1O, and #'O.
If we take a uniformly random matching of half-edges that respects these labels, it is
exponentially unlikely to have no matchings between ol and 20O. This contradicts the
assumption f(0i)=0, and the result follows. O

COROLLARY 4.11. In the setting of Lemma 4.9, supp h=.4>.

Proof. We will show that
h(c',0%)>0 whenever o' or o2 lies in {10, 1£}. (78)
It then follows by symmetry of A under R (as in (32)) that
h(c',0*)>0 whenever o' or o2 lies in {01,f1}.

Finally, if neither o¢ lies in {10,1£,01,£1}, then it follows directly from Corollary 4.10
that h(o',0?)>0, which gives the claimed result. Thus it remains to establish (78).
Recall that, by (77), we already know that h(c',2)>0 for o' €{10,1f} and o2=11.
As before (cf. (61)), consider sampling the random graph G conditioned on the event
that some planted configuration (w,m) is valid on G. We claim that, for any ne{0*, 0%}
and any 7', n"” €{0, £}, it is exponentially unlikely for the planted graph to have fewer than
nd non-matching edges between Vi, and V,,~. (As before, § denotes a small positive
constant, which can depend on d but not n.) To see this, suppose there are no edges
between Vi, and Vis,», or equivalently that h(£1,7'n”)=0. Since f has full support
by Corollary 4.10, we must have h(01,7'n"”)>0, which means that there is a positive
density of edges between veVi, and w& Vo, On the other hand, since Ilgs,» >0 by

Lemma 4.8, there must be a positive density of edges between v'€ Vi, and w'€Vosy»
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for some 7" €{0,1,£}. If we cut the edges (vw) and (v'w’), and form the switched edges
(vw’) and (v'w), then (w,m) remains a valid configuration for the switched graph. It
follows that in the randomly planted graph it is exponentially unlikely that there are
fewer than nd non-matching edges between Vi, and Vos,». Exactly the same argument
applies to show that we must also have >nd non-matching edges between Vi, and Vo,
and this proves that h(c!,02)>0 for o' €{10, 1£} and 02€{00, 0f, £0, ££}.

If we condition on the half-edges incident to Vi and V5, that will participate in the K
edges between them, then any matching of these half-edges is equally likely, so with high
probability there is a positive density of edges between Vi, and V4 for all n,n’ € {07, 0%}.
This implies that h(o!,02)>0 for o'€{10,1£} and 0?€{01,£1}. Similarly, there is a
positive density of edges between Vi; and V;,, for all n,n’€{07, 0%}, which implies that
h(c',02)>0 if both 0°€{10,1£}. This concludes the proof. O

PROPOSITION 4.12. Let h be a mazimizer as in (76). Then supp h=supp ps.

Proof. As we have noted before (Remark 3.8), the functional form of ®, implies

that at the optimizer h the functions h and h must be symmetric, with

®,(h)=H(h)—idH(h).

For 6=(J,4) such that h+td lies in As[a] for >0 small, consider

@y (htt6)—Ba(h)
log(p. §) = 2
OFE (s 0) =l = e (1)

To show that h is not a maximizer it suffices to exhibit 9'°%(h;§)>0 for some 4.

= d{(supp )] - §l(supp h)°]

In particular, for any h€ Az[a] and with ®h[a] as in the statement of Theorem 4.1,
it follows by convexity of the space Asla] that

h+t(®hja]—h) € IND[0]

for t>0 small. Therefore, if h is a maximizer such that the edge marginal i has full
support supp h=.#?, then necessarily supp h=supp @2, since otherwise we would have
0% (h; ®h[a]—h)>0. O

The following proposition is established by similar (but much easier) arguments as

for Proposition 4.12, so we omit the proof.

PROPOSITION 4.13. Let h be a mazimizer of ® on Ala]. Then supp h=supp ¢.

4.3. Near-independence regime

In this subsection we complete our analysis of the near-independence regime IND[«] to

prove the following result.
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PROPOSITION 4.14. The unique mazimizer of the restriction of ®4 to IND[«] is the
product measure ®hla]=*h[a]®*h|a].

Recall that a pair frozen configuration is encoded by (w,m), with w as defined in (57)
and m=(m!, m?). Given the graph G, the configuration (w,m) corresponds bijectively

to a pair message configuration 7=(c!,0?) on G. We write
(G,w,m)€h

to indicate that the corresponding 7 has pair empirical measure h (see (56)). We now
study the maximization of ®2(h) over heIND[a]C Ag[a] (Definition 4.2). Recall that h

induces a measure 7 on &, with 7€ M (n«a, ng) for some o<d 1L

LEMMA 4.15. Let h be any mazimizer of the restriction of ®5 to IND[«], and let ©

be the induced measure on &. Then m must satisfy

T1f Tf1 dmes UE3E

<1
bl b K ~Y
TofT10 T£07To1 TofTfo To£7£0

as well as Tos < (logd)°Md=v.

Proof. Let h be the purported maximizer of ®5 on IND[«]. Recall from Proposi-
tion 4.12 that h has full support, so min{h7 fz}>§ for some small positive constant ¢,
which depends on d but not on n. We will define a switching operation ¢ that maps a
valid tuple (G,w,m)€h to a set of valid tuples (G',w’,m’), with the property that for
each such (G, w’,m’) the corresponding h' still lies in IND[«] and satisfies ||h'—h||; <&,
where &' <exp(—exp(1/6)). Let ¢~'(G’,w’,m’) denote the preimage of (G',w’,m’) un-
der ¢. Suppose we prove under these conditions that

<(Giwm)|za and <TG, w,m)|<D.
Then, using P(G)=P(G’), we have

aEZ*(h)< > PG Y (G m)es(G w m)}

(G.w,m)€h (G'w',m’)
= ). P& Y W@ m)eo(Gw m)} (79)
(G'\w',m") (Gw,m)eh
<b Y. EZ*(W)<n®YDHEZ*(h),
h’/€INDIq]

where the last step is by the assumed optimality of h. This gives the bound a<n®®b.
To prove the stated bounds we will apply this argument with a few different choices of ¢,

which are explained below and illustrated in Figure 3. Recall the notation in (58).
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(1) Figure 3 (a): estimate for 1f-variables.

