
Acta Math., 213 (2014), 1–48

DOI: 10.1007/s11511-014-0114-5

c© 2014 by Institut Mittag-Leffler. All rights reserved

K-homology and index theory
on contact manifolds

by

Paul F. Baum

Pennsylvania State University

University Park, PA, U.S.A.

Erik van Erp

Dartmouth College

Hanover, NH, U.S.A.

With admiration and affection we dedicate this paper
to Sir Michael Atiyah on the occasion of his 85th birthday.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. The problem and the solution . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. K-homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Contact manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3. Example: A hypoelliptic (but not elliptic) Fredholm operator 5

2.4. The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5. The solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6. Characteristic class formula . . . . . . . . . . . . . . . . . . . . . 10

2.7. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. Outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Non-commutative topology of contact structures . . . . . . . . . . . 14

4.1. The C∗-algebra of the Heisenberg group . . . . . . . . . . . . . 15

4.2. U(n) symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3. Bargmann–Fock space . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4. Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5. Associated bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6. Inverting the Connes–Thom isomorphism . . . . . . . . . . . . . 22
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1. Introduction

This paper applies K-homology to solve the index problem for a class of hypoelliptic
(but not elliptic) operators on contact manifolds. K-homology is the dual theory to K-
theory. We explicitly calculate the K-cycle (i.e., the element in geometric K-homology)
determined by any hypoelliptic Fredholm operator in the Heisenberg calculus.

The index theorem of this paper precisely indicates how the analytic versus geometric
K-homology setting provides an effective framework for extending formulas of Atiyah–
Singer type to non-elliptic Fredholm operators. Given an index problem, the K-homology
framework provides a guide and hint as to what the solution of that index problem might
be.

A differential operator P on a closed contact manifold X of dimension 2n+1,

P :C∞(X, F 0)−!C∞(X, F 1),

is Heisenberg-elliptic if its principal symbol in the Heisenberg calculus is invertible. Any
Heisenberg-elliptic P is Fredholm and hypoelliptic, but not elliptic. Invertibility of the
principal Heisenberg symbol does not imply invertibility of the usual principal symbol
used by Atiyah and Singer. However, the analytic properties of a Heisenberg-elliptic P

are such that P determines an element in Kasparov (i.e., analytic) K-homology

[P ]∈KK0(C(X), C).

The main theorem of this paper is a topological formula for this analytical K-homology
element [P ]. Our formula is the following.
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Theorem.

[P ] = [σ+
H(P )]∩[X+]+[σ−H(P )]∩[X−]. (1.1)

Here [X+] and [X−] are the fundamental cycles in the K-homology group K1(X)
given by the two natural Spinc structures of X, one for each co-orientation of the contact
structure. In (1.1), σ+

H(P ) and σ−H(P ) are elements in the K-theory group K1(X) ex-
tracted from the principal Heisenberg symbol of P . More specifically, σ+

H(P ) and σ−H(P )
are explicit automorphisms of two C-vector bundles on X intrinsically associated with
the contact structure of X. The cap product ∩ in (1.1) is the K�(X)-module structure
of K

�
(X).

Applying the Chern character to (1.1) gives a characteristic class formula in rational
homology H

�
(X, Q) for the index of P . Our proof of (1.1) is sufficiently canonical so

that the same formula is valid for the equivariant index problem and the families index
problem for the Heisenberg calculus.

The index problem for Heisenberg-elliptic operators on contact manifolds has been
studied, and special cases were solved by C. Epstein and R. Melrose [20], [13], [14] and
E. van Erp [15], [16]. Our work builds on these partial results. See also the related work
by A. Connes and H. Moscovici [11], [12] in which they solve the index problem for their
Heisenberg-elliptic signature operator associated with the (non-commutative) “space of
leaves” of any foliation. From our point of view, equation (1.1) solves the index problem
(including the equivariant and families problems) for Heisenberg-elliptic operators on
contact manifolds.

