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1. Introduction.

Large random matrices appear in many different fields, including quantum mechanics,
quantum chaos, telecommunications, finance, and statistics. As such, understanding how
the asymptotic properties of the spectrum depend on the fine details of the model, in
particular on the distribution of the entries, soon appeared as a central question.

An important model is the one of Wigner matrices, that is Hermitian matrices
with independent and identically distributed real or complex entries. We will denote

by N the dimension of the matrix, and assume that the entries are renormalized to
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have covariance N~!. It was shown by Wigner [68] that the macroscopic distribution
of the spectrum converges, under very mild assumptions, to the so-called semi-circle
law. However, because the spectrum is a complicated function of the entries, its local
properties took much longer to be revealed. The first approach to the study of local
fluctuations of the spectrum was based on exact models, namely the Gaussian models,
where the joint law of the eigenvalues has a simple description as a Coulomb Gas law [52],
[63], [64], [31], [19]. There, it was shown that the largest eigenvalue fluctuates around
the boundary of the support of the semi-circle law in the scale N~=2/3, and that the limit
distribution of these fluctuations were given by the so-called Tracy—Widom law [63], [64].
On the other hand, inside the bulk the distance between two consecutive eigenvalues
is of order N1 and the fluctuations at this scale can be described by the sine-kernel
distribution. Although this precise description was first obtained only for the Gaussian
models, it was already envisioned by Wigner that these fluctuations should be universal,
i.e., independent of the precise distribution of the entries.

Recently, a series of remarkable breakthroughs [23], [25], [26], [29], [27], [61], [60],
[59], [58] proved that, under rather general assumptions, the local statistics of a Wigner
matrix are independent of the precise distribution of the entries, provided they have
enough finite moments, are centered and with the same variance. These results were
extended to the case where distribution of the entries depend on the indices, still assuming
that their variance is uniformly bounded below [28]. The study of band-matrices is still
a challenge when the width of the band approaches the critical order of v/N, see related
works [57], [24]. Such universality results were also extended to non-normal square

matrices with independent entries [62].

A related question is to study universality for local fluctuations for the so-called
F-models, that are laws of particles in interaction according to a Coulomb-gas potential
to the power 8 and submitted to a potential V. When 8=1,2,4 and V is quadratic,
these laws correspond to the joint law of the eigenvalues of Gaussian matrices with real,
complex, or symplectic entries. Universality was proven for very general potentials in the
case =2 [45], [47]. In the case $=1,4, universality was proved in [21] in the bulk, and
[20] at the edge, for monomial potentials V' (see [22] for a review). For general one-cut
potentials, the first proof of universality was given in [56] in the case f=1, whereas [41]
treated the case $=4. The local fluctuations of more general §-ensembles were only
derived recently [65], [54] in the Gaussian case. Universality in the 8-ensembles was first
addressed in [13] (in the bulk, 8>0, V.€C%), then in [14] (at the edge, f=1, V€C?),
[43] (at the edge, 8>0, V convex polynomial), and finally in [56] (in the bulk, 5>0,
V analytic, multi-cut case included) and in [5] (in the bulk and the edge, V' smooth

enough). The universality at the edge in the several-cut case is treated in [4]. The case
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where the interaction is more general than a Coulomb gas, but given by a mean-field
interaction [],_; ¢(z;—z;) where ¢(t) behaves as [t|® in a neighborhood of the origin
and both log |z|~?¢(x) and the potential are real-analytic, was considered in [32] (8=2,
universality in the bulk), [66] (6>0, universality in the bulk), and [42] (=2, universality
at the edge).

Despite all these new developments, up to now nothing was known about the uni-
versality of the fluctuations of the eigenvalues in several-matrix models, except in very
particular situations. The aim of this paper is to provide new universality results for
general perturbative several-matrix models, giving a firm mathematical ground to the
widely spread belief coming from physics that universality of local fluctuations should
hold, at least until some phase transition occurs.

An important application of our results is given by polynomials in Gaussian Wigner
matrices and deterministic matrices. More precisely, let X{,..., X be independent
N x N matrices in the Gaussian Unitary Ensemble (GUE), i.e. N x N Hermitian matrices
with independent complex Gaussian entries with covariance 1/N, and let BY, ..., BY
be N x N Hermitian deterministic matrices. Assume that for any choices of iy, ...,i; €
{1,...,m} and k€N,

%Tr(BZ-]Y...B{Z) (1.1)
converges to some limit 7(b;, ... b;, ), where 7 is a linear form on the set of polynomials in
the variables {b¢}}*, that inherits properties of the trace (such as positivity, mass one,
and traciality, see (6.2)), and is called a tracial state or a non-commutative distribution
in free probability.

A key result due to Voiculescu [67] shows the existence of a non-commutative distri-
bution o such that for any polynomial p in d+m self-adjoint non-commutative variables

1
lim NTr(p(X{V, oy XN BN, BN =0(p(S1, ..., Sy b1y ey bn)) @S,

N—o0

where, under o, Si,...,S4 are d free semi-circular variables, free from by, ...,b,, with

law 7. More recently, Haagerup and Thorbjgrnsen [39] (when the matrices {BN}™,

N
m

vanish) and then Male [49] (when the spectral radius of polynomials p(BY,..., BY) in

{BN}™ | converge to the norm of their limit p(by, ..., b,,)) showed that this convergence is
also true for the operator norms, namely the following convergence holds almost surely:
lim [|p(X{ ..., X3, BY oo, BN)lloo = [P(S1, ey Sty b1, ey b)) [l o

N—o00

where

Hp(Sl,...,Sd7b1,...,bm)Hoo:TILI&J((p(Sl,...,Sd,bl,...,bm)p(Sl,...,Sd,bl, e b))V
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However, it was not known in general how the eigenvalues of such a polynomial fluctuate
locally.

In this paper we show that if p is a perturbation of x; then, under some weak
additional assumptions on the deterministic matrices B, ..., BN the eigenvalues of

p(X{, .., XY, BY, ..., BY) fluctuate as the eigenvalues of X{". In particular, if
p(X1, .., Xa) = X14+e Q(X1, ..., Xq)

with € small enough and @ self-adjoint, then we can show that, once properly renormal-
ized, the fluctuations of the eigenvalues of p(X{V,..., X2) follow the sine-kernel inside
the bulk and the Tracy—Widom law at the edges. In addition, this universality result
holds also for (averages with respect to E of) m-point correlation functions around some
energy level F in the bulk. Furthermore, all these results extend to the case of matrices
in the Gaussian Orthogonal Ensemble (GOE).

Although we shall not investigate this here, our results should extend to non-
Gaussian entries at least when the entries have the same first four moments as the
Gaussian. This would however be a non-trivial generalization, as it would involve fine
analysis such as the local law and rigidity.

To our knowledge this type of result is completely new except in the case of the
very specific polynomial p(S,b)=b+.S5, which was recently treated in non-perturbative
situations [17], [44] or when p is a product of non-normal random matrices [46], [1].
Notice that although our results hold only in a perturbative setting, it is clear that some
assumptions on p are needed and universality cannot hold for any polynomial. Indeed,
even if one considers only one matrix, if p is not strictly increasing then the largest
eigenvalue of p(X?V) could be the image by p of an eigenvalue of X1V inside the bulk, and
hence it would follow the sine-kernel law instead of the Tracy—Widom law.

Our approach to universality for polynomials in several matrices goes through the
universality for unitarily invariant matrices interacting via a potential. Indeed, as shown
in §7, the law of the eigenvalues of such polynomials is a special case of the latter models,
that we describe now.

Let V be a polynomial in non-commutative variables, W7, ..., W;: R—R be smooth
functions, and consider the following probability measure on the space of d-tuples of

N x N Hermitian or symmetric matrices (see also §2 for more details):

APy (dX, ..., dXq)
d
1 eNTrv(X1,...,Xd,Bl,...,Bm)e—NZgzlTer(Xk)Hl

~— NV X oo < AX,
Zﬁ

i=1
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where dX =dX; ... dX4 is the Lebesgue measure on the set of d-tuples of N x N Hermitian
or symmetric matrices (from now on, to simplify the notation, we remove the superscript
N on X; and B;). Also, M >0 is a cut-off which ensures that

d

N N '

z) ,V::/eNTrV(Xl,...,Xd,Bl,4..,Bm)e NI TeWi(Xe) Hll\XiHméM X
i=1

is finite despite the fact that V is a polynomial which could go to infinity faster than
the Wp’s. We assume that V is self-adjoint in the sense that V(Xj, ..., X4, B, ..., Bi)
is Hermitian (resp. symmetric) for any N x N Hermitian (resp. symmetric) matrices
Xi1,...,Xq4,B1, ..., B;,- As a consequence, Pg’v has a real non-negative density. Since we
shall later need to assume that V' is small, we shall not try to get the best assumptions
on the Wy’s, and we shall assume that they are uniformly convex. As discussed in
Remark 2.2 below, this could be relaxed.

Such multi-matrix models appear in physics, in connection with the enumeration of
colored maps [16], [51], [40], [30], and in planar algebras and the Potts model on random
graphs [33], [34]. However, despite the introduction of biorthogonal polynomials [8] to
compute precisely observables in these models, the local properties of the spectrum in
these models could not be studied so far, except in very specific situations [3]. Our proof
shows that the limiting spectral measure of the matrix models has a connected support
and behaves as a square root at the boundary when a is small enough and the Wy are
uniformly convex, see Lemma 3.2. This in particular shows that in great generality the
nth moments for the related models, which can be identified with generating functions

for planar maps, grow like C™n=3/2,

as for the semi-circle law and rooted trees. More
interesting exponents could be found at criticality, a case that we can hardly study in this
article since we need a to be small. The transport maps between the limiting measures
could themselves provide valuable combinatorial information, as a way to analyze the
limiting spectral measures, but they would also need to be extended to criticality too.
Yet, the extension of our techniques to the non-commutative setting yields interesting
isomorphisms of related algebras [38], [53].

In [35], [36] it was shown that there exists My <oo such that the following holds: for
M > My there exists ag>0 so that, for a€[—ag, ag], there is a non-commutative distribu-

tion 7 satisfying

N—oo

. av (1 a
lim P]ﬁv’ V(NTr(p(Xl,...,Xd))) =T V(p)

for any polynomials p in d non-commutative letters. In particular, if {)\f}fvzl denote the

eigenvalues of X}, the spectral measure

1 N
N ._ E
Lk = N £ (S/\f
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converges weakly and in moments towards the probability measure pzv defined by
iV (2% =1V ((X},)") for all £€N. (1.2)

Moreover, one can bound these moments to see that uzv is compactly supported and
hence defined by the family of its moments. In addition, it can be proved that u¢"" does
not depend on the cutoff M. Furthermore, a central limit theorem for this problem was

studied in [36] where it was proved that, for any polynomial p,
Tr(p(Xl, - Xd)) —NT“V(p)

converges in law towards a Gaussian variable. A higher-order expansion (the “topological
expansion”) was derived in [50].
In this article we show that, if a is small enough, the local fluctuations of the

@V are the same as when a=0 and the Wy are

eigenvalues of each matrix under Pg’
just quadratic; in other words, up to rescaling, they follow the sine-kernel distribution
inside the bulk and the Tracy-Widom law at the edges of the corresponding ensemble
(see Corollaries 2.6 and 2.7). In addition, averaged energy universality of the correlation
functions holds in our multi-matrix setting (see Corollary 2.8).

The idea to prove these results consists in finding a map from the law of the eigen-
values of independent GUE or GOE matrices to a probability measure that approximates
our matrix models (see Theorem 2.5 and Corollary 2.7). This approach is inspired by
the method introduced in [5] to study one-matrix models. However, not only are the
arguments here much more involved, but we also improve the results in [5]. Indeed,
the estimates on the approximate transport map obtained in [5] allowed one to obtain
universality results only with bounded test functions, and could not be used to show
averaged energy universality even in the single-matrix setting. Here, we are able to show
stronger estimates that allow us to deal also with functions that grow polynomially in
N (see equation (2.8)), and we exploit this to prove averaged energy universality in
multi-matrix models (see Corollary 2.8).

A second key (and highly non-trivial) step in our proof consists in showing a large
N-expansion for integrals over the unitary and orthogonal group (see §6). Such integrals
arise when one seeks for the joint law of the eigenvalues by simply performing a change
of variables and integrating over the eigenvectors. The expansion of such integrals was
only know up to the first order [18] in the orthogonal case, and was derived for linear
statistics in the case =2 in [37]. However, to be able to study the law of the eigenvalues
of polynomials in several matrices we need to treat quadratic statistics. Moreover, we

need to prove that the expansions are smooth functions of the empirical measures of the
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matrices. Indeed, such an expansion allows us to express the joint law of the eigenvalues
of our matrix models as the distribution of mean field interaction models (more precisely,
as the distribution of d S-ensembles interacting via a mean field smooth interaction), and
from this representation we are able to apply to this setting the approximate transport
argument mentioned above, and prove our universality results.

In the next section we describe in detail our results.

2. Statement of the results

We are interested in the joint law of the eigenvalues under Pg’v. We shall in fact consider
a slightly more general model, where the interaction potential may not be linear in the
trace, but rather some tensor power of the trace. This is necessary to deal with the law

of a polynomial in several matrices. Hence, we consider the probability measure

d
APV (X1, ., Xa) = : NIV (X Xa B Bo) TT dRY VT (X5)
k=1

zy B8,M
with .
AR (X) = —pe N ODL ¢ cndX,
Z

where 1 denotes the indicator function of a set F, and Zév’v and ZéV]\I//IV are normalizing

constants. Here,
e 3=2 (resp. B=1) corresponds to integration over the Hermitian (resp. symmetric)

set Hév of N x N matrices with complex (resp. real) entries. In particular

dX{ [i<j<ean 4Xess if =1,
[licjcoan ARe(Xej) [1cjcren dIm(Xyy), if B=2.

e Tr denotes the trace over N x N matrices, that is, ’IYAzzj.V:l Ajj.

o Wi:R—R are uniformly convex functions, that is
Wi (x)2co>0 forall z€R,
and given a function W:R—R and a N x N Hermitian matrix X, we define W (X) as
W(X):=UW(D)U",

where U is a unitary matrix which diagonalizes X as X=UDU*, and W (D) is the
diagonal matrix with entries (W (D11), ..., W(Dnn))-
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e By,..., B, are Hermitian (resp. symmetric) matrices if =2 (resp. f=1).

o C(x1,...,xq, b1, ..., b )®" denotes the space of rth tensor products of polynomials
in d non-commutative variables with complex (resp. real) coefficients when =2 (resp.
B=1). For peC{x1,...,24,b1, ..., by )®" we denote by

P=> (0 01®q - 04) (180G .. 0,

its decomposition on the monomial basis, and let p* denote its adjoint given by

P =Y 0106 0a) 04 ..,
where * denotes the involution given by
(v, ..Y,) =Y;,..Y;, foraliy,..ie{l,...d+m},
where {Y;=X;} | and {Y; q=B;}7-,. We take V to belong to the closure of
C(X1y ey Ty D1y vy by )&
for the norm given, for {£>1 and (>1, by

Ipllec: = (D, 1 ®qa ... 0 ¢y )|§i=1 498x (40) (Xizr dorp (1) (2.1)

where degy (q) (resp. degp(g)) denotes the number of letters {X;}¢ , (resp. {B;}™,)
contained in g. If p only depends on the X; (resp. the B;), its norm does not depend
on ¢ (resp. £) and we simply denote it by ||p||¢ (resp. ||p||¢). We also assume that V' is
self-adjoint, that is V(X, ..., X4, B1, ..., Bm)* =V (X1, ..., Xa, B1, ..., Bi).

e We use || || to denote the spectral radius norm.

Performing the change of variables XkHUkD()\k)U,j , with Uy being unitary and
D()\F) being the diagonal matrix with entries A¥:=(\¥, ..., Ak, we find that the joint

law of the eigenvalues is given by

d
dPy" (A, ) = Nji_vfﬁ H ARy (AP, (2.2)

where

IéV’V(Ala m’/\d) ::/eNz_TTr‘X’TV(UlD()\l)Ul*,..‘,UdD()\d)U;,Bl,“.,Bm) AU, ...dUy,

dU being the Haar measure on the unitary group when =2 (resp. the orthogonal group
when g=1), Zév,v>0 is a normalization constant, and Rév}\/dv is the probability measure

on RV given by

N
1 .
AR (N) = 7 o [T =212 ¥ Em WO T 1 jcardhi, A= (At oy An). (2.3)
B,M i<j i=1
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As we shall prove in §3, if W} are uniformly convex and V is sufficiently small, for all
ke{l,...,d} the empirical measure LQI of the eigenvalues of X} converges to a compactly
supported probability measure ukv. In particular, if the cut-off M is chosen sufficiently
large so that [—M, M]>supp(u?), for V sufficiently small [—M, M]>supp(u) ) and the
limiting measures ug will be independent of M. Hence, we shall assume that M is a
universally large constant (i.e., the largeness depends only on the potentials Wy ). More

precisely, throughout the whole paper we will suppose that the following holds.

Hypothesis 2.1. Assume that:

o W;:R—R is uniformly convex for any ke{1,...,d}, that is, W}/ (x)>co>0 for all
x€R. Moreover, Wi, eC?(R) for some o >36.

e M>1 is a large universal constant.

e V is self-adjoint and ||V||are,c <oo for some £ large enough (the largeness being
universal, see Lemma 6.16) and ¢ >1.

e The spectral radius of each of the Hermitian matrices By, ..., By, is bounded by 1.

Remark 2.2. The convexity assumption on the potentials Wy could be relaxed. In-
deed, the main reasons for this assumption are:

— To ensure that the equilibrium measures, obtained as limits of the empirical mea-
sure of the eigenvalues, enjoy the properties described in §3.

— To guarantee that the operator E; appearing in Proposition 4.4 is invertible.

— To prove the concentration inequalities in §4.5.

— To have rigidity estimates on the eigenvalues, needed in the universality proofs
in §5.

As shown in the papers [12], [11], [5], the properties above hold under weaker as-
sumptions on the Wj’s. However, because the proofs of our results are already very
delicate, we decided to introduce the convexity assumptions in order to avoid additional
technicality that would obscure the main ideas in the paper.

In order to be able to apply the approximate transport strategy introduced in [5], a

key result we will prove is the following large dimension expansion of Iév’v.

THEOREM 2.3. Under Hypothesis 2.1, there exists ag>0 such that, for a€[—ag, ao],
1 2 2—lpa 7 N N _N
N,aV _ 1Ly T
IV (AL LAk = (1+0<N)>ezzofv By ka7 ) (2.4)

where LY are the spectral measures

1 N
le\f :Nzlé)\fv
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O(1/N) depends only on M, 75 denotes the non-commutative distribution of the B;

given by the collection of complex numbers

N (p) = %Tr(p(Bl, o B))s pEC(rs s bi), (2.5)

and {F(p1, ..., pa, ) Yoy are smooth functions of (p1, ..., pta,7) for the weak topology
generated on the space of probability measures P([—M,+M]) by

— —k k
litllear :=max(ME) ™| (27|

and the norm supy,.<1 |T(p)| on linear forms 7 on C(br, ..., bm).

This result is proved in §6. We notice that it was already partially proved in [37]
in the unitary case. However, only the case where r=1 was considered there, and the
expansion was shown to hold only in terms of the joint non-commutative distribution of
the diagonal matrices {D(A¥)}¢_, rather than the spectral measure of each of them.

From the latter expansion of the density of Pév V" we can deduce the convergence

of the spectral measures by standard large deviation techniques.

COROLLARY 2.4. Assume that, for any polynomial p€C(by, ..., bp,),

lim 75 (p) =75(p). (2.6)

N—o0

Then, under Hypothesis 2.1, there exists ag>0 such that, for a€[—ag,ag], the empirical
measures {LY}d_, converge almost surely under Pév’av towards probability measures

{pVYe_, on the real line.

In the case r=1 this result is already a consequence of [35] and [18]. The existence
and study of the equilibrium measures is performed in §3.

Starting from the representation of the density given in Theorem 2.3 (see §4), we
are able to prove the following existence results on approximate transport maps.

THEOREM 2.5. Under Hypothesis 2.1 with (>1, suppose additionally that
N () =)+ (o) + 5373 (0)+0( 103 (27)
TB\P)=Tp\P)T N TB\P)T 3 TP N3 ) .

where the error is uniform on balls for ||-||c. Then there exists a constant a>0 such

that, provided |a|<«, we can construct a map

TN = (V)1 oes (TN gy ooy (T oy (TY)§): RIV R
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RdN

satisfying the following property: Let x: —R* be a non-negative measurable function

such that || x||coc <N* for some k>0. Then, for any n>0, we have

log (1+/XoTN dP;,Vv(’) —log <1+/XdP[§V’“V>‘ <C, N1 (2.8)

for some constant C, i independent of N. Also, with /A\::()\%, X)), TN has the form

a 1 a
(TM)E(N) :Té“(/\f)—i—N(TfV)f()\) foralli=1,..,N and k=1,...,d,

where TF:R—R and TN :R¥WN RN are of class C°~3 and satisfy uniform (in N)
regularity estimates. More precisely, we have the decomposition
1

TlNzXlAfl—i—N

N
X2,1’
where

N \k N \k 2
1%11?%%1 (X103 ||L4(péV10) <ClogN and lglggd [[(X201)3 ||L2(plgv=0) <C(logN)7,
1SN 1<i<N
for some constant C>0 independent of N. In addition, with PﬁN’O—pmbability greater
than 1—676(1°gN)2,
max |(X7)F| < C(log N)N'/ =10,

max (X7} < C(log N)?N?/(19),

max [(XD)FA) = (XD)EN)| < Clog N)NY 1) |]NE_XE | for all k=1...,d,

1<i,i/ <N

max |(X37)F ()= (X2)E (NI < Clog NN DN =XE| - for all k=1, ....d,

1<6,i' <N

max |9y (XD)EI(A) < C(log N)N/ (7 =19) for all k,0=1,....d.

1<i,j <N
As explained in §5, the existence of an approximate transport map satisfying regular-

ity properties as above allows us to show universality properties for the local fluctuations
of the spectrum. For instance, we can prove the following result.