For we &2 let W, denote the subset of variables v€V,, with no neighbors in Vi3 UVs;.
Let W, (1) be the subset of such variables with exactly ! neighbors in V37UVzz. For w=00,
note that n=1|[Woo(I)|>min h>6 for each 2<I<d—2 by Proposition 4.12. Moreover, since
[Vi1UVe1|<n(0+ Bmax), We clearly have |Woo|>%ﬂoo-

Fix any 2<I<d—2. Given (G,w,m), choose a subset Syt CVi¢ of size nd’. For each
v€Sis, select a corresponding we Wy (1), and write Soo(l) for the subset of chosen w.
We require that for each z#£z" in S1:USe (1) the distance between x and 2’ is >5. By
definition, w has exactly [ neighbors in VizUV;z, which we denote wy, ..., w;. Meanwhile
v has d—1 neighbors in Viz; choose [ of these and denote them vy, ..., v;.

Now for each 1<j<!, cut the edges (vv;) and (wwj;), and replace them by the
switched edges (vw;) and (wv;). Then set w],=0f and w],=10. Repeat this for each
chosen pair (v,w), then set w), =w,, for all u¢S1:USeo(!). This defines a map ¢ satisfying

ndd (67)2 )
(G )| = 0011 exp (0 " ) (= 1lViel ool
nd®(8')?

5057 ,
(G| < 0] exp (O PR ) ) (@ 1ulVil Wor )
where the factor exp(O(nd®(8')?/§)) accounts for the restriction that the 2nd’ chosen

vertices must lie at pairwise distance at least five. Applying (79) gives

, n 5( 52 ,
(Viel o " <0 exp (0“5 ) ) il [Wec0

so we conclude |Vig| |[Woo ()| S| Vio| [Woe(1)]. Summing over [ and rearranging gives

< [Vio| [Vos| _

1f S |Woo\ ~ 1070t -

(2) Figure 3 (b): estimate for £f-variables.

Let Fyo denote the set of pairs (z,y)€ (Voo)? such that z neighbors y, and neither =
nor y has any neighbors in Vi;. The number of pairs (x, )€ (Voo)? such that either x or
y neighbors Vi1 is <2nd?p, so |F00|2%nd. Let Fyo(k,l) denote the subset of such pairs
such that = has exactly k neighbors in V;z, and y has exactly [ neighbors in Vg;. It is
clear that we can adjust § so that |Foo(k,1)|=>nd for each 2<k,I<d—2.

Now fix some 2<k,l<d—2, and choose a subset Soo(k, 1) C Foo(k,1) of size nd’. For
each (z,v)€Soo(k,1) choose a corresponding pair (v, w)€ (Vz¢)? that are matched under
m, and let Sgs denote the subset of chosen pairs (v,w). We require that for any two

chosen pairs (u,u')#w”,u”") in Seo(k,1)USss the graph distance between u and v is
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at least five. By definition, x has exactly k£ neighbors x1, ..., x; with spin 1Z, and y has
exactly [ neighbors 1, ..., y; with spin Z1. Choose k neighbors v, ..., v of v (none equal
to w), and choose [ neighbors wy, ...,w; of w (none equal to v).

Now perform the following operation: cut the edges (vw) and (zy), and form the
switched edges (vy) and (wz). Then cut (vv;) and (zz;), and form (vz;) and (vz;) for
each 1<j<k; also cut (wwj;) and (yy;), and form (wy;) and (wy;) for each 1<j<I. Set
w, =w, =0f, wy,=w,,=£0, and declare (vy) and (wz) to be matched edges (under both
m! and m?). Repeat this for each of the nd’ chosen 4-tuples (x,y, v, w), then set w),=w,
for all u€V not appearing in one of the chosen 4-tuples. This defines a map ¢ satisfying

nd’ (672 )
(G )| = 001 exp (0 “E0 ) ) (=) Vil [Pl D
2

n 5( 5! ,
G| <[00 exp (0 E ) ) (a=)ala- iV (] Vo))"

where Voe (k) is the subset of variables in Vps with exactly k& neighbors in Viz, and V(1)
is symmetrically defined. Applying (79) gives

Ve | [ Foo (K, D] S [Voe (F)| [Veo(1)]-

Summing over k and [, and rearranging, gives m¢s Smosmso/d.

(3) Figure 3(c): estimate for £!f-variables.

Write Xoo for the subset of variables in V5o that have no neighbors in Vi;, and
note that [Xoo|>4n. Let Xoo(l) denote the subset of such variables that have exactly
neighbors in Viz. Then we have |Xoo(1)|=nd for all 2<I<d—2.