Acknowledgment

We thank A. Connes, R. G. Douglas, C. Epstein, E. Getzler, A. Gorokhovsky, J. Kohn,
N. Higson, R. Melrose, R. Nest and M. Taylor for enlightening comments and discussions.

2. The problem and the solution

2.1. K-homology

The point of view of [3] is that index theory, in general, is based on the equivalence
between geometric K-homology and analytic K-homology. For a topological space X,
a geometric K-cycle is a triple (M,E,ϕ) consisting of a closed Spinc manifold M , a
complex vector bundle E on M , and a continuous map ϕ:M!X. The collection of
(M,E,ϕ)-cycles, subject to a certain equivalence relation, forms an abelian group under
disjoint union. We denote this group by Ktop

∗ (X).
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There is a natural map

µ:Ktop
j (X)−!KKj(C(X), C), j =0, 1,

from geometric K-homology to analytic K-homology, defined in the following way. Let
DM⊗IE denote the Dirac operator DM for the Spinc manifold M twisted by the vec-
tor bundle E. Then µ(M,E,ϕ) is the push-forward by ϕ of the analytic K-cycle
[DM⊗IE ]∈KKj(C(M), C),

µ(M,E,ϕ) =ϕ∗(DM⊗IE)∈KKj(C(X), C).

For a finite CW complex X the map µ is an isomorphism [5].
In [3] Baum and Douglas asked the following question.

Problem. Let X be a finite CW complex. Given an element ξ∈KKj(C(X), C) in an-
alytic K-homology, explicitly compute the unique ξ̃∈Ktop

j (X) in geometric K-homology
corresponding to ξ.

As explained in [3], several well-known index theorems (including, of course, the
Atiyah–Singer index formula for elliptic operators) can be understood in this framework.
Moreover, if the construction of the (M,E,ϕ)-cycle for a given class of operators is
sufficiently canonical, it will also solve the equivariant and families index problems for
this class of operators.

In this paper we solve the index problem for the Heisenberg calculus in this context.
In other words, we solve the following problem.

Problem. Consider a closed contact manifold X. A Heisenberg-elliptic (pseudo)dif-
ferential operator P on X determines an element [P ]∈KK0(C(X), C) in analytic K-
homology. Explicitly compute an (M,E,ϕ)-cycle in geometric K-homology Ktop

0 (X)
with

µ(M,E,ϕ) = [P ].

Starting with [P ]∈KK0(C(X), C), the K-cycle (M,E,ϕ) which solves the index
problem for P should be constructed so that, mutatis mutandis, the same K-cycle will
solve the equivariant index problem (when a compact Lie group is acting) and the index
problem for families. As an immediate corollary of the computation of the K-cycle, one
obtains characteristic class formulas for the homology Chern character of P (including
for equivariant operators and families of operators). Thus, the computation of the K-
cycle gives a fully satisfactory answer to the index problem for the Heisenberg calculus
on contact manifolds.
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2.2. Contact manifolds

Definition 2.2.1. A contact structure on a manifold X of dimension 2n+1 is a C∞

subvector bundle H⊂TX of fiber dimension 2n such that if θ is any 1-form on X with
H=Ker θ then the 2-form dθ restricted to H is symplectic in each fiber Hx.

In all that follows X will denote a closed smooth contact manifold of dimension
2n+1. H is referred to as the contact hyperplane bundle, while θ (which has to be
chosen) is a contact form. Note that θ is a contact form on X if and only if θ(dθ)n is a
nowhere vanishing 2n+1-form (i.e., a volume form) on X.

Once a contact form θ has been fixed, a number of geometric structures on X are
then determined. The Reeb vector field T is the unique vector field on X with the
properties

θ(T ) = 1 and dθ(T, ·) = 0.

The Reeb field T is tranversal to the contact hyperplane bundle H.
We choose a complex structure J for H that is compatible with the symplectic form

dθ in each fiber, i.e.,

J2 =−1, dθ(Jv, Jw) = dθ(v, w) and dθ(Jv, v) > 0.