COROLLARY 2.6. Under the hypotheses of Theorem 2.5 the following holds: Let T}
be as in Theorem 2.5 and denote by ﬁéV,aV the distribution of the increasingly ordered
eigenvalues ({\}N_)4_ under the law Pév’av. Also, let uf) and pgv be as in Cioml-
lary 2.4, and « as in Theorem 2.5. Then, for any 6€ (O, %) there exists a constant C'>0,
independent of N, such that the following two facts hold true provided |a|<a:

(1) Let {ix}¢_,C[eN,(1—€)N] for some e>0. Then, choosing 'yfk/NeR such that

ik
HR (=00, w)) = 57
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if m<N?/3=% then, for any bounded Lipschitz function f:RI™ R,

'/‘f >‘zk+1 ) (Afk"l‘m Afk))gzﬁdﬁﬁ]v,av

—/ f(((Té“)'(fyfk/N)N()\ka—)\fk), ey (Téc)/(’Yi/N)N(/\zk-s-m /\k ))gzl) dﬁé\ﬂO
<CON ! flloa+CmP 2N~V f]| .

(2) Let a) (resp. alV') denote the smallest point in the support of p? (resp. u¢V), so
that supp(ul) Clal, 00) (resp. supp(uf¥)Clad”, 00)). If m< N7 then, for any bounded
Lipschitz function f:RY™ SR,

/ FUN?BOF=ag’), .., NY3OE —agV ))i_y) dPY

/ FI(TEY (@) NP0k —aQ), .., (TE) (@) NP3 (0%, —af))d_ ) dPY

SONTY flloo+C(m 2N 34m T/ N=2/3)||V f o
The same bound holds around the largest point in the support of ,uZV.

Similar results could be derived with functions of both statistics in the bulk and
at the edge. Let us remark that for a=0 the eigenvalues of the different matrices are

uncorrelated and PBN % hecomes a product:

Py ARy
1o

Universality under the latter G-models was already proved in [13], [14], [56], [5]. Also,
by the results in [5] we can find approximate transport maps Si': RN —RY from the law
PéVVE 8 (this is the law of GUE matrices when =2 and GOE matrices when S=1) to
RN Wi for any k=1,...,d. Hence (S}, ..., Sév):RdN%RdN is an approximate transport
from (PGVE)B)‘@‘I (i.e., the law of d independent GUE matrices when =2 and GOE
matrices when f=1) to Pév’o, and this allows us to deduce that the local statistics are
in the same universality class as GUE (resp. GOE) matrices.

More precisely, as already observed in [5], the leading orders in the transport can be
restated in terms of the equilibrium densities: denoting by

Osc(x) == % (4—22), (2.9)

the density of the semi-circle distribution and by g% the density of M% then the leading-
order term of S is given by (S§)®V, where S§¥:R—R is the monotone transport from
0sc dz to oY dz that can be found solving the ordinary differential equation (ODE)

(55 (@2) = rgmy (@) S0(-2)=ai. (2.10)
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Also, the transport Té“ :R—R appearing in Corollary 2.6 solves

0
<T§>’<x>=ﬁ<x>, T4 () =agV. (2.11)
Set

aV : Osc
= 1 ——(x). 2.12
N g (212

Due to these observations, we can easily prove the following result.

COROLLARY 2.7. Let meN. Under the hypotheses of Theorem 2.5, the following
holds: Denote by ISBN’GV (resp. (]SéVVEﬂ)@d) the distribution of the increasingly ordered
eigenvalues ({AF}N.)4_, under the law PBN’GV (resp. (PéVVE’B)@’d). Also, let o be as in
Theorem 2.5. Then, for any 6€ (0, %) and Cy>0 there exists a constant 5>0, indepen-
dent of N, such that the following two facts hold true provided |a|<c:

(1) Given {o}}¢_,C(0,1), let vy, ER be such that psc((—00,%o,)) =0k, and Yo, k
such that pu$V (=00, Yo, k))=0k. Then, if |ir/N—01|<Co/N and m<N?379 for any
bounded Lipschitz function f:R¥™ =R we have

\ O =M ) NOW =N P

d

Osc (%k ) k k Osc (%k ) k k SN ®d

_ f((a N Aik _/\ik e VI N()\ik m—)\ik) d(P,
/ ka(70k>k) ( i ) ka(’ya'k,k) + k=1 GVE7B)

SONOY| flloo +CmP2 NIV £ oo

(2) Let ¢V be as in (2.12). If m< N7 then, for any bounded Lipschitz function
[ R™ =R, we have

’/ FUNPBOE=af¥), o NP (O —af ) _y) dPye

- / FVNZBOE42), eV NBOE +2))_) d(Bhyp, )

SCNO7Y flloo+C(m/2 NO7L3 1m0 N=2/3)||V f]| .

The same bound holds around the largest point in the support of ygv.

While the previous results deal only with bounded test function, in the next theo-
rem we take full advantage of the estimate (2.8) to show averaged energy universality
in our multi-matrix setting. Note that, to show this result, we need to consider as test
functions averages (with respect to E) of m-points correlation functions of the form
Dk b, F(NOAE —E),...,N(\¥ —E)), where E belongs to the bulk of the spectrum.
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In particular, these test functions have L norm of size N™. Actually, as in Corol-
laries 2.6 and 2.7, we can deal with test functions depending at the same time on the
eigenvalues of the different matrices.

Here and in the following, we use _7[1 to denote the averaged integral over an interval
ICR, namely 741:(1/\[\) /1

COROLLARY 2.8. Fiz meN and (€(0,1), and let « be as in Theorem 2.5. Also, let
T¥ and S§ be as in (2.11) and (2.10), and define Ry:=TFoSk. Then, given {Ej}1<r<aC
(—2,2), 0€(0,min{¢,1-C}), and a non-negative Lipschitz function f:RI™—R* with
compact support, there exists a constant 5>0, independent of N, such that the following
holds true provided |a|<a:

Ri(E1)+N "SRy (E1) _ Ry(Ea)+ N Ry(Ea) _
‘/V dEl...][ dEy
R1(E1)—N—CSR/(E4) Rq(Eq)—N~¢Rj(Eq)

X Z f((N()\fk,l_Ek)’""N()\Z:m_Ek))%_l)] dPﬁNﬂV
i, 17 Fik,m

Ei+N—¢ Eq+N~¢
—/{][ dEl...][ dEy
E{—N—¢ E4s—N—¢
<Y F(RWEINOE By, ...,R;<Ek>N<Afk,mEk»z_l)} 4P
U 17 Fik,m

SCO(NOH1 L N6,

It is worth mentioning that, in the single-matrix case, Bourgade, Erdds, Yau, and
Yin [15] have recently been able to remove the average with respect to E and prove
the Wigner—-Dyson—Mehta conjecture at fixed energy in the bulk of the spectrum for
generalized symmetric and Hermitian Wigner matrices. We believe that combining their
techniques with ours one should be able to remove the average with respect to E in the
previous theorem. However, this would go beyond the scope of this paper and we shall
not investigate this here.

Another consequence of our transportation approach is the universality of other
observables, such as the minimum spacing in the bulk. The next result is restricted to
the case f=2 since we rely on [6, Theorem 1.4] which is proved in the case $=2 and is

currently unknown for G=1.

COROLLARY 2.9. Let =2, fix k€{1,...,d}, let I}, be a compact subset of (—al¥ ,be"")
with non-empty interior, and denote the renormalized gaps by
Ak

Ak — Tl T MNeer
T TESEY () TR
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where 7v; /Ny €R is such that pis.((—00,v;/n))=1/N. Also, denote by ﬁé\;’fv the distribu-
tion of the increasingly ordered eigenvalues {Nf}N.| under PBI\,[,’:V, the law of the eigen-
values of the k-th matriz under Pév’av. Then, under the hypotheses of Theorem 2.5, the
following statements hold:

e (Smallest gaps) Let Ezl\r,k<t~12v,k ...<f§,7k denote the p smallest renormalized spac-
ings A¥ of the eigenvalues of the k-th matriz lying in I, and set

1 1/3
N =\ T 4-2?)dz ) 1%,
TNJC (1447_[_2 /(\Téﬂosg)c)l(])( X ) .’I}) N,k

Then, as N — o0, N4/37~'J{'} . converges in law towards TP whose density is given by

3

3p—1 —z8
— e " du.
(p—1)!

e (Largest gaps) Let f}v,k(I)>€?\,,k(I)>... be the largest gaps of the form AF with
Neel.. Let {ry}nen be a family of positive integers such that

log rn
log N

—0 as N — .

Then, as N — oo,
N . SN,aV
Wﬁ;ﬁv\jk —1 m Lq(Pﬁ,k )
for any g<oo.

All the above corollaries are proved in §5.

As an important application of our results, we consider the law of the eigenvalues
of a self-adjoint polynomials in several GUE or GOE matrices. Indeed, if € is sufficiently
small and X1, ..., X4 are independent GUE or GOE matrices, a change of variable formula

shows that the law of the eigenvalues of the d random matrices given by

K:Xi'i_gpi(le“de)a 1<Z<d7

follows a distribution of the form Plév 9V with r=2 and V a convergent series, see §7.

Hence we have the following result.

COROLLARY 2.10. Let Py,..., P;eC{xy,...,xq,b1, ..., bm) be self-adjoint polynomials.
There exists £9>0 such that the following holds: Let X; be independent GUE or GOE
matrices and set

Y; = Xi+e Pi(Xy, ..., Xa).
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Then, for e€[—eo, o], the eigenvalues of the matrices {Y;}4_, fluctuate in the bulk or at

the edge as when €=0, up to rescaling. The same result holds for
Y =X+ Pi(X1, ., Xa, B1, s B)

provided 75 satisfies (2.7). Namely, in both models, the law ﬁév’ep of the ordered eigen-
values of the matrices Yy satisfies the same conclusions as ]gév,av in Corollaries 2.7
and 2.9.

Remark 2.11. Recall that, as already stated at the beginning of §2, when =1 the
matrices B;, as well as the coefficients of P, are assumed to be real. In particular, in the
statement above, if X; are GOE then the matrices Y; must be orthogonal. The reason
for this is that we need the map (X7, ..., X4)—(Y1,...,Yy) to be an isomorphism close to
identity at least for uniformly bounded matrices. Our result should generalize to mixed
polynomials in GOE and GUE which satisfy this property, but it does not include the
case of the perturbation of a GOE matrix by a small GUE matrix which is Hermitian

but not orthogonal.

Acknowledgments. A.F. was partially supported by NSF Grant DMS-1262411 and
NSF Grant DMS-1361122. A. G. was partially supported by the Simons Foundation and
by NSF Grant DMS-1307704. The authors would like to thank an anonymous referee for

his challenging questions.

3. Study of the equilibrium measure

In this section we study the macroscopic behavior of the eigenvalues, that is the conver-
gence of the empirical measures and the properties of their limits. Note here that we
are restricting ourselves to measures supported on [—M, M] so that the weak topology

is equivalent to the topology of moments induced by the norm

. —k k
Il = max(¢AL) Hjp(a")]

As a consequence, a large deviation principle for the law Hg,av of (LY, ...,LY) under

Pév’av can be proved:

LEMMA 3.1. Assume that M >1 is sufficiently large and that 75 converges towards
5 (see (2.5) and (2.6)). Then the measures (Hg’aV)N>O on P([-M, M))?* equipped
with the weak topology satisfy a large deviation principle in the scale N? with good rate
function

Ia(ulv ”'nud) = Ja(/J’lv ~~~7/~Ld)_ Ja(yla ey Vd)v

inf
v €P([-M,M])
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where

d
T (p1y s pa) o= % Z//[Wk(wHWk(y)—ﬁlog |z =yl ] dpr(z) dpr(y)
k=1

7F(()1(:u‘13 [EX3) /u'daTB)'

Proof. The proof is given in [7], [2] in the case F§ =0, while the general case follows
from the Laplace method (known also as Varadhan lemma) since F§ is continuous for

the || - ||¢car topology (and therefore for the usual weak topology, which is stronger). O

It follows by the result above that {LY}4_  converge to the minimizers of I%. We
next prove that, for a small enough, I* admits a unique minimizer, and show some of its

properties. This is an extended and refined version of (1.2) which shall be useful later on.

LEMMA 3.2. Assume that Hypothesis 2.1 holds. There exists ag>0 such that, for
a€[—ag,apl, I* admits a unique minimizer (u$v, ...,,ugv). Moreover the support of each
pV is connected and strictly contained inside [—M, M], and each u$" has a density
which is smooth and strictly positive inside its support except at the two boundary points,

where it goes to zero as a square To0t.

Proof. We first notice that if I*(uq, ..., ) is finite, so is
—/loglx—ylduk(w) dpk(y).-

In particular the minimizers {u¢"'}% | of I* have no atoms. We then consider the
small perturbation I%(u$Y +ev, ..., u@" +¢evy) for centered measures (v1, ..., v4) (that is,
| dvg=0) such that v}, >0 outside the support of u&"" and pu¢" +evy, >0 for |e|<1. Hence,
by differentiating I¢(u¢Y +evy, ...,ugv—I—eud) with respect to € and setting e=0, we de-
duce that

0= / Fiu(z) dug(2), (3.1)

where
Fy(x) =Wy (z)—Dp F§ (3, ... n" TB)[(Sw]_ﬁ/IOg [z —y|dpi" (y)

and x— D F§(u1, ..., ftd, TB)[02] denotes the function such that, for any measure v,

d
di F(Ja(:ulllva-~-7HZY17MZV+€VaMZ¥1a"'nugvaTB)
“le=o (3.2)

- / DeFSGEY oo i 75)(6,] d(a).
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It is shown in Lemma 6.16 that this function, as well as its derivatives, is smooth and
of size a. Since vy, is centered and v >0 outside the support of py, it follows from (3.1)
that there exists a constant C; €R such that

F,=C) onsupp(pg") and Fy>Cy on R\supp(us).

Since O2(DyF¢(u$Y, ..., u¢V)[6]) is uniformly bounded by C(M)a for some finite con-
stant C'(M) which only depends on M, the effective potential

Wit (2) := Wi (2) = D F§ (3", .. 1Y, 75)[62)] (3.3)

is uniformly convex for a<co/C (M) due to Hypothesis 2.1. In addition,
o= [ log o=yl dit¥ ()

is convex for z€R\supp(p¢"). This implies that the non-negative function Fj,—Cj is
uniformly convex on R\supp(u¢") and vanishes at the boundary of the support of sy,
and hence p¢" necessarily has connected support, which we denote by [a2V, b3V].

We now consider the measures p§:=(Id+efy)zpud”, where fp:R—R is a smooth
function. Then, since I%(5, ..., u5) =1%(u$", ..., p3V), we deduce by comparing the terms

linear in € that

Joy@s@ant @ = [ 2 gy warw e

Ty

for all k=1,...,d and all f. In particular, choosing f(z):=(z—x)! with z€R\[a?V, b2V],
we obtain that

Gul2) = [ (=) g (@)

satisfies the equation

(W) (2) - (W) (2)

Gk(z)2:(W/SH)’(z)Gk(Z)‘FHk(Z), Hk(Z)ZZ/ P d,uzv(a';).

Solving this quadratic equation so that G(z)—0 as |z|— oo yields

Gil(2) =3 (W) (2) = VWET) (2P +4H(2) )

from which it follows (by smoothness of Hy, see also [5, Proof of Lemma 3.2]) that

WD) _ g o) r—af Y =),
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where
dp(z)?(z—ai" ) (03" —2) = —(W,?H)’(x)Q—élHk(x) =:gp(x) for z€fadV, b2V

Note that gi is a smooth function. In the case where a=0, it is well known that the strict
convexity of W implies that g has simple zeroes in azv and bﬁv, and that dj does not
vanish in an open neighborhood of [a#", b%V]. On the other hand we also know (see e.g.
Lemma 6.15) that the measures sz depend continuously on the parameter a (the set
of probability measures being equipped with the weak topology) as they are compactly
supported measures with moments depending analytically on a. As a consequence, g and
;. are smooth functions of a, uniformly in the variable . This implies that, for a small
enough, g, can only vanish in a small neighborhood of azv and bzv, where its derivative
does not vanish. Hence g; can only have one simple zero in a small neighborhood of
agV (resp. b3V), and dj, cannot vanish in an open neighborhood of [ag",b3V]. Also,
notice that, since W,:’H and Hj are smooth, so is di. In addition, if one chooses M >
max{|al|, [bY|} for all k=1, ..., d, then by continuity we deduce that [a¢"",b¢"V]C(—M, M)
for any a€[—ag, ag].

We finally deduce uniqueness: Assume there are two minimizers (u1, ..., tg) and
(K4, ..., 1ty). By the previous considerations, both p; and p have smooth densities with
respect to the Lebesgue measure on R, and we can therefore consider the unique monotone

non-decreasing maps T;: R—R such that that p;=(T;)4u;. We then consider
Jr) :=J((rId+ A —7)Th) g ptas oo, (TIA+(1—7)T ) o).

By concavity of the logarithm and uniform convexity of Wy —DyF¢(v1,..., Va4, TB)[0]
(uniform with respect to v,€P([—M, M])), we conclude that j* is uniformly convex on

0, 1], which contradicts the minimality of u; and u!. O
[a ’ y 12 i

We next show that, since the support of each p¢' is strictly contained inside
[—M, M], the eigenvalues will not touch R\ [—M, M] with large probability.

LEMMA 3.3. Let Hypothesis 2.1 hold. There exists ag>0 such that the following
holds for a€[—ag,aol: if [a3”,b3Y] denotes the support of utY (see Lemma 3.2), then
for any €>0 there exists ¢(e)>0 such that, for N large enough,

PV (3ie{l,.,N},3ke {1, ...d}: X € [ag¥ —e,bfY +e]°) <e OV,

Proof. By [11, Lemma 3.1] (see also [9] and [10]) we can prove that, for any closed
sets Fy,

1
limsupﬁlogpév’av(ﬂi,k:)\fGFk)<— inf 7,

N—oo FiXx...xFg
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where Z is the good rate function

T(x1y ey i) =T (21, ey ) — inf T (Y1 eees
(z1 ) (21 k) o yr €L MM (y1 Y

with

d
Tr, o =2( (w0)-5 [oglen=lau’ )
=1

where W is defined in (3.3). As in the proof of Lemma 3.2 one sees that, for |a]
sufficiently small, 7 is uniformly convex outside the support of the measure, whereas it
is constant on each support. Hence it is strictly greater than its minimal value at positive

distance of this support, from which the conclusion follows. O

4. Construction of approximate transport maps: proof of Theorem 2.5

As explained in the introduction, one of the drawbacks of the results in [5] is that it
only allows one to deal with bounded test functions. To avoid this, we shall prove a

multiplicative closeness result (see (2.8)).

4.1. Simplification of the measures and strategy of the proof

We begin from the measure Pév’v as in (2.2). Because of Theorem 2.3, it makes sense to

introduce the probability measures

dPN,aV()\l,m,/\d) . ~N1 Vez\/"‘th(L{V ,,,,, LY )+ Ntre Ly, LY oY) e Fe (LY . LY )
Z,
t B

deRgVIE}/k (\F)

for t€[0, 1], where Rg’w is as in (2.3). Then, it follows by (2.2) and (2.4) that, for any

non-negative function y: RY =R*,

1+ [/ xdPy" ™ [(1+x)dPyY 1
N,aV Nav = 11+0 )
1+/XdP1ﬁ’ [(1+x)dP;;

log (1+/XdPéV’“V> —log(l—l—/defY[ZfV)‘ < % (4.1)

50 PN,aV:PN,aV.

and therefore

Hereafter we do not stress the dependency in g,
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To remove the cutoff in M, let

dON (AL, ) = Nlav X N2 HEF (Y LY oY LY ) H AR (\F),
Zt k=1
where
ZtN,aV 5:/6 2 N2JtFﬁ(¢%Lf’ ¢1¥LSJ,7—B) H dRN Wi ()\k) (42)

k=1
and ¢™:R—R is a smooth function equal to 2 on a neighborhood of the supports
[agV,b¢V], vanishing outside of [—2M,2M], and bounded by 2M everywhere. Then

N,aV)

Lemma 3.3 (as well as similar considerations for @), implies that, for some §>0,

QY =Py < eV, (4.3)

Notice that QN v — f[ -0 Pév -0 so, if we can construct an approximate transport map
from QN VY t0 QMY as in the statement of Theorem 2.5, by (4.1) and (4.3) the same
map will be an approximate transport from Pév 0 %o PﬁN Y Thus it suffices to prove
Theorem 2.5 with Q)*" and QY*" in place of Pé\m and Pév’av.

For this, we improve the strategy developed in [5]: we construct a 1-parameter family
of maps T}V: RN RV that approximately sends QN Y onto Q,{V oV by solving

oTN =Y (1), T)=Id,

where Y =((YM)1, ..., (YN)4): RIN SRV is constructed so that the following quantity

is small in L2(QN"Y

RY(YN):=¢ BZZW ZaAk Y)r

), for any g<oo:

k i<j
~NZES Y LY 6Y LY )~ NFi (6 L{V,...,qﬁMLéV,rg) (44)
—Fg (o LY, .., o} LY, 7)) +Zakat YY),

where /A\::(/\l7 o A= LA A AL, N =0, lothN’av7

and
Hi(X):= Ny Wi(\))—tN?Fg (83 LY, o 3 LY 78
ik (4.5)
7tNF1 (d):];\fL{Va 5¢;\¢4LdaTB) tF2(¢ L{va 7¢%Ld7TB)
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In [5] it is proved that the flow of Y7 is an approximate transport map provided RN (Y™V)

is small: more precisely, if X}V solves the ODE
XYV =Y'(xY), X§'=1d, (4.6)

and we set 7™ : =X, then [5, Lemma 2.2] shows that

1
[ ae - [a@ | <l [ IRE gyt (47

for any bounded measurable function y: R*N —R.
Although this result is powerful enough if y is a bounded test function, it becomes
immediately useless if we would like to integrate a function that grows polynomially in V.

For this reason we prove here a new estimate that considerably improves [5, Lemma 2.2].