Now fix some 2<I<d—2. Choose a subset Sg¢ CVzie of size nd’. For each vE€Ssis,
choose a corresponding € Xoo(l), and let Soo(l) denote the set of chosen z. We require
that for all uzu’ in SgsUSeo(l) the graph distance between u and u’ is at least five.
Let v; be the matched partner of v under m'. Let x1,...,2; be the [ neighbors of z in
Viz. Choose [—1 neighbors vy, ...,v; of v (none equal to vy). Cut the edges (vv;) and
(zz;), and form the new edges (vz;) and (zv;). Then set w,=0f, w,=£0, and declare
(zv1) to be matched under m'. Repeat this for each of the nd’ chosen pairs (v, x), then
set w!,=w,, for all u not appearing among any of the chosen pairs (v,z). This defines a

map ¢ satisfying

n 5( $I\2 ,
(G, m)] = [(n)] " exp o(d‘”))«d—l)zuvﬂa Kool

(o(*5
@l < (080 exp (O PR ) ) (=)ol Xor )
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where Xo(I) denotes the subset of variables in Vos having exactly ! neighbors in Viz.
Applying (79) gives
[Vere| [ Xoo(D)] < [Vol | Xos ()]

Summing over ! and rearranging gives iz Seoos -

(4) Figure 3(d): estimate for 0f-variables.

Let Yor be the subset of variables u € Vs that have d—1 neighbors in V4, and exactly
one neighbor v in Vos (which is necessarily matched to u). By the preceding estimates,
Vos accounts for most of V ;. The total size of V ;¢ is very small compared with Vjq, so
we have |Y0f|2%|Vof|. If we let Yy, denote the number of pairs (x,y) such that z€Vq,
and y€V;07, then we also have |Yo1|>%d|V01|.

Choose a subset Sps of nd’ pairs (u,v) such that u€Yys, and v€ Vs is the matched
partner of u. Let w#u be another neighbor of v. For each (u,v) choose a corresponding
pair (z,y)€Yo1, and let Soo denote the subset of chosen pairs. We require that for any
two chosen pairs (u, u’)# (v, u”") in SpsUSqo, the graph distance between u and u” is at
least five.

Cut the edges (vw) and (zy) and form the switched edges (vx) and (wy). Set w], =01,
w;, =00, w; =01, w; =00, and remove (uv) from the matching m?. Repeat this for each
chosen 4-tuple (u, v, x,y), then set w, =w, for all z not appearing in any of the nd’ chosen
4-tuples. This defines a map ¢ satisfying

5(5/\2
AR ) il Yol
(5)2

) < [0 e (0“2 ) ) e

5(G.w,m)| =[(nd")1] " exp (o(

d.
5 Vool

Applying (79) and rearranging gives mos Smoos/dmo1. Applying the estimate (23) from
Proposition 2.10, we conclude that s < (log d)°Vd~¥, as claimed.

This concludes the proof of the lemma. O

LEMMA 4.16. Any mazimizer of E[Z,_g/2 5] over B< Pmax satisfies

o(1)
g Qo)™
dy
Proof. This follows by essentially the same argument used to prove that

log d)°™W)
or < %

in Lemma 4.15. O
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00 1f of of
(Ol U A IR A R YR BN i A PR & e 2 e
o 1Z or £Z 0z 0z o. 1Z or £Z 0z 0z

(a) Switching 1f, 00 for 1f, Of.

/ff ff\ . :
12{\00 00, 12{:

.
z1 *rz1
.
P - >

Z. Z Z. Z

(b) Switching ££, 00 for 0f, £0.

7z P 7z
(2) (1) O] \
w fIf W' (may be w W' (may be
edge of m?) 77 edge of m?)
<~
%0\ T I\.
I N e > =
17 Zo 1Z Z.

(c) Breaking an f!f chain.

-0 -0
o N—— o N—
k o N\ w /\W \I/ w
L]
of 0f
01 00T 01 00

I\ T 7N

(d) Switching 0f,nf for 01, 0.

Figure 3. Switching arguments (Lemma 4.15). In the original (G,w, m) we choose nd’ (mu-
tually disjoint) copies of the left panel. The arrow indicates the operation that we apply in
each of these copies to form the image (G’,w’,m’). Matching edges are indicated by thick

lines; a thick line is marked (1) or (2) if the matching occurs under m?

made by the switching operation are highlighted in color.

or m? only. Changes
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COROLLARY 4.17. For d>dy and ajpg <a<aupd,
(a) any global mazimizer of ® on Ala] lies in the interior A°[a], and

(b) any global mazimizer of ®2 on IND[«] must be an interior stationary point.

Proof. Proposition 4.13 and Lemma 4.16 combine to give (a), while (b) follows by
combining Corollary 4.6, Proposition 4.12 and Lemma 4.15. O

Corollary 4.17 was required in the proof of Theorem 3.11; it also implies (with
Lemma 3.9) that any maximizer h on ®5 on IND[a] corresponds to a solution h of the
pair Bethe recursions for some A=(A1, A2) ((40) and (39) with ¢35 =¢*' ®p*2 in place of
¢*). It remains to identify this Bethe solution with the one corresponding to ®h[a]. For
a,b,c,d€{0,1, £} let us abbreviate

fz(ﬂg) =h(i=4'i’ =ac,0=0'0>=bd) = h(c' =i'0' = ab,0? =i%0° = cd).

LEMMA 4.18. In the setting of Proposition 4.14,

h(ed) ~1
Bea =+ o <Lqd for all c,de{0,1,£}.
h’( cd)
Proof. By the trivial symmetries (82) we have that Bo,=Bs, and Boo=B10=DBs0, SO
it suffices to show B, <4d~! for all 0€{00,01,0£,11,1f}. For any a,be{0,1,f} we have

h(gs) _ h(58)n(55) _ h(5, &)

TR ARINE) AR
where the intermediate step is by (82) and the last step is by (39) and (40). Thus
@(88) _ E(Vio, Voro) _ ndmio—E(Vio, Vo1 UVo: UVoso) :a—i—O(d_l), (80)
R(®)  2(Vao Voo) | nd[1—O((log d)/d)

0

Fi0=

where the last step uses the estimate K < K\,q from Lemma 4.5, together with the crude
bounds E(V, Vo) <ndBmax and E(Vig, Voeo) <2|Voso| <2n. We also have

Fi1 S7i1, Fer STes+Tere,  For XTog, Fgo X g0, (81)
and so we deduce that
—1 -1 -1
Bos = Fes [Fos Kqd ', Boo=Fgo<Kqd ~, Boy=Fs1/Fo1 Ser/a<Lqgd .

