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1. Introduction

An independent set in a graph is a subset of vertices not containing any two neighbors.

Establishing asymptotics of the maximum independent set size (the independence num-

ber) on random graphs is a classical problem in probabilistic combinatorics. On the

random d-regular graph Gd,n, the independence number grows linearly in the number n

of vertices. Upper bounds were established by Bollobás [13] and McKay [35], and lower

bounds by Frieze–Suen [26], Frieze– Luczak [25] and Wormald [43]. These were obtained

by using a combination of techniques, including first and second moment bounds, differ-

ential equations, and the switching method. (For a more complete history and discussion

of many related topics see the survey of Wormald [44].) The bounds are close, with the

maximal density of occupied vertices (the independence ratio) asymptotic to 2(log d)/d

in the limit of large d(1)—however, for every fixed d, a gap in the bounds remains.

By a classical martingale argument, the independence ratio is well-concentrated

about its mean, with only O(n−1/2) fluctuations. Nevertheless, it was a long-standing

open problem (see [7], [9]) to determine if there even exists a limiting independence ratio.

This was recently established by Bayati–Gamarnik–Tetali [11] using a super-additivity
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(1) Throughout this paper, log denotes the natural logarithm.
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argument. Though their method proves the existence of thresholds in a quite general

class of problems, it yields no information either on the threshold value or the order of

fluctuations.

In this paper, we determine for all large d the value of the limiting independence

ratio.

Theorem 1. The independence ratio IRn of the random d-regular graph Gd,n con-

verges in probability to an explicit constant α?≡α?(d), defined below.

(We write a≡b to indicate that a and b are defined to be equal.) The constant α?

can be found as follows: solve for the largest root q=q?62(log d)/d of the function

f(q)≡− log

[
1−q

(
1− 1

λ

)]
−
(
d

2
−1

)
log

[
1−q2

(
1− 1

λ

)]
−α log λ, (1)

where λ and α are defined in terms of q by

λ(q)≡ q 1−(1−q)d−1

(1−q)d and α(q)≡ q 1−q+dq/2λ

1−q2(1−1/λ)
. (2)

Then α?=α(q?). This value was predicted in the statistical physics literature using the

heuristic methods of the one-step replica symmetry breaking framework [29], [41]. By

confirming this prediction, our theorem solves a long-standing and fundamental problem

in probabilistic combinatorics.

Remark 1.1. Let MISn≡n·IRn denote the non-normalized maximum independent

set size in Gd,n. Theorem 1 asserts that MISn=[1+on(1)]nα? with high probability. The

analysis of this paper, together with the well-known bound(2)

P(|MISn−EMISn|>x)6 exp

(
−x

2

nd

)
,

will show that

lim
C!∞

lim sup
n!∞

P(|MISn−nα?|>Cn1/2) = 0.

In fact, by adapting methods from [24], we can obtain the stronger result

lim
C!∞

lim sup
n!∞

P(|MISn−nα?+c? log n|>C) = 0, (3)

for α? as before and c?=[2 log λ(q?)]
−1. That is to say, MISn has only constant-order

fluctuations around an≡nα?−c? log n. The proof of (3) is omitted here, but will be

given in full in the online manuscript.

(2) This can be seen by taking the Doob martingale of MISn with respect to the edge-revealing
filtration of Gd,n and applying the Azuma–Hoeffding inequality.
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1.1. Constraint satisfaction problems

The problem of finding an independent set of given size in a graph is a classic example

of a constraint satisfaction problem (CSP), and is well known to be NP-hard [31]. The

limiting independence ratio α? in a sparse random graph ensemble is one example of

an extensively studied phenomenon of satisfiability thresholds in random CSPs. (The

analogous “constraint parameter” α in the random k-satisfiability (k-SAT) problem, for

example, is the ratio of clauses to variables.) For a recent survey see [3].

A major early advance in this area was the realization (see [37], [27]) that many

hard CSPs can be recast as spin glasses, and analyzed by methods of statistical mechan-

ics. Since these pioneering works, statistical physicists have developed an extensive, but

largely non-rigorous, theory around CSPs as models of disordered systems (see [33], [36]

and references therein). For a broad class of CSPs, the theory yields a detailed under-

standing of the phase diagram, including exact predictions of the satisfiability threshold.

Some aspects of this rich picture have been established, including such celebrated

results as Aldous’s solution to the random assignment problem [6] and Talagrand’s proof

of the Parisi formula for the Sherrington–Kirkpatrick model [42], both on the complete

graph. However, many of the most important ideas remain at the level of conjecture,

particularly in sparse ensembles (dilute spin glasses). A principal aim of this work is

to advance the mathematical understanding by establishing for the first time an exact

satisfiability threshold for a sparse random CSP exhibiting replica symmetry breaking

(RSB)—describing a broad class of problems which includes independent set, k-SAT (for

k>3), coloring, and MAX-CUT. We believe that the approach developed here gives some

rigorous validation to the physics formalism and supplies a framework for establishing

other thresholds of interest.

In the remainder of this introductory section, we review the concept of RSB and

explain why it obstructs the standard techniques for locating thresholds, then present a

brief overview of our solution. As an illustration of the robustness of our methods, in a

companion paper [24] we apply the same techniques to determine the exact satisfiability

threshold for another CSP in this class, the random regular NAE-SAT problem. Our

intention is that these methods may eventually be extended to other combinatorial prop-

erties such as the chromatic number or maximum cut, and to the sparse Erdős–Rényi

random graphs.

1.2. Moments and non-concentration

The natural approach to studying the independence ratio is the (first and second) moment

method applied to the number Znα of independent sets of fixed density α. Indeed, this
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approach successfully determines the asymptotics of the independence number for the

dense Erdős–Rényi random graph [28]. On sparse random graphs, the moment method

fails to locate the sharp transition. The first moment of Znα over Gd,n is straightforward

to calculate [13], and scales exponentially in n:

EZnα =nO(1) exp(nφ(α)),

where φ is a smooth function of α (we supply the explicit calculation in §1.5 below). The

first moment threshold α�≡sup{α>0:φ(α)>0} occurs at [35]

α�=
2

d

[
log d−log log d+log

(
e

2

)
+O

(
log log d

log d

)]
. (4)

Since P(Znα>0)6EZnα is exponentially small above α�, clearly

lim sup
n!∞

IRn6α�

with high probability.

A standard approach for lower bounds is the second moment method: for any non-

negative random variable Z, the Cauchy–Schwarz inequality gives

P(Z > 0)>
(EZ)2

E[Z2]
; (5)

apply this with Z=Znα to bound IRn from below. On Gd,n, however, this approach fails

to match the first moment bound: there is a regime α2<α<α�, where Znα is highly

non-concentrated, with E[(Znα)2]�(EZnα)2�1; and in fact lim supn!∞ IRn<α� (see

e.g. [35]).

This non-concentration of Znα is caused by a particular geometry within the space of

independent sets: we will see that, due to the sparsity of the graph, most independent sets

can be locally perturbed in a linear number of places. Specifically, given an independent

set S, wherever an unoccupied vertex u has a single occupied neighbor v, the states of

the neighbors u and v can be exchanged to obtain a new independent set S′. We say in

this case that u and v are “free” (with respect to S), and that S′ is connected to S by

an edge-swap.

It has been previously observed that edge-swaps are a source of correlation in the

space of independent sets (see e.g. [35, Lemma 2.1]). If, given S, we have a subset U⊆V of

free unoccupied vertices such that every pair u 6=u′ in U lies at graph distance d(u, u′)>2,

then there are at least 2|U | distinct independent sets S′ which are connected to S by edge-

swaps. If U is of linear size, this means we have found a cluster of exponentially many

closely correlated independent sets, all of the same size.
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We can decompose Znα=Z ′nα+Z ′′nα, where Z ′nα counts all independent sets where

it is possible to find U as above with |U |>nc. We claim there is a constant c (depending

only on d) so that Z ′′nα (which counts independent sets without |U |>nc) has expectation

EZ ′′nα�EZα, (6)

up to and even beyond the first moment threshold. This implies

E(Znα)2>E(Z ′nα)2> 2ncEZ ′nα> 2nc/2EZnα.

Meanwhile, by definition of the first moment threshold α�, there is a regime of α slightly

below α� where 2nc/2�EZnα�1, implying that E(Znα)2�(EZnα)2.

Let us now argue (6). Consider any fixed subset S⊆V of size nα. In the random

regular graph Gd,n, conditioned on the event that S is an independent set, the ndα half-

edges leaving S are matched to a uniformly random subset of the nd(1−α) half-edges

leaving V0≡V \S. For v∈V0 let Dv count the number of edges from S to v, and note

that S can contribute to Z ′′nα only if

|{v ∈V0 :Dv = 1}|6 2ncd.

For any p∈(0, 1), (Dv)v∈V0
has the same distribution as a vector (Bv)v∈V0

of indipendent

and identically distributed (i.i.d.) Bin(d, p) random variables conditioned to have sum

ndα. Let us choose p=α/(1−α), so that the Bv sum to ndα with probability nO(1).

Then

EZ ′′nα =EZnα
P
(
|{v ∈V0 :Dv = 1}|6 2ncd;

∑
v Bv =ndα

)

P
(∑

v Bv =ndα
)

6nO(1)EZnαP(|{v ∈V0 :Xv = 1}|6 2ncd).

It is clear that the right-hand side can be made exponentially smaller than EZnα by

choosing c appropriately (depending on d). Indeed, our argument implies that the ratio

between E[Z2
nα] and (EZnα)2 is exponentially large in n.

1.3. Replica symmetry breaking

Statistical physicists have developed a deep heuristic for these problems, the so-called

RSB formalism, which posits a few structural assumptions on the CSP solution space,

and from them deduces precise quantitative predictions (for the sparse setting see [38]).

These methods have yielded an understanding of the non-concentration phenomenon

as fitting into a much fuller picture. The independent set problem is one of a broad
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class of CSPs conjectured to have the following “phase diagram” [33]: as the constraint

parameter α exceeds a certain threshold αs, the solution space becomes shattered into

exponentially many well-separated clusters, with each individual cluster comprising an

exponentially small fraction of the total mass. This geometry persists up to a further

structural transition αc where the solution space condensates onto the largest clusters.

The regime α<αc exhibits correlation decay properties [33, equation (5)] known loosely

as replica symmetry. The condensation transition αc marks the onset of long-range

correlations (RSB). In the regime αc<α<α?, most solutions are concentrated within a

bounded number of clusters: the within-cluster correlation then dominates the moment

calculation, causing the failure of the second moment method.

The satisfiability transition has been exactly located in some sparse random CSPs

without an RSB regime, e.g. 2-SAT [16], 1-in-k-SAT [1], and k-XOR-SAT [23], [40]; for

2-SAT, even the finite-size scaling has been successfully characterized [14]. In contrast,

no exact satisfiability threshold has been previously located in a sparse random CSP

exhibiting RSB, despite a long series of works giving improving bounds in various mod-

els within this class, including k-SAT (for k>3) [32], [4], [18], coloring [2], [17], and

independent set.

Many of these models are believed to exhibit a one-step replica symmetry breaking

(1RSB), in which clusters are replica symmetric though the individual solutions are not.

In 1RSB models, physicists can predict exact satisfiability thresholds by applying replica

symmetric heuristics at the cluster level [36, Chapter 19]. Our main result Theorem 1

confirms the 1RSB prediction for independent sets, which has been derived by [29], [41].

Further, our proof gives some validation to the 1RSB formalism, by locating α? as the

first moment threshold in a model of independent set clusters.

A natural question is whether the 1RSB prediction holds for independent sets on

low-degree regular graphs. Though it is in principle possible to determine from our proof

an explicit lower bound d0 in Theorem 1, we have not done so because the calculations

in the paper are already daunting and have not been carried out with a view towards

optimizing d0. More importantly, calculations suggest that 1RSB at some point breaks

down and the low-degree graphs instead exhibit full RSB [10], meaning that one ex-

pects to find an infinite-depth hierarchy of clusters as is observed in the low-temperature

Sherrington–Kirkpatrick model (see [39]). In this regime no formula is predicted even at

a heuristic level.
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1.4. Overview of our approach

We determine the sharp threshold for independent sets on random regular graphs by a

novel approach which rigorizes the 1RSB heuristic from statistical physics, by applying

the moment method to count clusters of independent sets rather than the sets themselves.

We briefly describe here the key new ideas in our proof; a more detailed outline is

presented in §2.

Firstly, we establish a simple combinatorial description for clusters of maximal (or

locally maximal) independent sets. On a graph G=(V,E), a (locally) maximal indepen-

dent set cluster is encoded by what we call a “frozen configuration”: an ordered pair

�η≡(η,m) with η∈{0, 1, f}V and m⊆E, where

• a 1-vertex (interpreted as “occupied throughout the cluster”) can only have 0’s

as neighbors;

• a 0-vertex (interpreted as “unoccupied throughout”) must have at least two 1’s

as neighbors;

• m is a perfect matching on the f-vertices (interpreted as “taking both states” or

“free”), and the total density of f-vertices is 6d−3/2.

We shall prove that this model effectively encodes the independent set clusters.

Having established this combinatorial description, the main technical component

of this work is to locate the sharp threshold in the cluster model. Importantly, the

requirement that each 0 neighbor at least two 1’s makes frozen configurations much

more difficult to perturb locally compared with the original independent sets. This local

rigidity hints that applying the moment method in this model does locate the exact

threshold—that is to say, the asymptotic density α? appearing in Theorem 1 is the first

moment threshold of the cluster model, as is precisely in line with the 1RSB heuristic.

To prove this, we compute the first and second moments of our cluster model up to

constants. This calculation is technically challenging, and our solution builds on some of

our previous work [21], [20]. Like the original independent set model, the cluster model

defines a Gibbs measure (Markov random field) on the random graph—albeit a slightly

non-standard one, the most natural form having spins on directed edges rather than on

vertices. The (first or second) moment can be understood as an optimization of a rate

function Φ over a simplex of empirical measures, which turns out to have high dimension,

growing with d, due to the unusual form of the Gibbs measure. However, by a certain

“Bethe variational principle” we are able to characterize local maximizers of Φ via fixed

points of certain tree recursions, reducing the optimization to a dimension constant in d.

Even so we are tasked with eliminating a possible multitude of local maximizers, partic-

ularly in the second moment which reduces to a fixed-point problem in 81 real variables.

This is resolved in the physics folklore by invoking a “causality principle” (cf. [36, equa-
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tion (19.26)]) which imposes symmetries among the variables, drastically reducing the

dimension. Through delicate a-priori estimates we rigorously establish these symmetries,

and thereby pinpoint the global maximizer of Φ. This computes the moments up to

polynomial corrections, and we improve the calculation to within constant factors by

establishing that Φ has negative-definite Hessian at its global maximizer.

The moment calculation itself only establishes the existence of clusters with asymp-

totically positive probability, but combined with the classical martingale bound this im-

plies that MISn=nα?+O(n1/2) with high probability, which in turn implies Theorem 1.

Our final innovation is a method to improve positive probability bounds to high proba-

bility, which proves the stronger result stated in Remark 1.1. The approach is based on

controlling the incremental fluctuations of the Doob martingale of a log-transform of the

partition function.

The same broad outline of proof applies to our computation [24] of the satisfiability

threshold in random regular NAE-SAT. The proof of this paper is more difficult because

the cluster representation has additional complications, and also because we require more

precise estimates to achieve a sharper bound on the fluctuations (Remark 1.1).

1.5. Configuration model for random regular graphs

Unless indicated otherwise, graphs are permitted to have self-loops and multi-edges. On

any graph G=(V,E), say that x∈{0, 1}V is an independent set if xuxv=0 on every edge

(uv)∈E—in particular, a vertex with a self-loop cannot belong to any independent set.

Let Gd,n denote the uniformly random d-regular graph on n vertices, sampled ac-

cording to the standard configuration model—that is, start with n isolated vertices each

equipped with d labeled half-edges, and form the graph by taking a uniformly random

matching on the nd half-edges (where nd is assumed to be even). We denote the falling

factorial by (A)b and the falling double factorial by [A]b, namely

(A)b≡
b−1∏

i=0

(A−i) and [A]b≡
b−1∏

i=0

(A−1−2i).

The first moment of Znα over Gd,n is given by

EZnα =

(
n

nα

)
(nd(1−α)ndα)ndα

[nd]ndα
=nO(1)

[
(1−α)(d−1)(1−α)

αα(1−2α)(d/2)(1−2α)

︸ ︷︷ ︸
≡exp(φ(α))

]n
, (7)

where φ is calculated from Stirling’s formula.

Conditioned on the event that Gd,n is free of self-loops and multi-edges, it has the

law of the uniformly random simple d-regular graph, Gd,n. This event occurs (for fixed d)
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with uniformly positive probability in the limit n!∞ (see e.g. [30]), so once Theorem 1 is

established for Gd,n it immediately follows for Gd,n as well. We therefore work throughout

with the configuration model Gd,n.

Notational conventions

For non-negative quantities f=fd,n and g=gd,n we use any of the equivalent notations

f=Od(g), g=Ωd(f), f.dg, and g&df to indicate that for each fixed d>d0,

lim sup
n!∞

f

g
<∞

(with the convention 0/0≡1). We drop the subscript d to indicate

lim sup
d!∞

(
lim sup
n!∞

f

g

)
<∞.

We write f�dg to indicate that both f.dg and g.df hold, and drop the subscript d if

both f.g and g.f hold. Lastly, we use any of the equivalent notations f=o(g), g=ω(f),

f�g, and g�f to indicate that for each fixed d>d0,

lim sup
n!∞

f

g
= 0.
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2. Model of independent set clusters

In this section we present the combinatorial characterization of independent set clusters.

2.1. Combinatorial representation of clusters

Our first task is to obtain a simple encoding of these clusters. In the geometry of each

individual cluster, the main source of complication is that making one edge-swap can free

up room for another edge-swap which was not previously permitted, so the minimal chain

of edge-swaps joining two independent sets in the same cluster may be extremely long.

Indeed, since the local structure of Gd,n is that of the d-regular tree, the propagation
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of edge-swaps (at least at short distances) behaves as a branching process. A useful

heuristic is that, for independent sets at density y(log d)/d with y62, the branching rate

will approximately be

(d−1)P
(

Bin

(
d−1,

y log d

d

)
= 1

)
=
y log d

dy−1

[
1+O

(
(log d)2

d

)]
. (8)

The transition between supercritical and subcritical branching occurs at y≈1. In the

near-maximal regime y≈2 the branching will be quite subcritical: this key fact makes it

possible to understand the cluster geometry in a relatively straightforward way.

Our first step in modeling the clusters is to consider the following procedure (cf. [5]):

it takes as input a graph G=(V,E) together with an independent set x∈{0, 1}V . The

output is a configuration η∈{0, 1, f}V (f denoting “free”) together with a subset m⊆E
forming a perfect matching on a subset of the f-vertices (indicating edge-swaps).

Definition 2.1. Given an input graph G=(V,E) and an independent set x∈{0, 1}V
of G, the coarsening algorithm proceeds as follows:

(1) Form free pairs (iterate for 06s<t): take the first vertex u with ηu=0 and a

unique neighbor v with ηv=1. Set ηu=ηv=f and add (uv) to m. Iterate until the first

time t that no such vertex u remains.

(2) Identify single frees : for all vertices v which have state 0 and no neighboring 1’s

under η, update ηv to state f.

At the end of this procedure output the pair �η≡(η,m).

(In the first step, vertices are processed in order with respect to the given ordering

on the vertices V =[n]≡{1, ..., n}.) We shall see that the correspondence between clus-

ters and coarsenings is sufficiently close to a bijection for our purposes. The following

proposition, whose proof is given in §2.3, is a rigorous version of the heuristic estimate

(8) on the subcritical propagation of the edge-swaps.

Proposition 2.2. Recall from (4) that α� denotes the first moment threshold for

independent sets on Gd,n, and let α−≡α�−d−5/3. Let F denote the event that any inde-

pendent set on Gd,n with density >α− has, after coarsening, a density of frees >d−3/2.

Then, for d>d0, limn!∞ P(F )=0.

We can model the clusters of large independent sets in a simple manner in large part

because the frees are so subcritical. The first coarsening step (forming pairs) is the main

one conceptually, and the intuition is that the resulting frees—since their density is so

low—will occur predominantly in isolated pairs or small trees of linked pairs, reflecting

a relatively tractable geometry within the cluster. The second coarsening step (forming
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single frees) is a clean-up procedure: if we only consider the coarsening applied to maxi-

mum independent sets, this step becomes relevant only when a chain of edge-swaps can

be made along an odd-length cycle. (This is also a case in which configurations in the

same cluster may have different coarsenings.) We shall show that we can discard these

odd-cycle scenarios and still recover the sharp asymptotics for MISn.

Definition 2.3. A frozen configuration on a graph G=(V,E) is a pair �η≡(η,m), with

η∈{0, 1, f}V and m⊆E, satisfying the following:

(1) The 1-vertices neighbor only 0-vertices;

(2) Each 0-vertex has at least two 1-neighbors;

(3) The total density of f-vertices is 6βmax≡d−3/2;

(4) The edges m form a perfect matching on the f-vertices.

The frozen model is the counting measure on frozen configurations.

The frozen model is our independent set cluster representation: clearly, a frozen

configuration is an idealized coarsening of an independent set, in which the second step

of forming single frees is not needed. The truncation at βmax=d−3/2 is justified by

Proposition 2.2. Write Vη≡{v :ηv=η}, η∈{0, 1, f}, and define the intensity of �η by

i(�η) = |V1|+ 1
2 |Vf| (9)

(corresponding to the size of the original independent set). We shall always assume that

the intensity lies in a restricted regime:

αlbd≡
5 log d

3d
6α6

2 log d

d
≡αubd;

and occasionally we will restrict further α>α−≡α�−d−5/3 (as defined in Proposition 2.2).

Let Znα count the frozen configurations on Gd,n of intensity exactly nα, while Z>nα

counts the configurations of intensity at least nα. Explicitly, writing Zn1,nf
for the num-

ber of frozen configurations �η≡(η,m) on Gd,n with |V1|=n1 and |Vf|=nf, we have

Znα≡
∑

n1,nf>0

1

{
nf6nβmax,

2nα= 2n1+nf

}
Zn1,nf

and Z>nα≡
∑

α6α′

Znα′ (10)

The following theorem validates the 1RSB hypothesis by establishing that the threshold

for the existence of clusters occurs precisely at the first moment threshold.

Theorem 2. For d>d0 and an=nα?+c? log n as in Remark 1.1, the following

statements hold :

(a) The gap α�−α? is of order [(log d)/d]2, so α−≡α�−d−5/3 lies below α?.
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(b) For any constant C, lim supn!∞ EZ>an−C is finite. We have the upper bound

lim
C!∞

lim sup
n!∞

EZ>an+C = 0,

as well as the lower bound

lim inf
n!∞

P(Z>an > 1)> 0.

In the rest of this section we explain how this implies our main result Theorem 1.

The proof of Theorem 2 occupies the remainder of the paper.

2.2. Independent set threshold from cluster threshold

The coarsening algorithm outputs a pair (η,m), where η∈{0, 1, f}V and m is a match-

ing on (a subset of) the f-vertices. Discarding the matching m leads to the following

definition.

Definition 2.4. On a graph G=(V,E), given a spin configuration η∈{0, 1, f}V , write

F(η) for the subgraph induced by the f-vertices. An unweighted coarsening on a graph

G=(V,E) is a spin configuration η∈{0, 1, f}V satisfying conditions (1)–(3) in Defini-

tion 2.3, such that every acyclic component of F(η) has a (necessarily unique) perfect

matching.