LEMMA 4.1. Assume that, for any g<oo, there exists a constant C4 such that

(log N)?
||RiN(YN)HLq(QNvaV) <C——F—

t

for all t€0,1], (4.8)

define XN as in (4.6), and set TN :=XN. Let x: RN —R* be a non-negative measurable
function satisfying ||x||cc <N* for some k=0. Then, for any n>0, there exists a constant
Ch.n, independent of x, such that

1og<1+/de§Vv“V>—1og(1+/XoTN dQéV’“V) ‘ <Cpy N1

Notice that this lemma proves the validity of (2.8) with Qév’av and Q{V’“V in place
of Pév 0 and Pév ,aV7 respectively, provided we can show that (4.8) holds.

Here, we shall first prove Lemma 4.1 and then we show the validity of (4.8). More
precisely, in §4.2 we prove Lemma 4.1, then in §§4.3-4.5 we show that

(log N)?

Ny Ny <
RY (YM) | <0 RE

on a set Gy C RV satisfying Q)" (Gy) > 1-N"N.  (4.9)
As RN (YY) is trivially bounded by C'N? everywhere (being the sum of O(N?) bounded
terms, see (4.4)), (4.9) implies that

(log N)?
N

(log N)?

IR (Y| pgpoevy <C +ONY QMY (RN\G) 1 < 0 2,

proving (4.8).
Finally, in §4.6 we show that TV =X}V satisfies all the properties stated in Theo-

rem 2.5.
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4.2. Proof of Lemma 4.1

Let o; denote the density of in VY with respect to the Lebesgue measure £. Then, by

a direct computation one can check that g;, YV, and RN=RN (YN) are related by the
following formula:

Now, given a smooth function y: RN —R™* satisfying ||x||cc <N*, we define
Xe:=xo X o (XN)™! for all t€[0,1]. (4.11)

Note that with this definition x;=Y. Also, since x;° X} is constant in time, differenti-
ating with respect to ¢ we deduce that

d
0= (xe=X{) = @+ Y7 Vxr)o X",

and hence x; solves the transport equation
8tXt+Yt]EV'vXt:07 X1=X- (4.12)

Combining (4.10) and (4.12), we compute

d
%/Xt@tdﬁ:/atXtQtd£+/XtatQtd£

:—/ng.vtht dﬁ—/xt div(Yivgt)du/XtR{V ordL
:/XtRint dL.

We want to control the last term. To this aim we notice that, since |x|loo<N¥, it
follows immediately from (4.11) that ||x¢ /e <N for any t€[0, 1]. Hence, using Hélder’s
inequality and (4.8), for any p>1 we can bound

xR | < Il g IRV o

— 1
<l &Pl 2 e IRV o givav

_ 1
< NFO 1)/p||Xt||L/szév,av)||Riv||LQ(Q§V‘“V

_ Nk(pfl)/p(]ogN):zH ||1/p
e N Xtllpu@iavy

)

where ¢:=p/(p—1). Hence, given >0, we can choose p:=1+1n/2k to obtain

‘/Xt Rivgt d[" <Can_l||Xt||1L/1zzin,av) <CNn_1(1+||XtHL1(Qva“V))7
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where C' depends only on Cy, k, and 7). Therefore, setting

Z(t) ::/Xt Ot dL= ||XtHL1(QiV»aV)
(recall that x;>0), we proved that
1Z(t)| <CNTH(1+2(1)),

which implies that
llog(1+Z(1)) —log(1+ Z(0))| < CN"~1.

Recalling that 7%V =X}, this proves the desired result when y is smooth. By approxi-
mation the result extends to all measurable functions y: RY —R* satisfying ||x||cc <N¥,

concluding the proof.

4.3. Construction of approximate transport maps

Define

N
Mliv = Za)\f _Nuz,fﬂ

i=1

NaV

where pj ,ukt are the limiting measures for L under ; their existence and

properties are derived exactly as in the case t=1, see §3. In analogy with [5, §2.3] we

make the following ansatz: we look for a vector field Y of the form

d
R 1 1
(YM)E) =y + oy )+ 12 37 G OF, M), (1.13)
=1
where y%t:R—ﬂR, y,1€7t:R—>R, zkg’t:zz;cft:R2—>R, and

Craal, M) = / 2oz, ) AMP (1),

With this particular choice of Y, we see that

Zaxk (Y / 2)dL} (z)+ / (vh)' () dLY ()

+Z/algm (z, MN) dLY (x) /azz,m (z,2)dLY (z).
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We now expand {F}?_, around the stationary measures py. ¢ (recall that Fy* are smooth
by Lemma 6.16, and that My has mass bounded by 2N) and use that ¢%szt:uz7t to
get

an(ézs%Liva- 7¢ dvTB)

:an(lq,ta- a#dt»TB ZDsz Mlt»- mudthB)[QS%Mk]

1 * *
+m ZDI%KFIG(NLH ""Md,n TJBY)[¢%MI£V> ¢£§£/[MZN]
k0

1 . . |¢M N|4
N7 30 Dl ki O M o 212 a0 (P25 ),
km

where

MMNp
e e L}

see Lemma 6.16.
We now use assumption (2.7) and the smoothness of the functions F* (see again
Lemma 6.16) to expand DyFp, D,QMFZ‘I, and D%emFl‘l with respect to 7. To simplify

notation, we define the following functions:

Sra(@) = DeFP (U3 g ooes g6, TB) [0 ()],
Frrr1(2) = D} L FP (0 g5 oo 1,6 T3 )[04 () T
Srr2 () 1= Di _F (3 4,y 1.0, T8) 00 (), TR,
+ %Dz,rTFla(HT,tv e MZ,t, 7'%)[5(251»1(96), Té, T}B]’
Srea(@,y) = DRgFP (i 4 oo 1005 TR0 () 01 ()]
Srerr (@) = Do P13 o oo i TR 00 () e (), T,
Froma(2,9) = Dy Y (11 4 s L0 TB) [0 ()5 001 (), T ()]

We may assume without loss of generality that these functions are symmetric with respect

to their arguments. Then we get the following formulas:

Fla(dji\éfL{Va' a¢ daTB)

a/, * * 1
AT S Y [ fratw) drg @)

NQZ/fkTu ) dMY (2)+ 13 Z//fkmydeudMe()
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NgZ/fszl x) dMY (z)+ = Z//fkallxyde()sz()

M p [N |4
+ﬁ Z // Ffrema(x,y, 2 )de( )sz (y )dMN( )+O<|¢#N4|>,

k,l,m

and

8)\’“Fl <¢ Liv? 7¢§\§I:/[Lda B)

=Nf,;,l<xf>+$f,;ﬂ,aw>+— [ usiea O 12 0
N3f’” o Z/alfkér oA y) dMY (y)

iy k N N ¢y MM
+N3 / alfkém,l()‘iay>z) dMZ (y) de (Z)+O( N4 )
l,m

This gives, for H defined in (4.5),

a,\gsHt(j\):NW;Q()\?)—thllc,o()\?)—t[f;;Tl,o()\f)—film()\?)]
—2t2/81fke,o(>\§ay) dM[ (y)
¢

U o)+ F s (V) 4 F 2 (A
2 Z / 01 frerr 0(AF, ) +01 frea (NS, y)] dMY (y)

Z//ﬁlfkemo oy, 2) dMY (y) dMY (2 )—I—O<¢ o |2>.

Also, with this notation, the analogue of (3.3) for t€[0, 1] becomes
Wil (z) i= Wi(z) =t fr,0(2). (4.14)

Hence, with all this at hand, we can estimate the term R (Y") defined in (4.4): using

the convention that when we integrate a function of the form

Y(z)—Y(y)
z—y
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with respect to LY ® LY the diagonal terms give ¢'(x), we get
R (YY)
BN? Vi (@) =y (y)
:CiV—TZ %dﬂcv(%) dLy (y)

—N(l—)Z/ ) dLY
Z//y’” il Y LN () drd () ( )%:/ ) dLN

¢ txM —C t( )
T o et at @)

_(1_2) > [ 01ua w31 3 [ tuusatez) L @

CNERS (gt TS - N S / fo(x) dMY ()
k

- // freo (@, y) AMP (2) AMP (g)— N FE(EL 4y oo 00 79)
k0
—Z / frn (@) AME (5)— F (il g, o 1500 78)
+N2Z / (@) dLY (z)
+NZ / (2)yh, ALY (z)
+NZ / 2) Copo (2, MY dIY ()
Ny / oo F @)yl (@) dLY (2)
k
-t 3 [ im0~ S @k @) 4L (0)
k
-t 3 [ i 0= Tl @)peoler M) ALY (0)
k.0
Ny // O freoe.y)y () dMY (y) ALY ()
k.0

23 [ ol o)y (o) M ) dL (2)
k.l
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—2t Z //81sz0 (7, 9) Chom.o (7, MNydM} (y) dLY (x)

k,l,m

=3t Z // O frem,o(z,y, 2 )th( YAMY (y) dMY (2) dLY ()

k,l,m

S // (01 Fier 040 fie 1)(@29) ¥0o (@) M () ALY (2)
W)

Ry [ff?f2vo+féfal+f:@721<x>y2,t<x>dLﬁ<x>+o(|¢ v )
k

Recalling (3.4) we observe that, for any function f,

2 ) —
w2 [ty racy -2 [ O apey asie)
N / =, A —g // T2 angyf () ans ),

3 / TG g ()4 (WESY (@)1 (). (4.16)

Also, observe that up to now the term O(\QS%MNP/N) does not depend on the smooth-

ness of the functions y%t,y}w, Zye+. However, in order to be able later to quantify the

(4.15)

where

degree of smoothness required on the potentials Wy, we introduce the following notation:
we will denote by O(|¢]‘#/[MN\3/N; 91,92, -, §p) & quantity bounded by

P
C
> R[%Hﬁlld)ﬁMNH?m, (4.17)

m=1

where the functions g,,, map R into R for £,,€{1,2}, and

Rlgm] := = / do

T1, 7“2 rg=1

+ Z ]1[’//gm(zh22)er]Y(Zl)er]Z(22)

r1,m2=1

/J/gm (az1+(1— a)22,23)dM7fY(zl)dMg(22) dM£(23)

d
1
+Z N ‘/gm(21,21)dM7£\1[(21)

ri=1

if £,,=2, while

.—Z /da

T1,T2= ].

//gm ozt (1—a)z) dMY (21) dMY (z2)

gm(21) dMN (1)
1= 1N‘/

T
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if £,,=1. For instance, writing

Zrot (2, 2) =21, (Y, 2 /61zk(gt(0@+(1 )y, z) da
Ty

and recalling the definition of ¢, ;, we see that

M) Y M N3
= /Ck“ *, gk“(y )de (z )sziv(Z/)Z()(g%]V';aﬂku)-

Thus, applying (4.15) to f:yg,t,y,lg’t,CMyt(',MgN), and using that LN:uz’tJrM,éV/N
(recall that ze =z ¢ for all k and £), we get

REY =N Y [ |22 (S [y 00 fusotn ) i )) - o ans
k ya
o3 [ [t (E [ rwasiowwiw)

—fr1 _t[fllc'rl,o_fl/c,l]yg,t_ <§ _1) (yg,t)/

<1—> /8lzk€f Y- ) dug(y)

3 [ Ufirso i ) sl ) do )
l

23 [ SRS o+l i )] e
¢

Jrkz’e//[Ek[zM’t(',y)Kz)Qt;/zkmﬂe(z,y) O fmeo(z,2) dpigy, 4(2)

0 (2)—y0
— freo(@,y) =2t 01 freo(@, y)yi () glk_eW

S0P [ 86101l 2) di ()| M 0) M )

| M|
+OtN+O< ¥ 7(YIlg,t)/aalsz,taaQZkk,t>

where C}¥ is a constant. Let us consider the operator E; defined on d-tuples of functions
by
Et(\:[/l, ceey ‘I/d) = (Et(\lll, ceey \I}d)la ceey Et(\Ifl, ceey \I’d)d);

where

(T, ., U __kqfk—th/ Y) 01 freo(y, ) dus ,(y) forall k=1, ....d.

(4.18)
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Then, for RN (Y™) to be small we want to impose

[

t(y?,ta"'7Y27t)k:(g§)7"'7gg)a
Ei(z10.0(5Y)s s Zaet (- 9))k = (g50(-,Y), s 92 (-, y)) forall £=1,....d and all y,

t(yitv "'>y}1,t)k = (giv 795)3

[1]

(4.19)

where

9o () = fro(z)+ck,

Gre () = freo(x,y)+2t 01 freo(z, y)yy ()
+3t2/y9n,t(z) O frtm,0(, Y, 2) dig, ¢ (2) +epe(y), i k#L,

0 0
V(@) =y (W)
k(@ y) = frn,0(2,y)+2t 01 frno (@, y)yg,t(x)—g%

3ty / Y0, +(2) 01 frtom, (2,9, 2) iy o(2)+can (),

(&) = Fa ()4l ()~ Fa@¥hao) + (5 -1) 52 )

+<1_§> %:/81zk“(y,x) d,uZ’t(y)—F%:/fé,l(y) Zke,t (Y, @) dpig 4 (y)

+2tz/yg,t(y)[alfkérl,OJFalfké,l](ya')d.uz,t(y)JrC;ca
¢

where ¢; and ¢}, are constants to be fixed later, and ci(y) is a family of functions
depending only on y also to be fixed.
Indeed, noticing that [ dM, ,iv =0 for all k, we see that all constants integrate to zero

against MV, and we conclude that the following holds.

LEMMA 4.2. Let Z; be defined as in (4.18), with {Z,}¢_, as in (4.16). Also, recall
the notation (4.17). Assume that we can find functions y%t,y,lc7t,z;€g,t solving (4.19).

Then
|¢N[MN|3
RY (YY) :OtN+O<#N; (YIlg,t)/a61Zk€,ta62zkk,t>a

where C is a constant.
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4.4. Invertibility properties of E;

Lemma 4.2 suggests that, to construct an approximate map, we need to solve an equation

of the form
Et(\llla (X3} \de) = (glv "'7gd>'

We remind that, in our setting, the functions 01 fre,0(+,y) are smooth and their C* norms
are of size O(|al) for any s>0, where a is a small number. Also, note that the operators
Z}, defined in (4.16) are continuous with respect to the C! topology. This will allow us
to show invertibility of E; using Lemma 4.3 below and a fixed-point argument.

Before stating the result in our setting we recall that, given a function f:R—R, the

norm C?® is defined as

/1

@ =Y 1FDNree,

j=0
where f() denotes the jth derivative of f. The next result is contained in [5, Lemma 3.2].

LEMMA 4.3. Let V:R—R be a function of class C with >4, assume that py has
support given by [a,b] and that

%Vu):s(x) (a—2)(z=b) with S(z)>c>0 a.c. on [a,b]. (4.20)

Define the operator

(1]

wa)i= = [ PO @) v ()01,

and fix an integer 3<s<o—1. Then, for any function g:R—R of class C?, there exists
a unique constant cq such that the equation

E¥(z)=g(x)+cqy

has a unique solution ¥:R—R of class C°~2, also denoted by =g, which satisfies the

estimate
V]| cs—2(r) < Csllgl

C(R)- (4.21)

Moreover U (and its derivatives) behaves like

g(z)+eg
V'(z)

(and its corresponding derivatives) when |x|—oo.
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We now want to apply this lemma with V:W,iff and pyv=py ; (so that Z=Ej, see
(4.16)), and prove the invertibility of Z; by a fixed point argument. We notice that the
constants appearing in the above result depend only on the smoothness of V' and on
the assumption (4.20), which is satisfied by Py + due to Lemma 3.2. In particular, when
applied with V:W,Sg and py =y, all the constants are uniform for te[0,1]. Also, as
F§ is of class C*°, the smoothness of W,Sff is the same as that of Wy, (see (4.14)).

PROPOSITION 4.4. There exists a>0 such that the following holds. Assume that the
functions Wy, ..., Wg:R—=R are of class C° for some o>24. Suppose that |a|<a, and let
tel0,1]. Then, for any family of functions g1, ..., ga: R=>R of class C° with s€[3,0—1],

there exist a unique family of constants (cg,, ..., cg,) such that the equation

(U1, Ug) = (91, .., 94)+(Cgys -5 Cgy) (4.22)

has a solution W1, ..., ¥ ;:R=>R of class C*~2. In addition, there exists a finite constant
Cy such that
d —~ d
max || W[l o1 ) < Co max [|gk|lcs ) (4.23)

Furthermore, there exists ~vs>0 such that Uy and its derivatives up to order s—1 decay
like O(l/[(W,jff)’(x)]'Y) as |x|—o0.
Proof. Define the operator

d

TZV(\Ifl,...,\I’d) :Z/\Ilé(y) alka,O(y7')duz,t(y>7

{=1

so that (4.22) can be rewritten as
Sy —2t YV (U, .., W) = gr+c,, forallk=1,...d.

Recalling that 01 freo(-,y) is a smooth function with all derivatives of size O(|a|), for
any family of bounded functions ¥;:R—R, one has

a — d
HTkV(\pl, ey \I/d)HC@(]R) < C|a| I]?gliii{ ||\I’kH6'1(]R) (424)

for some universal constant C. To prove the result we simply apply a fixed point argu-
ment: more precisely, we set (¥y gy, ..., ¥gq,(0))=(0, ...,0) and we recursively define, for
Jj=1,

U 1) = Ce) 2T (U1 gy, oo B () +08), k=1,....d.

Applying Lemma 4.3 with V:T/Vkeﬁlfr and py =py, , (so that E=Ej), we deduce that

\I/k7(j) € Cl(R) forall j>1and k=1,...,d.
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Also, by the linearity of Z; and YV, we have
Wi (1) = Wi (i) = (E) 7T (U1, () =W Gmys - Ya ()~ P -1);
so it follows from (4.21) and (4.24) that

d ~ = d
max Wy, (j+1) = Yk () llor (m) < 20C3C el max [ Wy, () =V (1)l g)-

Hence, if we choose o small enough so that (f’géagi, we deduce that {Wy, ;)}j>1 is a
Cauchy sequence in C! for all k=1, ..., d. Recalling that the operator Z;, are continuous
with respect to the C'! topology, we deduce that the sequence (W1 5y, -+ Wa,(5)) converges
to a solution of our problem (Uy,..., ¥ ).

Applying (4.21) and (4.24) again, we deduce that

d ~ = d -~ d
max ||y, 41) |01 (r) < 2tC3C1a] max [y, (j) [ o1 () +Cs max gk || os =)
d ~ d
< g max || ) llo ) +Cs max [lgelos vy,

so (4.23) follows by letting j—o0. In addition, Lemma 4.3 implies that ¥y decays like
O(l/(W,jff)’(x)) as |z|—o00. Furthermore, since T¢V (U1, ..., U,4)€C, it follows by (4.21)
that

I]?éf 1¥kllce ) < Cs,

showing that ¥, eC?.
To prove the final statement we note that, since ||W[|csr)<Cs and ¥}, decays like
o(1/ (Wkeff)’ ), by interpolation inequalities the derivatives of ¥y up to order s—1 decay

as an inverse power of (WgT)". O

We can now apply the above proposition to invert the first equation in (4.19) and
find a solution y%t of class C?~3. Then (since now y%t is given) we solve the second
equation in (4.19) using again the proposition above, and finally we invert the third
equation. In this way, in analogy with [5, Lemma 3.3] we obtain the following result
(we recall that a function of two variables belongs to C™7 if it is 7 times continuously

differentiable with respect to the first variable and 7/ times with respect to the second).

COROLLARY 4.5. Let « be as in Proposition 4.4. Assume that Wi:R—R are of
class C° for all k=1,...,d with 0>10, and that |a|<c«. Then there exist functions

y%t,y}c,t,zk@’t solving (4.19), and a finite universal constant Cy, such that

coo@t O lzneillonr @umy <Co  for allk,0=1,....d.

T+7'<0—6

”yg,t”C"*?’(R) + ||YI1f,t|

Moreover these functions and their derivatives (except the last ones) decay as an inverse

power of (W,Sg)’(z) as |z|—o0.
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Recalling (4.4), it follows by Lemma 4.2 and Corollary 4.5 that

oy MNP

RY (YY) :Cgv‘f‘()( N 7(YIlc,t)/781Zk€,t782zkk7t>~

But in fact, since RY(Y™) is centered (compare with [5, §3.5]), we deduce that

|¢MMN‘3
#T;(YIlc,t)'ﬁlee,uaszk,t .

The goal of the next section is to control the right-hand side.

R,{V(YN):()(

4.5. Getting rid of the remainder
We start by using concentration inequalities to control M ,fv —E[M ,iv ].

LEMMA 4.6. Let Hypothesis 2.1 hold, and let ay be as in §3. For a€[—ap, ao], there
exists ¢ >0 such that, for any Lipschitz function f:R—R, for all §>0, all t€[0,1] and
ke{l,...,d},

N N
Zf(A?)—E[Z f(Af)] \ > f||La) <297,
=1 =1

N,aV
t

where || f||L denotes the Lipschitz constant of f.

Proof. in,av being a probability measure with uniformly log-concave density (see

§3), Bakry—Emery’s and Herbst’s argument applies (see e.g. [2, §4.4]). O

We now need to control the difference between E[L}Y] and its limit uj ,. We shall do
this in two steps: we first derive a rough estimate which only provides a bound of order
N~1/2 following ideas initiated in [48], and in a second step we use loop equations to get
a bound of order (log N)/N, see e.g. [55]. This two steps approach was already developed
in [9], [10], [11]. To get the rough estimate, we shall use the distance d(u, pu’')=d(u—u')

on the space of probability measures on R defined on centered measures v by

aw)yi= (2 [ roglo—i vt du<y>)1/2 /[ Hlatryear,

where © denotes the Fourier transform of the measure v. Because this distance blows
up on measures with atoms, we shall consider the following regularization of the empir-
ical measure: For a given vector A\:=(\;<...<Ay), we denote by A:=(\;<...<Ay) its

transformation given by
5\1 =\, 5\i+1 = L—l—max{)\iﬂ—)\i,]\f_‘?}.

k

79

We denote by i,iv the empirical measure of the M. and by EkN its convolution with the

uniform measure on [0, N~%]. We then claim the following result.
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LEMMA 4.7. Let Hypothesis 2.1 hold. Then there is an ag>0 so that, for ac
[—ao, agl, there exist positive constants ¢ and C such that, for all 6>0 and t€(0,1],
the following bounds hold:

e we have
d - 382872 N2
in,av(kgl d([kN7 Z,t)>5) < CNlog N34 N /6 L Crp—cN :

o if f:R—R is Lipschitz and belongs to L

(| [ roamy-uow

where || fllo:=(Jg 17| 1 (7)Pdr)"/>.