By a similar calculation as for F,, we have

~

h(of h(fo, of - )
nzil(clxl)):“((lxl) (1);)< - f!f_ <gd-!,
(99)  h(9,99) Tor—Tis—Tsis
7, ( Of
h(%%)  E(Vios, Vo1) < E(Vos, V1) |Vos| < d-!

Bis =

h(9%)  E(Voos, Vo) ~ E(Voos, Va1)  [Voos

where the last step uses the estimate (23) from Proposition 2.10 together with the esti-
mates K <K,pq and F<Fypq from Lemma 4.5. O
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LEMMA 4.19. In the setting of Proposition 4.14,

_ h(G) 1
A== Lqd for all cae{0,1,£f}.

h(c)

Proof. By the trivial symmetries (82) we have that Ag,=As,; and Agy=A10=As0, SO
it suffices to show A, < gd~! for all €{00,01,0f,11,1f}. For =00 we have

h(%)  E(Vio, Viro) £(Vio, Vieo)

E(V1m Vbro) B E(Vm, %_) —E(V107 Vo1UVE>f) _E(V107 Voso) .

h(&)
By its definition, E(Viq, Vo_)=nda. Next note that (Vig, Vo1 UVos) <K+ Fy, which by
Lemma 4.5 is <nda?. Lastly E(Vig, Voso) <2|Voso|, and it follows by the estimate (23)
from Proposition 2.10 that at the maximizer we must have |Voeo|/n<gl/d. Altogether
this proves Agp<41/d. Next,

Aoy = il(cl){) _ E(Vior, Vos1) < E(Vior, Vos1)
iz(é‘l’) E(Vior, Vor1)  E(Vao, Vor) —E(Vio, Voe1) —E(Vios, Vor)
2| Vs 1
|Vos1] <,

= K —2|Vos1 UVigs d
where the last estimate uses that K <nda? by Lemma 4.5 and |Voss|/|Voi1|<a1/d by (23).

By similar considerations (and recalling Z={0,f}) we have

_ il((lé) _ E(Vio, Voet) 2| Voss | 1
Aot = > = < <d =
h(32)  E(Vio,Vorz) ~ E(Viz, Vor) —E(Vie, Vo) = 2| Vose d
For subsets S, S’CV let us write (S, S’;m*) for the number of edges between S and S’
that participate in the matching m®. It follows from (23) that
E(V1f7 %sf;mQ) 1 E(V117 %sos) 1
=B Vesi ) 2 and Ay = i V00 2
E(V1f7 %rf;m2) <<d d an 1t E(‘/“_7 %ros) <d d’

and this concludes the proof of the lemma. O

Aqg

As already noted above, Corollary 4.17 (b) implies that any maximizer h of ®5 on
IND[a] corresponds, via (40), to a solution h=(h,h) of the Bethe recursions (39) with
respect to the factors ¢* ®p*2, for some parameters (A1, \2). We now show that h
satisfies the analogue of (50) for the pair model.

PROPOSITION 4.20. Let h be a mazimizer of of ®5 on IND[a], and let h=(h,h) be
the corresponding solution of the Bethe recursions. Then h is invariant with respect to
changes in the incoming variable-to-clause message:

h(io) = h(i'0),

where 1,1 €{0,1,£}? are variable-to-clause messages, and 0€{0,1,£}? is the clause-to-

variable message.
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Proof. We apply the same argument as in the proof of Proposition 3.10, that is, we
shall argue that the effect of changing the message ¢ incoming to T does not percolate

down the tree. As in the first moment we have some trivial symmetries:

(i) h(io) is invariant under changing i’ between 0 and £; and (82)
(i) if o' =0 then h(io) is invariant under any change in ‘.

It remains now to show that B(io) is invariant under changing * between 0 and 1. As
in the proof of Proposition 3.10, this follows by showing that a certain propagation is

subcritical, for which it suffices to have

h( it h(of
Ay = A( o) <4d7 ! and B, = A( v) <gd ' foralloe .
h(3) h(%)
This was done in Lemmas 4.18 and 4.19, so the result follows. O

It follows from Proposition 4.20 that we have (cf. (50) and (51))
9hi0=¢q, for a measure q on {0,1,£}2, (83)

where q solves the recursions

Z(In:/\l/\z(%z)d_l, 2q1z=M[(qz.)

2q=X[(q2)" ' —(az2)* ), z@zz=1—(gz.)" ' —(q2)" ' +(gzz)? "

d—1
(84)

Proof of Proposition 4.14. Write a=y(logd)/d. By Proposition 4.20,

@ _ h(3)+h (%)

Tz h(8)+h(30)+h(8)+h(8F)

By Lemma 4.18 and (80), this equals a+O(d~!). The same argument applies for gz, so

92 _ ro(at) =22, (85)
qzz qzz

Substituting (85) into (40) gives

0 :|V11|: /\Q(QZZ)d
a=o0 |Viol (gz)i[1+0(d~v)]’

On the other hand, substituting (85) into (84) gives

Qs _ A2(qzz) ! _140@@7Y) V| _ o

qiz  (gz. ) 1+0(d7v)] B Qz2/qz-  |Viol “a’
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and in combination with (85) this shows that the probability measure g is mostly sup-
ported on ZZ, with giz=a+0O(d"')=qz; and g1;<p. The normalization z in (84) thus
satisfies

z2=142q1z2+2qz1+0(d" Y +p).