Such a choice of J is always possible, because the space of compatible complex structures
on a symplectic vector space is contractible. The choice of J also defines a euclidean
structure in the fibers of H, with inner product defined by 〈v, w〉=dθ(Jv, w). In addition,
J and θ determine a hermitian inner product

〈v, w〉= dθ(Jv, w)+idθ(v, w).

2.3. Example: A hypoelliptic (but not elliptic) Fredholm operator

A sublaplacian for the given structure (X, θ, J) is a second-order differential operator on
X constructed as follows. Locally, a sublaplacian is of the form

∆H =
2n∑

j=1

−W 2
j .

Here W1, ...,W2n is a collection of vector fields, defined in an open subset U⊆X, such
that at each point x∈U the vectors Wj(x) form an orthonormal frame for the euclidean
vector space Hx. A global sublaplacian on X is then constructed via a partition of unity.
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To obtain an operator with interesting index theory we add a lower order term. Let
r be a positive integer and let γ be a C∞ map from X to the C-vector space M(r, C) of
all r×r matrices,

γ:X −!M(r, C).

Examples of the kind of Fredholm operator to which our result applies are the second-
order differential operators Pγ of the form

Pγ = Ir⊗∆H +iγ(Ir⊗T ):C∞(X, Cr)−!C∞(X, Cr),

where i is the imaginary unit and Ir is the r×r identity matrix. Operators of this type
have been studied extensively. See for example [6, Chapter 1] or [13, Theorem 8.1] for
the following result.

Proposition 2.3.1. The operator Pγ is invertible modulo smoothing operators if,
for all x∈X,

γ(x)−λIr is invertible for all λ∈{...,−n−4,−n−2,−n, n, n+2, n+4, ... }.

The operators Pγ are not elliptic, but they are hypoelliptic and Fredholm. The
parametrix (i.e., the inverse modulo smoothing operators) of these operators Pγ is not a
classical pseudodifferential operator, but it is a pseudodifferential operator in the Heisen-
berg calculus. The invertibility requirement in Proposition 2.3.1 is equivalent to invert-
ibility of the principal Heisenberg symbol of Pγ . We shall refer to hypoelliptic opera-
tors with a parametrix in the Heisenberg calculus as Heisenberg-elliptic. Like Pγ , any
Heisenberg-elliptic differential operator consists of a highest-order part that only involves
the H-directions, and is “elliptic” in the H-directions, plus terms of lower order. For
further details about Heisenberg-elliptic operators, see §5 below.

2.4. The problem

In general, we consider a Heisenberg-elliptic operator

P :C∞(X, F 0)−!C∞(X, F 1),

where F 0 and F 1 are two smooth C-vector bundles on X. Although not elliptic in the
usual sense, P has the same basic analytic properties as an elliptic operator. For example,
if P is Heisenberg-elliptic, then the symmetric operator

D =
(

0 P ∗

P 0

)
:C∞(X, F 0⊕F 1)−!C∞(X, F 0⊕F 1)
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is essentially self-adjoint, has discrete spectrum and finite-dimensional eigenspaces con-
sisting of smooth functions [15, §2.6]. The bounded operator F =D(1+D2)−1/2 is Fred-
holm, and commutators [F,Mf ] of F with functions f∈C(X) are compact. Therefore F

determines an element in the analytic K-homology of X,

[P ]∈KK0(C(X), C).

We briefly verify this. We use the standard convention that K denotes the separable
C∗-algebra of compact operators.

Lemma 2.4.1. The operator F =D(1+D2)−1/2 is a bounded Fredholm operator on
L2(X)⊕2r that satisfies the pseudolocality condition [F,Mf ]∈K(L2(X)⊕2r) for multipli-
cation operators Mf∈L(L2(X)⊕2r), f∈C(X).