Remark 4.8. Note for later use that if f is supported in [—M, M], then there exists
a finite constant C'(M) such that

R), then

(
Hf”L CNlog N—35°N?/8 —cN?
>5||f||1/2+ <e +Ce ,

1fll1/2 < CAD)|f loo-

\|f||1/r/| 11£Gs 2d5/| (o) ds

~ 9 // log |z—y|f'(x) f'(y) dz dy < C(M)|| f']|%.

Indeed,

Proof of Lemma 4.7. We just recall the main point of the proof, which is almost
identical to that of [11, Corollary 3.5]. In the latter article, the potential is only depending
polynomially on the measures rather than being an infinite series. It turns out that the

main point is to show that
B
) = 5 Z d(Vk)Q_Z DIZMF(SI(:U'T,U sy .u“z,tv T]{B’V)[Vkv l/g]
k k.0

is uniformly convex on the set P([—M, M])? of probability measures on [—M, M], so that
its square root defines a Lipschitz distance. Here, we more simply notice that for a small

enough
ﬂ d
Z kg (v)2. (4.25)

Indeed, the latter amounts to bound from above the second term in the definition of S.
But since Dl%éFél(,uT,tv ey 13 ¢) [0z, 0y ] is smooth and compactly supported, we can always

write

DR FS (i3 gy weos 0 75 )02, 0] = // ST DR TG (1 4 woos 1, T8 ) (€, C) dE dC
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and for any centered measures v and vy we get, by the Cauchy—Schwarz inequality,
2 * N
|Dk2F5(MT,t7 ~ Mgt TB )k, ve]|

— 1/2
<d<uk>d<w>( [\ PEFs 0B ORI <|ded<) .

Hence we can always choose a small enough so that the last term is as small as wished,
proving (4.25).

Let us sketch the rest of the proof. By localizing the eigenvalues in a very tiny
neighborhood around the quantiles of pj , it is possible to show (see e.g. [11, Lemma
3.11]) that there exists a finite constant C' such that

ZtN,aV > efNQJf(uf’t,...,uz’t)ch10gN

=

where Z*Y is as in (4.2) and

Jta(luh 7/1']6)

d
( J[Wete) Wit - s1og eyl diata) duk<y>) OBty s 7).

1
T2
k=1

Then, writing Ly:=(L{,...,LY), Ly:=(L{", ..., LY), and p*:=(u7 ,, <y I ¢), one has
ﬁ a a * *
2/, log |z —y|dL (2) ALy (y) —tF§ (L, 75 ) =Y [ Wi dLi 4+ J{ (13 s eos 13,)
THY k

=5 | toglo—yldiLy—w)a) Ly o) + R(Lx—n)
TH£Y

=5 [1ogle—sldiLy 7)) d[EN—u*]<y)+R(LN—”*>+O(lova>’

where we used the regularization Ly of Ly to add the diagonal term x=y in the loga-
rithmic term up to an error of order N log N, we bounded uniformly Fy* and F§ up to

an error of order N, and we set
R0)= Y [ fule) (o) - DB (" + 00 7)™
k

for some 6€]0,1] and some functions fj vanishing on the support of the equilibrium
measure pj ,, positive outside, and going to infinity like Wy (see [11, Lemma 3.11] for

more details). In this way one deduces that

NV (wlax d(LY i ) > 6)

N
257 N2 _ N2 (T *
<eC’NlogN/ e~ NV d(Ln,p*)°—N*R(Ln—p )HdAf
max{_, d(LkN,p,Z,t)Z(S

i=1
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By the large deviation principle in Theorem 3.1, we see that the cubic term in R is neg-

ligible compared to the quadratic term on a set with probability greater than 1—e~° ’
Thus, setting MN::N(EQ]*;L,";J), we get
N.av (I,?ia{{ d(MN) > N<S>
B N
< (CNlogN [ / e~ /5 Ty I NPT [ @) a1 @) T dx\f“—!r@CNz}
maxf_, d(MY)>Ns i=1

< BCNlogN(efﬁN%Q/G_'_echQ)
This gives the first bound of the lemma, from which the second is easily deduced since

[ t@dvta ‘/f | <1l dv)

‘/f(:c) d(LfX—L;y)(x)‘g IIJfVHQL. ]

We finally improve the previous bounds to get an error of order (log N)/N instead
of (log N)/v/N.
LEMMA 4.9. Let Hypothesis 2.1 hold, and given a function f:R—R define the norm

1A11:= [ 171 F) . (4.20

There exists ag>0 so that, for all a€[—ag, ao] and all functions f:R—R, with ||| f|]|<oo,

‘/U‘f — g ) (2 )} aQN-V logN

for some constant C independent of a and f.

and

<CIlIAI

Proof. Before starting the proof, we recall the notation

Ly:= (le\f’ e Lfiv) and p* = (:uslﬁ,t» ST MZ,t)~
To improve the bound we just obtained, we use the loop equation. Such an equation

is simply obtained by integration by parts and, for any smooth test function, reads as

// (@) dLY (z) dQNV

o Z / SOy (dQNV) f[f[dk?

j IHZ 1dA£

/ ( / F(@)(t0: DRF (L, 75)[02] = Wi (2)) dLi (x)

6//f33 ; dLy (x )deN(y)—%/f'(x)dLN( )) QN

follows:
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where F“:zzjlz=0 F*N~'. Recalling that M,ﬁV:N(LQ’pr’t) and (4.16), we rewrite the

above equation as

J |zt a3 [ 0upur 6,015 dui o) v )| aQi

£k A
=D RY(H, (21

w(0=(1-5) [[ 1@ a@r.
R ()= e [I] P ang @y anai ) a
RY ()=t [ | [ 100005 = B Loy, 0 ()| i

REG =y 3 [ ([ 50 00DuFg o) 2 a@

and the last term was computed using a Taylor expansion. Writing f(z)= [ ¢"** f(s)ds
and noticing that [[e""[|1 2+ ™ || <2(1+|A]) so that Lemma 4.7 entails

/|(T4\,gv)(x)|2dQ§V’aV < CNlog N(1+|A)?,
we get
BY (I < Il
|R2N<f>|<N1/dr|f(r)|/01dalrl /I(M/?)(aﬂlIW/?)(u—a)r)lde’“V
< [arirl o | ' da [10) an)Paqy
<(og) [+l ar

[RY (N <C flloos
[RY (NI <Cog N)| floc,

where we used Lemma 4.7 for the second and fourth terms, and to bound the last term
we noticed that, since F§ is smooth and it is of size O(|a|) together with its derivatives,

we have N
Clal
1+2%) (1+¢]1)

max| [0, DeeFg) (A 0| < ( (4.28)
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Hence, since

/[/akaeFél(u*’Tg)[Csy,(sx]f(x) dy; o () dMP (y )} dQNav

//\f dii Q)| |0s DieFy 54!)/ (MN)(€) dQ Y | de d,
we deduce from (4.27) that
’ // f(z) dMP () dQNY
< lloe S | 102 DreFg (£.€) |‘ MM)(€)dQ;"Y | de d¢
* Z;ﬁk/ ’ /

OIS Tlormy +og N [ 1+ 17*)E ()] dr.
Applying the above bound with f(z)=e"™* and using (4.21) with Z=Z, we get
/MN dQN aV

< AQ/%X 105 D FE (N, O)|0 (¢) dC+C (14| A7) log N.

In(A) —max

(4.29)

By (4.28), we deduce from the above equation that
/ ! v (A)dA
1+[A[10 7

~ 1 1 1+]A7
< [
=Cla (/Hmw ‘“)/mcw 5”(<>d“0(/1+x|10 ° )l

CC’|a|/ i (A Clog .

In particular, if a is sufficiently small so that cC |al < , we can reabsorb the first term
in the right-hand side and obtain

1
/ THTA In(A)dA<2Clog N

Plugging back this control in (4.29) and using again (4.28), we finally get the bound
Sn(N) <C(1+|A\") log N.

Therefore, using the identity f(z)=/ f )e'™dr we conclude that

d a ; ;

i [| [ s a @] @i | < [ 1wty ar < cron [l an

max
as desired. O
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A straightforward corollary of Lemmas 4.6 and 4.9 is the following.

COROLLARY 4.10. There exists ag>0 such that, for all a€[—ay, ap], there are finite
positive constants C' and ¢’ such that, for all f:R—R with |||f]||<occ and all §>0, we

have

Nav (\ [ sy ani @)

In particular, for all p=1 there exists a finite constant C), such that

> 8 fll+CIl1 1l og N) <27, (4.30)

o Sl +I1£1l Tog N).
Lr(Q: ")

M Al oy = [ )0 @

Thanks to this corollary we get the following result.

COROLLARY 4.11. Assume that ¢™ € C(R) vanishes outside [—M, M| and that it
is bounded by M. There exists ag>0 so that, for all a€[—ag, ag] and for all {>M, there
are finite constants c¢,C¢,c¢>0 such that, for all §>0, we have

DV (|M MN|¢ > Sec+C¢ log N) < 2e~ (4.31)

Proof. Using Corollary 4.10 with f(x)=(¢™(z))?, together with Remark 4.8, we
deduce that there exist constants co, Cy>0, only depending on ¢, such that

NaV (MY ((0M)P)| = copMP 15+ CoMPp™ log N) < 2¢0°.
Therefore, for (> M we find ¢1, C; >0 such that
iV,aV(|MéV((¢M)p)| > 01<P5+01<p log N) < 2676152<2p/1\/[2pp2.

Applying this bound for pe[l, e */ 2], by a union bound we deduce that there exists
¢’>0 such that

iV,aV( e <_p|M1£V((¢M)p)|2016—1—0110%]\7)<2e—c/'52.

1<p<eCN2/2

On the other hand, for p> ¢°N?/2 the bound is trivial as

u ecN2/2
)|§N<<) <c10+Cplog N

7ecN2/2 ecN2/2
¢ MY ((6™)

as soon as N is large enough. This concludes the proof. O
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Due to this corollary, we can finally estimate the remainder

|62 N |
RY(YN)=0 <#N’ (Vo) O12Zpe, 52Zkk,t>

with C(log N)3/N. Indeed, recalling (4.17), using Fourier transform we have
[ vz @y ar @y are o
= [[] e comaie gy e paai e agdc as

so applying Corollaries 4.10 and 4.11, and recalling (4.26), we can bound our remainder
by

(log N )3 ‘C (log N

¢ N N

P 16, .o +ie™a+icha+10) a dc a

with probability greater than 1—N~°V_ Since all the functions involved decay at infinity,
for the above integral to converge it is enough to assume that ¢»€C?%, as this ensures
that

€ LY(R?).

7 7 7 7 ¢

Recalling that by assumption % is as smooth as (y,lwf)’7 01Zke,t, OF O2Z1y ¢, the assumption
is, by Corollary 4.5, satisfied provided Wy e(C? with ¢>36. Due to our Hypothesis 2.1,
this concludes the proof of (4.9). As explained at the end of §4.1 this implies (4.8), which
combined with (4.1), (4.3), and (4.7) proves (2.8).

Before concluding this section, we prove an additional estimate on the size of the
integral of smooth functions against the measure Mpy. Corollary 4.10 provides a very
strong bound on the probability that / fdMy is large when f is a fixed function. We
now show how to obtain an estimate that holds true when we replace [ fdMy by its

supremum over smooth functions.

LEMMA 4.12. There exists ag>0 so that, for all a€[—ayp,ag), the following holds:

for any £>0 there are finite positive constants Cy and cp such that

Qfﬂv(

242/0

/ f() dMY (z) (4.32)

sup > (log N)Nl/(€+1)> < Ozefcg(log N)
”f”clJrg(R)Sl

Proof. Since the measure Qév’av is supported inside the cube [~ M, M|V (see §4.1),
we may assume that all functions f are supported on [—2M,2M]. Fix LeN and define

the points
aM
T, I 1= —2M+mT, m=0,..., L.
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Given feCiT([—2M, 2M]) with || f]|cero <1, we set g:= £ € C§([-2M,2M]) and define

the function

G (2, )
gr(x):= Z g(j!’L)(x:L'mL)] for all x € [z, 1, Tmt1,1]-

Note that, since ||g||ce <1,

AaM Y
19(2) —92.@)] < 19© oo (@~ Tm.p )’ < (L)

for all ©€[xm, 1, Tm+1,2] and all m=0,..., L—1. So, by the arbitrariness of z,
l9—92l Lo (—2n1,2007) < (4M) L™

Hence, if we set

fr(x) = /I (x_y)sgL(y) dy,

oM 8!

since fég):g,; and fU)(—2M)=0 for all j=0,...,8, we get

If = frll Lo (—2ar200) < Care L5

Recalling that My has mass bounded by 2N, this implies that
’ / fdMy— / fr dMN‘ <2CuNL™“ (4.33)

Fix now a smooth cut-off function tpr: R—10, 1] satisfying ¢y, =1 inside [-M, M| and
=0 outside [—2M, 2M], and define

L—1/¢-1 ‘ R
fo(@) =" gD (@ 1) fn s (2),
m=0 j=0

where

x 8

(Y =Tm, L) Xz 1m0 (Y) AY-

@)= o) [ D

oy 8!
It is immediate to check that fmd eCy ([—2M,2M)) (ie., fm,j has eight derivatives, and
its 8th derivative is Lipschitz), and that fr p=fr on [—M, M]. Also, since || f||ce+o <1
we see that |gU) (2, 1)|<1 for all m,j. Hence, recalling (4.33) and the fact that My
is supported on [—M, M], this proves that for any function feCS*o([-2M,2M]) with

|| fll cers <1 there exist some coefficients ., ; €[—1, 1] such that

’/fdMNZamvj/fm7deN‘<2C’M7gNLf.
m,j
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Since #{fm,j}:€L, this implies that

in’av( sup /f dMN‘ > (log N)Nl/(”l))
£l ge+o<1 (434
N,aV ; (log N)NY (D) 20y (N L™* '
<;Qt (‘/fm,deN‘> 70 .

We now observe that Hfm,j |lcsr <Anse, where Apry is a constant depending only on M
and ¢. Thus, recalling that the functions fm,j are supported on [—2M, 2M], this yields

1 gl < Ag g
where the norm ||| ||| is defined in (4.26). Hence, choosing
L:=|Care NV D (log N) =1/ (4.35)

with (T’M,g large enough so that
(log N)N1/(1z+1) —2CeN L> %(log N)Nl/(“l),

we can apply Corollary 4.10 to the functions fm’j, and it follows from (4.34) and (4.35)
that

N,aV
Qy sup
Ifllceto <1

/ fdMN‘ > (log N)N'/ (””> < Cly L e chae((os NINY T/ L)

o 242/¢
gc;\’/l,ee chr,e(log N) . O

4.6. Reconstructing the transport map via the flow

In this section we study the properties of the flow XV: R RN generated by a vector
field YV as in (4.13), i.e., X solves the ODE

xN=yY(xY), x{=1d,

and we prove that TV := X} satisfies all the properties stated in Theorem 2.5.
Recalling the form of Y (see (4.13)), it is natural to expect that for all t€[0, 1] we

can give an expansion for X}V as

1 1
—X —X.
N 1,¢+ 2,ts

XtN:XO,t+ N2
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where each component (Xg;)* of Xo; should flow accordingly to yk ;. more precisely,
we define (Xo)F:=X} (AF) with X} ,: R—R the solution of

X(I)C,t = yg,t(X(]Jc,t)v X(])c,t(A) = (4.36)
Recalling the notation A=(A', ..., A\%) where \¥:=(\F, ..., \k)), we define
X =((X1,0)10 s (X1.0) N eoos (X10)F, oo (X1,0) %) RIV— RV
to be the solution of the linear ODE

(X1 PN = (v2.0) (X5 (AD)) - (X1.0)F (M) 4k 4 (X8, (AF))

+Z/Zke,t(X(]f,t()‘f),y) dM)jfvé,t(y) (4.37)

+= ZZazzku XK, (AR, X6, O09)-(X1.0)E (N,

é 1j5=1
with the initial condition (X; 0)¥=0, where M N s defined as
N

[ sty =3 (1(x5.00)- / Faui,) forall f€CR)

i=1
PRrROPOSITION 4.13. Let « be as in Proposition 4.4. Assume that Wi:R—R are of
class C? for all k=1, ...,d, with 0>16, and that |a|<«. Then the flow

XY = (X1 s (XN ooy (X, s (XD)R): RV — RV

is of class C°~9 and the following properties hold: Let (Xo.)¥ and (X1,)¥ be as in
(4.36) and (4.37) above, and define Xg’t:RdNﬁRdN via the identity

XN =Xo+— X1t+ th
Then, for any t€[0,1],

max (X107 Nl o gpavy < Clog N, max (X207 Nl 2 gpavy S Clog N)2. (4.38)

Also, there exist constants C,¢>0 such that, with probability greater than 1—e—c(10g N)z,
the following bounds hold:
sup max |(X1,)¥| <C(log N)NY/(e=14)
te[o,1] bk
(4.39)

sup max |(X2,)¥| < C (log N)2N% (=15
te[o,1] bk
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and, for all k, =1, ...,d,

sup max|(X1,)¥ (V) —(X1,0)5 (V)| < C (log N)NY/ (=1 \F 7k, (4.40)
tefo,1] ©¢
sup max|(Xo)¥ (V) —(X2.)5 (V)| < C (log N)? N¥(T=1D|\E_\E |, (4.41)
tefo,1] ©¢
sup max|a)\e(X1 DEI(N) < C (log NYNY/ (=19, (4.42)
tefo,1] “J

Proof. Since Yiv €C779 (see Corollary 4.5) it follows by Cauchy-Lipschitz theory
that X}V is of class C?~9. Define

S Lo)f ] 2.6)F 3 S
(XN = 20 ) 4 P () 208 5y - (4 (0 7).

Also, we define the measure M&N,T)k as
t

N

[ 10 )= 30 | 0= XE O O - [ rai ] as)

i=1
for all feC.(R). In order to get an ODE for X5, the strategy is to use the Taylor
formula with integral remainder to expand the ODE XN =Y (XN), and then use (4.36)
and (4.37) to simplify the terms involving Xo,f, and X1,f,- In this way we get

(X )f(A) = / (2. (XN TYER)) dr-(Xo,)E ()

+N/ W) (XTEA) =8 (X5, ()] dr- (X1 (V)

+ZZ IR R HENE AR T

¢ j=1
*%Zke (X5 (), X5, (A dr- (X,0)5 (V)

Y / Oomie (XNTIER), NS AN dr =220 (4.4

¢ j=1
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with the initial condition (X5 ;)¥=0. Using that

IyR.illco—s@ <C

(see Corollary 4.5) we obtain
1 Xo,¢llco—sm) < C. (4.45)

We now start by controling (X; ¢)¥. First, simply by using that My has mass bounded
by 2N we obtain the rough bound [(X; ;)¥|<CN. Inserting this bound into (4.44) one
easily obtains |(Xa,)¥|<CN?2.

We now prove finer estimates. First, by Lemma 4.12 together with the fact that
(Xo.0)¥ and y—2zpe (2, y) are of class C°~6 uniformly in z and ¢ (see Corollary 4.5),

it follows that there exists a finite constant C' such that, with probability greater than
1 _efc(log N)? ,

sup
reR
te[0,1]

/Zke,t(x, )\) dM)jgﬁ.t(A) <C (log N)Nl/(a—m)_

Hence, using (4.37) we easily deduce the first bound in (4.39).
In order to control X, we first estimate (X1 ,)% in L*(QY*"): using (4.37) again,

we get

d k
% H},%X H (X17t)i ||L4(Q(JJV,O,V)

k
<m0, 08 gy vy +1 (1.46)

+max
R,

/ Zre,t (X (M), y) AMY, (y)

L4(Qév’”v))-
To bound (X1 ¢)¥ in L4(Qév’av), and then to be able to estimate X5, we will use the

following lemma.

LEMMA 4.14. Assume that s>16. Then, for any i=1,...,N and k,{=1,....d,

<ClogN, (4.47)

H/ Zgy,t (X(I)C,t(/\f)r y) dM)J}[g t (y)
: L@ ")

< Clog N. (4.48)

H / e (X5, (N), ) MY, ()
AR

Proof. Fix indices 7, k, and ¢ and write the Fourier decomposition of

M2 (2,y) 1= 2hee (X5, (2), X0, (y)
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to get
/ e (2, ) M () = / e (2, €) / ¢ AN (y) de.

Since zpg €C™" for u,v<o—6 and X§,€C7™* (see (4.45)) with derivatives decaying
fast at infinity, we deduce that

c

A <—
|772,t(xa§)| 1+|§|0—6

Thus, using Corollary 4.10, we get

< / |ﬁ2,t<-,s>||ooH / N ()
N,aV)

L*(Qo

dg

L4(Qy ")

/nz,t(x, y) dM}Y ()

sup
xr

<Clog ) [ a1l (1+]€]7) de

<Clog N
provided ¢>13. The same argument works for 0yzx; provided o>15, which concludes
the proof. O

Inserting (4.47) into (4.46), we obtain the validity of the first bound in (4.38).
We now bound the time derivative of X5 ;: using that My has mass bounded by

2N, in (4.44) we can easily estimate

‘N/O [(57,0) (T F ) = (rR.) (X ()] dr-(X1,0)F (V)

C
<OIXa H P+ 108 (X,

1
[ om0 AN )= [ s (KB, ), )dM)]ggt(y) ar

<C|<X1,t>?+N|<X2,t>?+NZ(|<XU> ).

J

and
Z / 90 (X)), N A)) = Do (X8, (N, XE () dr (X))
<f7<(xu> (X ) )D X10)!