Consequently, if we let € be defined by gzz=(14¢)gz_g_z, we have

[1+0(d™")][1+2q12+2G21 +O(d ¥ +0)]
(142q71)(1+2q12)

(ZQZZ)Z
(2q2.)(2q.2)

el =

1

Substituting into (84) gives, with the abbreviations X;=(gz_)*"! and Xo=(q_z)9 1,

de
au= (X)X HO), saa=Xi(-Xa)+0( %),
(- X)Xy t0[ 2% —(1-x)(1-X)+0( &
2qz = (1-X1) A2 Xo+ ) 2qzz = (1-X1)(1-X2)+ d2v /-

All the additive errors above are O(d~%5¢), so the recursion gives

Gz _[1+0(d " Pe))(1-X,) 11Xt A
qz._. ].7X2+)\2X2 q.z [1+O(d70‘05€)](17X2).

Recalling the definition of ¢ this implies e=O(d~%%¢), so the only possibility is that
=0, meaning gzz=gz_q_z. Substituting into the recursion (84) again proves that g must
be a product measure over {0, 1, £}2, and its marginal on the ith coordinate (for i=1,2)
must satisfy the recursion (48) with respect to A;. By the one-to-one correspondence
between a and ¢ in the regime considered (see Theorem 3.11), we conclude h=%h[a] as
claimed. O

4.4. A-priori rigidity estimate

In this section we analyze near-identical frozen model configurations to prove the follow-

ing result.
PROPOSITION 4.21. The contribution to E[(Z,«)?] from EQ[a] is <4EZ,4 as n—oo.

The proof of Proposition 4.21 is based on an a-priori estimate showing that frozen
model configurations are sufficiently rigid that one typically does not find a large cluster
of configurations near a given one. For application in our proof of the tightness of MIS,,
(Remark 1.1), we shall prove this estimate for graphs drawn from the following slight
generalization of the configuration model which allows for some “dangling” half-edges

(see Figure 4).
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AV V) =R R(Ve) =1 PO =y

half-edges %

JA A7 0

B (degree 1)

Rl=n—-y=>,7 VI=y=>,9
V=RUY=V_UV, (degree d)

Figure 4. Graph G? with dangling half-edges.

Let V be a set of n vertices, each incident to d half-edges. Let Y be a disjoint set
of y<qlogn vertices, each incident to a single half-edge. Let Vo=V UY*t and let G? be
the graph formed on V? by taking a random matching of the nd+y available half-edges.
We will equivalently regard G? as a bipartite graph: G?=(V? F? E?) where F? is a
set of %(nd—i—y) clauses, and E? denotes the variable-clause edges. We write F*< for
the clauses incident to Yo**, Yt for the variables in V that are incident to F°<* and

R=V\Ynt,

Definition 4.22. An auxiliary configuration on G? is a message configuration o €.#F ’
such that the configuration of messages incident to any variable or clause in G?\Yx*
is valid (appears in supp ¢), and the total density of f-variables is <fBpax. A frozen
model configuration 1 on G? is a spin configuration neq{0,1, f}Va together with a subset
mCF, obtained by applying proj, (see Proposition 3.5) to an auxiliary configuration on
G?. Thus there is a one-to-one correspondence g<+7 between the auxiliary and frozen
models on G?.

As in (57), we associate with a frozen configuration pair 7°=(n’, m’) (i=1,2) on G?
a spin configuration gzg(ﬂl,ﬂQ)eﬁva. As in (58), for w€ # and SCV? we write S,
for the subset of vertices in S with spin w. We will also write S for the subset of vertices
in S with spin in Z,=2\{00,11,ff}, and S_=5\S5,. Let

0=|Ry|, e=YLY, A=|Vi =|R UYL =o+e.

As before, for S, 5’ CV? write (S, ") for the number of edges joining S to S’. We shall
abbreviate E(S)=Eg(S, S).

Write % C E? for the variable-clause edges joining Y™™ to F*<t. In the following, we
fix boundary conditions 74 =(cl,, 0% )€.#*?. Let O??[r|r,] denote the set of pair

frozen model configurations on G which are consistent with 7, and have empirical
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measure 7, =|R,|/|R| when restricted to R. Let
7*°[n|14]=|0*%In|z4/]].

We decompose

Z2*0n|1y) =Y 25%In|Ta) = |0%°Ir|rs ]| (86)
A>0 A>0

where Oi{a[ﬂ Ta ) CO?P[n|1,] is the subset of configurations having
37=E(Vz)=0+A

internal edges among the unequal spins.(!!) We shall compare below the expectation of
Z3%[7 |7, with that of Z2[x!|gk,]—the number of frozen model configurations on G?
which are consistent with o}, and have empirical measure given by the projection 7' of
7 onto the first coordinate. Note that Z9[r!|al,]=|proj' (O*?[r|z4])|, where proj*
the projection mapping (7', 5%)—n'.

PROPOSITION 4.23. There exists a small absolute constant €>0 such that for d>dy,
and any empirical measure ™ on & whose projections ' and 7% have normalized inten-

sities (cf. (34)) i(m*)=mi+ 7k € [uba, auba] (though not necessarily equal),

E[Z°%[r! |a ]| +E[Z°[* |05 ]]
d(e—e)/10

E[Z*%[n|zy]] <

provided A=p+e<ne(logd)/d.

Proof. We will compute the ratio

2,0 T | T oy
Rk[ﬁlw]—m'

In what follows we will refer to the original d-regular graph model, although we keep
the (equivalent) bipartite version in mind. Assume that the edges between V and Yext
are assigned, and that we are given we 2V’ which is consistent with T, and whose
restriction to R has empirical measure w. Write E,, for the number of half-edges incident
to V,, that are not matched to a half-edge from Y***; the total number of such half-edges
is E=) E,=nd—y.