Proof. If P is Heisenberg-elliptic then F is Heisenberg-elliptic and has order zero
in the Heisenberg pseudodifferential calculus. Order-zero operators in the Heisenberg
calculus are bounded on L2(X)⊕2r while operators of negative order are compact (by
the Rellich lemma for the Heisenberg calculus). Therefore F is bounded and invertible
modulo compact operators.

We now verify the pseudolocality condition. Let ΨH denote the norm completion
of the algebra of order-zero Heisenberg operators. The principal Heisenberg symbol σH

gives rise to a short exact sequence of C∗-algebras,

0−!K−!ΨH
σH−−!SH −! 0.

Without going into the details of the Heisenberg calculus, it suffices to know that the
symbol algebra SH contains C(X) as a central subalgebra. Moreover, for a continuous
function f∈C(X) the multiplication operator Mf on L2(X) is contained in ΨH , while
its principal symbol is σH(Mf )=f , as usual. It follows that [σH(F ), σH(Mf )]=0 for any
order-zero operator F , which is equivalent to [F,Mf ]∈K.

Our aim is to solve the index problem for Heisenberg-elliptic operators within the
K-homology framework formulated by Baum and Douglas [3], [4], i.e., given a Heisenberg-
elliptic operator P to construct a K-cycle (M,E,ϕ) with

[P ] = µ(M,E,ϕ).

2.5. The solution

We now describe the solution of the index problem in K-homology for a Heisenberg-
elliptic differential (or pseudodifferential) operator P .
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The equatorial symbol. Consider the classical principal symbol of P ,

σ(P ):π∗F 0−!π∗F 1.

The symbol σ(P ) is a vector bundle homomorphism defined on the cosphere bundle
S(T ∗X). For an elliptic operator the classical principal symbol is (by definition) a vector
bundle isomorphism. For a Heisenberg-elliptic operator P , σ(P ) is not invertible on all
of S(T ∗X).(1)

The restriction σ(P )|S(H∗) of the principal symbol of P to the equator S(H∗)⊂
S(T ∗X) is referred to as the equatorial symbol of P . Since a Heisenberg-elliptic differ-
ential operator P is “elliptic” in the H-directions, its equatorial symbol σ(P )|S(H∗) is
invertible. The topological information contained in the equatorial symbol is essentially
trivial, and is certainly insufficient for calculating the index of P . In fact, the equato-
rial symbol σ(P )|S(H∗) of a Heisenberg-elliptic operator is homotopic to the pull-back to
S(H∗) of an isomorphism of the vector bundles F 0 and F 1 on X,

σ0:F 0∼=F 1.

For example, the classical principal symbol of the operators Pγ =Ir⊗∆H +iγ(Ir⊗T ) only
depends on the sublaplacian ∆H , and the equatorial symbol of Pγ is the constant map
from S(H∗) to the identity matrix Ir.

In order to state our result we fix an isomorphism σ0:F 0∼=F 1 of vector bundles on X

determined by the equatorial symbol. Having fixed σ0, the construction of the geometric
K-cycle [(M,E,ϕ)]=µ−1(P ) is as follows.

The Spinc manifold M . An interesting and unusual feature of the K-cycle deter-
mined by a Heisenberg-elliptic operator on a contact manifold is that it consists of two
components.

As a smooth manifold, M is a disjoint union of two copies of X×S1,

M =(X+×S1)t(X−×S1).

Here X+ and X− denote two copies of the contact manifold X with opposite co-orienta-
tions. A co-orientation of the contact structure H is an orientation of the normal bundle
TX/H. Each co-orientation of X gives rise to a symplectic structure for X×S1 (one the
opposite of the other), and therefore a Spinc structure for X×S1.