+% ; (|(X1,t)§|2+N|(X2’t)§| |(X17t)§|)’
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and hence, noticing that

dl(X2.0)f| _ 5
-t < X ; ’
U < (K200t

we get

d

(X0l

c c
<O, )f [+ CIX )7 P+ 5 (X5 T (Xo)F 1+ CHX )T |+ 175 | (K05 2

N2

C C
v Z [(X1,0)¢] |(X1,t)i?\+m Z [(X1.0)F] |(X2,t)§|+ﬁ Z |(X2,0)7 | [(X2,0)5]
L5 4,5 4

| f om0 ey w0601+ & ik

C
o S IG5+ S0 KL b+ S 1K,
0,5 4,5 4.j

Using the trivial bounds |(X7,,)¥|<CN and |(X5,)¥|<CN?, and the elementary inequal-
ity ab<a?+b?, we obtain

d
— (X2, )P SO 1(X2,0)f |+ 1(X1,0)f + |X1t Ith
dt
, (4.49)
‘/31Zket X5.(A9),y )dMth(y) )
In particular, if we set
A= max ‘(Xl,t)ﬂ and Ag;:= max \(Xg)t)ﬂ,
we obtain
d . ?
A2t<C A2t+A1t+max 12y, ( XOt()\ ), y)dM (y) . (4.50)
Hence, noticing that
sup /alzk“(m, A) dM)]}% (/\)‘ < C(log N)N/(e=15) (4.51)
€R g
tg[o,l]

with probability greater than 1—e—c(logN )?

(see Corollary 4.5 and Lemma 4.12) and
recalling the first bound in (4.39), using (4.50) and a Grénwall argument we deduce the

validity also of the second bound in (4.39).



UNIVERSALITY IN SEVERAL-MATRIX MODELS VIA APPROXIMATE TRANSPORT MAPS 129

Going back to (4.49) and again using the inequality ab<a?+b?, we also see that

d

a”(XQ,t)f”i’z(Qé\’vaV) < C<|(X2,t)§iz(Qé\’@V)+||(X1,t)§||i4(QéV,aV)

1 214 1 2112
+ 37 LI gyt 37 SN2 g
L,j

4
L4(Q6V’“V)>.

d
N2 2 vy S CUIK2 )12 v, + (08 N)Y),

oo o

Ot

Hence, recalling the first bound in (4.38) and (4.48), we get

so a Gronwall argument concludes the proof of (4.38).
We now prove (4.40). Recalling (4.37), we have

|<X1t> B = (X1,0)5 (A
o) (X6 () = (y0.) (XE,EN(X10)F (V)]
Iy ) (XK N0, F ) = X1 )| [yh o (XE (AF)) —yh  (XE,(A8))]

/(Zkz,t(X(’it()\f%y)—Zke,t(X('it(/\ff%y))dM;vagﬁt(y)

+5 Z |Oa2e,0 (X1 (), X1 (AS) =Bz, (X5 (A5), X6, 5D (X 1,0)5(AT)]-
4,5
Hence, using that |X{§,(A})—X§(AF)|<C|AF =A% ], the bounds (4.39) and (4.51), and
the Lipschitz regularity of (yg,t)’, y,lc’t, Ziot, and OxZpe e, We get

|(X1)F () = (X1, W CUX L) (V) = (X1 (V) +Clog N)NY I[N -2 |

outside a set of probability less than e—c(los N)2, S

o (4.40) follows from Groénwall’s in-
equality.
By a completely analogous argument, it follows from (4.44), (4.40), (4.39), and

estimates analogue to (4.51) for the higher derivatives of zyg ., that
(X208 (V)= (X2,0)8 (V)] < Cl(X2,0)F(A) = (X2.) (V)] +C (log N)* N2/ 1D xE - \E |

holds outside a set of probability less than e~¢(°8M*  Thus (4.41) follows.
Finally, denoting by (55 the vector with zero entries except at position j,¢ where
there is a one (so that X—I—eéfz(/\%, ey )\f—i—e, ..2%)), one can differentiate in time

(X108 (Ate65) = (X1.0) (V)]
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and argue as above to deduce that

(X1 e85) — (X105 (V)] < Cllog NNV @19
outside a set of probability less than e—c(osN I Dividing by ¢ and letting e—0, this
proves (4.42). O

5. Universality results
In this section we explain how Corollaries 2.6, 2.7 and 2.9 follow from Theorem 2.5.

Proof of Corollary 2.6. Given 9¥>0, we define the set
Gy:={\eR¥: |/\f—’yf/N| < N2 min{i, N+1—:i}/? for all i and ¢}. (5.1)

As proved in [29] in the special case of the Gaussian ensembles and then generalized
in [13, Theorem 2.4] to potentials W}, satisfying much weaker conditions than the ones
assumed here, the following rigidity estimate holds: for all ¥>0 there exist ¢>0 and
C < oo such that, for all N>0,

PYO(RN\Gy) < Ce ™", (5.2)

Also, due to the fact that ug has a density which is strictly positive inside its support
[ag, bg] except at the two boundary points where it goes to zero as a square root (see
Lemma 3.2), we deduce that

’Yki m
%>i/k” " minVs—al, Vol —s } ds,
.

i/N

from which it follows easily that

C m
k Ak . 2/3
IV (imy/ v —Viyw| < N2/3 mln{m (s, N+ 1—i]1/3 } (5.3)
Since
|)‘§+m_)‘§| < |)\f_7f/1v|H)‘?er_’Yéer)/N|+|’Y€€i+m)/N_’Yf/N|, (5.4)

using (5.2) and (5.3) and recalling that by assumption m< N, we deduce that

INOE =M< C(N?+m) for all A€ Gy, ix €[Ne,N(1—¢)], j=1,...,m, (5.5)

and
IN?3(\E—a)| <C(N?+m?/3) for all A€ Gy, j=1,...,m. (5.6)
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Now, given a bounded function y: R —R, applying (2.8) to

1 % >
1+ 2
2( Xl o

with k=0 and n=1, we deduce that

N ;pN,0 N,aV
‘/XoT dPg —/deﬁ

Recall that the map T is given by XV, where X}V is the flow of the vector field Y,{V that

has the very special form (4.13) (see Proposition 4.13). In particular, since the functions

<OV (5.7)

Yier i Cret(-,y) are uniformly Lipschitz, we see that
(XXM <L (XM)E—(XM)E| foralld,j=1,..,N and k=1,...,d.
Hence, since X =T" and X} =Id, Grénwall’s inequality yields
—Liyk_\k Nk (3 Nk (3 Livk_yk ks \k
e (N —)\j) < (TP N)—=(T )j()\) <e” (N —)\j) for all A7 > A}, (5.8)

We now remark that the law ﬁév’av is obtained as the image of the law of A¥=(A\¥ ... \k)),
1<k<d under PBN’QV under the map

RRWN SRV ROAL AR AT = (RAY), ., ROF), ., ROD),  (5.9)
where R:RY - RY is defined as

[R(z1,...,zn)]i = Inin max z, foralli=1,...,N. (5.10)

Hence, due to (5.8), it follows that 7V and R commute, namely
RoTN =TNoR. (5.11)
We now consider a test function x of the form
X = FUNAE 41 =8 ) oo NOE = AR ))iz)- (5.12)
Then
[ OO =) N =N B = [eRap) ™,
and it follows by (5.7) and (5.11) that

‘/Xdﬁév’av—/xoTNoﬁdPév’o SCN""Hf|lo-
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Let Xo¢, X1, and X5, be as in Proposition 4.13, and note the following fact: whenever
AeGy we know that, for any ¢=1,...,d, the numbers {)\e *, are close, up to an error

NY, to the quantiles of the stationary measure W*ﬂe,o- Hence, given any 1-Lipschitz

’/deéV

Since Xg’t is a smooth diffeomorphism which sends the quantiles of y17 , onto the quantiles

function 1,

<CON? forall ¢=1,....d.

of pj 4, we deduce that

|<CN? forall ¢=1,...,d and t € [0, 1].

This implies that

sup/zk“(x,y) dMé(Vgt(y):O(Nﬁ and sup/@lzk/f (z, ) dM (/\):O(Nﬁ),

x,t

and by the same argument as the one used in the proof of Proposition 4.13 to show (4.39)
and (4.40) we get

H,l%}}I(Xl,l)?(ﬁ)\SCJ\“9 and  |(X1)f(\) = (XL 0)F VI SON? NF=AEL - (5.13)

for all A€Gy. Then, noticing that || Vx|lec SN||Vf|lse, due to (5.13), (4.41), and (5.5),

we get

/XoTNoﬁdPﬁN’o—/ XoXo,1°R dP)"°
Gﬁ G19

k k 2-1/2
<|\Vxlloo/ [ZZ( (X11)5 zk+] (X1,1)¢k|+\(X2 1)zk+]<f2 (X2,1)7, > ] / a0

k=1j=1

12
<C|Vfl N / (ZDAW ) apy"

k=1 j=1
m1/2N19 (Nﬁ—km)
N .

<OV flleo

Note now that (Xo1)¥=T§ for all i=1,..., N, and that
L (TEY <€ (5.14)

(this follows by the same proof as the one of (5.8), compare also with [5, Equation (5.2)]).
In addition,

(To,2)5, 4 (N = (To,)k, (V) = (T5) (ML) N, 1 = A5 1+ O UM =0 1),
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and hence, by the definition of Gy,

/ XOXO,loﬁdPBI\Lo
Gﬁ

=/, FIUTEY N5 ) N 1= AL ), ooy (T8) N )N (N, = A8 ))izy) d B3
9

—&-O(HVfHooml/2 (Nﬂ—i—m)2 N7,

Also, in the integral above we can replace (T3)'(Af,) with (T§)'(7: 5 ), up to an error
bounded by

d m /2
IVl /G (ZZ|A§1—wf/NF(NMfﬁj—AﬁD?) 4P
9

k=1 j=1
= O(|V flleom™*(N? +m)N"~1).

Finally, it follows by (5.2) that all integrals on RN\ Gy are bounded by C||f|s e .
Hence, we have proved that(!)

‘/f((N()‘karl_)‘fk)v "'7N()\§k+m_)\fk)>(]i:1) dﬁé\ﬂav

—/ FOTEY (rf )N O = X8 ) (T8 (1 )N (N = A ) Zy) AP

R - e . mY/2N20 4 3/2 NY
SOV +e )| flloe+C I IV floo-

Since e~ N° <CN?O-1, choosing < %9 we conclude the validity of the first statement.

For the second statement we choose

XX = FINPPOF —agV), o, NPT, —af¥))io),

(1) This estimate, as well as the one at the edge that we shall prove below, should be compared
with the one obtained in [5, Theorem 1.5]. While the estimates here are considerably stronger than the
ones in [5, Theorem 1.5] (this follows from the fact that we have better bounds on our approximate
transport maps), as a small “loss” we now have N?~1 instead of a term (log N)3/N. The reason for this
small difference comes from the fact that we decided to apply (2.8) to deduce (5.7). It is worth noticing
that the argument in §4 combined with [5, Lemma 2.2] proves that also the stronger bound

log N)3
[y arye- [xapye|<otE
holds. However, since in general (2.8) is much more powerful than the estimate above (as it allows to
deal with functions that grow polynomially with respect to the dimension) and the improvement between
(log N)3/N and NY~! is minimal, we have decided not to state also this second estimate.
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and we note that 7§ (al)=a¢". Then, due to (4.39) and (5.13), we get

/XoTNoﬁdPév’O—/ XoXo1oR AP}
Gy

Gy
<L [ (e S ]
k=1j=1
<ARf= ' [ (I%%X“Wf e ) arye
<O||Vf|\oo%

Also, since
T3 ()~ Ty (aR) = (T3) (a) (AT —ap) +O(IA —ai ),

using the rigidity estimate (5.6), we may replace
NYHTEAD) =Ty (@) by (T§) (af) N*/3(\f —ap)
up to an error of size m'/? (N19+m2/3) N—2/3_ Hence, arguing as above we conclude that
[ OO, N0 ¥ s Py

— [ HT @) N O —a) e (1) ) N0 ey dPY

m1/2 Nﬁ m1/2(N19+m2/3)
N1/3 + N2/3 ||foOO

<6Nﬂ-1f||oo+é(

which proves the second statement by choosing 9¥<6. O

Proof of Corollary 2.7. We first note that the proof of Corollary 2.6 could be re-
peated verbatim in the context of [5] to show that [5, Theorem 1.5] holds with the same
estimates as we obtained here. Hence, by combining this result with Corollary 2.6, we

have
[ O =3 N OV = ) B
_/f(((TOOSO)/('yik/N)N<)‘zk+1 Ak) 7(Té€OSg)l(’Vik/N)N()\Zk+m )‘k )) 1)

Xd(P(]}VVE,ﬂ)®d

SCNP Y| flloo+Cm®2 N0V f| oo
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where v;, /n satisfies pisc((—00,7;,/n))=ix/N. Note that the transport relations (2.10)
and (2.11) imply that T(;GOS(])C(’Y%/N):,‘YZQ/N,(N where 'ka/N,a satisfies

v k _ ik
i ((—oo, ’Yik/N,a» N

and hence (again by (2.10) and (2.11))

Qsc(’)/ik/N)

(T5°58) (Viu /) = -
00 K/ ka('Yfk/N,a)

Finally, since |0y —ix/N|<C/N and o;€(0,1), arguing as we did for proving (5.3), we

deduce that |7v;, /N =70, | <C/N, so up to another small error we may replace

Qsc('Yik/N) by Qsc('Ytn)
QZV(’VZZZ/N’G) sz('}/ak,k)

This concludes the proof of of the first statement, while the second one is just a conse-
quence of Corollary 2.6 (2) and [5, Theorem 1.5 (2)]. O

Proof of Corollary 2.8. As is clear by looking at the proof of Corollaries 2.6 and 2.7,
the fact of dealing at the same time with the eigenvalues of different matrices does not
complicate the proof. For this reason, since the proof of Corollary 2.8 is already very
involved, to make the argument more transparent we shall prove the result when the test

function is of the form

S F(NOE-EB),. NOE - E)) dE

i; distinct

Ry (E)+N~° Rj(E)
]ék(E)—NC R (E)
for some E€(—2,2), the proof in the general case being completely analogous and just

notationally heavier.

To simplify the notation, we set

Y FINOE-E), ... N\ —E)),
i1F . Fim

Ry (E)+N~ R}, (E)
Ak22/|:][

It follows by (2.8) with n=0 that

95(M):

95 dE dPﬁN’aV.
Ri(B)=N—<Rj},(B)

log(1+A) —log(1+ A1 )| KON, (5.15)
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where

Ri(E)+N~¢ R}(E) 1 ~no
Alk:/{][ 9o (TYV)*dE| dP;"

’ Ry (E)~N—CR},(E)

Ri(E)+N "~ R (E)
]ium—zv—m;(m

> FN(TNEN=E), .., N(TY)E (\)=E))dE | dP}"™°.
i1 P

Define the quantiles Vf/NE(S’,g(—Q), S9(2)) as in Corollary 2.6, and given >0 small (to
be fixed later) we consider the set Gy defined in (5.1).
Since the integrand gzo(T™)" is pointwise bounded by || f||cN™, it follows by (5.2)
that
A=Az +0(e™ "), (5.16)

where

Ry (E)+N~C R} (E) ~ No
Az i ::/ [][ 95o(TN)* dE | dPg™.
Gy I/ R (E)~N—¢ R} (E)

Observe that if A\eGy then, by definition,
INE—XE] > ok =y = N3 min{i, N+ 1—i} =3 - N =23 min{j, N+1—5}71/5,
Hence, since ’yfiJrl)/N—vf/NZcoN_z/z)’ min{i, N4+1—4}~1/3 for all i, we deduce that

IAF=AF| >N provided |i—j| > CoN?,
which, combined with (5.8) yields, for AeGy,

(TN)ER) = (TN)5(N)| = e NP~ provided |i—j| > CoN". (5.17)

We now notice that, since f is compactly supported, the quantity

FIN(TN ) (3= B), .o N(TV)E (3)—E))
can be non-zero only if

Nk iy o Ch -
[(T7)i,(\)—E| < N forall j=1,...,m.

Therefore, if i€{1,..., N} is an index (depending on A and E) such that

Cy

(TR - Bl < 3
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then (5.17) yields

@M -BI<S = i< CoN”.

This proves that, for any 5\€G19, there exists a set of indices

J;\’E C {(il, Jm) € {]., ceny N}m : le 7& #Zm}

such that #J5 EgCNmﬂ and

Ri(E)+N~CRj(E) - N
AZ,k:/ {][ dpe(TM)*dE| dPy™,
Gy LY Ry (E)—N—¢ R (E)

where
gN):i= Y FINOL-E),.., N\, —E))
('Ll,...,im)GJ;,E
satisfies |§T§(E)|<C|\f||OONW9.
We now perform the change of variable E —TE (LN?)7 which gives

/Rk(E)JrN_C Ry (E) (Tg) "' [Ri(E)+N ¢ Ri.(B)]

T§ (B)

Ry (E)—N~¢ R} (E) ()~ [Ru(B)—N—¢ R} (B)]

137

Go(TY ) dE = / G o (TYVF (TE) (B) d .

Recalling that R, =T} oSk and that these maps are all smooth diffeomorphisms of R, we

see that for
E€[(T§) ' [Ri(E)~ N Ri(E)}.(T§) ' [Ri(E)+ N~ Ri(E)]]
it holds
(T3) (B)—(Tg) =S5 (B)| SCN ¢, Ri(E)=[(Ty)'~S5(E)] (S§)'(E),

and

(T) " [Ri(E)£N"C Ry(E)] = S§(E)£N"°(S5) (E)+O(N 2.

Hence, since |§T&(E)\<0Nmﬁ,
(TF) " Re(E)+N~¢ Ry(B)] .
][ s iy (TV)* (TFY (E) dE
(T§) = Ri(B)-N-CRj(B)] °
SE(B)-N~<(s§)'(B) Nk o= 9
:]é Grs () o (TN)F dE+O(N™=C),

S(E)-N—<(8)(E)
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which proves that
Ag = Az, +O(N™ =), (5.18)

where

Sk(E)-N~¢(S¥)(E) B
As ::/ []l Gk (TV)F AE| P
Go LISk (E)-N-<(sky(E) °

We now estimate Ag j.

Due to Theorem 2.5, we can write

Irrci TV N = D0 FINTEON) -T5 (E)+ (X V),
(1150 im)EJS B

L N(TEOE ) =TEE)) +(XY)E, (V)

V flloo
ro( I8 5= gt

(i1, im)EJ5 5

and thus

_ 1 N \k N,0
As,kA4,k+O<N /Gl9 4 Z [(X21)5,1dPg (5.19)
(zl,.A.,zm)EJ;\j
where
SE(E)=N"¢(S§) (E) 1 no
A4,k::/ {][ hEdE} Py},
Gy LJSE(E)=N—C(S§) (E) '
and with
hpN = Y FINTEOE)-TEE)+(XD)E V),

(7;17“‘,7;771)6]5\‘5

s N(TFEOE ) =T (B)+(XT)E, (V).

tm

We now want to get rid of the terms (XlNl)f] and |(Xévl)f] .

Motivated by (4.37), for any E€R we define Xf;\(E) as the solution of the ODE
Xf)\(E) = (y%t)/(X(’it(E))-XE;\(E)—&—y,lc’t(Xg’t(E))

d
+Z/Zkz,t(X§,t(E)a?/> dMﬁlfvé,f,(y)
et

d N
1 ~ “
o DD e (X (), XE (XD)- (X105 (),
=1 j=1

with X (’)“ :\(E):E, and we note the following fact: whenever A€ Gy we know that {\{}N
are close, up to an error N”, to the quantiles of the stationary measure ,ugz pg o- Hence,

arguing as we did for (5.13), we get

\agxfyx(ﬁngcm, (XTDFA)=XF(E) SCN? [N —E| forall A€Gy. (5.20)
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In addition, by the same reasoning,

max / zret (X5 (A]),y) AMY, (y)=O(N”) for all A€ Gy,

and the argument used to prove (4.39) (see in particular (4.50)) yields

max (X)) <CN? for all A€ Gy.

Hence, since #J5  <CN ™Y we immediately deduce that

1 N \k NOY\ _ (m+2)9—1
O(N /G | Z (X30)5 [dP3™" ) =O(N ). (5.21)
v (711;-4-771771)6«]5\75
Now, to get rid of the term Xf)\(E) inside hy we take advantage of (5.20) and the

average with respect to E: more precisely, we consider the change of variable
= T P B
Evr— @5 (E):=(1Ty)" " |1} (E)JrﬁXl,S\(E)

so that

SEE)-NT(SE(B)
][ hydE
Sk(B)~N=<(S})(E)

SE(B)=NT¢(S§) (E) ok e N g .
-1 FIN(TEOE) ~THE) +1XY)E ()= XE (B)],

(i1,-im)€J5 5

o N(TEOE ) =T () +[(XN)E, (3~ XE (B)))9; 5 (E) dE.

§(B)—N=<(S§)(E)

Therefore, since 8E¢X(E):1—|—O(Nﬂ_1) (due to (5.20)), |hp|<CN™", and the interval
[SE(E)—N=¢(SE)(E), SE(E)—N~¢(SF) (E)] has length of order N~¢, we deduce that
S5(E)=N~¢(S5)' (E) ~
][ hzdE
SE(E)—N=¢(8§) (B)

S§(E)=NT(S§) (E) - L~ Nk L~
-1 S N ~TEE) ) () X ()],

())c(E)_N*C(S(If)/(E) (il,,..,im)€J>"\ E

o NS )~ TEENH(XN)E, ()~ X2 (B)]) dE+O(NEN™ NI,
(5.22)

We now observe that, since T¢:R—R is a diffeomorphism with (TF)'>e £>0 (see
(5.14)), it follows by (5.20) that

(XNE ()= XF L (B)| < ON? (T3 ()~ TH(B)|.
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Therefore, since f is compactly supported, we see that the expression
FIN(TE ) =T (E)+ (X (V)= XP((B)],
s N(TE (V) =T5 (B) +[(XT0)E, (V)= XF 5 (B)])
is non-zero only if

-~ _C
|T§()\fj)—T§(E)|<F1 for all j=1,...,m.

In particular, using again that (7})’>e~1>0, this implies that |)\fJ —EKC/N. Thus

[0~ T8 B) - (1) (B - Bl =0 ()
and
N TE )~ T (B) = O(N" 1),
and we get
FON(TE )~ T(E)) + [, () - X (B
N )~ TEE)+ X, (3 - XE (E))

tm

= f(T3) (B) NOAL, —E), ... (Tg) (B) NOAL, —E) +O(|V fllooN"71).
Combining this estimate with (5.22) and the fact that #.J5 z<CN™’ we conclude that

S5(E)=N"(55)"(E) -
][ hE dE:gE+O(N(m+1)19+C*1)’
S§(E)=N=¢(S§)(E)

where
?E(j\)
S§(B)=N~(85)(E) . : = oy PP
::][ > H(T(E)N(, =E), ... (Ty) (E)N (X}, - E)) dE.
SE(B)=N=¢(S§)'(B) (4, .