Let Zn1,nf
count unweighted coarsenings η of Gd,n with |V1|=n1 and |Vf|=nf. Let

also Zn1,nf
(O) denote the contribution from those η with exactly O odd-sized compo-

nents; from the preceding definition, each such component must contain a cycle. For

α>α�−d−5/3, if MISn>nα then either the event F of Proposition 2.2 occurs, or the

random variable

Z>nα≡
∑

O>0

∑

n1,nf>0

1

{
nf6nβmax,

2nα+O6 2n1+nf

}
Zn1,nf

(O) (11)

is strictly positive. Recalling the remarks below the statement of Proposition 2.2, let

Ztree≡ contribution to Z from configurations whose f-subgraph is acyclic;

Zunic≡ contribution to Z from configurations whose f-subgraph contains

only trees and unicycles.

(12)

The following proposition will be proved in §2.3.

Proposition 2.5. For d>d0, the following hold uniformly over αlbd6α6αubd:

(a) EZtree
>nα>

1
2EZ>nα for large n (depending only on d); and

(b) EZunic
>nα=[1−o(1)]EZ>nα, where o(1) denotes an error tending to zero as n!∞.
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Our main result follows from Theorem 2 combined with Propositions 2.2 and 2.5.

Proof of Theorem 1. Recall the notation α−≡α�−d−5/3. For the upper bound,

note that for α>α− we have {MISn>nα}⊆F ∪{Z>nα>0}, where P(F )=o(1) by Propo-

sition 2.2. Markov’s inequality and Proposition 2.5 (a) give, for n large, that

P(Z>nα> 0)6EZ>nα6 2EZtree
>nα6 2EZ>nα,

where Ztree
>nα6Z>nα by comparing Definitions 2.3 and 2.4. Since Theorem 2 (a) gives

α?>α−, the above applies with nα=an, and we conclude that

P(MISn>an+C)6 o(1)+2EZ>an+C .

It then follows from the upper bound in Theorem 2 (b) that

lim
C!∞

lim sup
n!∞

P(MISn>an+C) = 0.

For the lower bound, note that {MISn>nα}⊇{Zunic
>nα>0} and by Proposition 2.5 (b) we

have that P(Zunic
>nα<Z>nα)=o(1)EZ>nα. This implies

P(MISn>nα)>P(Zunic
>nα> 0)>P(Z>nα> 0)−o(1)EZ>nα.

Taking nα=an and applying Theorem 2 (b) on the right-hand side above gives

lim inf
n!∞

P(MISn>an)> 0.

Recalling the classical bound P(|MISn−EMISn|>x)6exp(−x2/nd) (see Remark 1.1), we

conclude that EMISn must lie within Od(n
1/2) of an, and the result follows.

2.3. Large components and trees with matchings

We now turn to the proof of Proposition 2.5. First let us fix some notation. For any

measures p and q defined on a discrete space S we denote the entropy by H(p), and the

relative entropy by H(q | p):

H(p) =−
∑

x∈S

p(x) log p(x) and H(q | p) =
∑

x∈S

q(x) log
q(x)

p(x)
.

If p and q are probability measures on the binary set {0, 1}, then we may abuse notation

and represent the measures p and q by the scalars x=p(1) and y=q(1):

H(x) =−x log x−(1−x) log(1−x) and H(y |x) = y log
y

x
+(1−y) log

1−y
1−x.

In a graph G, if U is any subgraph or subset of vertices, we write |U | for the number of

vertices in U , and ∂U for the set of vertices in G\U that are neighboring to U . We write

E(U) for the number of internal edges of U (counting self-loops and multi-edges).
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Lemma 2.6. For any s>1, there is a bounded constant C=C(s) such that, with high

probability, the random d-regular graph contains no subset of n/ds vertices having more

than Cn/ds internal edges. (In particular, C(s)=(s+1)/(s−1) suffices.)

Proof. Fix a subset S of nβ vertices, where β=1/ds. Generate the random graph

according to the configuration model. The number of internal edges of S is stochastically

dominated by a binominal random variable,

X ∼Bin

(
ndβ,

ndβ

nd−2ndβ

)
,

which has mean EX62ndβ2. By the Chernoff bound,

P(X >Cnβ)6 exp

(
−nβ

(
C log

1

dβ
−O(1)

))
.

The number of subsets S of size nβ is given by
(
n

nβ

)
= exp

(
nβ

(
log

1

β
+O(1)

))
.

If we set C=(s+1)/(s−1) and take a union bound over the subsets S, we find that the

chance for any S of size n/ds to have more than Cn/ds internal edges is bounded from

above by

exp

(
n

ds

(
C log d−(C−1)s log d+O(1)

))
6 exp

(
−n[log d−O(1)]

ds

)
.

For d exceeding an absolute constant, the above is clearly on(1), proving the lemma.

Proof of Proposition 2.2. Fix a subset V1 of nα vertices, and let V0=V \V1. Sup-

posing that V1 forms an independent set in the graph, perform the coarsening algorithm

and let S′ denote the resulting subset of vertices set to f. For any subset S0⊆S′∩V0,
let S1 denote the subset of vertices in V1 neighboring to S0; the definition of coarsening

implies that S1⊆S′ and |S1|6|S0|.
For each v∈V0 let dv count the number of edges between v and V1. As before, for any

S0⊆S′∩V0, let S1 denote the neighbors of S0 in V1. Then either the vector (dv)v∈S0
must

have sum at most 10|S0|, or the number of internal edges in S=S0∪S1 must be more than

10|S0|, which in turn is at least 5|S| since |S1|6|S0|. We saw in Lemma 2.6 that, with

high probability, there is no subset S of size |S|=n/d3/2 with more than 5|S| internal

edges. It therefore remains to rule out the case where (dv)v∈S0
has sum at most 10|S0|.

By the same considerations as in the proof of (6), the vector (dv)v∈V0
has the same

distribution as a vector of i.i.d. Bin(d, α/(1−α)) random variables Di, 16i6n(1−α),

conditioned to have sum ndα. With β=1/d3/2, we have

P
( nβ∑

i=1

Di6 10nβ

∣∣∣∣
n(1−α)∑

i=1

Di =ndα

)
6nO(1)P

( nβ∑

i=1

Di6 10nβ

)
.
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For α=y(log d)/d, it follows by a Chernoff bound that the right-hand side above is less

than or equal to

exp(−nβ(y log d−O(log log d))).

For β=1/d3/2, the number of subsets S0⊆V0 of size nβ is bounded from above by
(
n(1−α)

nβ

)
6

(
n

nβ

)
6 exp

(
nβ

(
3 log d

2
+O(1)

))
.

It follows by a union bound that, with high probability, no such S0 occurs for the entire

range

α∈
[

1.55 log d

d
,

2 log d

d

]
,

which is clearly a superset of the range [α�−d−5/3, α�]. Finally, we saw previously that

MISn6α�<2(log d)/d with high probability, so the result of the proposition follows.

We turn now to the proof of Proposition 2.5. Recall from Definition 2.4 that for

η∈{0, 1, f}V , we use F(η) to denote the subgraph induced by the f-vertices. That is

to say, F(η)=(VF, EF), where VF⊆V is the subset of f-vertices, and EF is the subset

of edges with both endpoints in VF. Recall that in the d-regular configuration model,

each edge is a matching of two half-edges from [nd]. Let HF⊆[nd] denote the half-edges

involved in EF. We can then encode the subgraph F alone (removing all other edges of

the graph) as the subset HF together with a perfect matching on HF. Note that given

HF we can determine Vf=VF to be the subset of vertices having an incident half-edge

in HF.

Let Zn1
(F) count unweighted coarsenings η of Gd,n that have |V1|=n1 and F(η)=F.

In particular, we must have Zn1
(F)=0 except on the event BF that F is precisely the

subgraph induced by its incident vertices VF. Then

Zn1,nf
=
∑

|F|=nf

Zn1
(F) and Zn1,nf

=
∑

|F|=nf

m(F)Zn1
(F), (13)

where m(F) counts the number of perfect matchings of Vf contained in F.(3) For a given

F, write c(n, n1, nf)≡
(
n−nf

n1

)
for the number of choices for V1. Fixing any such V1,

E[Zn1
(F)] = c(n, n1, nf)P(B1∩B0∩Bf),

where

B1≡{all edges leaving V1 go to V0},
B0≡{each vertex in V0 has at least two edges coming from V1},
Bf≡{F is the subgraph induced by Vf}.

(3) We emphasize that m(F) refers to perfect matchings on the vertices of Vf, in contrast with F

which is a perfect matching on a subset of labeled half-edges incident to Vf.
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We now observe that the quantity E[Zn1
(F)] depends on F only through the number

of vertices nf=|F|, and the number of internal edges E≡E(F). To see this, abbreviate

Eη≡nηd and E≡nd, and first note that

P(B1) = g1(E, E1, Ef)≡
E1−1∏

i=0

E0−i
E−1−2i

=
(E0)E1

[E]E1

. (14)

Next, it is clear that P(B0 |B1) can be expressed as a function g0 of (n0, E1) only. Lastly, if

we condition on B1∩B0, then all E1 half-edges leaving V1 have been assigned, matching

with a subset of E1 half-edges leaving V0. Out of the Ef half-edges leaving Vf, the

specification of F fixes the assignment of 2E half-edges. Then Ef−2E half-edges remain

to be assigned, and these must match to half-edges from V0 (by the assumption that F

is the induced subgraph on Vf). Therefore

P(BF |B1∩B0) = �gf(E, E1, Ef, E)≡
(E−2E1−Ef)Ef−2E

[E−2E1]Ef−E
.

This verifies the claim that E[Zn1
(F)] depends only on nf=|F| and E=E(F):

E[Zn1
(F)] = c(n, n1, nf)g1(E, E1, Ef)g0(n0, E1)�gf(E, E1, Ef, E)≡g(n, n1, nf, E). (15)

As c, g1, and g0 do not depend on E, we find crudely that the function g of (15) satisfies

g(n, n1, nf, E+δ)6

(
4

nd

)δ
g(n, n1, nf, E) (16)

throughout the regime αlbd6α6αubd, indicating that excess internal edges in F are

costly. On the other hand, let us note that g is much less sensitive to small shifts in mass

from V0 to Vf or vice versa: for δ6n/d we estimate

(1) c(n, n1, nf+δ)=c(n, n1, nf)e
O(δ),

(2) g1(E, E1, Ef+dδ)6g1(E, E1, Ef),

(3) �gf(E, E1, Ef+dδ, E)=�gf(E, E1, Ef, E)e
O(δ),

(4) g0(n0−δ, E1)=g0(n0, E1)e
O(δ),

so
g(n, n1, nf+δ, E)

g(n, n1, nf, E)
6 eO(δ). (17)

Estimates (1)–(3) follow straightforwardly from the explicit expressions given above; the

proof of (4) is deferred to §2.4.

Fix any k>2 (odd or even), and let f be a subgraph having no size-k components and

no components consisting of a single isolated edge. Let Ωk
l,A(nf; f) denote the collection

of subgraphs F such that

• F contains f and has |F|=nf vertices;
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• F\f has exactly l components of size k (not isolated edges), with all remaining

components isolated edges; and

• the size-k components have q≡l(k−1{k even})+A internal edges.

Recall from Definition 2.4 that any odd-sized component must contain a cycle, so

we see that A is non-negative. In the special case k=2, F\f consists of a collection of

isolated edges along with l size-2 components each having at least two internal edges, so

A>l.

We will argue below that in the first moment calculation, it is more efficient to

break up the components of F\f into isolated edges. To this end, let n̄f≡nf+1{T odd},
and note that each F∈Ωk0,0(n̄f; f) has the same number E of internal edges, while each

F′∈Ωkl,A(nf; f) has the same number E′′ of internal edges:

E= E(f)+ 1
2 (n̄f−|f|) =

⌈
1
2T
⌉

and E
′′= E(f)+ 1

2 t+q= E+q− 1
2 lk− 1

21{T odd}.

To compare the two scenarios, define

Rn1,nf

k,l,A (f)≡
|Ωkl,A(nf; f)|
|Ωk0,0(n̄f; f)|

g(n, n1, nf, E
′′)

g(n, n1, n̄f, E)

[
max{m(F′) :F′ ∈Ωkl,A(nf; f)}
min{m(F) :F∈Ωk0,0(n̄f; f)}

]
,

where we include the ratio in square brackets in order to simultaneously address un-

weighted coarsenings and the frozen model. This last ratio will not have a substantial

effect: first note that if m(f)=0, then we must also have m(F′)=0 for any F′∈Ωkl,A(nf; f); in

this case we shall define the ratio to be 1. In general, if F∈Ωk0,0(n̄f; f), then m(F)=m(f),

while if F′∈Ωkl,A(nf; f), then m(F)62qm(f). Therefore in any case the ratio in square

brackets is 62q, and we will see in the calculation below that eO(q) factors can be ig-

nored.

Lemma 2.7. For d>d0, nf6nβmax, (2n1+nf)/2n∈[αlbd, αubd ], and n>n0(d), there

exists an absolute constant c such that

Rn1,nf

k,l,A (f)6

(
(cdβmax)k/2

l

(
n

dk

)1{k even})l(
cdk

n

)A
. (18)

Proof. Given f, an element of Ωkl,A(nf; f) is obtained as follows: first, from the n−|f|
vertices that lie outside f, choose T≡nf−|f| vertices to belong to F\f. From these we

choose a further subset of t≡T−lk vertices to belong to the isolated edge components.

For each of these t vertices we choose one of the d incident half-edges, then take a perfect

matching on the t chosen half-edges to form the isolated edge components. Next we turn

to the remaining lk chosen vertices, and divide these into l groups of size k; the number of

ways to do this is (lk)!/l!(k!)l. To determine the internal edges among these components,
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we can first choose an ordered list of half-edges a1, ..., aq from the lkd half-edges available.

Each half-edge ai must match to a partner bi which is one of the 6kd half-edges available

within the same component of k vertices. There are q!2q lists of ordered pairs (ai, bi)i6q

yielding the same set of internal edges, so altogether we have

|Ωkl,A(nf; f)|6
(
n−|f|
T

)[(
T

t

)
dt(t−1)!!

]

︸ ︷︷ ︸
size-2 components

[
(lk)!

l!(k!)l
(lkd)q(kd)q

q!2q

]

︸ ︷︷ ︸
size-k components

=
(n−|f|)T(

1
2 t
)
!

dt+2q

2t/2+q

(lk)q

q!

kq

l!(k!)l
6 eO(q) (n−|f|)T(

1
2 t
)
!

dt+2q

2t/2
kq

(lkk)l
,

(19)

where the last bound uses q>l(k−1)> 1
2 lk. For T even, combining (16) and (19) gives

Rn1,nf

k,l,A (f)6
|Ωkl,A(nf; f)|2q(4/nd)q−lk/2

(
n−|f|
T

)
dT (T−1)!!

6 eO(q)

[( 1
2T
)
!2lk/2(

1
2 t
)
!

]
kq

(lkk)l

(
4d

n

)q−lk/2
.

Since T=t+lk6nβmax, the first factor is 6T lk/26(nβmax)lk/2. It follows that for some

absolute constant c (not depending on d),

Rn1,nf

k,l,A (f)
(T even)

6

(
(cdβmax)k/2

l

(
n

dk

)1{k even})l(
cdk

n

)A
.

For T odd, combining (16), (17), and (19) (and adjusting the constant c as needed) gives

Rn1,nf

k,l,A (f)
(T odd)

6
|Ωkl,A(nf; f)|O[(4/nd)q−lk/2−1/2]

(
n−|f|
T+1

)
dT+1(T !!)

6

(
(cdβmax)k/2

l

)l(
cdk

n

)A
,

concluding the proof.

Lemma 2.8. Write Z′′>nα for the contribution to Z>nα from configurations having

at least one f-component which either has an odd number of vertices, or has two vertices

with more than one internal edge (meaning it must contain a self-loop or doubled edge).

For d>d0, αlbd6α6αubd, and n>n0(d), we have

E[Z′′>nα]6 d−1/3EZ>nα.

Proof. Recall the notation of (13) and (15). Let Zn1,nf
(Lk=l) denote the contribu-

tion to Zn1,nf
from configurations whose f-subgraph has exactly l components of size k

that are not isolated edges. For the case k=2, applying Lemma 2.7 gives

∑
l>1 E[Zn1,nf

(Lk = l)]

E[Zn1,nf
(Lk = 0)]

6

∑
l>1

∑
f

∑
A>l |Ωk0,0(nf; f)|g(n, n1, nf, E

′′)
∑

f |Ωk0,0(nf; f)|g(n, n1, nf, E)
. dβmax. (20)
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Next assume that k is odd, and let Zn1,nf
(O;Lk=l) denote the contribution to Zn1,nf

(O)

from configurations having exactly l f-components of size k (where l6O). Then

E[Zn1,nf
(O;Lk = l)]

E[Zn1,n̄f
(O−l;Lk = 0)]

=

∑
f:O(f)+l=O

∑
A>0 |Ωkl,A(nf; f)|g(n, n1, nf, E

′′)
∑

f:O(f)+l=O |Ωk0,0(n̄f; f)|g(n, n1, n̄f, E)
,

and applying Lemma 2.7 gives (for l>1)

E[Zn1,nf
(O;Lk = l)]6 (cdβmax)kl/2E[Zn1,nf

(O−l;Lk = 0)].

For k>3 odd and l>1, summing both sides of the above over n1, nf, and O with O>l

and 2nα+O62n1+nf gives E[Z>nα;Lk=l]6d−lk/5EZ>nα (cf. (11)). The claimed bound

now follows readily by summing over odd k>3 and l>1, and combining with (20).

We turn now to the components of even size k>4. Recall that Lk counts the number

of size-k components in the f-subgraph, and define

lk ≡ [(cdβmax)k/8n/dk]∨1,

Z ≡Z(Lk < lk for all k> 4 even);

Z
ev≡Zev(Lk < lk for all k> 4 even), where Zev≡Z(O= 0).

(21)

Lemma 2.9. For d>d0, αlbd6α6αubd, and n>n0(d),

E[Zev
>nα]> (1−n−1/2)E[Zev

>nα] and E[Z>nα]> (1−n−1/2)E[Z>nα].

Proof. For k6nβmax and l>lk, (18) gives Rn1,nf

k,l,A (f)6(cdβmax)(3/8)lk+A, so

E[Zev
n1,nf

(Lk > lk)]

E[Zev
n1,nf

(Lk = 0)]
6

∑
O(f)=0

∑
l>lk

∑
A>0 |Ωkl,A(nf; f)|g(n, n1, nf, E

′′)
∑

O(f)=0 |Ωk0,0(nf; f)|g(n, n1, nf, E)

6 2(cdβmax)(3/8)lkk.

We claim that the above is 6n−5/2. If lkk>log n this clearly holds. If lkk6log n, then by

definition of lk we have (cdβmax)k/86d(log n)/n, so the above is 6[d(log n)/n]3lk�n−5/2,

verifying the claim. Summing over even k>4, and n1 and nf with 2n1+nf>2nα proves

the bound for Z. The bound for Z follows in exactly the same manner since the effect

of reweighting by the number of matchings was already accounted for in (18).

Proof of Proposition 2.5. Fix k>4 even and assume the quantity lk of Lemma 2.9

to be strictly greater than 1. For a subgraph f∗ having no components of size k, let

Ξkl,r,A′(nf; f
∗) denote the collection of subgraphs F such that

(1) F contains f and has |F|=nf vertices; and

(2) F\f∗ consists of l size-k components, of which l−r components are trees with

(unique) perfect matching, while the remaining r components are not trees and have

q′≡rk+A′ internal edges.
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Note that each F∈Ξkl,0,0(nf; f
∗) has the same number E of internal edges, while each

F∈Ξkl,r,A′(nf; f
∗) has the same number E′′ of internal edges:

E= E(f)+l(k−1) and E
′′= E(f)+(l−r)(k−1)+q′= E+r+A′.

Similarly as before, define the ratio

Sn1,nf

k,l,r,A′(f
∗)≡

|Ξkl,r,A′(nf; f∗)|
|Ξkl,0,0(nf; f∗)|

g(n1, nf, E
′′)

g(n1, nf, E)

1∨max{m(F) :F∈Ξkl,r,A′(nf; f
∗)}

1∨min{m(F) :F∈Ξkl,0,0(nf; f∗)}
.

Given k isolated vertices each equipped with d half-edges, let tpmd,k denote the number

of ways to match up k−1 pairs of half-edges such that the resulting graph is a tree on k

vertices with a (unique) perfect matching.(4) We crudely bound the number of spanning

trees from below by the number of line graphs, which clearly have a perfect matching as

k is even: tpmd,k> 1
2k!dk(d−1)k−2>eO(k)kkd2(k−1). Combining with (16) gives

Sn1,nf

k,l,r,A′(f
∗)6 2q

′
(
l
r

)
(tpmd,k)l−r

(tpmd,k)l
(rkd)q

′
(kd)q

′

2q′(q′)!

(
4

nd

)r+A′

(similarly to the derivation of (19)). Simplifying, we see that

Sn1,nf

k,l,r,A′(f
∗)6

(
Ckld

n

)r(
Cdk

n

)A′

for C an absolute constant. Recall that we assumed lk=(cdβmax)k/8n/dk>1; as a result

it suffices to consider k6C−1 log n, so

Sn1,nf

k,l,r,A′(f
∗)6 (cdβmax)kr/9

[
d(log n)

n

]A′
.

Decompose the quantities appearing in (21) as

Z
ev≡ Z

tree+Z
cyc and Z = Z

unic+Z
bic,

where Z
tree and Z

unic are defined analogously to (12). Then

E[Zcyc
n1,nf

]

E[Zev
n1,nf

]
6

∑

k>4 even

∑
f∗:O(f∗)=0

∑
16r6l6lk

∑
A′>0 |Ξkl,r,A′(nf; f∗)|g(n, n1, nf, E

′′)
∑

f∗:O(f∗)=0

∑
16l6lk

|Ξkl,0,0(nf; f∗)|g(n, n1, nf, E)
6 d−1/5,

thus E[Zcyc
>nα]6d−1/5E[Zev

>nα]. A very similar calculation shows E[Zbic
>nα]=o(1)E[Z>nα]

(in this case we sum over A′>1 instead of A′>0). Combining with Lemmas 2.8 and 2.9

concludes the proof.

(4) This means a perfect matching of the tree’s vertices, not to be confused with the matching of
half-edges.
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2.4. Estimates on forcing constraints

In this subsection we calculate the probability cost of the constraint that each 0-vertex is

forced by at least two neighboring 1-vertices—that is, the function g0(n0, E1) appearing

in (15) is equal to P(B0 |B1). To be slightly more general, for a fixed positive integer

`, write g0,`(n,E1) for the probability, with respect to a uniformly random assignment

of E1 half-edges to n vertices of degree d, that each vertex receives at least ` incoming

half-edges (so g0≡g0,`=2).

We also analyze a bivariate analogue g00,` which will be used in our second moment

analysis §4. Let X ≡{0, 1}2\{00} and write θ≡(θω)ω∈X . If the three entries of θ are

positive and have sum strictly less than 1, then

(
θ11, θ10, θ01, 1−

∑

ω∈X

θω

)

defines a probability measure on {0, 1}2 with full support. We take $ to be a {0, 1}2-

valued random variable with law given by this measure. Take ($j)j>1 independent

random variables identically distributed as $, and define the multinomial random vari-

able

X ≡ (Xω)ω∈X ≡ (|{16 j6 d :$j =ω}|)ω∈X . (22)

Though we always use θ and X to denote three-dimensional vectors indexed by ω∈X ,

we also use the abbreviations

θ00≡ 1−
∑

ω∈X

θω and X00≡ d−
∑

ω∈X

Xω.