(1) The only differential operators that are both elliptic and Heisenberg-elliptic are vector bundle
isomorphisms.
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The complex vector bundle E. The C-vector bundle E on M is constructed from the
principal Heisenberg symbol σH(P ) of P . E consists, of course, of two vector bundles:
one on each copy of X×S1. Let θ be a contact form on X that agrees with the co-
orientation on X+, and let J be a complex structure of H compatible with dθ. We
denote by H1,0 the C-vector bundle on X+ with underlying R-vector bundle H on which
the scalar i∈C acts as J , and H0,1 is the conjugate bundle. If we choose a co-orientation
for the contact structure of X, then the Bargmann–Fock representation of the Heisenberg
group realizes the principal Heisenberg symbol σH(P ) as an invertible map between two
(infinite-rank) C-vector bundles on X,

σ+
H(P ):F 0⊗V +−!F 1⊗V +.

Here V + denotes the bundle of Fock spaces

V + =
∞⊕

j=0

SymjH1,0.

Reversing the co-orientation of X determines a second vector bundle isomorphism,

σ−H(P ):F 0⊗V −−!F 1⊗V −,

where V − is the bundle of conjugate Fock spaces

V − =
∞⊕

j=0

SymjH0,1.

Composing σ±H(P ) with the isomorphism σ−1
0 :F 1!F 0 extracted from the equatorial

symbol σ(P )|S(H∗), we obtain vector bundle automorphisms of F 0⊗V ±, and therefore
elements in K-theory K1(X),

[σ−1
0 �σ+

H(P )]∈K1(X) and [σ−1
0 �σ−H(P )]∈K1(X).

Remark 2.5.1. The vector bundles F 0⊗V ± are infinite direct sums of vector bundles
of finite fiber dimension. The automorphisms σ−1

0 �σ±H(P ), when compressed to a finite
sum F 0⊗

⊕N
j=0 SymjH, become stably equivalent (i.e., K-theoretically equivalent) for

sufficiently large values of N . Therefore, taking N�0 sufficiently large, [σ−1
0 �σ±H(P )] are

well-defined elements in K-theory. In particular, the Chern characters of [σ−1
0 �σ±H(P )]

can be computed by the usual formalism taking N�0 sufficiently large.
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The C-vector bundles E+ and E− on X×S1 are constructed by a familiar clutching
construction. Quite generally, for a topological space W with vector bundle V!W , an
automorphism σ:V!V determines a C-vector bundle ν(σ) on W×S1. Set S1=S1

+∪S1
−,

where S1
+ and S1

− are the upper and lower hemispheres of S1={z ||z|=1}⊂C. Then ν(σ)
is the C-vector bundle on W×S1 obtained as the quotient

ν(σ) = (V ×S1
+)∪σ (V ×S1

−),

where the identification using σ is

(w, v,−1)∼ (w, v,−1) and (w, v, 1)∼ (w, σ(w)v, 1), w∈W, v ∈Vw, ±1∈S1.

Then on X+×S1 we set

E+ = ν(σ−1
0 �σ+

H(P )),

while on X−×S1 we have

E− = ν(σ−1
0 �σ−H(P )).

The continuous map ϕ. The map ϕ:M!X is the projection on the first factor X

for each of the two copies of X×S1.

Theorem 2.5.2. Let P be a Heisenberg-elliptic operator on a closed co-orientable
contact manifold X,

P :C∞(X, F 0)−!C∞(X, F 1).

Then the element in K-homology determined by P is

[P ] = [σ−1
0 �σ+

H(P )]∩[X+]+[σ−1
0 �σ−H(P )]∩[X−].

Equivalently, a K-cycle that represents [P ] in geometric K-homology is

µ−1([P ])= ((X+×S1)t(X−×S1), E+tE−, ϕ).