A.,im)EJj\YE

Also, by the argument above it follows that we can add back into the sum all the in-
dices outside J5 j (since, up to infinitesimal errors, the function above vanishes on such

indices), and therefore

S§(B)=N"C(S§)'(B)  _
][ hzdE =gp+O(NmTo+He=1)
S,

5 (B)—N=<(S§)"(E)
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with

ge(\)

Sg(E)=N—¢(8§)(E)
f

FUTY (E)N(AE, =E), ..., (T§) (BE)N (X}, — E)) dE.
§(B)=N=C(S§Y(B) 4,4

Combining this bound with (5.15), (5.16), (5.18), (5.19), and (5.21), we conclude that
llog(14 Ag) —log(1+Ay)| < C(N™=¢ 4 N(m+2)0=1 4 N(mt)d+¢—1y (5.23)

where /Zlk::/ JE dPév’O.
We now repeat this very same argument replacing PBN ,aV, PBN ’O, and TV, with Pév ’0,
(PéVVE’B)@)d, and SN =(SY, ..., SY), respectively (see the discussion before Corollary 2.7),

and we deduce that
llog(1+Ay)—log(1+Ay)| < C(N™~¢ 4 N(m+20—1 4 NOmt1)i+¢-1y

where

E4+N~¢ ~ _ _
Ak::/[][ < Z F(RL(E)N(Xiy —E), ..., Ri(E)N (\i,, — E)) dE| dPiyg 5.
E=N=¢ 2. Fim

Combining this estimate with (5.23), we get
llog(14Ax) —log(14Ay)| < C(N™V=C 4 N(m+2)0—1 4 Ny(m+Di+¢—1y
Choosing ¥ small enough so that (m+2)9¥ <6, this gives
log(14+Ag) —log(1+Ay)| < C(NOH1 4 NO-1/2 4L NO=C) < O(NOHTT 4 NO=C),

and since Ay, is uniformly bounded in N (see for instance [65]) and the right-hand side
is infinitesimal (recall that § <min{¢,1—(}), we conclude that

|A}C —Ak| < C(N9+<_1 -I-Ne_c).

Recalling the definition of Ay and flk, this proves that

Ry (E)+N~¢ R} (E) - o
’/[][ Z f(N(Afl—E),...,N(Afm_E))dE} dpév,av
Re(E)=N=CRi(E) ; i

- ][EWC S FURE) N, B o RE) N, ~ ) B | aPie

—N—¢ . .
E=NTC 2 i,

< 6(N9+<_1 +N9_<)7

which corresponds to our statement when f depends only on the eigenvalues of one
matrix. As explained at the beginning of the proof, the very same argument presented

above extends also to the general case. O
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Proof of Corollary 2.9. We begin by noticing that the proof of Theorem 2.5 could
be repeated verbatim in the context of [5] to show that [5, Theorem 1.4] holds with the
same estimates as we obtained here.

To prove the gap estimates, it is enough to show that the approximate transport
maps do not change gaps in the bulk uniformly (away from the edges). Due to Theo-

rem 2.5 and [5, Theorem 1.4], we have the expansions

. 1 « 1 N
(¥R =T )+ (XD )+ 5 EDE ),
(524 = SEO) + 1 (S i) + 35 (Sk2)i O,

where (Si1); and (Sk2); satisfy the same estimates as (Xi')¥ and (X2')*. Hence, by

2 3

the formulas above we deduce that
(TM)F(SY A, -0 S5 (AD)
1
= T§°S§(A?)+N [(T5) =S5 (AN (Sk,1)s (A7) (5.24)
1

g CEDE (SHOD+ (5101, SO+ 3 (Sma)e (A ) 65

where the error &; satisfies (due to the bounds in Theorem 2.5 and [5, Theorem 1.4])
12 _ [ (log N)?
\/Z ||81HL2(PCI;VVE13) _O< N3/2 (525)

Also, by using again Theorem 2.5 and [5, Theorem 1.4], with probability greater than

1—e—c8M)* and uniformly with respect to i€{l,..., N}, we have

(TF) = S5 D) (Sk1) it (V) = [(T) 2S5 (AN (Sk, )i (AF))]
<C(log N)NY 1 |\E | —NF),

and
OE0 = e (8D L St (504180 ) O
< Clo NN (150 )= S5O0+ (St (V) (S04
<Clog N NVEIDNE | — A,
while

T3e S5 (Ai 1) =T =85 (A) = (T 285) (AD) AFpa = AFT+O (1N = AF ).
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Recalling that, with probability greater than 1—e N°, |)\f+1f)\f|<CN9*1 when the
{AFYN | are ordered and i€[eN, (1—¢)N] (see (5.2) and (5.4)), we conclude that, with

—c(log N)?

probability greater than 1—e , and uniformly with respect to i€[eN, (1—¢)N],

we have

[(T™)F = (@)Y (A, -, ST (D)

loec N Nl/(o—flf))
- (Tokosz)ﬂ)/(xf)uﬁmfwo(( o8 V) )

N2-0

Combining this estimate with (5.25) and noticing that

A3 ( (log N)N?/(e=15) " (log N)

N2 o N2 )—)O as N — oo,

provided 9<% (recall that by assumption o >36; see Hypothesis 2.1), the two statements
follow from the fact that TV (SN, ... SYV): R4 R4V is an approximate transport map
from (P 5)®? to P3"*" and that the results are true under PRy, 4 due to [6, Theo-
rem 1.3 and Corollary 1.5]. O

6. Matrix integrals

In this section, we consider the integral
I5V(A, ..., Ag, By, ..., Byy) ::/eNz’rTf@TV(UlAlUf ~~~~~ UaAaUg.BioBm) gy, . dU,,

where =2 (resp. 3=1) corresponds to integration over the unitary (resp. the orthogonal)
group U(N) (resp. O(N)). Here Ay,..., A4 and By, ..., By, are m+d Hermitian (resp.

symmetric) matrices such that
d m
i [ Ao <1 and  nffix | Byl <1. (6.1)
1= 1=

and V belongs to the tensor product C(z1, ..., 24;b1, ..., by )®" (or more generally to its
closure for the norm defined below), where C{xy,...,x4;b1,...,b,) denotes the set of
polynomial in d4+m self-adjoint variables.

. 1
We see V as a Laurent polynomial in {u;,u},a;}¢ ; and {b;}7,, where z;=u;a;u; .

The set £ of Laurent polynomials is equipped with the involution * given by u}=u; L
af=a;, by =b;, and for any Laurent polynomials p and ¢ one has (zpq)*=Zz¢*p*. We let

SUD, (1®...Q¢ )1 ®...®¢q, be the decomposition of a polynomial p in

®r . _ * *, . r
LT =C(ur, Uy ooy Ud, UG5 A1y ooy gy D1y ooy D)
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in the basis of tensor products of monomials, and for &, (>1 we set

Hp”ac = Z |<p7 q1 ®®qr>|52f=1 degU(q'i)CZ:=1 degA,B(qz')7

where deg;(q) (resp. degy p(q)) is the number of letters in {u;,u; }& (resp. {a;},
and {b;}72,) in the word ¢. We let & .:= 2" e be the closure of £®" for the norm
|- lle,c. We endow the space of linear forms Ly . on £, with the weak topology, that

can be recast in terms of the norm

ITlle.c:= sup |7(p)l-
lIplle,c<1

Notice that, by abuse of notation, we use || -||¢ ¢ to denote both the norm and the dual
norm. It will always be clear from the context which one we are referring to. For later
purpose, observe that &, (> ||p|l¢ ¢ is increasing for any pe &/ ., whereas £, (> ||7|¢ ¢ is
decreasing for any 7€ Lg .. In the case where r=1, we denote in short Z ¢, L¢ ¢, etc.

We denote by L£(.) the set of linear forms on a vector subspace . of ¥, and
endow it with the weak norm || -||¢¢. In particular if /2 is the algebra generated by
{a1,...,aq,b1, ..., by}, the parameter & does not appear and we write in short |- |¢. In
case of a linear form on the algebra generated by a single self-adjoint variable, that

corresponds simply to measure on the real line, this is
Ivll¢ = sup ¢Flp ().

We denote by M(K) (resp. P(K)) the set of Borel measures (resp. probability measure)
on the set K CR and by % the algebra generated by {b1, ..., by, }, and we write

d
wle:=Y lwllc+I7llc
i=1

for (d+1)-tuples consisting of d probability measures on [—1, 1] and one linear form in
L(%). Notice that, for re L(B),

Ille:= sup ¢ (biy 03]

i;€{1,....,m}

as in this case the degree deg 4 p is simply the degree in {b;};,. We assume, without loss
of generality, that V is symmetric, in the sense that for any permutation o of {1,...,7}

Z(V, (R Q) R...0¢ = Z(V, 9o(1) @+ @Go(1)) 4o (1) @+ O Go (r) -
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Compared to the notation used in (2.1), we have rescaled V' so that the A; are bounded
by 1 instead of M, but otherwise we can compare the norms as the diverse degrees
are related by degy;(¢) <3 degx(¢) and degy 5(q)=degx (q)+degp(q). In particular, the
norm [|V[|¢ ¢ used in this section can be compared to the norm ||V|| yse1/2¢ ¢ used in (2.1).
Once this is said, the two notions are sufficiently close that we keep the same notation.

The following is the main result of this section.

THEOREM 6.1. Let ﬂZQ (Tesp. 621) Let {Oz;—}lgingg]‘gNC[—l,+1]dN and set

N 1 al
j=1

Let Ay, ..., Aq be Hermitian (resp. symmetric) matrices with eigenvalues (ad, ..., '), let

By, ..., By, be Hermitian (resp. symmetric) matrices, and let

pHTg (p) = %Tr(p(Bl ey Bk))

be the non-commutative distribution of Bi, ..., By,. Let VEDS,”HT_ le.c be self-adjoint. Then,
if |Vlle,c is finite for some & large enough and (=1, there exists ap>0 such that, for all

a€[—ag, ao,

IéV’aV(Ah ~'-7Ad7 Bla ceny BnL) = 62?:0 NQ?lFl(?X(LiV """ L‘];]’Tg) (1+O(‘;]>>7

where the error is uniform on the set of matrices satisfying (6.1) and Fl“V are smooth
functions on P([—1,1])?x L(B). More precisely, for any £=0, the {-th derivative of Fﬂg
at p€P([—1,1))x L(B) in the direction v is such that

D FRS (0] (1) | < Celal IVIIE,

where Cy is a finite constant, uniform with respect to p.

The proof of this theorem is split over the next sections. For notational convenience,
instead of adding a small parameter a in front of V' we rather write down our hypotheses
in terms of the smallness of the norms of V.

6.1. Integrals over the unitary or orthogonal group

The goal of this section is to prove Theorem 6.1. Recall that Z¢ ¢ and £ . denote the
completion of .# and £®", respectively, with respect to the norm || - ||¢c.

We shall prove Theorem 6.1 in two steps. First we extend the results of [37] to the
case =1 and r>1.
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PROPOSITION 6.2. Let 3€{1,2}. Let 71y be the non-commutative distribution of
(Ay,...,Aq, By, ..., By,), that is, the linear form on o/ B given by

1
Vs (p) = NTr(p(Al, vy Ag, B1, ..., By)) foralpe Z.

There exist £>1, (=1, and €9>0 such that if ||V ¢, c<eo then, uniformly on the set
of matrices Ay, ..., Aq and By, ..., By, satisfying (6.1) and with respect to the dimension

N, we have

IV (A, oy Ady By oy By) = N G0 0Rn) NG 0 (rA)+GE (1) <1+0 (;))

where the Gl‘fﬁ are real-valued functions on L (A PB) and the error is uniform in the

norm |- c.

Next, we show that the functions {G)5}{_, depend only on the spectral measures
of the matrices A; and on 75 . More precisely, let 7 be the set of tracial states on .2,

that is, the set of linear forms 7 on .Z satisfying
T(pp*) 20, 7(pg)=7(qp), and 7(1)=1. (6.2)

Also, denote by 7 (%) C.Z (%) the set of tracial states on %.
Recall that, given v=(v!,...,v4T e M([~1,1])¢ x L(B), we have

d
elle =" 1vlle + ™,

=1
where
H/},H :{ maxg>1 C_k‘V(!Bk)L if,uEP([—l,l]), (6 3)
" L maxi,. 4, C*u(Bi, .. By, if peT(B). '

LEMMA 6.3. The functions {le}f:() are absolutely summable series whose coeffi-

cients depend only on 75 and the moments

1
LY (%) = NTr[(Ai)k], 1<i<m, keN.
In other words, there exists a function Flvﬁ P([-1,1])x T (#)—R such that
Gl‘,/ﬁ(T.ilvB) = F}E%(L{vv 33 Lélvv Tg)

Moreover, FZVB is Fréchet differentiable and its derivatives are bounded by

D EYy 1)1, o) | < Gl vl
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As in [35], [36], [18], [9], [37], the derivation of the expansion for large N of the free

energy
1
FYV(Ay, . Ag, By, ..., By) = 2 log 15"V (A1, ..., Aq, B1, ..., Bny)
is based on the expansion of the function given, for any polynomial pe.¥Z, by

W (p) ::/Tr(p(Ul,...,Ud,Ul*,...,U;,Al,...,Ad,Bl,...,Bm))ng’V(Ul,...,Ud),

(6.4)
where szﬁV,v is the measure on U(N)? defined by
1 —rp®r x x
dQYY (UL, ..., Ug) == INv€N2 TV UL UaAaUG BresBo) qUy Uy, (6.5)
B

The main step to prove Proposition 6.2 is the following large dimension expansion.

PROPOSITION 6.4. Let S=1 (resp. 8=2). Let Ay, ..., Ay be symmetric (resp. Her-
mitian) matrices with real eigenvalues (o}, ...,aN)%_, and satisfying (6.1). Let V be a
self-adjoint polynomial in .i’ig’c for some £€>1 and (=1. There exist £>1, and £9>0 so
that, if €& and ||V||¢,c<eo, then

1 1
W) = Nely )40+ ) +0( 7 ) o aitpe 2.

for some Tfoﬂ'ﬁ,ﬁﬁze.f&C, Moreover, the error is uniform in ||-|¢c.

Notice that this result implies Proposition 6.2 provided we prove also the convergence
of the second correlator W;/Jf, see (6.8) and §6.2.1.

Hereafter we will drop the index 3, but all our results will remain true both for f=1
and 3=2.

The proof of Proposition 6.4 is based on Schwinger-Dyson’s equation and a-priori
concentration of measure properties, which depend on differentials acting on the space
% of Laurent polynomial in letters {us, ...,ud7uf1,...,u;1,a1, vy @y b1y ooy b . Recall
that &@/% denotes the Laurent polynomial with degree zero, that is the linear span of
words in {ai,...,aq,b1 ...,b;}. We now introduce some notation.

e The non-commutative derivative with respect to the ith variable w; is defined by

its action on monomials of .Z:

Oip:= Z D1U; QP2 — Z p1®u{1p2. (6.6)

pP=p1u;p2 p:plu;1p2
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e The cyclic derivative with respect to w; is defined as the endomorphism of ¥

which acts on monomials according to

Dip:= Z D2p1U; — Z ui_popl.
P=p1uip2 p:plu;1p2
We can think of D; as D;=m<0; with m(p®q):=¢p for all p,qe.¥. We will set
m(p®q):=q*p.
Note that D; appears naturally when differentiating the trace of a polynomial. More
precisely, if we let u;(t)=u; for j#i and u;(t)=u;e'® then, for any Laurent polynomial
p and any tracial state 7, we have

d

2| 7)) =7(Dip(u(0))B).

t=0

As we shall apply it to differentiate quantities of the form Tr®"V (U(t)), let us introduce
the following notation: for p€.Z®" with p=p; p2®...®p, and a tracial state 7, we set

T

Dispi= < klf[i T(pj)> Dipy (

k=1

_11 ")

Hence, if B is a anti-symmetric matrix (that is B=—B*) and U;(t)=U,e!ti=B,

1

. 1
WTF(X) V(U(t))= NTF(BDi,(l/N)TrV)-

ot
dat'"=°
e We will consider linear transformations
. k k
T (L9 ] Nley, ) — (L%, | llea )
mapping between the various tensor powers of .Z. A linear transformation
T: LOk s gk
is (&1, &2; ¢)-continuous if and only if there exists a constant C' such that

ITP1®-- @iy )lle ¢ < CllP1®-- ©py 61 ¢

for all monomials p; ®...®@pg, €% . The operator norm of T, denoted || T||¢, ¢,.¢, can
be calculated by considering the smallest constant C' for which the above inequality holds.

Allowing different instances of the &-norm on the source and target of our linear
maps is useful for the following reason: certain linear transformations that we will need

to deal with are not (&, ; )-continuous for any £>1, but are (&1, &2;¢)-continuous, and
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even contractive, if the ratio & /&, is large enough. When & =&, we simplify the notation
by putting only one index &.
e Recall that for v a multilinear form on .Z®*, we set

Vl|le,c= max |v(p),
Wlee = masx Iv(r)

and denote by Eg’?l the set of linear maps from (Z®* |- |¢.¢) into (L% |- |le.c), and
E’g)c denotes the set of linear maps from (L% |- [|¢¢) into C. Also, if . is a vector
subspace of (L%, | -|l¢.¢), then £(.#) is the set of linear forms on . (if /=2, we
simply denote it by £). One can check that Eé’?', E’g’g, and L(.¥) are Banach spaces
(see for instance [37, Proposition 7] to see that || - ||¢,¢ is a vector space norm on ¥, and
in fact an algebra norm). We denote by ’]%kc the subset of tracial states on (Z®*, || |l¢.¢c)-

The basis of the Schwinger-Dyson equation is the following equation.
LEMMA 6.5. Let V be a self-adjoint polynomial, p€.¥, and i€{1,...,d}. Then

14154

1 1
E —Tr@—Tr(@ipH- N

1 1 ~
N N Tr(Di,(l/N)Ter)] = 15=1 —E [Tr(mo@ip)} s (67)

N |N
where E denotes the expectation under Q‘éN (see (6.5)).

Proof. We focus on the case 3=1, the proof for §=2 is similar and detailed in [37] for
the case r=1. This equation is derived by performing an infinitesimal change of variable
U;—U;(t):=U;etPi| where D; is a N x N matrix with real entries such that D} =—D;,
and writing that for any polynomial function pe.#, and any k,¢€{1,..., N},

4
dt

/p(Ul(t),...,Ud(t),Uf(t),...,U;(t),Al,...,Ad,Bl,...,Bm)kg
t=0

xdQY n(Ui(t), ..., Ug(t)) =0.

Taking D;:=1;—;(A(k,£)—A(L, k)), with A(k,£) the matrix with zero entries except at
(k, £) where the entry equals 1, and summing over k,¢€{1,..., N}, yields

N N N

The last thing to check is that (D; /nyrV)*=—D;,a/nyV. Indeed, it is enough to
check it for r=1. Then, for all ¢ and pe.¥ we have

Dipz<p,q>17¢qz<p,q>{ Y waui— Y U?qqu],

g=q1u;q2 q=q1u;q2

D) =Y |- X wait X disu| =0

q=q1u;q2 q=q1ujq2

1 1 1 1 [1._
E |:NT1"®Tr(aip>+Tr((Di,(l/N)TrV_(Di,(l/N)TrV)*)p)] =—E [NTr(mo@p)} :

Since V is self-adjoint, the proof is complete. O
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Equation (6.7) can be reinterpreted as a relation between the “correlators” WYy
defined as (see also (6.4))

d d 1 1T
W!XN(Ph oy D)= e — log I;‘af,;(t /N)p1+...4(tr/N)pk
dtq dtk t1=0,...,t,=0 (6 8)
d Vi (t2/N)pat-..+(t/N) '
== ... 4V 2 P2 k Dk .
dty |y, o o N (p1)

Notice that here the p;’s belong to .Z, but we can identify them with p; 18— e Z®",
Observe that we can always write the following expansion

E [ 11 Tr(qj')] =[IWin(g)+> Wik ae) ] Wiv(a)+Ru(ar, . ar)
j=1 i=1 poT: ik

where Ry(q1, ..., g-) is a sum of products of correlators, each of which contains either a

correlator of order at least 3, or two correlators of order 2. We define

VP = Z;; S Vq1®..0q) ) [( 11 T(qz))Diqué@qk

k#j = AFEkRG (6.9)

+ ) (H T(qz))T(Diqu)qm@@qk}.

k, j, m distinct £#k,j,m
Using this expansion, we can rewrite (6.7) as follows.

COROLLARY 6.6. Let V be a self-adjoint polynomial, p€.%, and i€{1,...,d}. Then

the first Schwinger—Dyson equation reads

1 1 1+15-
NWYN@’NWYN(@'P)+TﬁW¥N(Di,(1/N)W1NVP)
15— - 1
— LIl (e 0ip) ~ 75 Wik (9ip)
1> i 1
TN? WXN(S\/%W;/NP)‘FWR(WYM~-~7W7YNip),

where R is a sum (independent of N) of products of correlators of polynomials extracted
from p and V', each of which contains either a correlator of order at least 3, or two

correlators of order 2.

To derive asymptotics from the Schwinger-Dyson equations we shall use a-priori
upper bounds on the correlators W}Yy. The next result (proved in Appendix 8) is a

direct consequence of concentration of measures and states as follows.



UNIVERSALITY IN SEVERAL-MATRIX MODELS VIA APPROXIMATE TRANSPORT MAPS 151

LEMMA 6.7. Let p1,...,px be monomials in £. Then there exists a finite constant
Cy, independent of N and the p;’s, such that, for k>2,

k
IWin (p1, s pi)| < Cr [ [ degy (i) - and - Wiy (p)| < N.

i=1
In particular, |WYy|le.c <Cr(maxys1 E4)F is finite for all €>1, (=1, and k>2, whereas
N (P)lle.c <N for any &§,¢>1.