Let pθ denote the law of X. Let Xi, 16i6n, be independent random variables identically

distributed according to pθ, and write Pθ for their (joint) law:

Pθ(x)≡
n∏

i=1

pθ(x
i), pθ(x

i)≡ d!(θ11)
x11(θ10)

x10(θ01)
x01(θ00)

x00

x11!x10!x01!x00!
.

Write for {0, 1, f}, e.g. x1 ≡x10+x11+x1f. Then, with Ω≡{x:x1 ∧x 1<`},

g0,`(n,E1)≡Pθ
(
Xi

1 > ` for i= 1, ..., n

∣∣∣∣
n∑

i=1

Xi
1 =E1

)
,

g00,`(n,E)≡Pθ
(
Xi /∈Ω for i= 1, ..., n

∣∣∣∣
n∑

i=1

Xi =E

)
.
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Further, write X∼ν to indicate that (Xi)i6n has empirical measure ν, and likewise write

X1 ∼ν′ to indicate that X1 ≡(Xi
1 )i6n has empirical measure ν′. Define

p0,`(n,E1, ν
′)≡Pθ

(
X1 ∼ ν′

∣∣∣∣
n∑

i=1

Xi
1 =E1, X

i
1 > ` for i= 1, ..., n

)
,

p00,`(n,E, ν)≡Pθ
(
X ∼ ν

∣∣∣∣
n∑

i=1

Xi =E,Xi /∈Ω for i= 1, ..., n

)
.

Proposition 2.10. Let ε be a small constant uniform in d, and suppose that

ε log d

d
6 ζ1 , ζ 16

10 log d

d
.

(a) Let a and y be defined by ζ1 ≡a(log d)/d and ζ1 ∧ζ 1≡y(log d)/d. Then

g0,`(n, ndζ1 ) = exp(O(nd−a(log d)`)),

g00,`(n, ndζ) = exp(O(nd−y(log d)`)).

Further, p0,`(n, ndζ1 , ν
′) and p00,`(n, ndζ, ν) are exponentially small in n, unless

ν′(x) = exp

(
(log d)O(1)

dy

)
1{x> `}P(Bin(d, ζ1 ) =x),

ν(x) = exp

(
(log d)O(1)

dy

)
1{x∈Ω}pζ(x).

(23)

(b) If ξ is another vector with |ξω/ζω−1|6e−1 for all ω∈X , then

g0,`(n, ndξ1 ) = g0,`(n, ndζ1 ) exp(O(nd|ξ1 −ζ1 |)),
g00,`(n, ndξ) = g00,`(n, ndζ) exp(O(nd‖ξ−ζ‖1)).

Lemma 2.11. For the multinomial random variable X defined by (22), consider

the cumulant generating function Λθ(γ)≡logEθ[e〈γ,X〉 |X /∈Ω], defined for γ∈R3. For

positive vectors θ and ζ in the regime

ε log d

d
6 θ1 , θ 1, ζ1 , ζ 16

10 log d

d
,

there exists a unique γ∈R3 with Λ′θ(γ)=dζ; and this γ satisfies

∣∣∣∣γω−log
θ00ζω
ζ00θω

∣∣∣∣.
(log d)`−1

dy
for all ω ∈X .
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Proof. If γ exists, then it is clearly unique by the strict convexity of the cumulant

generating function on R3. To see existence, first note that

Λ′θ(γ) =Eµ[X |X /∈Ω] for µω =
θωe

γω

zθ,γ
≡ θωe

γω

θ00+
∑
π∈X θπeγπ

ω ∈X .

In particular, each entry of Λ′θ(γ) lies between 0 and d. Now, for ε>0 small, consider the

ε-perturbed cumulant generating function Λθ(γ)+ 1
2ε‖γ‖2, corresponding to the random

variable X+ε1/2Y for Y a standard Gaussian in R3. For any fixed ε>0 this is a smooth

convex function on R3, with gradient Λ′θ(γ)+εγ tending in norm to ∞ as ‖γ‖!∞.

It follows from Rockafellar’s theorem (see e.g. [22, Lemma 2.3.12]) that there exists a

unique γε≡(γε,ω)ω∈X such that Λ′θ(γε)+εγε=dζ. We shall show by some rough estimates

that γε must remain within a compact region as ε tends to zero. We claim first that

θ00>θωeγε,ω for all ω∈X : if not, then for some ω∈X we must have zθ,γ64θωe
γε,ω ,

implying (in the stated regime of θ, ζ) that

γε,ω = ε−1(dζω−∂ωΛθ(γε))6 ε
−1
(
dζω− 1

4d
)
� 0,

contradicting the hypothesis that θ00<θωe
γε,ω . Thus lim supε#0 γε,ω must be finite for

each ω∈X . In the other direction, the trivial bound zθ,γ>θ00 gives

γε,ω = ε−1(dζω−∂ωΛθ(γε))> ε
−1dζω

(
1− e

γε,ω

θ00

)
,

so clearly lim infε#0 γε,ω must also be finite. It follows by an easy compactness argument

that γε converges in the limit ε#0 to the required solution γ of Λ′θ(γ)=dζ.

To control the norm of the solution γ of Λ′θ(γ)=dζ, we shall argue that for ζ in the

stated regime, µω is close to ζω for each ω. The bound for ω=11 is easiest: consider X

as the dth step of the random walk

Xt≡ (Xt,ω)ω∈X ≡ (|16 j6 t :$j =ω|)ω∈X .

Define the stopping time τ≡inf{t>0:Xt /∈Ω}, so {X /∈Ω}={τ6d}. Since Xτ,116`, ap-

plying the Markov property gives

dζ11 =Eµ[X11 |X /∈Ω]6 `+Eµ[Xd,11−Xτ,11 |τ 6 d]6 `+Eµ[Xd−τ,11]6 `+dµ11. (24)

Next observe that for the multinomial random variable X defined by (22), and for any

ω 6=π the conditional expectation Eθ[Xω |Xπ=k]=(d−k)θω/(1−θπ) is decreasing in k, so

Eθ[Xω |Xπ > l] =
∑

k>l

P(Xπ = k |Xπ > l)Eθ[Xω |Xπ = k]6EθXω = dθω. (25)
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Define stopping times τ1 ≡inf{t>0:X1 (t)>`} and symmetrically τ 1; then τ=τ1 ∨τ 1.

Since Xτ1 ,106`,

dζ10 =Eµ[X10 |X /∈Ω] =
Eµ[X101{τ 6 d}]

Pµ(τ 6 d)
6 `+

Eµ[(X10−Xτ1 ,10)1{τ 6 d}]
Pµ(τ 6 d)

= `+
∑

k<d

∑

x

Pµ(τ1 = k,Xτ1 =x, X̃d−k, 1> `−x 1)

Pµ(τ 6 d)
Eµ[X̃d−k,10 |X̃d−k, 1> `−x 1],

where (X̃t)t>0 is an independent realization of the random walk X. Maximizing over all

possible k and x and applying (25) gives

dζ106 `+ max
k<d,l6`

Eµ[X̃d−k,10 |X̃d−k, 1> l]6 `+dµ10,

and symmetrically

dζ016 `+dµ01.

Thus for ζ in the stated regime we conclude that dµω>dζω−O(1) for all ω∈X , and thus

dµ006dζ00+O(1).

From these bounds we see that, with y defined by ζ1 ∧ζ 1≡y(log d)/d,

Pµ(X ∈Ω)6Pµ(X1 < `)+Pµ(X 1< `). d
−y(log d)`−1.

Write pµ for the law of X≡Xd and qµ for that of Xd−1, and observe that

xωpµ(x) = dµωqµ(x−1ω)

(with both sides zero for xω=0). We then calculate

dζω =
EµXω−dµω

∑
x∈Ω qµ(x−1ω)

1−Pµ(X ∈Ω)
= dµω [1+O(d−y(log d)`−1)] (26)

for all ω∈{0, 1}2. Summing over ω∈X gives

zθ,γ =
θ00
ζ00

ζ00
µ00

=
θ00
ζ00

[1+O(d−1−y(log d)`)], (27)

implying the stated bound on γω=log(zθ,γµω/θω), ω∈X .

It follows (see e.g. [22, Lemma 2.3.9]) that, with θ and ζ in the stated regime,

the Fenchel–Legendre transform Λ∗θ(dζ)≡supγ [〈γ, dζ〉−Λθ(γ)] of the cumulant generating

function is given by

Λ∗θ(dζ) = 〈γ, dζ〉−Λ(γ), (28)

where γ is the solution of Λ′θ(γ)=dζ. Since Λθ is strictly convex, we find by implicit

differentiation that γ is differentiable with respect to ζ (in the stated regime). We then

see from (28) that Λ∗θ is differentiable with respect to ζ, with gradient (Λ∗θ)
′(dζ)=γ.
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Proof of Proposition 2.10. Let g00,`(n, ndζ, ν) be the contribution to g00,`(n, ndζ)

from the event that X∼ν. This can be positive only if ν(Ω)=0 and ν̄=dζ, in which case

g00,`(n, ndζ, ν) = g00,`(n, ndζ)p00,`(n, ndζ, ν) =
Pθ(X ∼ ν)

Pθ
(∑n

i=1X
i =ndζ

) .

By Stirling’s formula, the denominator is �dn−3/2 exp(−ndH(ζ | θ)). Fixing θ, we opti-

mize the numerator over ν, introducing a Lagrangian term for the constraint on ν̄:

Pθ(X ∼ ν) =

(
n

nν

)∏

x

pθ(x)nν(x) exp

(
n

〈
γ,
∑

x

xν(x)−dζ
〉)

=nO(1) exp

(
−n
[
〈γ, dζ〉+

∑

x

ν(x)(log ν(x)−log(pθ(x) exp(〈γ, x〉)))
])
.

For any fixed θ and γ, over the space {ν :ν(Ω)=0} (without the constraint on ν̄), the

exponent of Pθ(X∼ν) is maximized at

ν(x) =
1{x /∈Ω}pθ(x) exp(〈γ, x〉)∑

x′ /∈Ω pθ(x
′) exp(〈γ, x′〉) . (29)

If we take γ to be the unique solution γ given by Lemma 2.11 of Λ′θ(γ)=dζ, then (29)

gives a measure ν that satisfies ν̄=dζ. Thus, recalling (28),

g00,`(n, ndζ)�d [1−Pθ(Ω)]n exp(−nΛ∗θ(dζ)+ndH(ζ | θ)).

We can estimate this by taking θ=ζ. Since pθ(x) exp(〈γ, x〉)=pµ(x)(zθ,γ)d, it follows

from (26) and (27) that

Λζ(γ) = d log zζ,γ+log
Pµ(X /∈Ω)

Pζ(X /∈Ω)
=O(d−y(log d)`) for Λ′ζ(γ) = dζ.

Combining with (28) and the bound of Lemma 2.11 gives Λ∗ζ(dζ)=O(d−y(log d)`). More-

over, the estimate for p00,`(n, ndζ, ν) in Proposition 2.10 (a) follows from (29) together

with the estimate on γ given by Lemma 2.11. To compare g00,`(n, ndζ) with g00,`(n, ndξ),

where ξω=ζω[1+O(δ/n)], let θ=ζ. Recalling (Λ∗θ)
′(dζ)=γ, the bound of Lemma 2.11

gives

|n[Λ∗ζ(dξ)−Λ∗ζ(dζ)]|.nd−y(log d)`−1‖dξ−dζ‖1.

For |ξω/ζω−1|6e−1 it is straightforward to estimate ndH(ξ | ζ).nd‖ξ−ζ‖1, and com-

bining these estimates concludes the proof of the proposition.

The remainder of this paper is occupied with the proof of Theorem 2. From now on

it is assumed, even where not explicitly stated, that αlbd6α6αubd, d>d0, and n>n0,

where n0 may depend on d.
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3. First moment of frozen model

In this section we identify the leading exponential order of the first moment of the frozen

model partition function (10),

φ(α) = lim
n!∞

n−1 logEZnα.

Recall the definitions in equations (1) and (2).

Theorem 3.1. For d>d0 and αlbd6α6αubd, φ(α) is given by f(q) evaluated at

the unique solution q∈[1.6(log d)/d, 3(log d)/d] of the equation α(q)=α. The function

φ(α) is strictly decreasing on this interval of α, with a unique zero α? in the interval’s

interior. The gap between α? and the first moment threshold α� from (4) is given by

α�−α? =

[
2

e

log d

d

]2[
1+O

(
log log d

log d

)]
.

Note that Theorem 3.1 implies Theorem 2 (a).

3.1. Gibbs measures on message configurations

In [20] and [21] we established a variational principle for calculating the expectation over

Gd,n of the partition function Z for a Gibbs measure (also termed Markov random field

or factor model). By decomposing Z as a sum of the contributions Z(h) from all possible

edge empirical measures h, each EZ(h) can be calculated simply as a product of multi-

nomial coefficients, and is found to scale exponentially in n (up to nO(1) corrections) with

a rate Φ(h) which varies smoothly with h. Thus, disregarding polynomial corrections,

the moment calculation reduces to optimization of Φ over the simplex of edge empirical

measures. We then showed that interior stationary points of Φ are in bijective correspon-

dence with fixed points of the belief propagation or Bethe recursion for the corresponding

model on the infinite d-regular tree—thereby reducing an optimization to a fixed point

problem, generally in a lower-dimensional space.

To count frozen configurations of a particular intensity, we shall introduce in the

frozen model a fugacity parameter λ>0, where log λ will serve as a Lagrange multiplier:

under the λ-weighted frozen model, each valid frozen configuration �η≡(η,m) receives

weight λi(�η) where i(�η)=|V1|+ 1
2 |Vf| as defined in (9).(5) The partition function of this

(5) We call λ the fugacity in accordance with standard terminology—the hard-core model at fu-

gacity λ is the measure supported on independent sets of a given graph, in which each set S appears
with weight λ|S|.
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model restricted to configurations of intensity nα is simply Zλnα≡λnαZnα; and the un-

restricted partition function is

Zλ =
∑

α

λnαZnα.

Given α we will adjust λ appropriately so that the dominant contribution to EZλ comes

from the configurations of intensity nα.

Some difficulty is also posed by the fact that the frozen model is not a Gibbs mea-

sure in the most conventional sense of variable spins coupled only by edge interactions.

However, we describe two (closely related) ways to recast the frozen model as a Gibbs

measure, although with spins located on the edges of the graph. One way to do this,

which has been introduced in the physics literature [38] (see also [15], [34] and [36, Chap-

ter 19]), is by way of message configurations or auxiliary configurations σ,(6) where each

directed edge v!w carries the message

σv!w: “state of v in absence of w.”

Note that, in a valid message configuration, σv!w will be a certain function of the

messages (σu!v)u∈∂v\w incoming to v from its other neighbors. The actual state ηv of

v will then be a function of all its incoming messages σ̇∂v!v≡(σu!v)u∈∂v. The model is

formally defined as follows. Let {0, 1, f}∗ be the union of {0, 1, f}l over l>0. We then

define the message-passing rule

ṁ: {0, 1, f}∗−! {0, 1, f}, ṁ(η̇) =





1, if |{i : ηi = 1}|= 0,

f, if |{i : ηi = 1}|= 1,

0, if |{i : ηi = 1}|> 2.

Definition 3.2. A valid message configuration on Gd,n=(V,E) is a vector (σv!w),

indexed by all pairs of neighbors v, w∈V , that satisfies the message-passing rules

σv!w = ṁ[(σu!v)u∈∂v\w] for all (vw)∈E.

Its corresponding frozen configuration �η≡(η,m) is given by setting

ηv = ṁ[(σu!v)u∈∂v] for all v ∈V,
m= {(uv) :σu!v =σv!u = 1}.

(6) In the literature, this formalism is sometimes also called “warning propagation,” and the con-

figurations σ are called “warning configurations.”
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Let us check that if a message configuration maps to �η under Definition 3.2, then �η

is in fact a valid frozen configuration according to Definition 2.3, assuming

{v : ηv = f}6nβmax.

– If ηv=1, then all messages incoming to v are 0 or f, so all outgoing ones are 1.

– If ηv=f, then all incoming messages are 0 or f except for a single incoming 1 from

some u∈∂v, so all outgoing messages are f except for the return message σv!u=1.

– If ηv=0, then there are at least two incoming 1-messages. If there are more than

two then all outgoing messages are 0, and we term this a robust zero, labeled 0r. If v

receives exactly two incoming 1-messages from u,w∈∂v, then all messages outgoing from

v are 0 except σv!u=σv!w=f. We term this a susceptible zero, labeled 0s.

We see from the above that if σu!v=1 and σv!u 6=1, then ηu=1 and ηv=0. If ηv=0

then it has no outgoing 1-messages, so we see that for u∈∂v, ηu=1 if and only if σu!v=1.

This verifies the condition that |{u∈∂v :ηu=1}|>2 whenever ηv=0, as well as the condi-

tion that {|{v∈∂u:ηv 6=0}|=0} whenever ηu=1. Lastly it is clear that whenever ηu=f,

u is matched under m to the unique neighboring f-vertex v for which σu!v=σv!u=1.

We will see below that this is one way of expressing the frozen model as a Gibbs

measure. A second way, which is slightly more direct but less standard, is to start with

a frozen configuration �η, and simply set σv!w=ηv except for when v is matched to w, in

which case set σv!w=f̄. This defines a different vector (σv!w), which we term a vertex-

message configuration. It is clearly simply a rewriting of the original configuration �η.

Proposition 3.3. There is a one-to-one correspondence between (i) frozen config-

urations, (ii) vertex-message configurations, and (iii) message configurations.

Proof. It is clear from the definition that frozen configurations are in bijection with

vertex-message configurations: for any edge (vw), the vertex spin ηv can be read off from

σv!w, and (vw) participates in a matching if and only if σv!w=f̄. In the discussion

following Definition 3.2 we saw that message configurations map to frozen configurations

(equivalently, to vertex-message configurations). To invert the mapping, (i) change every

f̄-message in the vertex-message configuration to 1, and (ii) change the u!v message

from 0 (in the vertex-message configuration) to f whenever ηu=0s and ηv=1.(7)

Let us introduce some convenient notation. We bisect each edge in Gd,n by a new

clause vertex a, and refer to the resulting graph as the (d, 2)-regular bipartite factor graph :

this graph has vertex set V ∪F with bipartition into the set V of variables (vertices in

(7) The correspondence remains valid even when the graph has multi-edges, provided we count

neighbors with edge multiplicity—e.g. if a 0 neighbors a single 1-variable via a doubled edge, we consider
it as neighboring two distinct 1-variables.
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the original graph) and the set F of clauses (edges in the original graph). We will denote

variables generally by u, v, w, and clauses by a, b, c. The new graph has edge set E, where

(av)=(va)∈E indicates that in the original graph, vertex v is incident to edge a. These

edges are labeled, so the enumeration of graphs is now (nd)! rather than (nd−1)!!, but

clearly the problem remains unchanged. We denote the bipartite graph (V, F,E).

Given a valid auxiliary configuration on Gd,n we define a auxiliary configuration on

the bipartite graph simply by setting

σv!w ≡σv!a≡σa!v,

whenever the variables v, w∈V are joined by the clause a∈F . That is to say, in the

bipartite graph, variables pass messages using the same rule ṁ as above, while clauses

act trivially by passing on the same message. We write σav≡σva for the pair of messages

(σv!a, σa!v) on the edge (av), where in the pair we always write the variable-to-clause

message first, and the clause-to-variable messages second. Let M denote the space of

all possible values for σav in an auxiliary configuration, and let Mv denote the space of

values in a vertex-auxiliary configuration. The mapping from message configurations to

vertex-message configurations is given simply by coordinatewise application of the map

projv: M!Mv which takes

11 7−! ff, {10, 1f} 7−! 10, {01, f1} 7−! 01, (30)

and acts as the identity on the remaining spins.

Remark 3.4. In the remainder of the paper we will work with both the original

graph Gd,n and its (equivalent) bipartite version (V, F,E). To avoid confusion, we refer

to elements of E as variable-clause edges. When we say simply “edges,” we mean the

edges of the original graph Gd,n.

Given a message configuration σ on (V, F,E), write σ̇v for the d-tuple of spins

incident to variable v∈V , and write σ̂a for the pair of spins incident to clause a∈F . The

counting measure on valid message configurations σ of (V, F,E) is given by

Ψ(σ)≡
∏

v∈V
ϕ̇(σ̇v)

∏

a∈F
ϕ̂(σ̂a), (31)

where the variable factor ϕ̇(σ̇v) checks the message-passing rule at v, and the clause
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factor ϕ̂(σ̂a) checks the message-passing rule at a. Explicitly,

ϕ̂(σ, σ′) = 1{σ′=Rσ}, where R: M !M , ηη′ 7! η′η (reflection map),

ϕ̇(σ̇v) =
∏

w∈∂v
1{σv!w = ṁ[(σu!v)u∈∂v\w]}

=





1, σ̇ ∈Per[(10j , 1fd−j)06j6d] ηv = 1,

1, σ̇ ∈Per[(11, f0j , ffd−1−j)06j6d−1] ηv = f,

1, σ̇ ∈Per[(f12, 00j , 0fd−2−j)06j6d−2] ηv = 0s (susceptible),

1, σ̇ ∈Per[(01k, 00j , 0fd−k−j)06j6d−k,36k6d] ηv = 0r (robust),

0, otherwise,

(32)

where Per denotes the set of all permutations of the tuples listed. The measure (31) is a

Gibbs measure or factor model, meaning that it is specified by a product of local factors.

Note that the vertex-auxiliary configurations also define a Gibbs measure, with factors

ϕv≡(ϕ̇v, ϕ̂)v obtained by applying the weights ϕ≡(ϕ̇, ϕ̂) of (32) to the pre-image under

projv. Extending the above discussion to the λ-weighted model we have the following

result.

Proposition 3.5. The λ-weighted frozen model is in measure-preserving one-to-one

correspondence with the Gibbs measure on message configurations with weights

Ψλ(σ)≡
∏

v∈V
ϕ̇λ(σ̇v)

∏

a∈F
ϕ̂λ(σ̂a)≡λi(σ)

∏

v∈V
ϕ̇(σ̇v)

∏

a∈F
ϕ̂(σ̂a)≡λi(σ)Ψ(σ), (33)

where i(σ)≡i[�η(σ)] and ϕλ≡(ϕ̇λ, ϕ̂λ) are λ-weighted versions of the indicator functions

ϕ≡(ϕ̇, ϕ̂) defined in (32):

ϕ̂λ(σ, σ′)≡λ1{σ=11}ϕ̂(σ, σ′) and ϕ̇λ(σ̇)≡λ1{η(σ̇)=1}ϕ̇(σ̇).

Definition 3.6. The λ-weighted auxiliary model is the Gibbs measure (33) restricted

to configurations with 6nβmax f-variables. Its image under projv is the λ-weighted vertex-

auxiliary model. The model partition function is the normalizing constant

Zλ =
∑

σ∈ME

1{|{v : ηv = f}|6nβmax}Ψλ(σ).
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3.2. Bethe variational principle

Write m≡ 1
2nd for the number of clauses. Given a message configuration σ∈ME , consider

the normalized empirical measures

ḣ(σ̇)≡n−1
∑

v∈V
1{σ̇v = σ̇}, σ̇ ∈M d (variable empirical measure);

ĥ(σ̂)≡m−1
∑

a∈F
1{σ̂a = σ̂}, σ̂ ∈M 2 (clause empirical measure);

h̄(σ)≡ (nd)−1
∑

e∈E
1{σe =σ}, σ ∈M (half-edge empirical measure).