Half-edges from V. We first estimate the probability that E(Vx,Vi1)=0. To this
end, define

-@A B {E V75 27 o+A, E(V#,fo) B, and E(V#,Vll)ZO}.

(11) Tt is straightforward to see that A>0.
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Let R=g(V=,V.)=E—~. Then, recalling the double factorial notation,

(Ex)y (y—=D!! . (Ets+Eoo)r '(g)(Eff)B(Eoo)R—B
7! [E]v/2 [E-7]r Efs+Eoo)r

<eOM) (A2d/ny)7/? <dO(As)e—Ey R/E gd()(As)( )BB

P{Z4,5(w)] < ; (87)

where S=m¢_. Altogether we find

O(A) JO(Ae)  / A2g v/2 R
P(24,5(w)] < — Bo.
’ exp(Eq1 R/nd) \ nvy B
Matchings on f-vertices. Let R'=E_.+R=2E_—~v<2Ad denote the number of half-
edges which are either incident to V. or matched with a half-edge from V.. Let Uk

denote the subset of vertices in Vi not matched to Y*** under 7, . Conditioned on

P4,8(w), the expected number of matchings on Uss is
Uge|— 1!
( IT oot roma) 2 =
el [E—Rjus/2

In contrast, suppose we consider the first coordinate only: let Us_ be the subset of vertices
in V;_ not matched to Y°** under glgy. The expected number of matchings on Us_ is

(IT 1ooyyee) S

el [Eljv_i/2

Let #F denote the ratio between these two. Then for all B we have

Ze/2
1 =
/fB < eO(A) (dﬁ) where oy = |Uf__| — |Uff‘. (88)

Edges from 1-vertices. Suppose we are given w and a valid matching on Uzs. Con-

ditioning on Z4 g(w), the probability to correctly assign all half-edges leaving Vi; is

Eﬁl Eoof(RfB)fz
=0 E— |Uff|—1 27/

In contrast, if we consider the first coordinate only, the probability to correctly assign

all half-edges leaving V;_ is
Ei_—1

H UO l
E— | f_ | 1— 2’L
Let _#P be the ratio between these two; then

joae) xP(Exi(Ex+B)/nd)
exp(Ey1(Eo_—Eqo)/nd)

/ <
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Forcing of O-vertices. It remains to address the constraint that each 0 is forced
by two neighboring 1’s. Let _#; be the ratio of the conditional probability that all
vertices in Vo are forced, with the conditional probability that all vertices in V,_ are
forced in the first coordinate. Fix 0<¥<1 and define independent random variables
X~Bin(|0i\Ye*t|, ) with joint law Py. Then

B Py (X' +|0iNY$<t| > 2 for all i € Voo \OV| 3, cvpiov, X' =Eus)
So < Py(X'+]0iNY$x¥t| > 2 for all i € Vy_| Diev, X'=E1) ’

where we have ignored the forcing constraint on the vertices in V4o neighboring V.. A
small variation on the proof of Proposition 2.10 gives #,=e?»). Combining with (87),
(88) and (89), and recalling that Ex—R=vy=2(p+A), we see that

O(A)dO(As) E:/2 A2d v/2
P B gB gB < €
Srons A< () ()
where a=m,;_ and Ao=|V,_|—|Vool.

Ratio of combinatorial factors. Finally, accounting for the permutations of w, versus

the permutations in the first-coordinate projection, we have

|R| )/( |R| ) o(A (”)Q
€= <P ([ Z) qeger
<g, Rool, [Ras], [Reel,) /| \Rol, [Re_, [ Re| 2) P

where g, =|R,_|—|R,,|. Combining with (90) (and recalling 3y=g+A) gives

R,lax [mlre] <€ Z P(@A,B(g))ffolB /OB

B
A
< 0(A) gO(Ae) <A2> <A2d) deoffpe
07/ \ nv ) exp(Ao(da))(dB)=+/?
Recalling that A=p+e€, we can bound

2\@ 2\@ e
(o) = () == (2]
oY (2} Y
Next, observe that Z¢ <g¢+0¢ for 6, =Y |—|Yi*|. Therefore, using a>3(logd)/d and
6<ﬂmaxa we have

anQlﬂQi - (log d)O(A)
exp(Bo(da))(dB)=/2 = exp([(580—00) + 5 (0r —07)] log d)
Recall that |Ry¢| <|Vos| and |Re1| < |Vzo|. By symmetry, assume that [Vo; UVos|=|VieUVeo|.
Then

3A QofleJr(Ao Q0) > AO*2|‘/()1UVE)f| %|V01UV0fUV1oUVfo|
§| 01UVE>fUVloUV:fo|+ (0—|Rig| = |Rer| = | Rere )
> g(0+ Vo | = [Rae |+ [Veo| = [Re1 | = [Rere]) = 5 (0~ [Rere ),
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so combining with g¢ —d; > 9¢ —€ gives, for some absolute constant C,

dO(AE)(IOgd)O(A) 0 e/ OA2d A dO(Aa)(logd)O(A)
1

ZRA[MI@]g dle—e)/8 Z( ) < ny ) < dle—e)/8 )
A>0 A>0

v

To see the last inequality, note that the sum over A>0 is clearly <1 if CA2d<2n~. For
CA?d>2n, recalling that o< %'y and optimizing over 7y gives

e 2 \A
<9> (CAd> < dO),
v) \ ny

It follows that there exists a small absolute constant & such that

log d
3 RY[rlzy)<d @90 for A=gte< ™ ;g ,
A0
implying the result. O

Proposition 4.21 now follows from Proposition 4.23 applied to our original random
graph ¥, , with no dangling half-edges. Theorem 4.1 then follows by combining Propo-
sitions 4.14 and 4.21.