We now deduce the expansion of WYy up to order O(N~2), and of Wy up to
O(N—Y).

As N='W/Vy (p) is bounded by 1 for all pe.#, we deduce that N ~1W/} has limit
points. Let 7 be such a limit point. As N=1WJ\(9;p) goes to zero for any polynomial
pe.Z (see Lemma 6.7), we deduce from the Schwinger-Dyson equation (see Corollary 6.6)
that the limit point 7 satisfies the limiting Schwinger—Dyson equation

T7RT(0;p)+(1+15-1)7(D; . Vp)=0 forallpe.Z. (6.10)
Hereafter we let
Vi i=(1415-1)V,

and we show uniqueness of the solutions to such an equation whenever 7 restricted to &/ %
is prescribed, ||7]|1,1<1, and ||V||¢,¢ is small enough. In our application 7 :=7|yz will
simply be given by 745, the non-commutative distribution of (Ay, ..., A4, B1, ..., Bu).
It could also be given by its limit, if any, but we prefer to take it dependent on the
dimension N.

To show uniqueness, we apply the above equation to p;,=D;q and sum over i€
{1,...,d}. We will use that (see [37, Proposition 10])

T®T(zd:8ﬂ?iq> :T(DQ)+T®T<zd:AiQ>a (6.11)

i=1 i=1
where
e D is the degree operator: Dp:=degy; (p)p;

e A; acts on monomials according to

Aip:=0,Dip— > pprui®l— Y 1eu; 'popy,

P=p1uip2 p:plu;lpz
that is,
Aip= E ( E q1 U Qg2 U — E @® QZ> (6.12)
P=P1uiP2 " P2P1Ui=q1U;q2U; paprui=qiu; tqau;
—1 —1
- q1®q2— U, q1OU; g2 |,
o —1 -1 -1 -1 -1
p=piu; p2 U; PpP2p1=U; q1U;g2 U; P2p1=u; q1u; g2

where the sum is over all possible decompositions as specified.
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We write in short A::Z?Zl A;, and we rewrite equation (6.10) as
T((D—&—%TT—I-PZﬁ)q) =0 (6.13)

where T, and PY? are the following operators:
e T, arises as the analogue of the Laplacian:

T, :=(der+7xId)A.

e The operator PY? is the dot product of the cyclic gradient of V3 with the cyclic

gradient of p:
d

PYp:=D,;Vs-Dp=Y_ Di,VsDip.
=1

More generally, for linear forms 7y, ..., 7—1 on ., we define

Py rapi= ZZZ Vo, 1 ®...0¢) (Hm Qk>DQJ zp( H Th 1%)

=1 j=1 k=j+1

. 7 7
When r>2, we also define a companion operator Q. -, to P77 . |:

Vs
T1yeosTro1 D

d
=y D Z<Vﬁ7ql®---®qr>( 1T Tk1k>e(Qk)>Tj1j_7-(Din'Dip)QE-

i=1 1<j<l<r ke{jL}e

We set II' (resp. II) to be the orthogonal projection onto (resp. onto the complement
of) the algebra 7% generated by {a1, ..., ag, b1, ..., by }. For any linear transformation T

with domain .Z, we define its degree regularization by
T:=TD!,

where D is the degree operator defined above. It is understood that the domain of the
regularized operator T is restricted to ((szft%’)L We recall that, for our applications, we

assume that the restriction of 7 to &% is given and equal to 71, and therefore
T=7Il4+7II.
Hence, we can see (6.13) as a fixed point equation for 7€ L¢ ¢ given by

F[T;Tl,Vﬂ]:O, T|d<@:7—17 (614)
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where
F: Le X (T(A B), || - lc) < (L7, || - lle.c)—Lec

is given by F[r; 11, V3]:=G[rII+m1I'; V3] with
Gl V3)(q) := T((Id+%TT+|5¥B)Hq) for all g€ % and 7€ L ¢. (6.15)

When V=0 and 7 €7 (%), the equation F|[7;71,0]=0 has a unique solution Tﬂ;ﬁ since
the moments of 7 are defined recursively from those of 71. In this case, 7 is the non-
commutative distribution of ({a;,wu;,u} le,{bj}}“:l) so that (a1,...,aq4,b1,...,b,) has
law 71, and is free from the d free unitary variables ({u;,u}% ), see [67] and [2, Theo-
rem 5.4.10].

Observe that we know that solutions exist in 7 (&/%) as limit points of N~WY,
(which is tight in any L¢ o by Lemma 6.7); we shall prove uniqueness of such solutions
for V' small by applying ideas similar to those of the implicit function theorem.

To state our result precisely, for £>1 and (>1 we define

SeclV)im g+ o HWn sl 3 denw(ay) )| L etesomgtessnn] 010
=1

j=1
Observe that for €&y, with &y sufficiently large so that

8 1
< ;
&—1 " 2(1+max{2,7})

if [|V||¢,c is finite one can choose ag small enough so that d¢ ¢(aV)<1/(1+max{2,r}) for
all a€[—ao, ao].
LEMMA 6.8. Assume that there exist (=1 and £>1 such that

1

6§,C(V) < HTX{Q,T} (6.17)

Then, for any law 7 €T (L B), there exists a unique solution TIVO’TI €TNLec to
F[-;7m,V3]=0

such that 7|gz=m and ||7|11<1. Also, the map T(AB)3m—70" €Te ¢ is Fréchet
differentiable at all orders, and its derivatives Dlevo""1 satisfy, for any v, ..., v €L (A B),

HDZTl‘/O’T1 V1, .., V]

e <Cecellvnlle - llvelle

for some finite constant C¢ ¢ . Finally,

. —1 V, N
1\}13100 IN""Win =715"4" [|e.c =0.
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Before proving Lemma 6.8, we need the following technical result.

LEMMA 6.9. Let £>1, 521 and (,521. Then the following statements hold:
o Let feﬁg,f and £€>& and (=C. Then

72

I Telle,c <8lIfllg e ——. (6.18)
Soe—¢

o Let fy,....,fr_1€L. Then, for any VGX& self-adjoint and any 57521, we have

r—1
IPe” e STT Ui le IMVaI (6.19)
j=1

with
H|HVB‘H§,(,§,(~ ::Z ‘<Vﬁa q1®...®‘h>|

> Z degU(qj)é'degU(qj)CdegA,B(Qj)éxiyéj dcgu(qz')gZ#j degp(a:)
j=1

o Let fy,....fr_1€L. Then, for any V€L . self-adjoint and any £,C>1 with £<¢
and Egg, we have

r—1
1Qe” ¢, e < TT IFille eIVl [l ¢ ¢ (6.20)
j=1

with

IMVsllle ¢ e =D 1V 01904,

X Z EXine 48U (00)  Xine dega,5(0i) degU(qj)é'degU(‘H)CdegA,B(‘H)'
J#

o Letfy,...fr€L, and for V€L . self-adjoint set

v
Sflf‘~wfr72p

=> (V,q1®...9q,)

d
XZZ[( II fé—lm—lj@(qe)>(1j</~cDqu"DiP®Qk+1k<jq1c®Di%'Dip)
i=1 ik U\ ek

+ Z < H fz—lksé—lsge—lmgz(fh)) fr—2(Dig; Dip) 4s@qx | -

sEik N ks
(6.21)
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Then, we have

< : I
IO | (TS I, H“HiﬂvmﬂgcgcgHpnm (6.22)
j=1

k=r—2

where

H ‘Hvﬁ”’g,g,g’,é;g = TH [TV Hg,g,g’,g"”“ V| Hg,g,é,é;z'

Proof. The proof of (6.18) is done by considering term by term the norm of 1®fA;p.

For instance, if p has degree d; in u; and u}, and d=deg;(p), then we have that

> > qruif(qaus)

P=P1uip2 P2P1Ui=q1Uiq2U1 1319

<Ifllge lgrualle ¢ llazuill ¢
£¢ £¢

P=P1U;p2 P2P1U;=q1U;q2U]1
d—1

<dillfllge Y Erienast
p=0

£
<dillfllg¢llplec—=
&< E— §
where we used ¢ 25 and the fact that ¢; and ¢ have degree smaller than d—1. Proceeding
for each term similarly (and noting a degree reduction of each term) yields the claim,

after summing over ¢ and dividing by d. More details are given in [37, Proposition 17] in
the case (=1.

We next prove (6.19). Take a monomial p in («/%)*. Then, with ¢,e;€{—1,1},

=V
||Pff. o lpHéC

‘degU ZZ Vs, 1®...®4,) i(ﬁ&(%)) Diq;- zp< H fr—1(ar )H“

j=1 k=j+1

deg ZZ| Vs, 1®...04qr) Z(H Ik (qk ) ( H |fk+1(Qk)|>
=1 “k= k=j+1
< Y Z up TRy e pPp e

quqjuquz. p=plutp?

<YV ae.0a)] Z( H il ¢ )€ e 4G dont

x degy; (q;) £3°8u (P)+Hdegy (4) cdega,p () +dea p(45)
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where we have used the facts that &, (>1, that the degree of

-1
ed=—1_2 1 d=1,, —le=—1,2 1 1.4
U; q;4; f u; PP

is at most degy; (p)+degy (g;) in the u;’s (and similarly in the a;’s and b;’s), and that the
sum contained at most degy (p) x deg(g;) terms. We thus obtain (6.19).

To prove (6.20) we note that ||QZL?..‘,&71P||§»C is equal to

ZZ Vs, 1®...9q,) Z(ka %) Dig;- zp(H< H fo 1Qk>

degU " k=j+1 Hg,c
ke k0

r—1
<Y Vo a®..8a,)| Z( I1 |fkg,<~) E iz desy () ogy ()
G20 N k=1

% 521# degp(qi)+deg s 5(p) degU(qj)gdegu(qz)cdegg(qe)

where we used in the last line that 5 <€ and C~ <(. The bound (6.22) is analogous and
left to the reader. O

Proof of Lemma 6.8. Following the implicit function theorem, let us consider F'
as a function from X xY to Y, with X:=L(# %) x L, and Y:=L(APB)e . (Here
L(o/ %1 is the set of linear functionals over «7%". Even though /% is not an algebra,
this is a well-defined Banach space once equipped with || - [|¢,¢.)

Recall that F has a unique solution 7™ on the subset 7 (.e7%) x {0} of X, given by
the law of free variables, as discussed above. To show that this unique solution extends
to a neighborhood of 7 (&7 %) x {0}, it is enough to check that F is differentiable along
the variable 7€Y, and its derivative is a Banach space isomorphism from £(&/%"1)¢
into £(A B )e.c at (11,0). But this is clear as for any q€ o/ %,

DF[rs 71, Vsl(4:0)(@) = lim = (F[r+pss 1, Vsl — Flri m, Vi) (@) = u( (d+T1[T .7 ),

e=0 €

where Id —|—H'T'To,71 is invertible, as a triangular operator. Hence, by the implicit function
10

theorem there exists a unique solution of F'(7; 711, V3) for ||Vs||¢,c small enough and 7 €

T (/' P). However, for further use we shall reprove this result “by hand”.

If 7 and 7/ are two solutions of (6.14) we see that §:=7—7' satisfies
S((d+EY,, )p) = 6@6(Ap+Ry 5p), (6.23)

where

=V
':'7'77'1 ‘ H[TTH+T1H/ +PTH+7‘1 g +QTH—‘,—'ﬁH']
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R‘T/:(;: / SVT+553ds and Sy..(p ZS
where S{, _ is defined in (6.9). Indeed, this follows by the identity
TRT—1' QT =0QT+T7RI—-0R0
and the expansion
v,

TP mP) =7 (Pv’ﬁnwlnfp)
téléi«f%s§X§Xas®H+nmdes
= 6(AI(H[P$’+56)H+71H’+Q?’+56)H+7—1H/]p) d3>
ZMHPﬁHnm+QﬁHnmbHﬂ®5<élfHGMWﬁﬁmd0%>

1
= 6(H[P7"/1€1+7'1H’ +Q7"/{E[+Tl H']p) +0®4 (/ UH(SV,T’+06P) dU) ’
0

which proves the desired formula noticing that j=4d-II.

We next claim that Id+HT - is invertible and with bounded inverse in

(ZB)", ] Nle.c)-

We begin by noticing that (6.18), (6.19), and (6.20) imply the following: if 7,71 €7, as
7II4+7Il" is a tracial state which has ||-|1,1 norm bounded by 1, we have (by taking
£=C=1)

| 7'7'1

8
5 1+H‘HV5|H5 ¢ 1+H|HV5|H§ ¢,1,1;2 :6574(‘/) (6-24)

(see (6.16)). Therefore, since d¢ ¢(V)<1 (by (6.17)), it follows that Id+Z=Y
n (L(AB)L), || |le.c), with inverse bounded by (1—8¢.¢(V)) L.
By (6.18) and because ||5||1,1<H7'||171—|—||T’||171 <2, as well as |7/ +sd])11<1,

1. 18 invertible

6@0(Ap)|=0(Tsp)| < ||5||£< IPlle.c
and similarly, by (6.22), we find that for £, (>1, since [|p||1,1 <||pl¢,¢s

6@5(RY,

I

It follows from (6.24) and (6.23) that

max{2,7}

<———0e.cM0||e.cs
[0]le, = 0e.c(V) ec(V)[10]le.c
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and recalling (6.17) we conclude that ||d]|¢, =0, that is 7=7" as desired.
We let 71071 denote our unique solution. Notice that if 7 is not necessarily a tracial
state, but an element of % . which still satisfies ||7;[1<1 and such that |73 —7{|<e

for some 70 €7 (o7 98) with ¢ small enough, then the very same argument as before shows

V‘I’l

0
that there exists a unique 7;;"* in a small neighborhood of 7 o

solving (6.7).

By the implicit function theorem, since the function F' is smooth, the solution Tlvo’Tl

is smooth both in V and 7. For vy, ...,vp€ L ¢, we denote by DZTO 7 the ¢th derivative

of TV ™ with respect to 71, which is given by
d d
DZTg/lTl[Vla"'aye]zi...i [ 0‘/1T1+Z €i Vz]’

d<€1 dag €1=0,...,,=0

and is defined inductively by the formula, valid for all g€ (7 %)~+

V'r —_ \%. AV
D1 1[ ]<<Id+":7‘;vl"'1)q) (HI [T VTIH+ H’+P 6Tll'H_TlH/—'_QToel’Tl1'[-‘,—7-11'1/:|q)’
(6.25)
where we use the simplified notation HVV n EVV,1 . Hence, if we set K={1,...,¢} and
7'01 sT1

D17':=D‘I‘7'07’1 A [vi,i€1], then

1 _
DKT((Id—FE‘T/v,Tl)q):—i > DrraD;r(Ap)
01
IUJ=K
1,J42
L

_Z(Vi @D g\ {1y T(Ap) = Li—av; Qv (33 (Ap))

_Z Z 91(|5(§/2,...,9,.Q)7

J; GiEDJiT

(6.26)

where in the last term we sum over all choices J;, with U2=1 J;=K and J1#2, K, and

all 6; in the set
o if [yl =1
DJiT:{VJ” if i =1,
T, if Ji =U.
From this formula and the invertibility of Id+2Y, v we deduce by induction that for all

¢ satisfying (6.17) and for all /€N, there exists a ﬁnlte constant Cg¢ ¢ ¢ such that

| D g™ V1, oo v |l

<Cecrlmlle - lvelle-

Finally, we apply the above uniqueness result with 71::7'1{‘\73, that is, to the non-
commutative distribution of (Ay,..., Ag, B1,..., B;); see Proposition 6.2. Indeed, by
the discussion after Lemma 6.7, any limit point of N ='W}, v ELe¢ ¢ satisfies the limit-
mg Schwinger—Dyson equatlon7 so this lemma ensures that this limit is unique and that

AB

N=IWY/ converge to Tlv , %, which concludes the proof. O



UNIVERSALITY IN SEVERAL-MATRIX MODELS VIA APPROXIMATE TRANSPORT MAPS 159

N
In order to simplify the notation, we use Ty to denote TIVO’TAB. We next develop
similar arguments to expand WY as a function of N~1. Let us first consider the first error
term and rewrite the first Schwinger—Dyson equation by taking P=D;p in Corollary 6.6.

Summing over i, we get (5]\7::1/\/}/]\,—N7107

— _ _ 15- ~ 1 =
On (84T, +P7+Q70)p) = “ Wiy (Bp) - WAV (Bp)+Ra (). (627)
where
~ d
A= 0,00
=1

and Ry(p) contains the terms which are at least quadratic in dy, or depending on

cumulants of order greater than or equal to 2:

Ry(p):==0n(Tn-16,P)

d r
e Y g w)

i=1 k=1
x Y 5N(DiQk'DiD_1p)(H6N(Qj)>< 11 WIVN(QJ')>
Ic{1,...,r}\k jeI FjE(IUk)e
11>1
1
—WZZ<V[%Q1®~~®%>
X Z W|‘?1\N(Diq1‘1 DD~ 'p, {q;}jen\(in})
IﬂJIzU...UIki{l,...,’r‘}
k<r—1

k
X H W‘IK‘N({qS}sEIz)v
=2
where in the above sum at least one set I; has at least two elements.
In order to control the right-hand side of (6.27) we use the following estimate (com-

pare with [37, Proposition 18]).

LEMMA 6.10. For any (=1 and & >&, the operator A is a bounded mapping
from (ZB)5, |- \lev.c) into (L22|| - |les.c). Moreover A is a bounded mapping from
(L(ZB)5), | Nlerc) into (L] lleac)-

The proof of this result simply follows by using (6.12) and noticing that there exists
a constant Cg¢, ¢,>1 such that n&y <C¢, ¢, &7 for all n>0: one deduces that, for any

monomial p,

~ de e de e,
1Ap|le; ¢ < degy (p)eg P ¢d8an®) L O, ¢ %0 P (de8a0 ) = Oy, e [Ip]l¢, c-
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The proof for A is similar.

Next, we prove the following convergence result for dy.

LEMMA 6.11. Assume that there exist £2<&1 and (=1 such that, for both £=¢&; and

52527
1

) —_ .
(V)< 14+max{2,r}

Then, for any p€Ze, ¢, we have

lim 51\/( )_1ﬁ:17—10(A(|d+TTlo+PT10+QT10) ):ZT11(]9),

N—o00
and N||0n—T11||e, ¢ is uniformly bounded in N.

Proof. First notice that for £=&; or £=&,, our hypothesis ensures that
=1d+T,,+ Pno +Qrm

is invertible in %  with norm smaller than (1—d¢ ¢(V))™! (see the proof of Lemma 6.8).
Therefore, it follows from (6.27) that, for pe (o %)*,

n(p) = wm< (w35) " 'p) — W2N<A< U T I) Ry (75) p). (6.28)

We next bound each term separately. For the first one, we get

1 ~ 1 Ve
WA )| < W 1AW bl
£2,C

Vs
|(\IJTm) p||§1

1 _
< NWYN 1Alles,61.¢
£2,¢

1 .
< NWYN ||AH§27§17C
£2,¢

275 e ¢ Iplles c-

A similar bound holds for the second term. For Ry, note first that (6.18) with §~ =&

yields

_ B 62
0N (T 15y P) | S8N T =" [[6n [les.c 10N le, ¢
§1—&

ey ¢

and noticing that similar bounds hold for the other terms in Ry, we obtain

WlN ”A”Ez &1, ”( Tlo) 1“517(

£2,¢
Wiy

10N les,¢ <

¥

—_ V _
1Al eg60,c 1 (Tr15) e ¢

£2,¢

V.o 1
COA+[(¥r,) 1H51,<)NH5NI|£2,< o lley.c

5
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where we bounded the last term using Lemma 6.7. As N71|dx||¢,.c —0 (see Lemma 6.8),
for N sufficiently large we can reabsorb the last term and deduce that ||0x ¢, ¢ is bounded.
Moreover, this implies also that the last term is of order N~!. In addition, the
second term is of order N=! by Lemma 6.7. Hence, going back to (6.28) we see that
the first term in the right-hand side converges towards the desired limit by Lemma 6.8,
provided A(\Ilyfo)flpeiﬂg,‘,,g, which is true as soon as p€.Z, ¢ (see Lemma 6.10).
Finally, to prove the last statement, it is enough to notice that the above reasoning
implies that ||0n]|¢;,c is bounded for some £3€(&2,&1) (notice that the assumption on
0¢, ¢ still holds for &3 close enough to &» or & by continuity of d. () so that the previous
arguments (in particular the fact that W, and Ry are bounded) imply that there exists

a finite constant C such that

¢ Vg \—
N[6x —T11ller.c SCION llescllAlles.er cl(Trie)Hler.c+C

which concludes the proof. O

The second-order correction to W}, depends on the limit of Wy, that we now
derive by using the second Schwinger—-Dyson equation. The latter is simply derived from
the first Schwinger-Dyson equation (see Lemma 6.5), by changing the potential V into
V+tg®1"~! and differentiating with respect to ¢ at t=0. This results in the equation,
valid for all p,qe.Z,

B[ (1r 510 (0 4 50+ LD, V) )
+ T (Dig) )]

_ %E {(Trq—E[Tr a) (;Tr(rﬁoaipo] .

We next rearrange the above expression in terms of correlators W,z/ N+ k=1,2, replace p
by D;p, and sum over i, to deduce the second Schwinger-Dyson equation:

71+15:1

N WIN (P (U2) 7 p)+ R ((T+5) ),

T10

W;/N (qap) =

where I:BN only depends on correlators of order greater than or equal to 3, or on iy to
a power greater than or equal to 3. We can therefore see that Ry will be negligible
provided (\I"T/lﬁo)*lp belongs to a space in which all the previous convergences hold. This

allows us to prove the following lemma.

LEMMA 6.12. Let (>1. Assume there exist 1<€3<&y <& such that, for £=&1,&, &3,

1

) .
ec(V)< 1+max{2,r}
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Then, for any p,q€ %L, ¢, we have
. = Vi
I}gnoo Wiy (p,q) = —(1+15-1)110(PL (V) " 'p) =: T20(p, q),
and N| Wiy —T20lle, ¢ is uniformly bounded in N.