We regard h≡(ḣ, ĥ) as a probability measure on suppϕ (meaning that ḣ is a probability

measure on supp ϕ̇, while ĥ is a probability measure on supp ϕ̂). Let

Ḣσ,σ̇ ≡ number of appearances of σ in σ̇,

Ḣσ,σ̇ ≡ number of appearances of σ in σ̂.

Write ṡ≡|supp ϕ̇| and s̄≡|supp ϕ̂|=|M |, and write

Ḣ ≡ (Ḣσ,σ̇ :σ ∈M , σ̇ ∈ supp ϕ̇)∈Zs̄×ṡ,
Ĥ ≡ (Ĥσ,σ̂ :σ ∈M , σ̂ ∈ supp ϕ̂)∈Zs̄×s̄.

For h to correspond to a valid configuration σ, the variable and clause empirical measures

must give rise to the same non-normalized marginals, ndh̄=nḢḣ=mĤĥ.

Definition 3.7. Let ∆ denote the simplex of probability measures h on suppϕ such

that ḣ(η=f)6βmax, and
(
ḣ, 1

2dĥ
)

lies in the kernel of H∆≡( Ḣ −Ĥ )∈Zs̄×(ṡ+s̄). For

h∈∆, we say that the normalized intensity of h is

i(h)≡ ḣ(η= 1)+ 1
2 ḣ(η= f) = h̄(1Z)+ 1

2dh̄(11). (34)

Let ∆[α] denote the subsimplex of measures h∈∆ with normalized intensity i(h)=α. We

shall show (Lemma 5.4) that H∆ is surjective, implying that ∆ is an (ṡ−1)-dimensional

simplex with ∆[α] an (ṡ−2)-dimensional subsimplex.

Let Z(h) denote the contribution to the partition function from message config-

urations σ∈ME with empirical measure h, so that Znα=
∑
h∈∆[α]Z(h). Calculating

configuration model probabilities (cf. [20, §2.1]) gives, with the usual multi-index nota-

tion,

EZ(h) =

(
n
nḣ

)(
m
mĥ

)
(
nd
ndh̄

) ϕ̇nḣϕ̂mĥ≡ n!m!

(nd)!/
∏
σ(ndh̄(σ))!

∏

σ̇

ϕ̇(σ̇)nḣ(σ̇)

(nḣ(σ̇))!

∏

σ̂

ϕ̂(σ̂)mĥ(σ̂)

(mĥ(σ̂))!
.
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Stirling’s formula gives EZ(h)=nO(1) exp(nΦ(h)), where

Φ(h)≡
∑

σ̇

ḣ(σ̇) log
ϕ̇(σ̇)

ḣ(σ̇)
+
d

2

∑

σ̂

ĥ(σ̂) log
ϕ̂(σ̂)

ĥ(σ̂)
−d
∑

σ

h̄(σ) log
1

h̄(σ)
. (35)

In the above, the first sum goes over all σ̇ in supp ϕ̇, the second sum goes over all σ̂ in

supp ϕ̂, and the final sum goes over all σ in M . If further minh&d1, then

EZ(h) =
eOd(n−1)P(h)

(2πn)(ṡ−1)/2
exp(nΦ(h)), P(h)≡

( ∏
σ dh̄(σ)

2
∏
σ̇ ḣ(σ̇)

∏
σ̂

1
2dĥ(σ̂)

)1/2
. (36)

Clearly an analogous expansion holds for the expectation of the λ-weighted partition

function Zλ(h)=λn i(h)Z(h); we write Φλ(h)=Φ(h)+i(h) log λ for the associated rate

function (with ϕλ in place of ϕ). We shall compute the first moment exponent φ(α) by

using the Lagrangian method to locate

?h[α]≡ arg maxh∈∆[α] Φ(h). (37)

If h is a stationary point of Φ restricted to ∆[α], then for some λ=λ(α) it must be a

stationary point of Φλ on the unrestricted space ∆.

Remark 3.8. Observe from the functional form of Φλ that ?ḣ=?ḣ[α] and ?ĥ≡?ĥ[α]

must be symmetric functions on M d and M 2, respectively, that is,

?ḣ(σ̇) = ḣ(σπ(1), ..., σπ(d))

for any permutation π of [d], and similarly ?ĥ(σ,Rσ)=?ĥ(Rσ, σ), where R is the reflection

map from (32). Thus we have h̄=ĥ(σ,Rσ), so we can simplify Φλ as

Φλ(h) =
∑

σ̇

ḣ(σ̇) log
ϕ̇λ(σ̇)

ḣ(σ̇)
− d

2

∑

σ

h̄(σ) log
1

h̄(σ)ϕ̂λ(σ,Rσ)
. (38)

In the unweighted setting λ=1, we simply have

Φ(h) =
∑

σ̇

ḣ(σ̇) log
1

ḣ(σ̇)
− d

2

∑

σ

h̄(σ) log
1

h̄(σ)
=H(ḣ)− d

2
H(h̄),

under the assumption that supp ḣ⊆supp ϕ̇.

The belief propagation or Bethe recursion for the λ-weighted auxiliary model acts

on probability measures ḣ and ĥ on M , with ḣ mapping to ĥ and vice versa:

żḣσ =
∑

σ̇:σ1=σ

ϕ̇λ(σ̇)

d∏

i=2

ĥσi ,

︸ ︷︷ ︸
variable Bethe recursions,

with normalizing constant ż

ẑĥσ =
∑

σ̂:σ1=σ

ϕ̂λ(σ̂)ḣσ2
.

︸ ︷︷ ︸
clause Bethe recursions,

with normalizing constant ẑ

(39)
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Lemma 3.9. If a measure h in the interior ∆� of ∆ is stationary for Φλ, then h

corresponds to a solution h≡hλ of the Bethe recursions (39) via

żḣ(σ̇) = ϕ̇λ(σ̇)

d∏

i=1

ĥσi , ẑĥ(σ̂) = ϕ̂λ(σ̂)

2∏

i=1

ḣσi and z̄h̄(σ) = ĥσḣσ, (40)

with ż, ẑ and z̄ normalizing constants satisfying z̄=ż/ż=ẑ/ẑ for ż and ẑ as in (39).

Proof. First consider optimizing (40) over ḣ, subject to fixed marginals h̄, but we

require h̄ to be a feasible edge marginal, meaning we have Ḣḣ=h̄=Ĥĥ for some h. This

imposes linear constraints on h̄: in this particular setting we must have

h̄(σ) = h̄(Rσ) and (d−1)h̄(11) = h̄(f0)+h̄(ff). (41)

Let M be any minimal subset of M satisfying the property that if h̄(σ) is given for all

σ∈M , the remaining values h̄(σ′), σ′∈M \M , are determined using (41). Let Ḣ� denote

the submatrix of Ḣ formed by the rows with indices in M , and note that, by definition,

the matrix Ḣ� is surjective.

Now consider differentiating (38) in the direction of some signed measure δ≡(ḣ, ĥ)

such that h+tδ∈∆ for small enough t: this means that we must have

〈δ̄, 1〉= 0 and δ̄(σ) = δ̄(Rσ). (42)

Since h is stationary, we must have

0 = ∂tΦ
λ(h+tδ) =

∑

σ̇

δ̇(σ̇) log
ϕ̇λ(σ̇)

ḣ(σ̇)
+
d

2

∑

σ

δ̄(σ) log[h̄(σ)ϕ̂λ(σ,Rσ)]. (43)

First choose δ such that δ̄=0—equivalently, such that Ḣ�δ̄=0. Then (43) simplifies to

0 =
∑

σ̇

δ̇(σ̇)ȧ(σ̇), where ȧ(σ̇)≡ log
ϕ̇λ(σ̇)

ḣ(σ̇)
.

Since δ̄=0, we furthermore have for any vector µ∈RM that

0 =
∑

σ̇

δ̇(σ̇)ε̇(σ̇), where ε̇(σ̇)≡ log
ϕ̇λ(σ̇)

ḣ(σ̇)
+

d∑

i=1

µσi1{σi ∈M}.

Noting that ε̇=a+(Ḣ�)
tµ, we now solve for ε̇ to have zero marginals:

0 = Ḣ�ε̇= Ḣ�a+Ḣ�(Ḣ�)
tµ.
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Since Ḣ� is surjective, this has a unique solution µ. If we set δ̇=ε̇ for this value of µ

and substitute back into (43), we find that zero equals a sum of squares, so the only

possibility is to have ε̇ identically zero. This proves that we can write

żḣ(σ̇) = ϕ̇λ(σ̇)

d∏

i=1

ĥσi (44)

for some probability measure ĥ on M . Taking the marginal of (44) gives

żh̄(σ) = ĥσ
∑

σ̇

1{σ1 =σ}ϕ̇λ(σ̇)

d∏

i=2

ĥσi = żḣσĥσ. (45)

We now return to the derivative (43) for general δ. Substituting in (44) and (45) gives

0 =
∑

σ̇

δ̇(σ̇) log
ż

∏d
i=1 ĥσi

+
d

2

∑

σ

δ̄(σ) log
ϕ̂(σ,Rσ)żḣσĥσ

ż
=
∑

σ

δ̄(σ) log
ϕ̂λ(σ,Rσ)ḣσ

ĥσ
,

using 〈δ̄, 1〉=0 to eliminate ż and ż. As h̄ is invariant under R, we see using (45) that

ḣσ

ĥσ
=
ḣσĥσ

ĥσĥσ
=
ḣRσĥRσ

ĥσĥσ
.

Then, since δ̄ is also invariant under R, we can re-express the stationary equation as

0 =
∑

σ

δ̄(σ) log
ϕ̂λ(σ,Rσ)ḣRσĥRσ

ĥσĥRσ
=
∑

σ

δ̄(σ) log
ϕ̂λ(σ,Rσ)ḣRσ

ĥσ︸ ︷︷ ︸
�(σ)

,

where � is also invariant under R. Again, using 〈δ̄, 1〉=0, we have

0 =
∑

σ

δ̄(σ)�̃(σ) where �̃(σ)≡�(σ)− 1

|M |
∑

σ′

�(σ′).

Note that δ̄=�̃ satisfies the requirements of (42), and substituting into the above we see

that the only possibility is to have �̃(σ)=0 for all σ∈M . This proves that

ẑĥσ = ḣRσϕ̂
λ(σ,Rσ). (46)

Now (45) and (46) together constitute the belief propagation equations. Note also that

combining (45) and (46) gives

ĥ(σ,Rσ) = h̄(σ) =
żḣσĥσ
ż

=
żḣσḣRσϕ̂

λ(σ,Rσ)

żẑ
.

Together with (44) and (45), this proves (40) with z̄=ż/ż=ẑ/ẑ.
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While the optimization (37) is over the space ∆[α] whose dimension grows with

d, the Bethe recursions act on probability measures ḣ and ĥ over M whose dimension

clearly does not depend on d. (Boundary maximizers will be ruled out by a-priori es-

timates in §4.2.) Even with this reduction, however, we are tasked with eliminating a

potential multiplicity of fixed points (local maximizers). In the physics literature this has

been resolved by prescribing that ĥη′η depends only on the clause-to-variable message η,

justified by appealing to some notion of “causality” (cf. [36, equation (19.26)]). We prove

a rigorous version here via the interpretation for Bethe recursion fixed points in terms of

(infinite-volume) Gibbs measures on the d-regular tree Td, which we now describe.

We have commented already that the local structure of the random d-regular graph

Gd,n is that of Td. More precisely, it is well known that Gd,n converges locally to Td in

the sense of [12] and [8] (see e.g. [19]). Bisect each edge of Td by a new clause vertex (as

done above for Gd,n), and refer to the resulting graph as the (d, 2)-regular tree T≡Td,2.

Thus the leaf vertices of the depth-t subtree T (t) are variables for t even, clauses for

t odd; we write E(t−1, t) for the half-edges joining levels t−1 and t. We let σ denote a

message configuration on T , with M -valued spins located on the edges of the tree.

Given a finite subtree U of T , let U � denote the interior vertices of U (that is, the

variables and clauses having no neighbors outside U). Let δU denote the internal edge

boundary of U , that is, the edges (xy) where x∈U � and y∈U \U �. Let δV U⊆δU denote

the subset of such (xy) where x∈V , and let δFU denote the rest, with x∈F . Given

probability measures ḣ and ĥ on M we define the measures

ZλUν
λ
U (σU ) =

∏

v∈V ∩U�

ϕ̇(σ̇v)
∏

a∈F∩U�

ϕ̂(σ̂a)
∏

e∈δV U
ḣσe

∏

e∈δFU
ĥσe , (47)

with ZλU the normalizing constant that makes νλU a probability measure over valid mes-

sage configurations σ on U . Then h≡(ḣ, ĥ) satisfies the Bethe recursion (39) if and

only if (νλU )U is a consistent family of finite-dimensional distributions, meaning that

νλS is a projection of νλU for any S⊆U . It follows by the Kolmogorov extension theo-

rem that the collection (νλU )U defines an infinite-volume Gibbs measure νλ on T with

finite-dimensional marginals νλU .

3.3. Bethe recursion symmetries

Observe that on any subtree U of T , the entire message configuration σU on U is com-

pletely determined by the incoming boundary messages σy!x from y∈U \U � for x∈U �—

given the incoming messages, σU can be recovered by iterating ṁ from the boundary

inwards. Thus a natural special case of (47) is to take ĥη′η to depend only on the
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clause-to-variable message η, that is, 3 ĥη′η=qη for a probability measure q on {0, 1, f}.
Then

νλ1 (ηo = 1) =
λ(1−q1)d

(λ−1)(1−q1)d+1
and νλ1 (ηo = f) =

dq1(1−q1)d−2

(λ−1)(1−q1)d+1
,

with the remaining probability going to ηo=0. The (νλU )U are consistent if and only if q

satisfies the frozen model recursions

q1 =
λ(1−q1)d−1

(λ−1)(1−q1)d−1+1
, qf =

(d−1)q1(1−q1)d−2

(λ−1)(1−q1)d−1+1
=

(d−1)(q1)
2

λ(1−q1)
, (48)

and q0=1−q1−qf.(8)

Since a solution of (48) is fully determined by q1, we hereafter abuse notation and

use q to denote both the measure (q1, qf, q0) and the value q1. The value q=q1 must

be a root of the function f(q)=(1−q)d−1(λ+q−λq)−q which, for 06q61 and λ>1, is

decreasing in q and increasing in λ. Therefore f has a unique root 0<q<1 which is

increasing in λ, and (2) expresses λ in terms of q. In the following, to emphasize the

dependence on λ we sometimes write q≡qλ.

The full Bethe recursions (39)—a generalization of (48)—read explicitly as follows.

The clause Bethe recursions are simply

ẑĥσ = ḣRσλ
1{σ=11}, with ẑ= 1+(λ−1)ḣ11. (49)

Write Z≡{0, f}, for example ĥ1Z≡ĥ10+ĥ1f. Recall also from §2.4 that we use to denote

{0, 1, f}. The variable Bethe recursions are

(a) żḣ10 = żḣ1f =λ(ĥ1Z)
d−1, λżḣ11 =λ(ĥfZ)

d−1,

żḣf0 = żḣff = (d−1)ĥ11(ĥfZ)
d−2, żḣf1 = (d−1)ĥf1(ĥ0Z)

d−2,

(b) żḣ01 = (ĥ0 )d−1−(ĥ0Z)
d−1−(d−1)ĥ01(ĥ0Z)

d−2,

(c) żḣ00 = żḣ0f = (ĥ0 )d−1−(ĥ0Z)
d−1−(d−1)ĥ01(ĥ0Z)

d−2

+ 1
2 (d−1)(d−2)[(ĥf1)

2−(ĥ01)
2](ĥ0Z)

d−3.

We immediately have ĥ01=ĥf1, ĥ0f=ĥff, and ĥ00=ĥf0. Comparing (b) and (c) then

gives ĥ10=ĥ00=ĥf0. It then follows from (a) that the following are equivalent (with the

symbol X indicating the identities we already know):

ḣf1 = ḣf0
X
= ḣff, ĥ1f = ĥ0f

X
= ĥff, λḣ11 = ḣ10

X
= ḣ1f, ĥ11 = ĥ01

X
= ĥf1. (50)

(8) For comparison, the corresponding recursion for the hard-core model at fugacity λ is

q=
λ(1−q)d−1

λ(1−q)d−1+1
.
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If (50) holds, then (39) reduces to the frozen model recursions (48) with

3ĥη′η = qη,

and therefore, substituting into (49),

3ḣηη′ =λ−1{ηη′=11}qη ẑ with ẑ=

[
1− q1

3

(
1− 1

λ

)]−1

. (51)

Write ∆�[α]≡∆�∩∆[α], and suppose h∈∆�[α] is a stationary point for the restriction

of Φ to ∆[α]. By the method of Lagrange multipliers, there exists λ (unique given h)

such that h is an interior stationary point for Φλ on the larger space ∆: therefore h

corresponds, via (40), to a solution h of the Bethe recursions (39) for the λ-weighted

model.

Proposition 3.10. For d>d0 and αlbd6α6αubd, let h be any solution of the Bethe

recursions (39) which corresponds in the manner described above to an interior stationary

point h for the restriction of Φ to ∆[α]. Then h satisfies the symmetries (50), and

corresponds via (51) to a solution q=q1 of (48) with q=α+O(d−1).

Ruling out boundary maximizers for Φ on ∆[α] is relatively easy, so we defer the

proof to §4 where we will use the same argument to rule out boundary maximizers for

the second-moment exponent Φ2. We therefore conclude the following.

Theorem 3.11. For d>d0 and αlbd6α6αubd, the restriction of Φ to ∆[α] has

a unique global maximizer ?h[α], which is also the unique interior stationary point. It

correponds, via (40) and (51), to the unique q∈[1.6(log d)/d, 3(log d)/d] for which α(q),

as defined in (2), evaluates to α.

Proof. We assume that any global maximizer h of Φ on ∆[α] lies in the interior

∆�[α], deferring the proof to §4 (see Proposition 4.13 and Corollary 4.17). Therefore, as

described above, h corresponds via (40) to a solution h of the Bethe recursions (39) for

a particular λ. Proposition 3.10 implies that h corresponds via (51) to a solution q=q1

of the frozen model recursions (48) for this value of λ. Rearranging (48) shows that λ

must equal the expression λ(q) defined by (2). In §3.4 below we shall calculate (from

(40) and (51)) that i(h) equals the expression α(q) of (2). The mapping q 7!α(q) is not

one-to-one on the entire interval 06q61, but if q=x(log d)/d with 1.66x63 then we

can easily compute the derivative α′(q)=1+O(d−1/2). Since Proposition 3.10 also gave

the estimate q=α+O(d−1), this clearly uniquely identifies q. Thus we have located the

unique global maximizer of Φ on ∆[α] as the unique interior stationary point.
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Figure 1. Change of message incoming down to é is passed down T́

(ηή:ὴ means message η up, message ή down in σ, message ὴ down in σ′).

It remains to prove Proposition 3.10. Recall that T≡Td,2 denotes the (d, 2) -regular

tree. Let T́ denote T with the subtree descendant from one of the root neighbors removed,

so that T́ has one clause a which is joined to the root variable o and to an unmatched

half-edge é (Figure 1). Define a Gibbs measure ν́λ on T́ in the manner of (47), via its

finite-dimensional marginals ν́λU , with factor weights ϕλ and boundary law given by h. If

h solves the Bethe recursions (39), then the resulting marginal law on σé will be simply

ĥ, and the marginal law of the d-tuple of spins incident to any given vertex will be ḣ.

Write σé≡io where i is the incoming (variable-to-clause) message and o is the outgo-

ing (in Figure 1, o is directed upwards, i downwards). Given any message configuration

σ on T́ , changing i and passing the changed message through the tree (via ṁ) produces

a new configuration σ′ (Figure 1). Proposition 3.10 will follow by showing that for any

fixed o, the effect of changing i is measure-preserving under the Gibbs measure ν́λ.

Since the finite-dimensional marginals of ν́λ are defined (in the manner of (47)) from the

boundary law, the measure-preserving property will follow by showing that the effect of

changing i almost surely does not percolate down the tree.

Indeed, recall that we already saw directly from the Bethe recursions that ĥ0η=ĥfη

for any η: this corresponds to the fact that ṁ does not differentiate between incoming

messages 0 and f, so changing i from 0 to f or vice versa has no effect at all below é.

We also found that ĥη0 does not depend on η: if o=0 then all messages outgoing from

the root must be 0 or f, so changing i can have an effect at most one level down.

Proof of Proposition 3.10. To prove (50) it remains to verify that ĥ11=ĥf1. Chang-

ing io from 11 to f1 induces a mapping ι on messages configurations σ of T́ ; likewise

changing io from f1 to 11 induces a mapping ῑ. From the above discussion, we must

prove that the maps ι and ῑ have a finite-range effect.
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Figure 1 shows that the effect of changing 11 to f1 can only propagate through

components of f-variables, while the effect of changing f1 to 11 can only propagate

through chains of alternating 1-variables and 0s-variables (with 0s as defined in (32)).

We claim that both propagations are subcritical under ν́λ. Observe that a sample

from ν́λ can be generated in Markovian fashion: start with spin σé distributed according

to ĥ, generate the messages on the other d−1 half-edges incident to o according to the

conditional measure ḣ(σ̇ |σ1=σé), and continue iteratively down the tree. It follows from

(40) that if we condition on σé=f1, the expected number of children with spin f1 will be

(d−1)ĥ1f/ĥ1Z; likewise, if we condition on σé=11, the expected number of children with

spin ff will be (d−1)ĥff/ĥfZ=(d−1)ĥ0f/ĥ0Z. We now show that both these quantities are

less than one, meaning that with probability 1 (under ν́λ) the changes do not percolate

through the tree. This implies the claimed result: writing ν́λt for the marginal of ν́λ on

the depth-t subtree T́ (t) of T́ , we have

ĥ11 = ν́λ(σé = 11) =
∑

σ

1{σé = 11}ν́λt (σ)

where the sum is taken over message configurations σ on T́ (t). From the above description

of how ι propagates, and from the definition of ν́λt , we have ν́λt (σ)= ´νλt (ισ) as long as σ

and ισ agree at depth t, which holds with probability 1−ot(1) under ν́λt . Therefore

ĥ11 = ot(1)+
∑

σ

1{σé = 11}ν́λt (ισ)6 ot(1)+ĥ1f,

and taking t!∞ proves ĥ116ĥ1f. Repeating the same argument with ῑ in place of ι

proves the reverse inequality ĥ1f6ĥ11, concluding the proof.

It remains to verify the subcriticality of the propagations. Recall Vη≡{v∈V :ηv=η}.
For S, S′⊆V write E(S, S′) for the number of clauses joining S to S′. The number E(V0, V0)

of edges internal to V0 is n
[

1
2d−O(log d)

]
. By (39), (40), and the trivial symmetry

ĥ0η=ĥfη already noted,

ĥ0f

ĥ00
=
ḣf0

ḣ00
=
ḣf0ḣ0f

ḣ00ḣ00
=
ĥ(f0, 0f)

ĥ(00, 00)
=

E(Vf, V0)

2 E(V0, V0)
6

ndβmax

n[d−O(log d)]
6 2βmax.