5. Negative-definiteness of free energy Hessians

THEOREM 5.1. For d>dy, the following hold uniformly over apg<a<aubq:

(a) EZpa=[140,(1)] € (a) n~ /2 exp(ng(a)), for a smooth function € (), and

(b) E[(Z’VIO()Q]Xd(EZna)2+EZn(x-

PROPOSITION 5.2. For d>dy, the Hessians H®(*h[a]) and H(®2)(®h[a]) as func-

tions on Ala] and As[a], respectively, are negative-definite.

The calculation of this section is similar to that of [24, §7]. Let heA°[a] with
h and h both symmetric, and let § be any signed measure on supp ¢ (not necessarily
symmetric) with h4sd € A°[a] for sufficiently small |s|. Then

(05)°® (ht56) 50 = —((8/R)*),— 5d((8/ 1)), +d((5/R)*)5, (92)

where a/b denotes the vector given by coordinate-wise division of a by b, and (-);, de-
notes integration with respect to measure h, e.g. ((§/h)?),=>_,6(c)?/h(c). Consider
maximizing (92) over & subject to fixed marginals . We find that the optimal 8 will be
symmetric, with §(c, Ro)=8(c)=6(Ro). The optimal § will be of the form

d
dd(5)=h(&) " X,
=1



334 J. DING, A. SLY AND N. SUN

with x chosen to satisfy the margin constraint—which, after a little algebra, becomes
the system of equations
H'5=d ' [I+(d—1)M]x, (93)

where H=diag(h) and M denotes the stochastic matrix with entries

. 1 .

Mygr=—=> h(6)1{(01,02) = (0,0")}. (94)
h(o) <

If such x exists, then the minimal value of <(5/h)2>h subject to marginals d is (J, x)

(which clearly remains invariant under translations of x by vectors in the kernel of

I+(d—-1)M).
Throughout the following we take h to be *h[a] (first moment) or ®h[a] (second

moment).

LEMMA 5.3. For d>dy, the eigenvalues of M counted with geometric multiplicity
are
eigen(M) = (1,1,1,0,0,0, —(d—1) 7", Ay, Aa),

where |A\1|<d™1? and 0<|Xa—(d—1)"Y<d™12. The right eigenvector Z corresponding
to the eigenvalue —(d—1)"1 is given by T,=(d—1)1{c=11}—1{oc=1£0 or ££}.

Proof. The matrix M is h-reversible and block diagonal with blocks M; acting on
{10,1f}, M; acting on {11,£0,££}, and M, acting on {£1,01,00,0f}. We compute

11 £0 £t
10 1f 4 0 4o s
0 Qo G 1-q1 1-q
M, = =g 1-a and M; = to d=2 4o d=2 g
" 4o as d-—1 d—-11—-¢; d—11—q
1-¢s 1-q4 1 d—2 qo d—2 g

d—1 d—11—¢; d—11—¢q,

so eigen(M;)={1,0} and eigen(M:)={1,0,—(d—1)"'}, and the right eigenvector of M

corresponding to eigenvalue —(d—1)"1 is (d—1,—1,—1). We also compute

1 01 00 of
1 d—2 qo d—2 qs
£1 e 0
d—1 d—11—¢; d—11—q
My= o1 0 et+qi(l1—¢g) qo(l—e) qs(1—¢) )
00 € q1(1—¢) qo(1—¢) gz (1—¢)

of € g1 (1—¢) qo(1—¢) gs(1—¢)
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where (using h-reversibility of M , or alternatively the frozen model recursion)

- (d=2)(q1)*(1—q1)*? _d=2 qi4s = 41q
1-[1+(d—2)@](1—q)%2  d—1(1—q)q %

Write Hy for H restricted to {£1,01,00,0£}. Then the symmetric matrix Hy/>MoH, '/
has spectral decomposition Zle Aiei(e;)t with {)\,»}:eigen(Mo). We can take

As=1, e3=h'"? and M\ =0, eq= (0,0,q¢(1—q1) 71, 7q0(17q1)71)1/2.
For the other two eigenvalues, consider the following “almost” eigenvalue equations:
v =((d=2)g1, 1=q1, —q1,—q1), Movi =2(0,1—g1, (d—2)g1, (d—2)q1),
so vy is almost in the kernel of My; and
vy =(1,0,0,0), (Mo—(d—1)" vy =¢(0,0,1,1),

S0 vy is almost an eigenvector of My with eigenvalue (d—1)~'. We have <I7§/2vl, eq)=0,
S0 Hg/%l:zi a;e; with as=0. We then calculate

S i)’ _ [Hy Mo |? _ g0 (1—a) s +(1— 1)/ (d—2)?

lal> JE P aslar(a)? Fao(1-:)/(d~2)?]

=qq (d5)2 = q1(gs log d)2.

From Theorem 3.1 we have A>d’-%?, and substituting into (48) gives

d(Q1)2
A

ge < B <o,
It then follows from the above that at least one of the other two eigenvalues, say Ap,
must have absolute value <d~2. Similarly, representing Hg / zvgzzi b;e; gives

A= (d=1)7122 | Hy?(Mo—(d—1)"'Dvs* _ e2go(1—a1)

= — < qigs <d P,
> b7 HH;/Q'UQHQ q19¢ =

so the last eigenvalue Ao must satisfy |\y—(d—1)"!|<d~12. Note however that

(d—2)e
(d-1)°

det[Mo —(d— 1)_11] = [d(g1+e—qie) —(1+q+e—qie)] < edy

so Az does not exactly equal (d—1)71. O
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Proof of Proposition 5.2. Consider the first moment Hessian H®(*h[a]) on the
space Ala]. For convenience, rewrite (93) as H—'/26=SH'/?y with S being the sym-
metric matrix

S=d'HY?[I+(d—1)M|H /2.