2.6. Characteristic class formula

If X is a finite CW complex and ξ∈KK0(C(X), C), then the homology Chern character
ch(ξ)∈Hev(X; Q) of ξ is the unique element of Hev(X; Q) such that

Index(F⊗ξ) = ε∗(ch(F )∩ch(ξ))
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whenever F is a C-vector bundle on X. Here Hev(X; Q) is the direct sum of the even
rational homology groups of X,

Hev(X; Q) =H0(X; Q)⊕H2(X; Q)⊕H4(X; Q)⊕...,

and ε:X!� is the map of X to a point and ε∗:H∗(X; Q)!H∗(�; Q)=Q is the resulting
map in rational homology. As usual in algebraic topology ch is the Chern character and
∩ is the cap product.

To explicitly construct a K-cycle (M,E,ϕ) on X with

µ(M,E,ϕ) = ξ,

is to solve the index problem for ξ integrally. To solve the index problem for ξ rationally
is to give an explicit formula for ch(ξ). If an (M,E,ϕ) has been constructed, then

ch(ξ) =ϕ∗(ch(E)∪Td(M)∩[M ]),

where [M ] is the fundamental cycle in H∗(M ; Z) of M , and ϕ∗:H∗(M ; Q)!H∗(X; Q) is
the map of rational homology induced by ϕ:M!X.

Thus, Theorem 2.5.2 immediately implies the following characteristic class formula.

Corollary 2.6.1. The Fredholm index of a Heisenberg-elliptic operator P on a
closed contact manifold X,

P :C∞(X, F 0)−!C∞(X, F 1),

is given by

IndexP =
∫

X

ch(σ−1
0 �σ+

H(P ))∧Td(H1,0)+(−1)n+1

∫
X

ch(σ−1
0 �σ−H(P ))∧Td(H0,1).

Here X is oriented (in both integrals) by the volume form θ(dθ)n.

The factor (−1)n+1 for the second term arises from the fact that X−×S1 has the
conjugate almost complex structure of X+×S1, and is of complex dimension n+1.

Remark 2.6.2. In several special cases, characteristic class formulas for the index
of Heisenberg-elliptic operators have been derived before. A Toeplitz operator is (es-
sentially) an order-zero pseudodifferential operator in the Heisenberg calculus, and the
Toeplitz index formula of Boutet de Monvel [8] is a special case of our formula. We
discuss this in detail in §6.4.

Epstein and Melrose prove a characteristic class formula for the index of the twisted
sublaplacians Pγ , and a separate formula for a class of operators they refer to as Hermite
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operators (a generalization of Toeplitz operators) [14]. van Erp’s index formula in [16]
only applies in the special case of scalar Heisenberg-elliptic operators. Before now, no
explicit result existed that was generally applicable and thus unified these various results.
In the absense of a general formula, the solution of the equivariant and families index
problems was out of reach. All previously obtained formulas [8], [14], [16] are easily seen
to be special cases of Corollary 2.6.1.

2.7. Examples

Below are examples which illustrate that the geometric K-cycle of Theorem 2.5.2 is
explicitly computable and yields simple clear formulas.

Example 2.7.1. The K-cycle for a second-order Heisenberg-elliptic operator

Pγ = Ir⊗∆H +iγ(Ir⊗T ):C∞(X, Cr)−!C∞(X, Cr)

is made explicit if we compute the principal Heisenberg symbol of Pγ (see §6.5). The
vector bundle E+!X+×S1 in the K-cycle for Pγ is constructed from the winding of γ

around the positive integers n+2j. For each j=0, 1, 2, ... , the smooth map

γ−(n+2j):X −!GL(r, C)

determines an automorphism of the trivial vector bundle X×Cr. If ν denotes the
clutching construction described above, we obtain a C-vector bundle ν(γ−(n+2j)Ir)
on X+×S1. Then E+ on X+×S1 is the C-vector bundle

E+ =
N⊕

j=0

ν(γ−(n+2j)Ir)⊗ϕ∗ Symj H1,0.

Likewise, E− on X−×S1 is constructed from the winding of γ around the negative
integers −(n+2j), j=0, 1, 2, ...,

E− =
N⊕

j=0

ν(γ+(n+2j)Ir)⊗ϕ∗ Symj H0,1.