Next, since ∂V1⊆V0, E(V1, V0)=E(V1, V )=d|V1|=nd(α−O(βmax)). Also, since each vertex

in V0s can have at most two neighbors in V1, crudely E(V1, V0s)62|V0s |62n. Therefore

ĥ01

ĥ00
=
ĥ(10, 01)

ĥ(00, 00)
=

E(V1, V0s)

2 E(V0, V0)
=
nd(α−O(βmax))−O(n)

n[d−O(log d)]
=α−O(d−1). (52)

Applying (39) again gives

ĥ1f

ĥ10
=
ḣ1f

ḣ10
=

(d−1)ĥ01(ĥ0Z)
d−1

∑
j>2(ĥ01)j(ĥ0Z)d−1−j

=P
(

Bin

(
d−1,

ĥ01

ĥ0

)
= 1

)
6 d−1.6.
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Therefore, writing f�dg to indicate limd!∞ f/g=0, we have shown ĥ0f/ĥ00�dd
−1 and

ĥ1f/ĥ10�dd
−1, implying (50). Thus h corresponds via (51) to a solution q of (48), and

we conclude a posteriori from the two preceding estimates that q1=ĥ01/ĥ0 =α+O(d−1),

concluding the proof.

3.4. Explicit form of first moment exponent

We conclude this section by giving the explicit form of φ(α).

Proof of Theorem 3.1. The result follows from Theorem 3.11 together with a few

straightforward calculations. Recall from the proof of Theorem 3.11 that if h is an

interior global maximizer for Φ on ∆[α], then, by Proposition 3.10, h corresponds to a

solution q of the frozen model recursions for this value of λ, from which we conclude that

λ=λ(q) as in (2). Writing q=x(log d)/d we estimate

λ=λ(q) = dxq[1+O(d−1(log d)2)].

Since h∈∆[α], we have

α= ḣ(ṁ(σ̇) = 1)+ 1
2 ḣ(ṁ(σ̇) = f), (53)

where the right-hand side can be explicitly calculated from the relations (40) and (51)

for h.

Explicit Bethe prediction. Substituting (40) into (35) and rearranging gives

Φλ(?h[α]) = log ż+
d

2
log ẑ−d

∑

σ

h̄(σ) log
ḣσĥσ
h̄(σ)

= log ż+
d

2
log ẑ−d log z̄.

We use (40) and (51) to calculate z̄, ż, and ẑ in terms of q and λ:

z̄=
ẑ

9

[
1−q2

(
1− 1

λ

)]
, ẑ= z̄ẑ, ż=

1−q2(1−1/λ)

3d[1−q(1−1/λ)]
= z̄ż.

Recalling (53) we can also calculate α in terms of q and λ:

α= q
1−q+dq/2λ

1−q2(1−1/λ)
,

completing the verification of (2). The recursion (48) also gives the expressions in (2)

for λ and α solely in terms of q. It then follows from Theorem 3.11 that

φ(α) = Φλ(?h[α])−α log λ
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is given by (1). We note also that φ′(α)=− log λ, and therefore

φ′′(α) =−[α′(q)]−1[(log λ)′(q)] =−d[1+O((log d)−1)].

Comparison of first-moment exponents. By contrast, the original independent set parti-

tion function has first-moment exponent φ(α) calculated in (7).(9) This exponent also

has a Bethe variational characterization, which can be expressed in terms of the fixed

point q′ of the hard-core tree recursions:

φ(α) = log(1+q′)− 1
2d log(1−(q′)2)−α log λ′,

where

q′=
λ′(1−q′)d−1

1+λ′(1−q′)d−1
=λ′(1−q′)d and α=

λ′(1−q′)d
1+λ′(1−q′)d =

q′

1+q′
.

This formula can be derived heuristically in the same manner as (1); its correctness can

be checked simply by verifying that it agrees with (7). We then compare φ(α) and φ(α)

by expressing both in terms of q: then q and q′ are related via α(q)=α=α′(q′), explicitly

q′=
α

1−α = q
1−q+dq/2λ

1−q−(d−2)q2/(2λ)
.

A little algebra then gives

(φ−φ)(α) = log
1−q+q/λ

1−q′ +

(
d

2
−1

)
log

1−q2+q2/λ

1−(q′)2
−α log

(
λ′

λ

)

= log

[(
1+

q/λ

1−q

)(
1− (d−2)q2

2λ(1−q)

)−1]

+d log

[(
1− (d−2)q2

2λ(1−q)

)(
1− (d−1)q2

λ(1−q)2

)−1/2]
−α log

(
λ′

λ

)
.

Recalling that q=x(log d)/d and λ=dxq[1+O(d−1(log d)2)], we expand

α log

(
λ′

λ

)
=α log

q′/(1−q′)d
[1−O(q2/λ)]q/(1−q)d =

dq2

2λ
(dq+1)+O

(
(d+λ)(dq)2q2

λ2

)
.

Substituting into the above expression for (φ−φ)(α) and expanding the other terms gives

(φ−φ)(α) =
q(dq+2)

2λ
+O

(
(d+λ)(dq)2q2

λ2

)
� d−x log d. (54)

(9) Recall that in the original independent set model α refers to the set density, while in the frozen
model it refers to the intensity (9).
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Comparison of first-moment thresholds. It is clear from the above that φ has a

unique zero αlbd<α?<α�, with α� the first moment threshold of the original independent

partition function. Let q� and λ� denote the solution of (2) for α=α�, and note that

λ�=
e2

2

d

log d
and q�=α�[1+O(d−1(log d)2)].

Consider 06δ.(log d)2/d2: applying (54) with the above estimate of φ′′(α) gives

φ(α�−δ) =φ(α�)+δ log λ�+O(dδ2)

=−(2λ�)−1α�(dα�+2)[1+O(d−1(log d)3)]+δ log λ�,

so the gap between the thresholds is given by

α�−α? = [1+O(d−1(log d)3)]
α�(dα�+2)

2λ� log λ�
=

(
2

e

log d

d

)2[
1+O

(
log log d

log d

)]
,

concluding the proof.

4. Second moment of frozen model

In this section we compute the exponential growth rate φ2(α)≡limn!∞ n−1 logE[Z2
nα] of

the second moment of the frozen model partition function (10). This will be done within

the framework introduced in §3, regarding the second moment as the first moment of the

pair model: given a graph G=(V,E), a pair frozen configuration is a pair (�η1, �η2) where

each �ηi≡(ηi,mi) is a valid frozen configuration (Definition 2.3) on the same underlying

graph. Thus E[Z2
nα] is the first moment of pair frozen configurations at intensity nα

(see (9)).

Recall from Proposition 3.3 that each frozen configuration �ηi corresponds bijectively

to a message configuration σi. We say that τ≡(σ1, σ2) is a pair message configuration.

Following the discussion of §3.1, the pair frozen model can be recast as a Gibbs measure

on pair message configurations, expressed as in (31), but with ϕ̇ and ϕ̂ replaced by the

factors

ϕ̇2≡ ϕ̇⊗ϕ̇ and ϕ̂2≡ ϕ̂⊗ϕ̂,

respectively. We refer to this as the pair auxiliary model. Following §3.2, we decompose

E[Z2
nα] =

∑

h

E[Z2(h)] =
∑

h

exp(nΦ2(h)), (55)

where h≡(ḣ, ĥ) now denotes a pair empirical measure:

ḣ is a measure on pairs (σ̇1, σ̇2) with σ̇i ∈M d,

ĥ is a measure on pairs (σ̂1, σ̂2) with σ̂i ∈M 2.
(56)



maximum independent sets on random regular graphs 305

Write ḣi for the marginal of ḣ on σ̇i, write ĥi for the marginal of ĥ on σ̂i, and write

hi for the pair (ḣi, ĥi). The rate function Φ2 is the obvious analogue of (35) for the

pair auxiliary model. The sum in (55) is taken over the space ∆2[α] of pair empirical

measures h such that hi∈∆[α] for both i=1, 2. Let ⊗h[α] denote the product measure
?h[α]⊗?h[α], and let idh[α] denote the measure with marginals ?h[α] which is supported

on pair configurations τ≡(σ, σ).

Theorem 4.1. For d>d0 and αlbd6α6αubd, the restriction of Φ2 to ∆2[α] satis-

fies

Φ2(h)<max{Φ(h′) :h′ ∈∆2[α]} for all h∈∆2[α]\{⊗h[α], idh[α]}.

Thus Φ2 achieves its maximum on ∆2[α] at ⊗h[α] with value 2φ(α), or at idh[α] with

value φ(α), depending on the sign of φ(α).

Definition 4.2. For h∈∆2[α], we write %(h)≡ḣ(η1=η2=1), and define the near-

independent regime and the near-identical regime, respectively, by

IND[α]≡{h∈∆2[α] : 06 %(h)6 d−1.1},

EQ[α]≡
{
h∈∆2[α] :α− ε� log d

d
6 %(h)6α

}
,

where ε�>0 is a small absolute constant.

4.1. Intermediate overlap regime

Write Z2
nα(n%) for the contribution to (Znα)2 from pairs (�η1, �η2) in which exactly n%

vertices take spin 1 in both �ηi, i=1, 2. We call % the overlap. In this subsection we

show that the value of % maximizing E[Z2
nα(n%)] must either be very small (indicating

proximity to ⊗h[α]), or very close to α (indicating proximity to idh[α]). This will be done

by comparison between Z2
nα(n%) and Z2

nα(n%), where the latter denotes the contribution

to (Znα)2 from pairs (x1, x2) of independent sets with overlap %.

Write P≡{0, 1, f}2∪{f!f}. Given a pair (�η1, �η2), we associate a configuration

ω≡ω(�η1, �η2)∈PV (57)

by setting ωv=(η1
v , η

2
v) unless (η1

v , η
2
v)=ff and v is matched to different vertices under

m1 and m2, in which case we set ωv=f!f. For S⊆V and ω∈P let Sω≡{v∈S :ωs=ω}.
Recall that is shorthand for {0, 1, f}; and for η∈{0, 1, f} write

Sη ≡{v ∈S : η1
v = η}, S η ≡{v ∈S : η2

v = η}, Sη ≡Sη ∪S η. (58)
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In the case S=V we further set the following notation:

nω ≡nπω ≡ |Vω|= |{v ∈V :ωv =ω}|, for ω ∈P,

nη ≡nπη ≡ |Vη|= |{v ∈V :ωv ∈Pη}|, for η ∈{0, 1, f}.

In particular, (πω)ω defines a probability measure on P.

If we write M(nα, n%) for the space of empirical measures π̄ on {0, 1}2 with π̄11=%

and π̄1 =α=π̄ 1, then we have the decomposition

E[Z2
nα(n%)] =

∑

π̄∈M(nα,n%)

E[Z2(π̄)]. (59)

Similarly, in the frozen model we have

E[Z2
nα(n%)] =

∑

π∈M(nα,n%)

E[Z2(π)], (60)

where M(nα, n%) is the space of empirical measures π on P such that π11=%, and the

marginal distribution πi on ωi satisfies (for both i=1, 2) that πif6βmax, with normalized

intensity i(π)=πi1+ 1
2π

i
f=α (cf. (34)). Note that π is simply a projection of the measure

h appearing in (55).

We calculate E[Z2(π)] as follows. The pair of frozen configurations �ηi=(ηi,mi) is

encoded by (ω,m) where ω is as above, and m≡(m1,m2). Then

E[Z2(π)] =
∑

ω,m

P(1{(ω,m) is valid on G}) (61)

where the sum is taken over all (ω,m) consistent with π, and the probability is with

respect to the randomness of G. In the literature, this representation sometimes goes by

the name “planted model.” In the original setup, we first sample the random graph and

then consider the configurations valid on the graph. In the planted setup, we first plant

a configuration (ω,m), and then sample the random graph and consider the probability

for the configuration to be valid.

Let us write m⊆G to indicate that the edges of m1,m2 are present in the graph G.

Conditioning on this event gives

E[Z2(π)] =
∑

ω,m

P(m⊆G)P(1{(ω,m) is valid on G} |m⊆G)︸ ︷︷ ︸
G(π)

,

where it follows by symmetry considerations that the second factor is a function of π

alone, so we denote it G(π). Therefore

E[Z2(π)] = G(π)
∑

ω,m

P(m⊆G) = G(π)c(π)jf(π), (62)
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where c(π) denotes the multinomial coefficient

c(π) =

(
n

nπ

)
=

n!∏
ω∈P(nπω)!

,

and jf(π) is the expected number of matchings on the free vertices in ω, where ω∈PV

is an arbitrary fixed configuration with empirical measure π.

We now estimate the terms appearing in (62). It will be useful to let U0f⊆V0f
denote the set of 0f-vertices whose matched partner under m2 does not have spin 1f.

Symmetrically, let Uf0⊆Vf0 denote the set of f0-vertices whose matched partner under

m1 does not have spin f1. Write

u0f≡ |U0f|=n0f−n1f, p0f≡
u0f
n

=π0f−π1f,

uf0≡ |Uf0|=nf0−nf1, pf0≡
uf0
n

=πf0−πf1.

Lemma 4.3. Given π∈M(nα, n%), let jf(π) be the expected number of matchings on

the free vertices in ω, with ω∈PV being an arbitrary fixed configuration with empirical

measure π. Then (2n)−1kf(π)6jf(π)6kf(π), where

kf(π)≡ dnf+nf!f

[d/(d−1)]nf!f

(nff−1)!!(n0f)n1f
(nf0)nf1

(u0f+nf!f−1)!!(uf0+nf!f−1)!!

[nd](nf+nf!f)/2
.

Proof. The upper bound is easy to see: for each vertex in Vf\Vf!f we distinguish one

half-edge to participate in the matching. For each f!f-vertex we distinguish an ordered

pair of half-edges, the first to participate in m1 and the second in m2. There are nf+nf!f

distinguished half-edges in total. If nf!f<2 then jf(π)=kf(π); in general, kf provides an

upper bound for jf because it counts matchings without enforcing the constraint that

two f!f-vertices cannot be matched in both m1 and m2.

For the lower bound when nf!f>2, suppose without loss of generality that uf0>u0f,

and note that this implies that a≡uf0+nf!f must be at least 4—otherwise nf!f=2 while

u0f=uf0=0 so there is no valid matching on the f!f-vertices. Of the half-edges chosen to

participate in either m1 or m2, suppose that all have been matched except for the a half-

edges incident to Uf0∪Vf!f which were chosen to participate in m1. Now match these re-

maining half-edges one pair at a time, but avoid forming pairs already present in m2. The

number of choices for the first (a/2)−1 pairs is >(a−2)(a−4) ... 2>(a−3)!!>(a−1)!!/n.

The procedure succeeds if and only if the final pair remaining is not already present

in m2. To bound the probability that it fails, note that if given a failed matching in

which the final pair is already present in m2, we can choose any of the first 1
2a−1 pairs,

and switch the half-edges in one of two ways to produce a valid matching (Figure 2).

Thus each failed matching maps to a−2 valid matchings.
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(a) Matching of final a half-edges fails because final (leftmost) pair already present in m2.

(b) One valid switching. (c) A distinct valid switching.

Figure 2. Two valid switchings of a failed matching (dashed lines m1, solid lines m2).

In the reverse direction, given the final pair the failed matching can be uniquely

recovered from the valid matching, so each valid matching has at most 1
2nf!f preimages.

Thus the ratio of failed-to-valid matchings is (recalling that a>4) at most

1
2nf!f

a−2
6

(
2− 4

a

)−1

6 1.

This proves that the matching procedure succeeds with probability at least 1
2 , and the

claimed lower bound follows.

Corollary 4.4. For π∈M(nα, n%), let π̄∈M(nα, n%) be defined by

π̄11 =π11, π̄10 =π10+π1f+ 1
2πf , π̄01 =π01+πf1+ 1

2π f,

with the remaining probability going to π̄00. Then c(π)jf(π)=dO(nβmax)c(π̄).

Proof. Let us first compare c(π)jf(π) against

c′′(π)≡
(

n−nf
n00!n01!n10!n11!

)
.

It follows from Lemma 4.3 and Stirling’s formula that

c(π)jf(π)

c′′(π)
=nO(1) d

nf(d−1)nf!f(n)f
[nd](nf+nf!f)/2

(nff−1)!!(u0f+nf!f−1)!!(uf0+nf!f−1)!!

n1f!nf1!u0f!uf0!nff!nf!f!

= dO(nf)
(p0f+πf!f)

(u0f+nf!f)/2(pf0+πf!f)
(uf0+nf!f)/2

(π1f)n1f(πf1)nf1(p0f)
u0f(pf0)

uf0(πff)nff/2(πf!f)nf!f
= dO(nβmax),

(63)

where the last estimate uses that for δ61/e, max{|x log x|:06x6δ}=|δ log δ|. Note also

that, for 06x−δ6x61/e, we have the elementary inequality

|(x−δ) log(x−δ)−x log x|6min{|x log x|, δ|1+log(x−δ)|}. |δ log δ|.

From this it is easily seen that

c′′(π)

c(π̄)
= exp(O(nβmax log d)),

concluding the proof.
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We now return to equation (62) and the calculation of E[Z2(π)]. From now on, let

(ω,m) be a fixed configuration consistent with π. With respect to this fixed configuration,

define J1 to be the indicator that 1-vertices neighbor only 0-vertices. Define J0 to be the

indicator that every 0-vertex is forced, that is, has at least two neighbors with spin 1.

Then

G(π) =E[J1J0].

Now recall the notation of (58), and recall also that we use Z to denote {0, f}. For an

integer K and a pair of integers F≡(F1, F2), define

Z2(π,K, F )≡Z2(π)χK,F , where χK,F ≡1





E(V10, V01) =K,

E(V1Z, V0f)−n1f =F1,

E(VZ1, Vf0)−nf1 =F2




.

That is, K counts edges between V10 and V01, F1 counts non-matching edges between

V10∪V1f and V0f, and F2 counts non-matching edges between V01∪Vf1 and Vf0. Recall

that each 0-variable must have at least two edges going to 1-variables, which implies that

K>2 max{n10, n01}, F1>2n0f−n1f, and F2>2nf0−nf1. We decompose E[Z2(π)] as the

sum over K and F of

E[Z2(π,K, F )] = c(π)jf(π)

G(π,K,F )︷ ︸︸ ︷
E[J1χK,F ]︸ ︷︷ ︸
j1(π,K,F )

E[J0 |J1 = 1 =χK,F ]︸ ︷︷ ︸
j0(π,K,F )

. (64)

For ω∈P write Eω for the number of unmatched half-edges incident to Vω, not counting

half-edges participating in m. Likewise, for η∈{0, 1, f} write Eη for the number of un-

matched half-edges incident to Vη. The total number of unmatched half-edges remaining

after the placement of m is E=
∑
ω Eω=nd−nf−nf!f. Note that if these half-edges are

matched uniformly at random without regard to the model constraints, we would expect

K≈K? and F≈F?, where

K?≡
E10E01

E
and F?≡ (F1, F2)?≡

(
E1ZE0f

E
,
EZ1Ef0

E

)
.

Note K?�nε2(log d)2/d while F1,?�n0fε log d and F2,?�nf0ε log d. In what follows we

will show that the main contribution to E[Z2(π)] comes from (K,F ) near (K,F )?.

Lemma 4.5. Let %=α−ε(log d)/d, where ε>ε� for an absolute constant ε�>0.(10)

Then, for all π∈M(nα, n%), we have

E[Z2(π)] =
∑

K,F

E[Z2(π,K, F )]�
∗∑

K,F

E[Z2(π,K, F )], (65)

(10) The lower bound d0 may depend on ε�, but we will ultimately take ε� to be an absolute
constant, so that d0 is also an absolute constant.
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where ∗ indicates that the sum is restricted to

[1−(log d)−1]K?≡Klbd6K 6Kubd≡ [1+(log d)−1]K?,

(log log d)−1F?≡Flbd6F 6Fubd≡F?(log log d).

Further, for K and F in the restricted regime we have

E[Z2(π,K, F )]

E[Z2(π̄,K)]
= exp(O(nd−1(d−0.49+d−3ε/4))), (66)

with π̄∈M(nα, n%) as defined in Corollary 4.4.

Proof. Recalling (64), we now estimate j1(π,K, F ) and j0(π,K, F ).

Edges from 1-vertices. First assign the E1=n1d−n1f−nf1 unmatched half-edges

from V1:

j1(π,K, F ) =
(E10)K(E01)K

K!

(E0f)F1(E1Z−K)F1

(F1)!

(Ef0)F2(EZ1−K)F2

(F2)!

(E00)E1−2K−F1−F2

[E]E1−K
.

We then estimate

j1(π,K, F ) = dO(nβmax)g1(E,E1,E00)a1(π,K)b1(π,K, F ),

where g1(E,E1,E00)=(E00)E1
/(E)E1

as defined by (14), and

a1(π,K)≡ (E10)K(E01)K/K!

[E00−E1+2K]K
=

(E10)K(E01)K/K!

(n[d−O(log d)])K
, (67)

b1(π,K, F )≡ (E0f)F1
(E1Z−K)F1

(F1)!(E00)F1

(Ef0)F2
(EZ1−K)F2

(F2)!(E00)F2
6 eO[(F1+F2)?]. (68)

Forcing of 0-vertices. Recall from (15) that g0(n, ndζ1 ) denotes the probability, with

respect to a uniformly random assignment of ndζ1 half-edges to n degree-d vertices, that

each vertex is forced (that is, receives at least two of the incoming half-edges). Similarly:

(1) Let g̃0(n, u, ndζ1 ) denote the probability, with respect to a uniformly random

assignment of ndζ1 half-edges to n vertices of degree d−1, that each vertex 16i6u

receives at least two incoming half-edges, while each vertex u<i6n receives at least one.

(2) Writing ζ≡(ζ11, ζ10, ζ01), let g00(n, ndζ) denote the probability, with respect to

a uniformly random assignment of ndζ half-edges to n degree-d vertices, that each vertex

is forced in both coordinates (that is, receives at least two of the incoming half-edges

both from {11, 10} and from {11, 01}).
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Thus j0(π,K, F ) can be written as

j0(π,K, F ) =

(a)︷ ︸︸ ︷
g0(n10,K) g0(n01,K)

(b)︷ ︸︸ ︷
g̃0(n0f, u0f, F1)g̃0(nf0, uf0, F2)

×g00(n00, (n11d, n1Zd−K−n1f−F1, nZ1−nf1−K−F2))︸ ︷︷ ︸
(c)

.

The functions g0 and g00 were estimated in Proposition 2.10. It is clear that g̃0 satisfies

the same estimates as those stated for g0 in Proposition 2.10 (a), so we conclude that

(a)= exp(O((n10+n01)d
−4ε/5)) for K > 9

10K?;

(b)= exp(O((n0f+nf0)d
−4ε/5)) for F > 9

10F?;

(c)= exp(O(nd−1.65)) for K .min{n10, n01}.
(69)

Note also that, if we fix K and vary only F , Proposition 2.10 (a) gives

j0(π,K, F
′)

j0(π,K, F )
= exp(O(‖F ′−F‖1)). (70)

Maximization over K. If K /∈[Klbd,Kubd] then, recalling (67) and (68), we have

j1(π,K, F )

j1(π,K?, F?)
= dO(nβmax) a1(π,K)

a1(π,K?)

b1(π,K, F )

b1(π,K?, F?)
6 dO(nβmax) a1(π,K)

a1(π,K?)