We can finally derive the correction of order 1 for WYy by going back to the
first Schwinger-Dyson equation. Indeed, if we let 6%,:=N(W}y—N1i0—711), the first
Schwinger—-Dyson equation reads

6% (Urtop) = Lo=10n (Ap) ~ Wy + v @3n) ("2 p+Ap)+ R (p),
where IA%N(p) depends on correlators of order three or higher, which are negligible by

Lemma 6.7, and SV is defined in (6.21). Then, arguing as previously, we infer the

following result.
LEMMA 6.13. Assume there exist 1<€4<€3<E€2<&1 such that, for £=¢&1,&2,&3, &y,

1
YoV ey
Then
dim 6% (p) =T (A7)~ 1p) —lrao +rin @ | (A(R) T p+5Y (U1) 'p) =t iz (p)

and N||6% —T12|le,.c is uniformly bounded in N.

This concludes the proof of Proposition 6.4. We can now prove Proposition 6.2 and

Lemma 6.3.

6.2. Proof of Proposition 6.2 and Lemma 6.3.

We first show that the free energy is a function of the correlators, and then that the
correlators only depend on {LY (%)}s>0, 1<i<a and 75 . Finally, we deduce the large N

expansion of the free energy as well as its smoothness.

6.2.1. The free energy in terms of the correlators
Recalling the definition of free energy, (6.5), and (6.4), we have
F%V (A, ..., Ag, By, ..., By,) i=log I}

“d N,uV
= —logl; """ d
/0 du og 8 u

o1
:NZ//WTrWVng’“Vdu
0

— N7 / (W)@ (V) du+r(r—1)N>~" / Wi ®(WiN)""*(V) du+ Ry,
O 0
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where Ry has terms either with two cumulants of order 2, or a cumulant of order greater
or equal to 3. By Lemma 6.7 (note that it applies uniformly in w€[—ag, ag], for some ag
universally small), this latter term is at most of order 1/N, and is therefore negligible.

Moreover, using Corollary 6.8 and Lemmas 6.12 and 6.13, we find that

FV(Ay, . Ag, By, oy Br)=N? | f dut+N
0 0

N 1
du+ Sdu+0O( — ),

Ry
with

fo = (i )E (V)

fr=rr @ (rfy ) (V), (6.29)

Fy =) ()P 43y [ @ (et )P (V) et © (120 D(V),
where we have used that V' is symmetric and such that ||V||¢, ¢ is finite for & big enough,
so that d¢, ¢(uV)<(1+max{2,7})~! provided u€[—ao,ap] with ag sufficiently small. In
particular this implies that, for ag small enough and any 1<&;<€3<&2<&q,

Se,.c(uV) < (14+max{2,7})"" for all u € [~ay, ag],
so that the previous lemmas apply. Hence, we deduce the following result.

LEMMA 6.14. Let |V, ¢, be finite for some & large enough and let (1>1. Then,
there exists ag>0 so that, for a€[—ao, ag|, and uniformly on Hermitian matrices {A;}¢_,

and {B;}1<i<m whose operator norm is bounded by 1, we have

2
a e 1
Fy V(Al,...,Ad,Bl,...,Bm):l§_0jN2 'Fy +0(N>,

with

a
Fp= [ g du
0
and f* given by (6.29).

6.2.2. The correlators as functions of {LN}¢ | and 75

Let us define the space
P={Qurarui", ..., ugaguy "' by, ..., b)) : Q € C{x1, ooy T, b,y ey b )}

As the functions F{* only depend on the restriction to P of 71, 7V, 714, and 73" for

u€[—a,a], we shall first prove that the latter only depend on

N
1 .
Mas :{N§ (a)" >0 and 1<i<d}u{ﬁ]¥}~

Jj=1
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o The restriction &Y |p depends only on M p. We start by showing that 7&" can
be defined inductively, as is the case when V' =0, since it depends analytically on the

potential V in the following sense.
LEMMA 6.15. Let pe.Z and V be a potential such that, for some £€>1 and (>1,

1

eV a2y

Then, for all a€[—1,1], the solution 5" of
TRT(0ip)+a(l4+1s=1)7(D; - Vp)=0 (6.30)

1s uniquely defined. Moreover, we have the decomposition

TlO = E a”
n=0

with 7Y €Le ¢ satisfying ||7Y ||e.c <C D™, where {Cy}n>0 denote the Catalan numbers

and D 1is a positive constant.

Proof. This result can be seen to be a consequence of the implicit function theorem.
However we will soon need additional information on the 7V, and therefore give a proof
“by hand”.

By uniqueness of solutions, it is enough to show that there exists a solution of (6.30),
or more precisely of (6.13), which is analytic in a. Let us therefore look for such a solution
and write 7V (P):=>",50a"T, V(p). We then find that 7@V satisfies (6.13) if and only if

™)+ Y W en (IAp)
kE{O n}
:_ZTk @7, (I1Ap) (6.31)
d T
*Z<V,Q1®-~-®qr>z Z <H7'k 4 >Tke (Diqe-D;D~1p)
=1 Z:l ki=n— j;él

As A splits monomials p into simple tensors q; ®¢o each of whose factors has degree
strictly smaller than that of p, we see that there exists a unique solution to this equation.
Moreover, we prove by induction that there exists finite constant D >0 such that, if C),

denote the Catalan numbers, then

17 lle.c < Ca D™
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Indeed, for n=0, we simply have the law of free variables bounded by 1, so that the
result is clear. Using the inductive hypothesis until n—1 to bound the right-hand side
in (6.31), and (6.18) to bound the second term in the left-hand side of (6.31), we deduce
that

] n—1

(1=0ec (VDI llee < e Y CkCoit D" 1Y [V, 1904, )]
k=1

g (XT: des Qi> (Zimdgapl@) gtz deav s N7 ﬁ Cr;-

i=1 T ki<n—1i=1

i=1

Using the fact that ZZ:O CrCr—=Cpy1<4C,,, we find recursively that

Z ﬁ Chs < Crpr1 <4710,

ST kin—1i=1

Thus we can bound the last term by 4"~*C, D"~!|||V||

e which implies that

172 lle.c < CaD™

provided D is chosen sufficiently large. As C,<4", this implies that 7¢V'=3" _ a"7)
is absolutely converging provided |a|<1/4D and it satisfies (6.30), so we get 7%V =73/
as desired. O

We finally show that 7/’ |p only depends on M4 5. Again, we can argue by induction.
As already mentioned, this is clear when n=0 as 7} is the law of free variables. Also, if
p€P and deg(p)=0 then p depends only on by, ..., by, and therefore 7,7

n

on 75 for all n>0. Thus, by the inductive hypothesis, we can assume that the result is

(p) only depends

true for 7/ (p) when k<n—1 and p€P, and for 7,/ (p) when peP and deg(p) </.
To show that this property propagates we shall use the fact that (6.31) can be seen
as an induction relation where all monomials belong to P. To this end, first note that

{7V },>0 are tracial, that is

TX(pq) :TX(qp) for all p,qe P.

Indeed this property is clear as it is satisfied by 7#", and {7} },,>0 are derivatives of 7@V
with respect to a.
Next, observe that D=1 keeps P stable. Moreover, if p:Q({uiaiufl};ﬁl), where @

is a monomial, then

Dip= Y (au; ' qui—u;  gqua),
Q=q17iq2
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so that, up to cyclic symmetry, D;p-D;q€ P for each ¢ and ¢CP. (Here and in the sequel,
cyclic symmetry is just the action of exchanging pq into gp.) We also show that A maps
P into PP up to cyclic symmetry. Indeed, it follows from (6.12) that, for peP,

Aip= Z Z auy  qui@agu; g

-1 —1 -1 -1
p=piuiaiu; P2 QAiU; P2P1Ui=0ail; q1uUid;U; g2U;

-1
- E (@iu;  q1u;a; @ g2 —a; ®Pap1 —Pap1 D a;)
a;iu] tpaprui=a;u; tqruiaiu tgaug
-1
- E 1 Qa;u; qau;a;

-1 -1 -1
U; P2P1Uiai=U; q1UiQiU; q2UiQ;

—1 —1
+ E U; Ui QU qwiai),
ug 'paprusai=u; 'qruiaiu; Tgauia;

so that, up to cyclic symmetry, A;pePRP for all ie{1,...,m} and peP.

Hence, by induction we see that 7\ restricted to P only depends on the restriction
of {7V }k<n—1 to P, therefore only on the restriction of 7§ to P. Since we have already
seen that 7} |p only depends on M A,B, the conclusion follows.

o 7V depends only on Ma p. A direct inspection shows that A maps P into P up

to cyclic symmetry. Indeed, A:Zi A, with

A _ —1 _x 2, —1
Aip= E ( E U; GaUi@;U; g1
p:pluiaiu;1p2 a;u] tpaprui=a;u; tqruzaiu; tqau;
—1 * —1 —1_*x_ % —1
- E (Uz QUAU;  G1Ua;— Uy PYPaUG; — QiU PaP1U;)

aiuf1pzp1ui:aiu;1q1umiu{1q2Ui
-1 _x -1
- E aiU; GoU; A3U; q1U;5

—1 —1 —1
U; P2P1ULA=U;  G1U;Q;U;  G2UA4

+ Z aiui_lfgl]luiai)-

—1 —1 —1
U; P2P1UQ;=U,; q1U;Q;U;  G2U;05

aV

¢, maps P into P for a small, and

Moreover, the previous considerations showed that ¥

therefore

Y (p) = Lp=rriy (A(WE) " (p))
only depends on 7{3 |p. Since we just checked that the latter only depends on My g,
this proves the result.

o 75V depends only on M4, p. By Lemma 6.12,

750 (Pep: q) = —(1+1p-1)7i (PLyp),



UNIVERSALITY IN SEVERAL-MATRIX MODELS VIA APPROXIMATE TRANSPORT MAPS 167

and recalling that 7 expands in a convergent series in a, we see that so does 75y". We
only need to check that the operators which appear in the equation defining 75y keep
P stable. But we have already seen that both the operators A and PV keep P stable,
and hence 75 (p,q) only depends on M, p and it is in fact a convergent series in such

elements.

o 7 depends only on M4 p. By Lemma 6.13,

i (et ) =7 (Ap) - [0+ il | (Ap+5Vp),
from which we see that 7{4 (p) is a convergent series in a (recall that we already proved
that 74 (p), 7Y (p) and 75 (p) are convergent series in a). So the main point is to prove
that, up to cyclic symmetry, Ap+S*VspeP@P whenever peP.

We already proved that this is the case for Ap, so we focus on S*V2p. We notice that
it is the sum of two parts. One part is linear over tensors of two monomials appearing
in the decomposition of aV, and as aV €P®" this part clearly belongs to P®2. The
other part is linear over tensors of one monomial appearing in the decomposition of aV’
(which therefore belongs to P) and D;p-D;q; with ¢; appearing in the decomposition of
aV (which we have seen belongs to P up to cyclic symmetry). Hence also this second

part satisfies the desired property, which concludes the proof.

6.2.3. Smoothness of the functions F3, F;, and Fj

By Lemma 6.14 and the discussion in the previous subsection, we know that

2
1
BV =Y NPT (LY L 7 >+O<N)’
=0

where the functionals F¢, F{* and F§ depend on {LN}2 | and on 75 through the asymp-
totic correlators {714 }2_, and 734". We finally prove that they are smooth functions of
these measures.

Recall the notation introduced in (6.3). We show the following.

LEMMA 6.16. There exists £y>1 large enough such that the following holds: let
V' have finite ||-||e.c norm for some £>&, and (>1. Then there exists ap>0 such
that, for all a€|—ag,ao], F is Fréchet differentiable ¢ times for all (€N, and if v;=
Wi, ., 1) EP([-1,1])4 X T (B), we have

ID (LYoo, L 75 1, ooy vl [ < Celal 1l -l
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Moreover, the derivative Dy Fg(LY ..., LY . 7§)=DF¢(LY,...,LY,mH0,...,0,6,,0,...,0]
of F in the direction of the measure LY is a function on the real line with finite || e

norm for any k€{l,...,d}. As a consequence, it is of class C™ in an open neighborhood
of [-1,1].

Proof. First, fix &, sufficiently large so that all previous results apply. By the
previous section it is enough to show that {7'1 }2 s—o and 74V depend smoothly on
({LN}e_,, 7)), uniformly with respect to u€[—a,a]. Indeed, by (6.29), F§ is the in-
tegral of (714)®7 (V) over u€(0,a]. We have seen in Lemma 6.8 that 7457, UVTAB is
¢ times Fréchet differentiable. Moreover, we have also seen that, once restrlcted to P,
it depends only on {LN}4 | and 75, and not the full distribution 745. As a conse-
quence, the smoothness of 74, V735 as a function of 7 A p reduces to the smoothness as a
function of the probability measures {LN 19, and 7. The fact that DF§ is C* is a
direct consequence of formulas (6.25) and (6.26). For instance, if we denote by Dy, the
derivative along LY, and I}, is the projection onto the algebra generated by {ay}, for

any pe.Z NP we have
Dyt [p) =~ Torvr 4P+ Q) (W HEY ) TpEP, (6.32)
where we use the fact (see Lemma 6.2) that
[Tttt +P 1+ Qs (442 ) 1 (P) P

so that once we project it on &% we get only polynomials either in the a; or in the b;,
and hence differentiating in the direction of LN we only keep those in ag.
The same argument holds for F1 and FY, since also 714, 71V, and 734 are smooth

and only depend on {LN}¢ | and 75 O

7. Law of polynomials of random matrices

Let us consider the equation
Yi=Xi+aFy(Xy,..., Xa, B1, ..., Bn)

with X7, ..., X4, (vesp. By, ..., By,) self-adjoint operators with norm bounded by £ (resp. ¢)
and F; smooth functions (eventually polynomial functions) on such operators. We assume
that F; are self-adjoint and that F;=)", 3/¢, where the sum is over monomials in X;’s
and B;’s with total degree degy(q) (resp. degg(q)) in Xy, ..., X4 (resp. in By, ..., By).
We also assume that for (=1 and ¢ large enough

|1 Elle,c = Z 82| gdegx(9) cdean(a) < o0
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By the implicit function theorem, see [38, Corollary 2.4], for any fixed £ and ¢ there
exist A<A’<¢ such that for a small enough (e.g., so that A+|al || Fi||¢,c <A’) there exist
analytic functions G;, with ||G;||a,c=0(|al), satisfying

Xi :}/2+G1(Y17 ~~7Yd7 B17 ERE) Bm)7

for all operators Y; whose norm is bounded by A.
To be precise, notice that [38] only consider the case where the B;’s are constant,
but the proof extends readily to the case where some additional fixed matrices B; are

present, as it is based on a fixed point argument showing that the sequence
X?=Y;, X!''=Y,—aF/(X},..,X}, Bi,..,Bn)

is Cauchy for || - || a,c provided a is small enough. As the closure C(z1, ..., 2a;b1,...,bm) Ac
of the space of polynomials under | -||4, is complete, it follows that the sequence

{X}nen converges in this space for all 1<i<d. This construction also shows that
Il

there exist functions G; €C{x1, ..., z4;b1, ..., bin) satisfying the desired properties.

We next consider the law P{ of the random matrices
YN =XN+aFy(XVN,., XY, BN, .. BY)

for d independent GUE matrices X3V, ..., Xév and m deterministic matrices BY, ..., BY.
Our goal in this section is to show that the law of YV, ...,YdN satisfies our previous
hypotheses.

First, notice that by Lemma 3.3 applied to the current situation where the equilib-
rium density is the semi-circle law, see (2.9), the matrices X have norms bounded by

3 with probability greater than 1—e~°N. Hence, if we fix £=4 and
F; e C<ZIJ1, e, X5 b1y ey bm>§7c
we see that, with probability greater than 1—e~°Y, for a small enough we have

XZN :YiN'i‘Gi(Yle "'7YdN7B{V7 ""Bﬂ]\b’

for some G, €C(x1, ..., x4; b1, ...,bm>H'HA’C with 3<A< A’ <€,

cN

Therefore, up to an error of order e~V in the total variation norm, we have

Pg(dYIN, .’deN): 1 e NEL T (VNG (YL BY B
N

d
xJacG(YN, . YN, BY, ... BN [ dvi",

i=1
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where Jac G(YN, ..., YN, BN, ..., BYY) denotes the Jacobian of the change of variable
X;=Y:+G;(Y1,...,Yy4, By, ..., Bp,).
It turns out that, in the case =2,
logJac G(YN, ... YN BN ..., BY) = Try(Tr@Tr(log(ld+JG))),
where Tr is the trace over N x N matrices, Try is the trace over dxd matrices, and
(TG)ijeits = Oy 5y Gs (i) = (0Gs)ikj, 1,4k, LE€{1,... N}, s,t€{1,....d},

where §, denotes the non-commutative derivative over polynomial of self-adjoint variables
defined as

dp:= Y, ©19g.
P=q1Ytq2
Indeed, the above formula follows from the fact that 5tp lives in the tensor product space
(in other words, on the algebra of left multiplication tensored with the right multiplica-
tion) and
Oy (1t G (1) = (0:G8ke) (i) = (DG )in i

where Ay is the matrix with null entries except at position (£, k) where there is a 1 (here
A®Bi{C=ACB).

As G is small for a small enough (at least when restricted to matrices with universally
bounded operator norm), the singularity of the logarithm is away from our support of
integration and we deduce that the law of Y{V, ..., YdN can be approximated in the total
variation distance by

1 N . N N - o
NI R (YL YY B BT T B (V1YY BY L BY) HinN

VA
N i=1

for two smooth functions F; and Fs, belonging respectively to the closure of
C{z1,...,xd,b1,..., b)) and Clzq,...,z4,b1,..., bm)®2

with respect to the norms |- ||¢ ¢, where

IBallec=>_ IF.q1®a)|lla1llec llgzle.c

q1,92

whenever F=3" P (F, q1®¢2)q1 ®¢2 and the sum runs over monomials. This proves the
result when §=2.
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Next, we consider the random matrices
YN =XNtaF(XN,.. , XY,BN,..,BY)

for d independent GOE matrices (X{', ..., X)) and m deterministic symmetric matrices
B, ..., BN. The Jacobian is slightly changed and reads

(jG)ij,kf;t,s = (éth)ik,Zj+(ath)i€,kj7 ivjv k7 le {17 ceey d}v

where the second term comes from the fact that dx, Xe, does not vanish (as in the
complex case) but is equal to 1. Notice that we can write the second term as Z(éth),

where ¥ acts on basic tensor products by
E(A@B)ik)gj = AigBkj.
Considering the logarithm of the determinant of (I+JG), we see that it expands in
moments of JG as
(71)n+1 n
logdet(I+JG) =TryTr@Trlog(I+JG) = > ~———Tr/Tr®Tr(JG)
n
n>1

=3 %TrdTr®Tr(VG+E(VG))n

n>1
with VGij7ke;t7s:(8Ath)ik7gj. When expanding the above moments, it turns out that the

moments with an odd number of ¥ result in the trace of a single polynomial, whereas

even numbers result in tensor products of two traces. For instance, when n=1,

Tr,TreTr(S(VG)) =) Z(état)ij,ﬁ =" Tr(m(d,Gr))

whereas TryTr@Tr((VG))=>_, >, ; (3th)n-’jj. Hence, also in this case there exist con-

vergent series Fi, Fj such that

lOg Jac G(Y]_, ...,Yd, Bh ceny Bm) :TI‘®T‘I'F0+T‘T F1

1
=Tr@Tr <F0+ﬁ(F1®Id+Id®F1)>,

and we conclude as before.
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8. Appendix: Concentration lemma

In this section we prove Lemma 6.7. As already mentioned, it follows from standard
results on concentration of measure.

Indeed, thanks to Gromov, it is well known that the groups
SU(N):={Ue€U(N):det(U)=1}, SO(N):=0O(N)NSU(N)

can be seen as submanifolds of the set of N x N matrices that have a Ricci curvature
bounded below by 8(N+2)—1, see e.g. [2, Theorem 4.4.27] and [2, Corollary 4.4.31].
In particular, this implies concentration of measure under the Haar measures on these
groups. To lift this result to Q‘é N> let us first notice that, by definition, the potential V' is
balanced, in the sense that it is invariant under the maps U;—U; e for any 6;€[0,2m),
being a sum of words each containing the same number of letters U; and U;*. Recalling
that Q) y is a measure on O(N) (resp. U(N)) when =1 (resp. 3=2), it follows that,

for any balanced polynomial P,
QY x (ITr(P)—Q n (Tr(P))| > 6) = QY v (| Te(P) QY v (Tx(P))| > 9),

where @‘B/N is the restriction of Q)  to SO(N) (resp. SU(N)) when f=1 (resp. 3=2).

On the other hand, if P is a word which is not balanced and we write U; as U;=¢% fjj
with (73- in SU(N), then TrP(U)=¢*TrP(U) for some 0 which is a linear combination
of the §;. As 6, follows the uniform measure on [0, 27|, we deduce that QX,N (Tr(P))=0.

Hence, if P is not balanced,
Qb v (I Tr(P)—Qp n (Tr(P))| 2 8) = Qf x (| Tx(P)] > ),

Therefore in both cases we can use concentration inequalities on the special groups.

We then notice that N*~"Tr®"V has a bounded Hessian, going to zero when ||V||¢ ¢
goes to zero. Hence, we can use the Bakry—Emery criterion to conclude that, for any
&E>1, if [|V||¢,¢ is small enough then

QY n(ITe(P)— QY (Tr(P))| = 6) < 2¢ P /8IPIZ, (8.1)

where || P||. is the Lipschitz constant of TrP, which can be bounded as

d
IPIZ< sup > 7(DiP(uj,u},a5))

U UG5 =
where the supremum is taken over all unitary operators wu;, all operators a; with norm
bounded by 1, and all tracial states 7. Note that if P is a word, then we simply have
I P]| 2 <deg (p), and more in general

IPllz < 1P, a)| degy(a) < Cell Pllear,
q
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where C¢ is a finite constant so that s<C¢ ¢° for all seN. Therefore, due to (8.1), we

deduce that, for any monomials ¢, ..., gk,

k

o (TT (a0 -2 wmmtan ) )| < ] deso(ar). (52)

=1 =1

As correlators can be decomposed as the sum of products of such moments, it follows

that, for any words ¢, ..., qgx and any £>1,

k k
IWEn (@1, k)| < Ck [ [ deger(ge) < Cu(Ce)* T llaelle,
=1 =1

which concludes the proof of Lemma 6.7.
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