By the requirement that both h and h+nd lie in A°[«] for |n| small, the permissible
vectors & span a linear subspace W. In particular, necessarily (5, z)=0 for the vector z
which was determined in Lemma 5 to span the kernel of L=d~'[I+(d—1)M]. For such
5, (93) is easily solved by considering the invariant action of S on the subspace (H/2z)":
if U €R?*® with columns giving an orthonormal basis for this subspace, then for all § or-
thogonal to Z (in particular, for all §€ W) we may define H'/2y=U(U*SU) U H~1/25,
consequently the maximal value of (8,)?®(h+nd)|,—o subject to marginals ¢ is

—(6,X)+5d{(8/h)*)p = —(U'HY25)' QU H'?5), Q=(U'SU)"—3dl.
The eigenvalues of Q are given by

%—g for A eigen(M)\ {—(d—1)"1,
so @ is non-singular since we saw in Lemma 5 that (d—1)~"¢eigen(M). Since we proved
in Theorem 3.11 that *h[a]€ A’[a] is the global maximizer of ® on Ala], the restriction
of the above quadratic form to the space of permissible ¢ (formally, to U*H -1/ 2IW) must
be negative semi-definite, so by non-singularity we see that it is in fact negative-definite.
The proof for the second moment Hessian H(®3)(®hla]) on Ag[a] is similar: first
observe that ®h[a]=*h[a]®*h[a] implies My=NM @ M, with eigenvalues

{AN X, N eeigen(M)}.

The kernel of d~*[I+(d—1)M,] is spanned by vectors Z®7 or §@Z with Z as before and
g any right eigenvector of M, with eigenvalue 1, and again the permissible measures &
must be orthogonal to the kernel. Negative-definiteness then follows as above from the
observation that (d—1)~'¢eigen(1My). O

LEMMA 5.4. For any 0,0’ €4 there exists a signed integer measure §=08,.,'=(8,)
with supp éd Csupp ¢ such that

Hé-H6=1,-1,.

The analogous condition holds for the support of the second-moment factors ps.



MAXIMUM INDEPENDENT SETS ON RANDOM REGULAR GRAPHS 337

Proof. Suppose 7=t0 and 7'=10’ where 7 is the variable-to-clause (pair) message
and o, 0’ are the clause-to-variable (pair) messages. By the subcriticality established in
the proof of Proposition 4.20, there exist configurations T and 7’ on T , with spins 7 and
7', respectively, on the root half-edge é, such that the configurations 7 and 7’ concide
below some depth I. Take U=(Vy, Fy, Ey) to be the depth-I subtree of T. Assume that
the depth-I vertices of U are variables, and let U denote the half-edges incident to these

leaf variables. Use 7 to define a signed measure a=(a, a):

a(f)= > 1z, =7} and a(@)= Y 1{z,=7}.

veVy acFy

If we take the difference of Hé and H a, we see that internal edges of U will cancel, so

Ha—Ha=1,-Y 1.,
u€SU
Similarly, use 7’ to define a signed measure a’=(a’,a’). Since 7 and 7’ agree on 6U, we
have
Ha/-Ha'=1.-> 1,
u€SU
It follows that d=a—a’ satisfies the requirements for 8, _,-.

Now define a graph on .#? by placing an edge between 7 and 7’ if and only if
there exists §,_,/ satisfying the required properties. The above proves that 7 and 7 are
connected if they differ only in the clause-to-variable message. By the same considerations
of subcriticality, 7 and 7’ are also connected if they differ only in the variable-to-clause
message. Thus 7=10 is connected to 7/=%0" which in turn is connected to 7’ =17'0’, so

the entire graph is connected (hence complete), as required. O

Note that Lemma 5.4 implies that the matrix Ha of Definition 3.7 is indeed surjec-

tive.

Proof of Theorem 5.1. Recalling Definition 3.7, EZ,, is the sum of EZ(h) over
probability measures h=(h, k) on suppy such that g=(g,§)=(nh, Indh) is integer-
valued, and lies in the kernel of Ha=( H — H ) with (non-normalized) intensity i(g)=na.
Let E[Z} ] denote the restriction of this sum to measures g within a euclidean ball of ra-
dius n'/? log n centered at *g[a]. Then Proposition 5.2 implies EZ,,o=[1+0,(1)] E[Z},].

Lemma 5.4 shows that the integer matrix Ha defines a surjection
Ha: L' — {0 eR7:(5,1) =0},

where

L'={0 cR"PP¥: (5 1) =(§,1)=i(6) =0}.
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Thus we can conclude that L=L'N(ker HA)NZ*"PPY¥ is an ($—2)-dimensional lattice
with spacings =<41. The measures g contributing to E[Z* ] are given by the intersection
of the euclidean ball {||g—*g[a]||<n'/?logn} with an affine translation of L. The ex-
pansion (36) then shows that n'/2E[Z},] defines a convergent Riemann sum, implying
the result for EZ,,,. The same argument implies that the contribution to the second
moment from measures in IND[a] is <4n "1 exp(n [®2(®h[a])])=<4(EZ,4)?, so combining
with Theorem 4.1 and Proposition 4.21 gives the result for E[(Z,4)?]. O

Proof of Theorem 2. Recall that part (a) follows directly from Theorem 3.1. The
upper bound in part (b) follows from Theorem 5.1 (a) together with Markov’s inequality.
The lower bound in part (b) follows from Theorem 5.1 (b) together with (5). O
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