6 dO(nβmax) exp

(
−Ω

(
K?

(log d)2

))
6 exp

(
−Ω

(
nε2

d

))
.

Meanwhile, trivially j061. We have also seen above that j0(π,K?, F?) is not much smaller

than 1 (in the sense that there is a small exponential gap). Thus, for all K /∈[Klbd,Kubd],

E[Z2(π,K, F )]

E[Z2(π,K?, F?)]
=

j1(π,K, F )

j1(π,K?, F?)

j0(π,K, F )

j0(π,K?, F?)
6

j1(π,K, F )

j1(π,K?, F?)

1

j0(π,K?, F?)

6
exp(O[nd−1(d−0.65+d−4ε/5 log d)])

exp(Ω(nε2/d))
� 1.

Maximization over F . Now suppose K∈[Klbd,Kubd] but F1>F1,ubd=F1,?(log log d),

and let F ′≡(F1,?, F2). Then combining (68) with (70) gives

E[Z2(π,K, F )]

E[Z2(π,K, F ′)]
=

b1(π,K, F )

b1(π,K, F ′)
j0(π,K, F )

j0(π,K, F ′)
6

eO(F1)

(log log d)Ω(F1)
� 1.

If instead F1<F1,lbd=F1,?/(log log d) then, letting F ′′≡(2F1,lbd, F2), and applying (68)

and (70), again gives

E[Z2(π,K, F )]

E[Z2(π,K, F ′′)]
6

exp(O(F1,lbd))

exp(Ω[F1,lbd(log log log d)])
� 1.
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The same argument applies if F2 /∈[F2,lbd, F2,ubd], and this concludes the proof of (65).

Comparison with second moment of independent sets. We have

E[Z2(π,K, F )]

E[Z2(π̄,K)]
=

c(π)jf(π)

c(π̄)

j1(π,K, F )

j1(π̄,K, 0)

j0(π,K, F )

j0(π̄,K, 0)
,

where Corollary 4.4 implies that the first ratio is exp(O(nβmax log d)). Let �Eη and �Eω be

defined as Eη and Eω above, but with π̄ in place of π. Then

j1(π,K, F )

j1(π̄,K, 0)
=

g1(E,E1,E00)

g1(�E, �E1, �E00)

a1(π,K)

a1(π̄,K)︸ ︷︷ ︸
exp(O(nβmax log d))

b1(π,K, F )

b1(π̄,K, 0)
.

Recall from (67) that

b1(π,K, F )6 dO(nβmax)

always. For K∈[Klbd,Kubd] and F∈[Flbd, Fubd],

b1(π,K, F )> (log log d)−O(Fubd)> exp(−F?(log log d)2).

Combining this estimate with (69) gives (66), as claimed.

Corollary 4.6. Let %=α−ε(log d)/d, where ε>ε� for an absolute constant ε�>0.

Then

E[Z2
nα(n%)] =E[Z2

nα(n%)] exp(O[nd−1(d−0.49+d−3ε/4)]), (71)

and the ratio E[Z2
nα(n%)]/E[Z2

nα] is exponentially small in n for

%∈ [d−1.1, α−ε�(log d)/d].

Proof. The first assertion (71) follows by combining (59), (60), and the estimate

(66) from Lemma 4.5. We now show that the ratio of E[Z2
nα(n%)] to maxr E[Z2

nα(nr)] is

exponentially small in n for all d−1.456%6α−ε�(log d)/d. Let us begin with an analogous

calculation in the independent set model:

E[Z2
nα(n%)]

E[Znα]
=

∑

π∈M(nα,n%)

c(π)E[J1](
n
nα

)
g1(nd, ndα, 0)

=
∑

π∈M(nα,n%)

c(π)g1(nd, n1d, 0)
∑
K a1(π,K)(

n
nα

)
g1(nd, ndα, 0)

,

with a1(π,K) as defined in (67). We then estimate

g1(nd, n1d, 0) = exp

(
−n

2
1d

2n
+O(nd−2(log d)3)

)
,

∑

K

a1(π,K) = exp

(
n10n01d

n
+O(nd−2(log d)3)

)
,
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so altogether we find

E[Z2
nα(n%)] =E[Znα] exp(ngα(%)+O(nd−2(log d)3)),

where

gα(%)≡αH
(
%

α

)
+(1−α)H

(
α−%
1−α

)
− d

2
(α2−%2).

The function gα has first and second derivatives

g′α(%) = 2 log(α−%)−log %−log(1−2α+%)+d%,

g′′α(%) = d−2(α−%)−1−%−1−(1−2α+%)−1,

so we see that gα is strictly convex on the interval 2/d6%6α−3/d. From the expression

for g′α we see that the (unique) minimizer %� of gα on this interval must lie near (log d)/d,

and so applying Corollary 4.6 gives

sup2d−1.486%6%
�

E[Z2
nα(n%)]

E[Z2
nα(nd−1.48)]

= exp(O(nd−1.49))
sup2d−1.486%6%

�

E[Z2
nα(n%)]

E[Z2
nα(nd−1.48)]

, (72)

sup%
�
6%6α−ε

�
(log d)/d E[Z2

nα(n%)]

E[Z2
nα(nα−nε�(log d)/2d)]

= exp

(
O

(
n

d

))
sup%

�
6%6α−ε

�
(log d)/d E[Z2

nα(n%)]

E[Z2
nα(nα−nε�(log d)/2d)]

.

(73)

We estimate g′α(%)6− 1
10 log d for d−1.85%6100/d, and similarly we have g′α(%)> 1

10 log d

for 1.6(log d)/d6%6α−d−1.25. Thus the quantity in (72) is bounded from above by

exp(n[gα(2d−1.48)−gα(d−1.48)]+O(nd−1.49))6 exp(−nd−1.48),

and the expression in (73) is bounded from above by

exp

(
n

[
gα

(
nα−nε� log d

d

)
−gα

(
nα−nε� log d

2d

)]
+O

(
n

d

))
6 exp

(
−nε� log d

d

)
.

These estimates cover the full interval d−1.456%6α−ε�(log d)/d, implying the result.

4.2. Boundary estimates
Proposition 4.7. There are constants δd, δ̄d>0, depending on d but not on n, such

that

(a) arg max{E[Zn(α−β/2),nβ ]:06β6βmax}>δd;
(b) arg max{Z2

nα(n%):06%6α−ε�(log d)/d}>δd;
(c) for δd6%6α−ε�(log d)/d, any π∈M(nα, n%) maximizing E[Z2(π)] must have

either (i) 1
2βmax6max{πf , π f}6βmax, or (ii) min{{πω}ω∈P∪{p0f, pf0}}>δ̄d, where we

recall that p0f=u0f/n=π0f−π1f, and pf0 is defined symmetrically.
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Proof. The result follows by a series of comparison estimates. The general strategy

is to show that, if some πω is too small, then making a tiny increase in πω gives an

entropy gain which is much larger than any probability costs that may be incurred.

We first address (c), which is the most difficult. Take π∈M(nα, n%), and assume that

max{πf , π f}6 1
2βmax, since otherwise (i) holds and we are done. We must then show

that π satisfies all the properties listed under (ii). For each of these claimed properties,

we will show that if the measure π∈M(nα, n%) fails to satisfy the property, then we

can find another measure π̄∈M(nα, n%) such that E[Z2(π̄)]�E[Z2(π)], proving that π

is not a maximizer. Take δ≡δd≡1/exp(exp(δ)); we will always arrange for ‖π̄−π‖1.δ.
Recall from (62) and (64) that

E[Z2(π)] = cf(π)G(π), where

{
cf(π)≡ c(π)jf(π),

G(π)≡∑K,F j1(π,K, F )j0(π,K, F ).

It follows by crude estimates that for ‖π̄−π‖.δ we have G(π̄)/G(π)=exp(O(nd2δ)). In

what follows we will, given π, find π̄ such that the ratio cf(π̄)/cf(π) is much larger—on

the order of (1/δ)Ω(nδ), reflecting the entropy gain. The estimates are derived from the

expression (63) which we repeat here for convenience:

cf(π)

c′′(π)
=nO(1) d

nf(d−1)nf!f(n)nf

[nd](nf+nf!f)/2

(nff−1)!!(u0f+nf!f−1)!!(uf0+nf!f−1)!!

n1f!nf1! u0f! uf0!nff!nf!f!
. (74)

Note that for ‖π̄−π‖1.δ we have c′′(π̄)/c′′(π)=exp(O(nδ log d)).

(1) Suppose p0f=u0f/n6δ2, and consider the measure

π̄=π+δ (2·1{0f}−1{00, 01}). (75)

(As we assumed that max{πf , π f}6 1
2βmax, we certainly have max{π̄f , π̄ f}6βmax and

therefore π̄∈M(nα, n%).) Then from (74) we have

cf(π̄)

cf(π)
=
dO(nδ)nnδ(u0f!)

(u0f+nδ)!

(n0f+nf!f−1)!!

(nf!f−1)!!︸ ︷︷ ︸
>1

> dO(nδ)

(
1

δ

)nδ
.

Therefore E[Z2(π̄)]�E[Z2(π)], so π is not a maximizer.

(2) If πff6δ2, take π̄=π+δ(2·1{ff}−1{10, 01}). Then (74) gives

cf(π̄)

cf(π)
=
dO(nδ)nnδ(nff!)

(nff+nδ)!

(nff+nδ−1)!!

(nff−1)!!︸ ︷︷ ︸
>1

> dO(nδ)

(
1

δ

)nδ
.

We hereafter assume that min{p0f, pf0, πff}>δ2.
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(3) If πf!f6δ4, take π̄=π+γ(2·1{f!f}−1{0f, f0}) with γ=δ3. Then (74) gives

cf(π̄)

cf(π)
= dO(nγ) (u0f)

nγ(uf0)
nγnf!f!

(nf!f+2nγ)!

(u0f+nf!f)
nγ/2(u0f+nf!f)

nγ/2

nnγ

= dO(nγ) (p0f)
3nγ/2(pf0)

3nγ/2

(γ)2nγ
> dO(nγ)

(
δ3

γ2

)nγ
= dO(nγ)

(
1

γ

)nγ
.

(4) If π1f6δ4, take π̄=π+γ(1{1f, 0f}−2·1{ff}) with γ=δ3. Then (74) gives

cf(π̄)

cf(π)
= dO(nγ)

(
πff
γ

)nγ
> dO(nγ)

(
δ2

γ

)nγ
= dO(nγ)

(
1

γ

)nγ/3
.

This concludes the proof of (c). The proofs of (a) and (b) are similar but much

simpler: for (a), going from (π0, π1, πf)=(1−α, α, 0) to (π̄0, π̄1, π̄f)=(1−α−δ, α−δ, 2δ)
gives a large gain in the first moment for δ sufficiently small (depending on d). For (b),

if π00=0, then there is a large gain going from π to π̄=π+δ(1{00, 11}−1{01, 10}).

We now turn our attention to the maximizer(s) h for Φ2 restricted to ∆2[α]\EQ[α]:

h∈ arg max{Φ2(h′) :h′ ∈∆2[α]\EQ[α]}. (76)

The tuple (π,K, F ) introduced in (64) is simply a projection of h, and up to now we

have proved estimates concerning

lim
n!∞

n−1 logE[Z2(π,K, F )] = max{Φ2(h) :h projects to (π,K, F )}.

Of course, h contains richer information than (π,K, F ), and we now turn to estimates

for this additional information. To this end, let us say that a 0f-variable is of type 01f

if the matched partner of v lies in V1f, and of type 0Zf otherwise. (Recall that we used

U0f to denote the subset of 0Zf-variables.) Recall also from (32) that the 0 variable spin

can be further subdivided into 0r and 0s; and let us further subdivide 01f into 0r,1f and

0s,1f. Let Π be the measure induced by h on the expanded alphabet

Q≡ ({0r, 0s, 1}×{0r, 0s})∪({0r, 0s}×{0r, 0s, 1})∪{ff, f!f}
∪({0Z, 0r,1, 0s,1}×{f})∪({f}×{0Z, 0r,1, 0s,1}).

Thus h projects to Π, which in turn projects to a measure π on P as considered above.

Lemma 4.8. Let h be a maximizer as in (76), with edge marginal h̄. Let Π be the

measure on Q induced by h. Then supp Π=Q, and

h̄(σ1, σ2) = h̄(σ2, σ1)> 0 for any σ1 ∈{10, 1f, 01, f1} and σ2 = 11. (77)
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Proof. Recall from Lemma 4.5 that there are K edges between V01 and V10, where we

have K/|V01|�ε log d�K/|V10| or else the contribution to E[Z2(π)] is negligible. Simply

by the pigeonhole principle this implies that V01 has a positive fraction of variables with

more than two edges going to V10, meaning Π0r1>δ for some constant δ≡δd>0, which

can depend on d but not on n.

On the other hand, conditional on each v∈V01 receiving at least two edges from V10,

these edges are uniformly assigned. (As in (61), we are considering the distribution of

the random graph G given a planted solution (ω,m) consistent with π.) Thus, with this

conditioning, for δ small enough it is exponentially unlikely for fewer than nδ vertices

in V01 to receive exactly two neighbors from V10. We therefore conclude that at any

maximizer of Φ2 we must have Π0s1>δ. By symmetry we also have min{Π10r ,Π10s}>δ.
Similarly, given the matching m, V0f is divided into variables of type 01f and 0Zf. We

saw in Proposition 4.7 (c) that each of these types occupies a positive density of variables.

Each v∈V0f has d−1 remaining half-edges that do not participate in the matching, and

F1 of these will match to half-edges coming from V1Z. These edges are uniformly assigned,

conditioned on the requirement that each 0 is forced by at least two neighboring 1’s. We

saw in Lemma 4.5 that F1/|V0f| equals ε log d up to a factor of log log d, or else the

contribution to E[Z2(π)] is negligible. Thus it follows by the same considerations as

above that Πω>δ for all ω∈({0Z, 0r,1, 0s,1}×{f})∪({f}×{0Z, 0r,1, 0s,1}). The assertion

in (77) is an immediate consequence.

Lastly, recall that V00 receives n%d edges from V11, and �nε log d edges each from

V1Z and VZ1. These edges are uniformly assigned, conditioned on the requirement that

each 0 is forced by at least two neighboring 1’s. Thus, with this conditioning, for δ small

enough it is exponentially unlikely to have |Vηη′ |6nδ for any η, η′∈{0r, 0s}. This proves

the assertion that Π has full support.

Lemma 4.9. Let h be a maximizer as in (76), and let h̄ be the edge marginal. Let

f̄ be the projection of h̄ under the mapping projv of (30). Then

f̄(σ1 ∈R1, σ2 ∈R2)> 0

for all subsets R1 and R2 in the partition {10}, {01}, {ff}, fZ={f0, ff}, 0Z={00, 0f}.

Proof. In the pair vertex-auxiliary model, the spin on a variable-clause edge can

be written as τ≡oi, where o≡(o1,o2) is the pair of variable-to-clause messages, and

i≡(i1, i2) is the pair of clause-to-variable messages. All messages oi and ii take values

in {0, 1, f, f̄}, and we write σi≡oiii. Abbreviate f̄(R1, R2)≡f̄(σ1∈R1, σ2∈R2). From

(32) and the definition (30) of projv, we see that if σ is a valid configuration of the vertex-

auxiliary model, then the tuple of spins σ̇v around a variable v∈V must satisfy one of
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the following:

σ̇v ∈





(10d), if ηv = 1,

Per[(ff, fZd−1)], if ηv = f,

Per[(01k, 0Zd−k)26k6d], if ηv = 0.

Note that f̄(0Z, 0Z)>f̄(00, 00)>0, simply because the vast majority of edges in the graph

must be internal to V00—there are nd/2 edges total, and only O(n log d) can be incident

to {Vω}ω 6=00. We now finish the proof by making deductions from the conclusions of

Lemma 4.5 and Proposition 4.7. The conclusions are summarized in the following table:

10 ff fZ 01 0Z

10 π11> 0 π1f> 0 π1f> 0 K> 0 K 6Kubd

ff πf1> 0 πff> 0 πf!f> 0 πf1> 0 pf0> 0

fZ πf1> 0 πf!f> 0 πff> 0 pf0> 0 pf0> 0

01 K> 0 π1f> 0 p0f> 0 π11> 0 K 6Kubd

0Z K 6Kubd p0f> 0 p0f> 0 K 6Kubd (see above)

where the row index is R1, the column index is R2, and the (R1, R2) entry in the ta-

ble gives the explanation for why f̄(R1, R2) is positive. Most of the entries are self-

explanatory, but we supply some detail for the three entries labeled p0f>0. Recall that

p0f=u0f/n, where u0f=n0f−n1f counts the variables v∈V0f whose partner w under m2

is not in V1f. Therefore, if a denotes the clause joining v to w, on the edge (av) we see

the spins σ1∈0Z, σ2=ff, proving the first assertion that f̄(0Z, ff)>0. Further, at least

two non-matching edges leaving v must lie in V1Z, proving f̄(01, fZ)>0. Finally, recalling

from Lemma 4.5 (see (65)) that the contribution to E[Z2(π)] is negligible for F1>F1,ubd,

we see that most of the edges leaving V0f must go to VZZ, proving f̄(0Z, fZ)>0.

Corollary 4.10. In the setting of Lemma 4.9, supp f̄=(Mv)2.

Proof. As above, use τ≡(σ1, σ2) to denote an edge spin in the pair vertex-auxiliary

model. We can express τ≡oi, where o≡(o1,o2), i≡(i1, i2), and σi≡oiii. If f̄(oi)=0,

then Lemma 4.9 implies f̄(oi′)>0 for some i′ 6=i. Moreover f̄(io)=0 by symmetry of f̄

under R, so another application of Lemma 4.9 gives f̄(io′)>0 for some o′ 6=o, and again

by symmetry under R we have f̄(o′i)>0.

This means that under the configuration τ=(σ1, σ2) we have a positive density

of variable-clause edges (av) with τzv=oi′, as well as of variable-clause edges (bw) with

τbw=o′i. If we cut the edges (av), (bw) and replace them by the switched edges (aw), (bv),

then a valid configuration on the new graph is given by taking τbv=oi and τaw=o′i′,

and keeping the same spins as before on all the other edges.

In preceding arguments (see (61) and the proof of Lemma 4.8), we drew conclusions

about E[Z2(π)] by considering the random graph G given a planted configuration (ω,m)
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consistent with π. We can now draw further conclusions about E[Z2(h)] by considering

a richer planted configuration, as follows. Suppose a variable v has incident spins σ̇v,

and take a half-edge incident to v with outgoing messages oi and incoming messages ii.

Define modified incoming messages mi∈{0, 1, f̄, Z}, i=1, 2, by setting mi=ii unless ii

is free to take either value in {0, f}, in which case we define mi=Z.

Each v∈V has d incident half-edges, and we now plant messages o and m on all

half-edges in a manner consistent with h. We can then consider sampling a random graph

given the planted configuration: if v has an incident half-edge labeled ovmv and w has

an incident half-edge labeled owmw, we can join up the half-edges provided ov∈mw and

ow∈mv. If a denotes the clause joining these half-edges in the resulting graph, then we

will have τav=ovow and τaw=owov.

Now take i, i′, o, and o′ as above, let O be the m-message associated with o and

o′, and let I be the m-message associated with i and i′. In the planted configuration

we have a positive density of half-edges with each of the labels oI, o′I, iO, and i′O.

If we take a uniformly random matching of half-edges that respects these labels, it is

exponentially unlikely to have no matchings between oI and iO. This contradicts the

assumption f̄(oi)=0, and the result follows.

Corollary 4.11. In the setting of Lemma 4.9, supp h̄=M 2.

Proof. We will show that

h̄(σ1, σ2)> 0 whenever σ1 or σ2 lies in {10, 1f}. (78)

It then follows by symmetry of h̄ under R (as in (32)) that

h̄(σ1, σ2)> 0 whenever σ1 or σ2 lies in {01, f1}.

Finally, if neither σi lies in {10,1f,01,f1}, then it follows directly from Corollary 4.10

that h̄(σ1, σ2)>0, which gives the claimed result. Thus it remains to establish (78).

Recall that, by (77), we already know that h̄(σ1, σ2)>0 for σ1∈{10, 1f} and σ2=11.

As before (cf. (61)), consider sampling the random graph G conditioned on the event

that some planted configuration (ω,m) is valid on G. We claim that, for any η∈{0r, 0s}
and any η′, η′′∈{0, f}, it is exponentially unlikely for the planted graph to have fewer than

nδ non-matching edges between V1η′ and Vηη′′ . (As before, δ denotes a small positive

constant, which can depend on d but not n.) To see this, suppose there are no edges

between V1η′ and V0sη′′ , or equivalently that h̄(f1, η′η′′)=0. Since f̄ has full support

by Corollary 4.10, we must have h̄(01, η′η′′)>0, which means that there is a positive

density of edges between v∈V1η′ and w∈V0rη′′ . On the other hand, since Π0sη′′>0 by

Lemma 4.8, there must be a positive density of edges between v′∈V1η′′′ and w′∈V0sη′′
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for some η′′′∈{0, 1, f}. If we cut the edges (vw) and (v′w′), and form the switched edges

(vw′) and (v′w), then (ω,m) remains a valid configuration for the switched graph. It

follows that in the randomly planted graph it is exponentially unlikely that there are

fewer than nδ non-matching edges between V1η′ and V0sη′′ . Exactly the same argument

applies to show that we must also have >nδ non-matching edges between V1η′ and V0rη′′ ,

and this proves that h̄(σ1, σ2)>0 for σ1∈{10, 1f} and σ2∈{00, 0f, f0, ff}.
If we condition on the half-edges incident to V10 and V01 that will participate in the K

edges between them, then any matching of these half-edges is equally likely, so with high

probability there is a positive density of edges between V1η and Vη′1 for all η, η′∈{0r, 0s}.
This implies that h̄(σ1, σ2)>0 for σ1∈{10, 1f} and σ2∈{01, f1}. Similarly, there is a

positive density of edges between V11 and Vηη′ for all η, η′∈{0r, 0s}, which implies that

h̄(σ1, σ2)>0 if both σi∈{10, 1f}. This concludes the proof.

Proposition 4.12. Let h be a maximizer as in (76). Then supph=suppϕ2.

Proof. As we have noted before (Remark 3.8), the functional form of Φ2 implies

that at the optimizer h the functions ḣ and ĥ must be symmetric, with

Φ2(h) =H(ḣ)− 1
2dH(h̄).

For δ≡(δ̇, δ̂) such that h+tδ lies in ∆2[α] for t>0 small, consider

∂log(h; δ)≡ lim
t#0

Φ2(h+tδ)−Φ2(h)

t log(1/t)
= δ̇[(supp ḣ)c]− d

2
δ̄[(supp h̄)c].

To show that h is not a maximizer it suffices to exhibit ∂log(h; δ)>0 for some δ.

In particular, for any h∈∆2[α] and with ⊗h[α] as in the statement of Theorem 4.1,

it follows by convexity of the space ∆2[α] that

h+t(⊗h[α]−h)∈ IND�[α]

for t>0 small. Therefore, if h is a maximizer such that the edge marginal h̄ has full

support supp h̄=M 2, then necessarily supph=suppϕ2, since otherwise we would have

∂log(h;⊗h[α]−h)>0.

The following proposition is established by similar (but much easier) arguments as

for Proposition 4.12, so we omit the proof.

Proposition 4.13. Let h be a maximizer of Φ on ∆[α]. Then supph=suppϕ.

4.3. Near-independence regime

In this subsection we complete our analysis of the near-independence regime IND[α] to

prove the following result.
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Proposition 4.14. The unique maximizer of the restriction of Φ2 to IND[α] is the

product measure ⊗h[α]≡?h[α]⊗?h[α].

Recall that a pair frozen configuration is encoded by (ω,m), with ω as defined in (57)

and m≡(m1,m2). Given the graph G, the configuration (ω,m) corresponds bijectively

to a pair message configuration τ≡(σ1, σ2) on G. We write

(G,ω,m)∈h

to indicate that the corresponding τ has pair empirical measure h (see (56)). We now

study the maximization of Φ2(h) over h∈IND[α]⊂∆2[α] (Definition 4.2). Recall that h

induces a measure π on P, with π∈M(nα, n%) for some %6d−1.1.

Lemma 4.15. Let h be any maximizer of the restriction of Φ2 to IND[α], and let π

be the induced measure on P. Then π must satisfy

π1f
π0fπ10

,
πf1

πf0π01
,
dπff
π0fπf0

,
πf!f
π0fπf0

. 1

as well as π0f6(log d)O(1)d−y.

Proof. Let h be the purported maximizer of Φ2 on IND[α]. Recall from Proposi-

tion 4.12 that h has full support, so min{ḣ, ĥ}>δ for some small positive constant δ,

which depends on d but not on n. We will define a switching operation ς that maps a

valid tuple (G,ω,m)∈h to a set of valid tuples (G′, ω′,m′), with the property that for

each such (G′, ω′,m′) the corresponding h′ still lies in IND[α] and satisfies ‖h′−h‖16δ′,
where δ′6exp(− exp(1/δ)). Let ς−1(G′, ω′,m′) denote the preimage of (G′, ω′,m′) un-

der ς. Suppose we prove under these conditions that

|ς(G,ω,m)|> a and |ς−1(G,ω,m)|6 b.

Then, using P(G)=P(G′), we have

aEZ2(h)6
∑

(G,ω,m)∈h
P(G)

∑

(G′,ω′,m′)

1{(G′, ω′,m′)∈ ς(G,ω,m)}

=
∑

(G′,ω′,m′)

P(G′)
∑

(G,ω,m)∈h
1{(G′, ω′,m′)∈ ς(G,ω,m)}

6 b
∑

h′∈IND[α]

EZ2(h′)6nO(1)bEZ2(h),

(79)

where the last step is by the assumed optimality of h. This gives the bound a6nO(1)b.

To prove the stated bounds we will apply this argument with a few different choices of ς,

which are explained below and illustrated in Figure 3. Recall the notation in (58).
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(1) Figure 3 (a): estimate for 1f-variables.

For ω∈P let Wω denote the subset of variables v∈Vω with no neighbors in V11∪Vf1.
Let Wω(l) be the subset of such variables with exactly l neighbors in V1Z∪VfZ. For ω=00,

note that n−1|W00(l)|>min ḣ>δ for each 26l6d−2 by Proposition 4.12. Moreover, since

|V11∪Vf1|6n(%+βmax), we clearly have |W00|> 3
4n00.

Fix any 26l6d−2. Given (G,ω,m), choose a subset S1f⊆V1f of size nδ′. For each

v∈S1f, select a corresponding w∈W00(l), and write S00(l) for the subset of chosen w.

We require that for each x 6=x′ in S1f∪S00(l) the distance between x and x′ is >5. By

definition, w has exactly l neighbors in V1Z∪VfZ, which we denote w1, ..., wl. Meanwhile

v has d−1 neighbors in V0Z; choose l of these and denote them v1, ..., vl.

Now for each 16j6l, cut the edges (vvj) and (wwj), and replace them by the

switched edges (vwj) and (wvj). Then set ω′v=0f and ω′w=10. Repeat this for each

chosen pair (v, w), then set ω′u=ωu for all u /∈S1f∪S00(l). This defines a map ς satisfying

|ς(G,ω,m)|= [(nδ′)!]−1 exp

(
O

(
nd5(δ′)2

δ

))
((d−1)l|V1f| |W00(l)|)nδ

′
,

|ς−1(G,ω,m)|6 [(nδ′)!]−1 exp

(
O

(
nd5(δ′)2

δ

))
((d−1)l|V10| |W0f(l)|)nδ

′
,

where the factor exp(O(nd5(δ′)2/δ)) accounts for the restriction that the 2nδ′ chosen

vertices must lie at pairwise distance at least five. Applying (79) gives

(|V1f| |W00(l)|)nδ
′
6nO(1) exp

(
O

(
nd5(δ′)2

δ

))
(|V10| |W0f(l)|)nδ

′
,

so we conclude |V1f| |W00(l)|.|V10| |W0f(l)|. Summing over l and rearranging gives

π1f.
|V10| |V0f|
|W00|

.π10π0f.

(2) Figure 3 (b): estimate for ff-variables.

Let F00 denote the set of pairs (x, y)∈(V00)
2 such that x neighbors y, and neither x

nor y has any neighbors in V11. The number of pairs (x, y)∈(V00)
2 such that either x or

y neighbors V11 is 62nd2%, so |F00|> 1
2nd. Let F00(k, l) denote the subset of such pairs

such that x has exactly k neighbors in V1Z, and y has exactly l neighbors in VZ1. It is

clear that we can adjust δ so that |F00(k, l)|>nδ for each 26k, l6d−2.

Now fix some 26k, l6d−2, and choose a subset S00(k, l)⊆F00(k, l) of size nδ′. For

each (x, y)∈S00(k, l) choose a corresponding pair (v, w)∈(Vff)
2 that are matched under

m, and let Sff denote the subset of chosen pairs (v, w). We require that for any two

chosen pairs (u, u′) 6=(u′′, u′′′) in S00(k, l)∪Sff the graph distance between u and u′′ is
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at least five. By definition, x has exactly k neighbors x1, ..., xk with spin 1Z, and y has

exactly l neighbors y1, ..., yl with spin Z1. Choose k neighbors v1, ..., vk of v (none equal

to w), and choose l neighbors w1, ..., wl of w (none equal to v).

Now perform the following operation: cut the edges (vw) and (xy), and form the

switched edges (vy) and (wx). Then cut (vvj) and (xxj), and form (vxj) and (vxj) for

each 16j6k; also cut (wwj) and (yyj), and form (wyj) and (wyj) for each 16j6l. Set

ω′v=ω′y=0f, ω′w=ω′w=f0, and declare (vy) and (wx) to be matched edges (under both

m1 and m2). Repeat this for each of the nδ′ chosen 4-tuples (x, y, v, w), then set ω′u=ωu
for all u∈V not appearing in one of the chosen 4-tuples. This defines a map ς satisfying

|ς(G,ω,m)|= [(nδ′)!]−1 exp

(
O

(
nd5(δ′)2

δ

))
((d−1)k(d−1)l|Vff| |F00(k, l)|)nδ

′
,

|ς−1(G,ω,m)|6 [(nδ′)!]−1 exp

(
O

(
nd5(δ′)2

δ

))
((d−1)k(d−1)l|V0f(k)| |Vf0(l)|)nδ

′
,

where V0f(k) is the subset of variables in V0f with exactly k neighbors in V1Z, and Vf0(l)

is symmetrically defined. Applying (79) gives

|Vff| |F00(k, l)|. |V0f(k)| |Vf0(l)|.

Summing over k and l, and rearranging, gives πff.π0fπf0/d.

(3) Figure 3 (c): estimate for f!f-variables.

Write X00 for the subset of variables in V00 that have no neighbors in V11, and

note that |X00|> 1
2n. Let X00(l) denote the subset of such variables that have exactly l

neighbors in V1Z. Then we have |X00(l)|>nδ for all 26l6d−2.

Now fix some 26l6d−2. Choose a subset Sf!f⊂Vf!f of size nδ′. For each v∈Sf!f,
choose a corresponding x∈X00(l), and let S00(l) denote the set of chosen x. We require

that for all u 6=u′ in Sf!f∪S00(l) the graph distance between u and u′ is at least five.

Let v1 be the matched partner of v under m1. Let x1, ..., xl be the l neighbors of x in

V1Z. Choose l−1 neighbors v2, ..., vl of v (none equal to v1). Cut the edges (vvj) and

(xxj), and form the new edges (vxj) and (xvj). Then set ω′v=0f, ω′x=f0, and declare

(xv1) to be matched under m1. Repeat this for each of the nδ′ chosen pairs (v, x), then

set ω′u=ωu for all u not appearing among any of the chosen pairs (v, x). This defines a

map ς satisfying

|ς(G,ω,m)|= [(nδ′)!]−1 exp

(
O

(
nd5(δ′)2

δ

))
((d−1)l−1|Vf!f| |X00(l)|)nδ

′
,

|ς−1(G,ω,m)|6 [(nδ′)!]−1 exp

(
O

(
nd5(δ′)2

δ

))
((d−1)l−1|Vf0| |X0f(l)|)nδ

′
,
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where X0f(l) denotes the subset of variables in V0f having exactly l neighbors in V1Z.

Applying (79) gives

|Vf!f| |X00(l)|. |Vf0| |X0f(l)|.

Summing over l and rearranging gives πf!f.πf0π0f.

(4) Figure 3 (d): estimate for 0f-variables.

Let Y0f be the subset of variables u∈V0f that have d−1 neighbors in V 0, and exactly

one neighbor v in V0f (which is necessarily matched to u). By the preceding estimates,

V0f accounts for most of V f. The total size of V f is very small compared with V00, so

we have |Y0f|> 1
2 |V0f|. If we let Y01 denote the number of pairs (x, y) such that x∈V01

and y∈VZ0r, then we also have |Y01|> 1
2d|V01|.

Choose a subset S0f of nδ′ pairs (u, v) such that u∈Y0f, and v∈V0f is the matched

partner of u. Let w 6=u be another neighbor of v. For each (u, v) choose a corresponding

pair (x, y)∈Y01, and let S00 denote the subset of chosen pairs. We require that for any

two chosen pairs (u, u′) 6=(u′′, u′′′) in S0f∪S00, the graph distance between u and u′′ is at

least five.

Cut the edges (vw) and (xy) and form the switched edges (vx) and (wy). Set ω′u=01,

ω′v=00, ω′x=01, ω′y=00, and remove (uv) from the matching m2. Repeat this for each

chosen 4-tuple (u, v, x, y), then set ω′z=ωz for all z not appearing in any of the nδ′ chosen

4-tuples. This defines a map ς satisfying

|ς(G,ω,m)|= [(nδ′)!]−1 exp

(
O

(
nd5(δ′)2

δ

))
|Y0f| |Y01|(d−1),

|ς−1(G,ω,m)|6 [(nδ′)!]−1 exp

(
O

(
nd5(δ′)2

δ

))
|V00s | |V00|d.

Applying (79) and rearranging gives π0f.π00s/dπ01. Applying the estimate (23) from

Proposition 2.10, we conclude that π0f6(log d)O(1)d−y, as claimed.

This concludes the proof of the lemma.

Lemma 4.16. Any maximizer of E[Zα−β/2,β ] over β6βmax satisfies

β6
(log d)O(1)

dy
.

Proof. This follows by essentially the same argument used to prove that

π0f6
(log d)O(1)

dy

in Lemma 4.15.
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(d) Switching 0f, ηf for 01, η0.

Figure 3. Switching arguments (Lemma 4.15). In the original (G,ω,m) we choose nδ′ (mu-

tually disjoint) copies of the left panel. The arrow indicates the operation that we apply in

each of these copies to form the image (G′, ω′,m′). Matching edges are indicated by thick
lines; a thick line is marked (1) or (2) if the matching occurs under m1 or m2 only. Changes

made by the switching operation are highlighted in color.
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Corollary 4.17. For d>d0 and αlbd6α6αubd,

(a) any global maximizer of Φ on ∆[α] lies in the interior ∆�[α], and

(b) any global maximizer of Φ2 on IND[α] must be an interior stationary point.

Proof. Proposition 4.13 and Lemma 4.16 combine to give (a), while (b) follows by

combining Corollary 4.6, Proposition 4.12 and Lemma 4.15.

Corollary 4.17 was required in the proof of Theorem 3.11; it also implies (with

Lemma 3.9) that any maximizer h on Φ2 on IND[α] corresponds to a solution h of the

pair Bethe recursions for some λ≡(λ1, λ2) ((40) and (39) with ϕλ2≡ϕλ1⊗ϕλ2 in place of

ϕλ). It remains to identify this Bethe solution with the one corresponding to ⊗h[α]. For

a, b, c, d∈{0, 1, f} let us abbreviate

ĥ
(
ab
cd

)
≡ ĥ(i= i1i2 = ac,o=o1o2 = bd) = ĥ(σ1 = i1o1 = ab, σ2 = i2o2 = cd).

Lemma 4.18. In the setting of Proposition 4.14,

bcd≡
ĥ( 0f

cd )

ĥ( 00
cd )
�d d

−1 for all c, d∈{0, 1, f}.

Proof. By the trivial symmetries (82) we have that b0η=bfη and b00=b10=bf0, so

it suffices to show bσ�dd
−1 for all σ∈{00, 01, 0f, 11, 1f}. For any a, b∈{0, 1, f} we have

fab≡
ĥ( 0a

0b )

ĥ( 00
00 )

=
ĥ( 0a

0b )ĥ( a0
b0 )

ĥ( 00
00 )ĥ( 00

00 )
=
ĥ( a0

b0 ,
0a
0b )

ĥ( 00
00 ,

00
00 )

,

where the intermediate step is by (82) and the last step is by (39) and (40). Thus

f10 =
ĥ
(
01
00

)

ĥ
(
00
00

) =
E(V10, V0r0)

2E(V00, V00)
=
ndπ10−E(V10, V01∪V0f∪V0s0)

nd[1−O((log d)/d)]
=α+O(d−1), (80)

where the last step uses the estimate K6Kubd from Lemma 4.5, together with the crude

bounds E(V, V0f)6ndβmax and E(V10, V0s0)62|V0s0|62n. We also have

f11.π11, fff.πff+πf!f, f0f�π0f, ff0�πf0, (81)

and so we deduce that

b0f = fff/f0f�d d
−1, b00 = ff0�d d

−1, b01 = ff1/f01.πf1/α�d d
−1.

By a similar calculation as for fab, we have

b11 =
ĥ( 0f

11 )

ĥ( 00
11 )

=
ĥ( f0

11 ,
0f
11 )

ĥ( 00
11 ,

00
11 )
6

πf!f
π0f−π1f−πf!f

�d d
−1,

b1f =
ĥ( 0f

1f )

ĥ( 00
1f )

=
E(Vf0s , V01)

E(V00s , V01)
.

E(Vf0s , VZ1)

E(V00s , VZ1)
=
|Vf0s |
|V00s |

�d d
−1,

where the last step uses the estimate (23) from Proposition 2.10 together with the esti-

mates K6Kubd and F6Fubd from Lemma 4.5.
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Lemma 4.19. In the setting of Proposition 4.14,

acd≡
ĥ( 1f

cd )

ĥ( 10
cd )
�d d

−1 for all cd∈{0, 1, f}.

Proof. By the trivial symmetries (82) we have that a0η=afη and a00=a10=af0, so

it suffices to show aσ�dd
−1 for all σ∈{00, 01, 0f, 11, 1f}. For σ=00 we have

a00 =
ĥ
(
1f
00

)

ĥ
(
10
00

) =
E(V10, V0s0)

E(V10, V0r0)
=

E(V10, V0s0)

E(V10, V0 )−E(V10, V01∪V0f)−E(V10, V0s0)
.

By its definition, E(V10, V0 )=ndα. Next note that E(V10, V01∪V0f)6K+F1, which by

Lemma 4.5 is .ndα2. Lastly E(V10, V0s0)62|V0s0|, and it follows by the estimate (23)

from Proposition 2.10 that at the maximizer we must have |V0s0|/n�d1/d. Altogether

this proves a00�d1/d. Next,

a01 =
ĥ
(
1f
01

)

ĥ
(
10
01

) =
E(V10r , V0s1)

E(V10r , V0r1)
6

E(V10r , V0s1)

E(V10, V01)−E(V10, V0s1)−E(V10s , V01)

6
2|V0s1|

K−2|V0s1∪V10s |
�d

1

d
,

where the last estimate uses that K.ndα2 by Lemma 4.5 and |V0s1|/|V01|�d1/d by (23).

By similar considerations (and recalling Z≡{0, f}) we have

a0f =
ĥ
(
1f
0f

)

ĥ
(
10
0f

) =
E(V10, V0sf)

E(V10, V0rf)
6

2|V0sf|
E(V1Z, V0f)−E(V1f, V0f)−2|V0sf|

�d
1

d
.

For subsets S, S′⊆V let us write E(S, S′;mi) for the number of edges between S and S′

that participate in the matching mi. It follows from (23) that

a11 =
E(V1f, V0sf;m

2)

E(V1f, V0rf;m2)
�d

1

d
and a1f =

E(V11, V0s0s)

E(V11, V0r0s)
�d

1

d
,

and this concludes the proof of the lemma.

As already noted above, Corollary 4.17 (b) implies that any maximizer h of Φ2 on

IND[α] corresponds, via (40), to a solution h≡(ḣ, ĥ) of the Bethe recursions (39) with

respect to the factors ϕλ1⊗ϕλ2 , for some parameters (λ1, λ2). We now show that h

satisfies the analogue of (50) for the pair model.

Proposition 4.20. Let h be a maximizer of of Φ2 on IND[α], and let h≡(ḣ, ĥ) be

the corresponding solution of the Bethe recursions. Then ĥ is invariant with respect to

changes in the incoming variable-to-clause message :

ĥ(io) = ĥ(i′o),

where i, i′∈{0, 1, f}2 are variable-to-clause messages, and o∈{0, 1, f}2 is the clause-to-

variable message.
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Proof. We apply the same argument as in the proof of Proposition 3.10, that is, we

shall argue that the effect of changing the message i incoming to T́ does not percolate

down the tree. As in the first moment we have some trivial symmetries:

(i) ĥ(io) is invariant under changing ii between 0 and f; and

(ii) if oi = 0 then ĥ(io) is invariant under any change in ii.
(82)

It remains now to show that ĥ(io) is invariant under changing ii between 0 and 1. As

in the proof of Proposition 3.10, this follows by showing that a certain propagation is

subcritical, for which it suffices to have

aσ ≡
ĥ( 1f

σ )

ĥ( 10
σ )
�d d

−1 and bσ ≡
ĥ( 0f

σ )

ĥ( 00
σ )
�d d

−1 for all σ ∈M .

This was done in Lemmas 4.18 and 4.19, so the result follows.

It follows from Proposition 4.20 that we have (cf. (50) and (51))

9ĥio= qo for a measure q on {0, 1, f}2, (83)

where q solves the recursions

zq11=λ1λ2(qZZ)
d−1, zq1Z=λ1[(qZ )d−1−(qZZ)

d−1],

zqZ1=λ2[(q Z)
d−1−(qZZ)

d−1], zqZZ= 1−(qZ )d−1−(q Z)
d−1+(qZZ)

d−1.
(84)

Proof of Proposition 4.14. Write α≡y(log d)/d. By Proposition 4.20,

qZ1
qZZ

=
ĥ
(
00
01

)
+ĥ
(
0f
01

)

ĥ
(
00
00

)
+ĥ
(
00
0f

)
+ĥ
(
0f
00

)
+ĥ
(
0f
0f

) .

By Lemma 4.18 and (80), this equals α+O(d−1). The same argument applies for q1Z, so

qZ1
qZZ

=α+O(d−1) =
q1Z
qZZ

. (85)

Substituting (85) into (40) gives

%

α−% =
|V11|
|V10|

=
λ2(qZZ)

d

(qZ )d[1+O(d−y)]
.

On the other hand, substituting (85) into (84) gives

q11
q1Z

=
λ2(qZZ)

d−1

(qZ )d−1[1+O(d−y)]
=

1+O(d−y)

qZZ/qZ

|V11|
|V10|

� %

α
,
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and in combination with (85) this shows that the probability measure q is mostly sup-

ported on ZZ, with q1Z=α+O(d−1)=qZ1 and q11�%. The normalization z in (84) thus

satisfies

z= 1+zq1Z+zqZ1+O(d−y+%).

Consequently, if we let ε be defined by qZZ=(1+ε)qZ q Z, we have

|ε|=
∣∣∣∣

(zqZZ)z

(zqZ )(zq Z)
−1

∣∣∣∣=
∣∣∣∣
[1+O(d−y)][1+zq1Z+zqZ1+O(d−y+%)]

(1+zqZ1)(1+zq1Z)
−1

∣∣∣∣�d
1

d
.

Substituting into (84) gives, with the abbreviations X1≡(qZ )d−1 and X2≡(q Z)
d−1,

zq11 = (λ1X1)(λ2X2)+O(%dε), zq1Z =λ1X1(1−X2)+O

(
αdε

dy

)
,

zqZ1 = (1−X1)λ2X2+O

(
αdε

dy

)
, zqZZ = (1−X1)(1−X2)+O

(
dε

d2y

)
.

All the additive errors above are O(d−0.05ε), so the recursion gives

qZZ
qZ

=
[1+O(d−0.05ε)](1−X2)

1−X2+λ2X2
and

1

q Z

=
1−X2+λ2X2

[1+O(d−0.05ε)](1−X2)
.

Recalling the definition of ε this implies ε=O(d−0.05ε), so the only possibility is that

ε=0, meaning qZZ=qZ q Z. Substituting into the recursion (84) again proves that q must

be a product measure over {0, 1, f}2, and its marginal on the ith coordinate (for i=1, 2)

must satisfy the recursion (48) with respect to λi. By the one-to-one correspondence

between α and q in the regime considered (see Theorem 3.11), we conclude h=⊗h[α] as

claimed.

4.4. A-priori rigidity estimate

In this section we analyze near-identical frozen model configurations to prove the follow-

ing result.

Proposition 4.21. The contribution to E[(Znα)2] from EQ[α] is �dEZnα as n!∞.

The proof of Proposition 4.21 is based on an a-priori estimate showing that frozen

model configurations are sufficiently rigid that one typically does not find a large cluster

of configurations near a given one. For application in our proof of the tightness of MISn

(Remark 1.1), we shall prove this estimate for graphs drawn from the following slight

generalization of the configuration model which allows for some “dangling” half-edges

(see Figure 4).
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|R| = n− y =
∑

ω rω |Y| = y =
∑

ω yω

B (degree 1)

V = R∪ Y = V= ∪ V 6= (degree d)

|R 6=| = ρ |Y 6=| = ε

F(V 6=) =
1
2γF(V=, V 6=) = R |F ∂ | = y

half-edges Y

Figure 4. Graph G∂ with dangling half-edges.

Let V be a set of n vertices, each incident to d half-edges. Let Yext be a disjoint set

of y.d log n vertices, each incident to a single half-edge. Let V ∂≡V ∪Yext, and let G∂ be

the graph formed on V ∂ by taking a random matching of the nd+y available half-edges.

We will equivalently regard G∂ as a bipartite graph: G∂=(V ∂ , F ∂ ,E∂) where F ∂ is a

set of 1
2 (nd+y) clauses, and E∂ denotes the variable-clause edges. We write F ext for

the clauses incident to Yext, Yint for the variables in V that are incident to F ext, and

R≡V \Yint.

Definition 4.22. An auxiliary configuration on G∂ is a message configuration σ∈ME∂

such that the configuration of messages incident to any variable or clause in G∂\Yext

is valid (appears in suppϕ), and the total density of f-variables is 6βmax. A frozen

model configuration �η on G∂ is a spin configuration η∈{0, 1, f}V ∂ together with a subset

m⊆F , obtained by applying projv (see Proposition 3.5) to an auxiliary configuration on

G∂ . Thus there is a one-to-one correspondence σ$�η between the auxiliary and frozen

models on G∂ .

As in (57), we associate with a frozen configuration pair �ηi≡(ηi,mi) (i=1, 2) on G∂

a spin configuration ω≡ω(�η1, �η2)∈PV ∂ . As in (58), for ω∈P and S⊆V ∂ we write Sω

for the subset of vertices in S with spin ω. We will also write S 6= for the subset of vertices

in S with spin in P 6=≡P\{00, 11, ff}, and S=≡S\S 6=. Let

%≡ |R 6=|, ε≡ |Yext
6= |, ∆≡ |V 6=|= |R 6=∪Yext

6= |=%+ε.

As before, for S, S′⊆V ∂ write E(S, S′) for the number of edges joining S to S′. We shall

abbreviate E(S)≡E(S, S).

Write Y ⊆E∂ for the variable-clause edges joining Yint to F ext. In the following, we

fix boundary conditions τY ≡(σ1
Y , σ

2
Y )∈M 2Y . Let O2,∂ [π|τY ] denote the set of pair

frozen model configurations on G∂ which are consistent with τY and have empirical
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measure πω=|Rω|/|R| when restricted to R. Let

Z2,∂ [π |τY ]≡
∣∣O2,∂ [π |τY ]

∣∣.

We decompose

Z2,∂ [π |τY ] =
∑

A>0

Z2,∂
A [π |τY ] =

∑

A>0

∣∣O2,∂
A [π |τY ]

∣∣ (86)

where O2,∂
A [π |τY ]⊆O2,∂ [π|τY ] is the subset of configurations having

1
2γ≡ E(V 6=) =%+A

internal edges among the unequal spins.(11) We shall compare below the expectation of

Z2,∂
A [π |τY ] with that of Z∂ [π1 |σ1

Y ]—the number of frozen model configurations on G∂

which are consistent with σ1
Y and have empirical measure given by the projection π1 of

π onto the first coordinate. Note that Z∂ [π1 |σ1
Y ]=

∣∣proj1(O2,∂ [π |τY ])
∣∣, where proj1 is

the projection mapping (�η1, �η2) 7!�η1.

Proposition 4.23. There exists a small absolute constant ε>0 such that for d>d0,

and any empirical measure π on P whose projections π1 and π2 have normalized inten-

sities (cf. (34)) i(πi)=πi1+ 1
2π

i
f∈[αlbd, αubd ] (though not necessarily equal),

E[Z2,∂ [π|τY ]]6
E[Z∂ [π1 |σ1

Y ]]+E[Z∂ [π2 |σ2
Y ]]

d(%−ε)/10

provided ∆≡%+ε6nε(log d)/d.

Proof. We will compute the ratio

R1
A[π |τY ]≡ E[Z2,∂

A [π |τY ]]

E[Z∂ [π1 |σ1
Y ]]

.

In what follows we will refer to the original d-regular graph model, although we keep

the (equivalent) bipartite version in mind. Assume that the edges between V and Yext

are assigned, and that we are given ω∈PV ∂ which is consistent with τY , and whose

restriction to R has empirical measure π. Write Eω for the number of half-edges incident

to Vω that are not matched to a half-edge from Yext; the total number of such half-edges

is E≡∑ω Eω=nd−y.

Half-edges from V 6=. We first estimate the probability that E(V 6=, V11)=0. To this

end, define

DA,B(ω)≡
{
E(V 6=) = 1

2γ≡%+A, E(V 6=, Vff) =B, and E(V 6=, V11) = 0
}
.

(11) It is straightforward to see that A>0.
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Let R≡E(V=, V 6=)=E 6=−γ. Then, recalling the double factorial notation,

P[DA,B(ω)]6
(E 6=)γ (γ−1)!!

γ! [E]γ/2︸ ︷︷ ︸
6eO(γ)(∆2d/nγ)γ/2

· (Eff+E00)R
[E−γ]R︸ ︷︷ ︸

6dO(∆ε)e−E11R/E

·
(
R
B

)
(Eff)B(E00)R−B
(Eff+E00)R︸ ︷︷ ︸
6dO(∆ε)(RB)βB

, (87)

where β≡πf . Altogether we find

P[DA,B(ω)]6
eO(A)dO(∆ε)

exp(E11R/nd)

(
∆2d

nγ

)γ/2(
R

B

)
βB .

Matchings on f-vertices. Let R′≡E 6=+R=2E 6=−γ62∆d denote the number of half-

edges which are either incident to V 6= or matched with a half-edge from V 6=. Let Uff

denote the subset of vertices in Vff not matched to Yext under τY . Conditioned on

DA,B(ω), the expected number of matchings on Uff is

( ∏

v∈Uff

|∂v\(Yext∪V 6=)|
)

(|Uff|−1)!!

[E−R′]|Uff|/2
.

In contrast, suppose we consider the first coordinate only: let Uf be the subset of vertices

in Vf not matched to Yext under σ1
Y . The expected number of matchings on Uf is

( ∏

v∈Uf

|(∂v)\Yext|
)

(|Uf |−1)!!

[E]|Uf |/2
.

Let J B
f denote the ratio between these two. Then for all B we have

J B
f 6 e

O(∆)

(
1

dβ

)Ξf/2

where Ξf≡ |Uf |−|Uff|. (88)

Edges from 1-vertices. Suppose we are given ω and a valid matching on Uff. Con-

ditioning on DA,B(ω), the probability to correctly assign all half-edges leaving V11 is

E11−1∏

i=0

E00−(R−B)−i
E=−R−|Uff|−1−2i

.

In contrast, if we consider the first coordinate only, the probability to correctly assign

all half-edges leaving V1 is
E1 −1∏

i=0

E0 −i
E−|Uf |−1−2i

.

Let J B
1 be the ratio between these two; then

J B
1 6 d

O(∆ε) exp(E11(E 6=+B)/nd)

exp(E11(E0 −E00)/nd)
. (89)
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Forcing of 0-vertices. It remains to address the constraint that each 0 is forced

by two neighboring 1’s. Let J0 be the ratio of the conditional probability that all

vertices in V00 are forced, with the conditional probability that all vertices in V0 are

forced in the first coordinate. Fix 0<ϑ<1 and define independent random variables

Xi∼Bin(|∂i\Yext|, ϑ) with joint law Pϑ. Then

J B
0 6

Pϑ(Xi+|∂i∩Yext
1 |> 2 for all i∈V00\∂V 6= |

∑
i∈V00\∂V 6= X

i =E11)

Pϑ(Xi+|∂i∩Yext
1 |> 2 for all i∈V0 |

∑
i∈V0

Xi =E1 )
,

where we have ignored the forcing constraint on the vertices in V00 neighboring V 6=. A

small variation on the proof of Proposition 2.10 gives J0=eO(∆). Combining with (87),

(88) and (89), and recalling that E 6=−R=γ=2(%+A), we see that

∑

B

P(DA,B(ω))J B
f J B

1 J B
0 6

eO(A)dO(∆ε)

exp(∆0(dα))

(
1

dβ

)Ξf/2(∆2d

nγ

)γ/2
, (90)

where α≡π1 and ∆0≡|V0 |−|V00|.
Ratio of combinatorial factors. Finally, accounting for the permutations of ω, versus

the permutations in the first-coordinate projection, we have

C ≡
( |R|
%, |R00|, |R11|, |Rff|

)/( |R|
|R0 |, |R1 |, |Rf |

)
6 eO(∆)

(
n

%

)%
α%1β%f ,

where %η≡|Rη |−|Rηη|. Combining with (90) (and recalling 1
2γ=%+A) gives

R1
A[π |τY ]6C

∑

B

P(DA,B(ω))J B
f J B

1 J B
0

6 eO(A)dO(∆ε)

(
∆2

%γ

)%(
∆2d

nγ

)A
d%α%1β%f

exp(∆0(dα))(dβ)Ξf/2
.

(91)

Recalling that ∆=%+ε, we can bound
(

∆2

%γ

)%
=

(
(%+ε)2

%γ

)%
6 eO(∆)

(
%

γ

)%
.

Next, observe that Ξf6%f+δf for δη≡|Yint
η |−|Yint

ηη |. Therefore, using α> 3
2 (log d)/d and

β6βmax, we have

d%α%1β%f

exp(∆0(dα))(dβ)Ξf/2
6

(log d)O(∆)

exp
([(

3
2∆0−%0

)
+ 1

4 (%f−δf)
]

log d
) .

Recall that |R1f|6|V0f| and |Rf1|6|Vf0|. By symmetry, assume that |V01∪V0f|>|V10∪Vf0|.
Then

3
2∆0−%0 = 1

2∆0+(∆0−%0)> 1
2∆0 = 1

2 |V01∪V0f|> 1
4 |V01∪V0f∪V10∪Vf0|

> 1
8 |V01∪V0f∪V10∪Vf0|+ 1

8 (%−|R1f|−|Rf1|−|Rf!f|)
> 1

8 (%+|V0f|−|R1f|+|Vf0|−|Rf1|−|Rf!f|)> 1
8 (%−|Rf!f|),
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so combining with %f−δf>%f−ε gives, for some absolute constant C,

∑

A>0

R1
A[π |τY ]6

dO(∆ε)(log d)O(∆)

d(%−ε)/8
∑

A>0

(
%

γ

)%(
C∆2d

nγ

)A
6
dO(∆ε)(log d)O(∆)

d(%−ε)/8 .

To see the last inequality, note that the sum over A>0 is clearly .1 if C∆2d62nγ. For

C∆2d>2nγ, recalling that %6 1
2γ and optimizing over γ gives

(
%

γ

)%(
C∆2d

nγ

)A
6 dO(∆ε).

It follows that there exists a small absolute constant ε such that

∑

A>0

R1
A[π |τY ]6 d−(%−ε)/10 for ∆ =%+ε6

nε log d

d
,

implying the result.

Proposition 4.21 now follows from Proposition 4.23 applied to our original random

graph Gd,n with no dangling half-edges. Theorem 4.1 then follows by combining Propo-

sitions 4.14 and 4.21.

5. Negative-definiteness of free energy Hessians

Theorem 5.1. For d>d0, the following hold uniformly over αlbd6α6αubd:

(a) EZnα=[1+on(1)] C (α)n−1/2 exp(nφ(α)), for a smooth function C (α), and

(b) E[(Znα)2]�d(EZnα)2+EZnα.

Proposition 5.2. For d>d0, the Hessians HΦ(?h[α]) and H(Φ2)(⊗h[α]) as func-

tions on ∆[α] and ∆2[α], respectively, are negative-definite.

The calculation of this section is similar to that of [24, §7]. Let h∈∆�[α] with

ḣ and ĥ both symmetric, and let δ be any signed measure on suppϕ (not necessarily

symmetric) with h+sδ∈∆�[α] for sufficiently small |s|. Then

(∂s)
2Φ(h+sδ)|s=0 =−〈(δ̇/ḣ)2〉ḣ− 1

2d〈(δ̂/ĥ)2〉ĥ+d〈(δ̄/h̄)2〉h̄, (92)

where a/b denotes the vector given by coordinate-wise division of a by b, and 〈 ·〉h de-

notes integration with respect to measure h, e.g. 〈(δ̄/h̄)2〉h̄=
∑
σ δ̄(σ)2/h̄(σ). Consider

maximizing (92) over δ subject to fixed marginals δ̄. We find that the optimal δ̂ will be

symmetric, with δ̂(σ,Rσ)=δ̄(σ)=δ̄(Rσ). The optimal δ̇ will be of the form

dδ̇(σ̇) = ḣ(σ̇)

d∑

i=1

χ̇σi ,
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with χ̇ chosen to satisfy the margin constraint—which, after a little algebra, becomes

the system of equations
�H−1δ̄= d−1 [I+(d−1)Ṁ ] χ̇, (93)

where �H≡diag(h̄) and Ṁ denotes the stochastic matrix with entries

Ṁσ,σ′ ≡
1

h̄(σ)

∑

σ̇

ḣ(σ̇)1{(σ1, σ2) = (σ, σ′)}. (94)

If such χ̇ exists, then the minimal value of 〈(δ̇/ḣ)2〉ḣ subject to marginals δ̄ is 〈δ̄, χ̇〉
(which clearly remains invariant under translations of χ̇ by vectors in the kernel of

I+(d−1)Ṁ).

Throughout the following we take h to be ?h[α] (first moment) or ⊗h[α] (second

moment).

Lemma 5.3. For d>d0, the eigenvalues of Ṁ counted with geometric multiplicity

are

eigen(Ṁ) = (1, 1, 1, 0, 0, 0,−(d−1)−1, λ1, λ2),

where |λ1|6d−1.9 and 0<|λ2−(d−1)−1|6d−1.2. The right eigenvector x̄ corresponding

to the eigenvalue −(d−1)−1 is given by x̄σ=(d−1)1{σ=11}−1{σ=f0 or ff}.

Proof. The matrix Ṁ is h̄-reversible and block diagonal with blocks Ṁ1 acting on

{10, 1f}, Ṁf acting on {11, f0, ff}, and Ṁ0 acting on {f1, 01, 00, 0f}. We compute

Ṁ1 =




10 1f

10
q0

1−q1
qf

1−q1
1f

q0
1−q1

qf
1−q1


 and Ṁf =




11 f0 ff

11 0
q0

1−q1
qf

1−q1
f0

1

d−1

d−2

d−1

q0
1−q1

d−2

d−1

qf
1−q1

ff
1

d−1

d−2

d−1

q0
1−q1

d−2

d−1

qf
1−q1



,

so eigen(Ṁ1)={1, 0} and eigen(Ṁf)={1, 0,−(d−1)−1}, and the right eigenvector of Ṁf

corresponding to eigenvalue −(d−1)−1 is (d−1,−1,−1). We also compute

Ṁ0 =




f1 01 00 0f

f1
1

d−1
0

d−2

d−1

q0
1−q1

d−2

d−1

qf
1−q1

01 0 ε+q1(1−ε) q0(1−ε) qf(1−ε)
00 ε q1(1−ε) q0(1−ε) qf(1−ε)
0f ε q1(1−ε) q0(1−ε) qf(1−ε)



,
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where (using h̄-reversibility of Ṁ , or alternatively the frozen model recursion)

ε=
(d−2)(q1)

2(1−q1)d−3

1−[1+(d−2)q1](1−q1)d−2
=
d−2

d−1

q1qf
(1−q1)q0

� q1qf.

Write �H0 for �H restricted to {f1, 01, 00, 0f}. Then the symmetric matrix �H
1/2
0 Ṁ0

�H
−1/2
0

has spectral decomposition
∑4
i=1 λiei(ei)

t with {λi}=eigen(Ṁ0). We can take

λ3 = 1, e3 = h̄1/2 and λ4 = 0, e4 = (0, 0, qf(1−q1)−1,−q0(1−q1)−1)1/2.

For the other two eigenvalues, consider the following “almost” eigenvalue equations:

v1 = ((d−2)q1, 1−q1,−q1,−q1), Ṁ0v1 = ε(0, 1−q1, (d−2)q1, (d−2)q1),

so v1 is almost in the kernel of Ṁ0; and

v2 = (1, 0, 0, 0), (Ṁ0−(d−1)−1I)v2 = ε(0, 0, 1, 1),

so v2 is almost an eigenvector of Ṁ0 with eigenvalue (d−1)−1. We have 〈�H1/2
0 v1, e4〉=0,

so �H
1/2
0 v1=

∑
i aiei with a4=0. We then calculate

∑
i(λiai)

2

‖a‖2 =
‖�H1/2

0 Ṁ0v1‖2

‖�H1/2
0 v1‖2

=
ε2q0q1(1−q1)[q1+(1−q1)/(d−2)2]

q1[qf(q1)2+q0(1−q1)/(d−2)2]

� q1(dε)2� q1(qf log d)2.

From Theorem 3.1 we have λ>d0.59, and substituting into (48) gives

qf�
d(q1)

2

λ
6 d−1.58.

It then follows from the above that at least one of the other two eigenvalues, say λ1,

must have absolute value 6d−2. Similarly, representing �H
1/2
0 v2=

∑
i biei gives

∑
i(λi−(d−1)−1)2b2i∑

i b
2
i

=
‖�H1/2

0 (Ṁ0−(d−1)−1I)v2‖2

‖�H1/2
0 v2‖2

=
ε2q0(1−q1)

q1qf
� q1qf6 d−2.5,

so the last eigenvalue λ2 must satisfy |λ2−(d−1)−1|6d−1.2. Note however that

det[Ṁ0−(d−1)−1I] =
(d−2)ε

(d−1)3
[d(q1+ε−q1ε)−(1+q1+ε−q1ε)]� εdq1

so λ2 does not exactly equal (d−1)−1.
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Proof of Proposition 5.2. Consider the first moment Hessian HΦ(?h[α]) on the

space ∆[α]. For convenience, rewrite (93) as �H−1/2δ̄=Ṡ�H1/2χ̇ with Ṡ being the sym-

metric matrix

Ṡ≡ d−1�H1/2[I+(d−1)Ṁ ]�H−1/2.

By the requirement that both h and h+ηδ lie in ∆�[α] for |η| small, the permissible

vectors δ̄ span a linear subspace �W . In particular, necessarily 〈δ̄, x̄〉=0 for the vector x̄

which was determined in Lemma 5 to span the kernel of L̇≡d−1[I+(d−1)Ṁ ]. For such

δ̄, (93) is easily solved by considering the invariant action of Ṡ on the subspace (�H1/2x̄)⊥:

if U∈R9×8 with columns giving an orthonormal basis for this subspace, then for all δ̄ or-

thogonal to x̄ (in particular, for all δ̄∈�W ) we may define �H1/2χ̇=U(U tṠU)−1U t�H−1/2δ̄,

consequently the maximal value of (∂η)2Φ(h+ηδ)|η=0 subject to marginals δ̄ is

−〈δ̄, χ̇〉+ 1
2d〈(δ̄/h̄)2〉h̄ =−(U t�H−1/2δ̄)tQ̇(U t�H−1/2δ̄), Q̇≡ (U tṠU)−1− 1

2dI.

The eigenvalues of Q̇ are given by

d

1+(d−1)λ
− d

2
for λ∈ eigen(Ṁ)\{−(d−1)−1},

so Q̇ is non-singular since we saw in Lemma 5 that (d−1)−1 /∈eigen(Ṁ). Since we proved

in Theorem 3.11 that ?h[α]∈∆�[α] is the global maximizer of Φ on ∆[α], the restriction

of the above quadratic form to the space of permissible δ̄ (formally, to U t�H−1/2�W ) must

be negative semi-definite, so by non-singularity we see that it is in fact negative-definite.

The proof for the second moment Hessian H(Φ2)(⊗h[α]) on ∆2[α] is similar: first

observe that ⊗h[α]=?h[α]⊗?h[α] implies Ṁ2=Ṁ⊗Ṁ , with eigenvalues

{λλ′ :λ, λ′ ∈ eigen(Ṁ)}.

The kernel of d−1[I+(d−1)Ṁ2] is spanned by vectors x̄⊗ȳ or ȳ⊗x̄ with x̄ as before and

ȳ any right eigenvector of Ṁ2 with eigenvalue 1, and again the permissible measures δ̄

must be orthogonal to the kernel. Negative-definiteness then follows as above from the

observation that (d−1)−1 /∈eigen(Ṁ2).

Lemma 5.4. For any σ, σ′∈M there exists a signed integer measure δ≡δσ-σ′=(δ̇, δ̂)

with supp δ⊆suppϕ such that

Ḣ δ̇−Ĥ δ̂= 1σ−1σ′ .

The analogous condition holds for the support of the second-moment factors ϕ2.
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Proof. Suppose τ=io and τ ′=io′ where i is the variable-to-clause (pair) message

and o,o′ are the clause-to-variable (pair) messages. By the subcriticality established in

the proof of Proposition 4.20, there exist configurations τ and τ ′ on T́ , with spins τ and

τ ′, respectively, on the root half-edge é, such that the configurations τ and τ ′ concide

below some depth l. Take U=(VU , FU , EU ) to be the depth-l subtree of T́ . Assume that

the depth-l vertices of U are variables, and let δU denote the half-edges incident to these

leaf variables. Use τ to define a signed measure a≡(ȧ, â):

ȧ(τ̇) =
∑

v∈VU
1{τ̇v = τ̇} and â(τ̂) =

∑

a∈FU
1{τ̂a = τ̂}.

If we take the difference of Ḣȧ and Ĥâ, we see that internal edges of U will cancel, so

Ḣȧ−Ĥâ= 1τ−
∑

u∈δU
1τu .

Similarly, use τ ′ to define a signed measure a′≡(ȧ′, â′). Since τ and τ ′ agree on δU , we

have

Ḣȧ′−Ĥâ′= 1τ ′−
∑

u∈δU
1τu .

It follows that δ≡a−a′ satisfies the requirements for δτ−τ ′ .

Now define a graph on M 2 by placing an edge between τ and τ ′ if and only if

there exists δτ−τ ′ satisfying the required properties. The above proves that τ and τ ′ are

connected if they differ only in the clause-to-variable message. By the same considerations

of subcriticality, τ and τ ′ are also connected if they differ only in the variable-to-clause

message. Thus τ=io is connected to τ ′=io′ which in turn is connected to τ ′′=i′o′, so

the entire graph is connected (hence complete), as required.

Note that Lemma 5.4 implies that the matrix H∆ of Definition 3.7 is indeed surjec-

tive.

Proof of Theorem 5.1. Recalling Definition 3.7, EZnα is the sum of EZ(h) over

probability measures h≡(ḣ, ĥ) on suppψ such that g≡(ġ, ĝ)≡
(
nḣ, 1

2ndĥ
)

is integer-

valued, and lies in the kernel of H∆≡( Ḣ −Ĥ ) with (non-normalized) intensity i(g)=nα.

Let E[Z?nα] denote the restriction of this sum to measures g within a euclidean ball of ra-

dius n1/2 log n centered at ?g[α]. Then Proposition 5.2 implies EZnα=[1+on(1)]E[Z?nα].

Lemma 5.4 shows that the integer matrix H∆ defines a surjection

H∆:L′−! {δ̄ ∈RM : 〈δ̄, 1〉= 0},

where

L′≡{δ ∈Rsuppψ : 〈δ̇, 1〉= 〈δ̂, 1〉= i(δ) = 0}.
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Thus we can conclude that L≡L′∩(kerH∆)∩Zsuppψ is an (ṡ−2)-dimensional lattice

with spacings �d1. The measures g contributing to E[Z?nα] are given by the intersection

of the euclidean ball {‖g−?g[α]‖6n1/2 log n} with an affine translation of L. The ex-

pansion (36) then shows that n1/2 E[Z?nα] defines a convergent Riemann sum, implying

the result for EZnα. The same argument implies that the contribution to the second

moment from measures in IND[α] is �dn−1 exp(n [Φ2(⊗h[α])])�d(EZnα)2, so combining

with Theorem 4.1 and Proposition 4.21 gives the result for E[(Znα)2].

Proof of Theorem 2. Recall that part (a) follows directly from Theorem 3.1. The

upper bound in part (b) follows from Theorem 5.1 (a) together with Markov’s inequality.

The lower bound in part (b) follows from Theorem 5.1 (b) together with (5).
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