Example 2.7.2. The odd-dimensional unit spheres S2n+1 of R2n+2 have standard
contact form

θ =
n+1∑
i=1

(x2idx2i−1−x2i−1dx2i),
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where x1, x2, ..., x2n+2 are the standard coordinates on R2n+2. Theorem 2.5.2 applies to
give a simple and clear index formula for the Pγ operators on S2n+1. Any continuous
map f :S2n+1!GL(r, C) determines an element in the homotopy group π2n+1(GL) of
GL=limk!∞GL(k, C). Bott periodicity identifies π2n+1(GL) with the integers,

β:π2n+1(GL)∼= Z.

Therefore an integer β(f) has been assigned to f ,

β(f) = ch(f)[S2n+1] =
∫

S2n+1
Tr

(
−f−1df

2πi

)2n+1

.

The formula for the index of Pγ is

IndexPγ =
N∑

j=0

(
n+j−1

j

)
[β(γ−(n+2j)Ir)+(−1)n+1β(γ+(n+2j)Ir)],

where N is sufficiently large, as above. Observe that on an odd-dimensional sphere any
complex vector bundle is stably trivial. Thus H1,0 is stably trivial, and in the K-cycle
for Pγ we may replace ϕ∗ Symj H1,0 by a trivial vector bundle of the same rank, which
is (

n+j−1
j

)
.

In particular, on S3 we obtain the very simple formula

IndexPγ =
∑

k odd

β(γ−kIr).

3. Outline of the proof

In [15] we showed that the principal Heisenberg symbol σH(P ) of a Heisenberg-elliptic
operator P determines an element in the K-theory group of a non-commutative C∗-
algebra,

[σH(P )]∈K0(C∗(THX)),

where THX is the tangent bundle TX, and each fiber TxX=Hx×R has the structure of
a nilpotent Lie group isomorphic to the Heisenberg group. C∗(THX) is the convolution
C∗-algebra of the groupoid THX. The Connes–Thom isomorphism in analytic K-theory
gives a canonical isomorphism

Ψ:K0(T ∗X)
∼=−−!K0(C∗(THX)).
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The proof of Theorem 2.5.2 will be accomplished by constructing from the K-theory
element [σH(P )] the relevant K-cycle. This will be done in three steps.

Step 1. In §4, by a direct construction, an isomorphism of abelian groups

b:K0(C∗(THX))−!Ktop
0 (X)

will be defined such that there is commutativity in the triangle

K0(T ∗X)

c
""DD

DD
DD

DD
Ψ // K0(C∗(THX))

b
zzuuuuuuuuu

Ktop
0 (X),

where c is the standard Poincaré duality map.

Step 2. In §5 we prove that b(σH(P )) is the correct K-cycle, i.e.,

µ−1([P ])= b(σH(P )).

Step 3. Finally, in §6, b(σH(P )) is explicitly calculated, i.e., we prove that

b(σH(P ))= [σ−1
�σ+

H(P )]∩[X+]+[σ−1
�σ−H(P )]∩[X−].

4. Non-commutative topology of contact structures

In this section, the noncommutative Poincaré duality map

b:K0(C∗(THX))−!Ktop
0 (X)

will be defined. THX is the tangent bundle TX with each fiber TxX viewed as a nilpotent
Lie group. If θ is a contact form on X, with contact hyperplane bundle H :=Ker θ, then
the tangent space TxX=Hx×R at a point x∈X has the structure of a nilpotent Lie
group that is isomorphic to the Heisenberg group,

(v, t)·(v′, t′) =
(
v+v′, t+t′− 1

2dθ(v, v′)
)
, v, v ∈Hx, t, t′ ∈R.

The type-I C∗-algebra C∗(THX) decomposes into stably commutative factors, i.e.,
there is a short exact sequence of C∗-algebras

0−! IH −!C∗(THX)−!C0(H∗)−! 0,

where C0(H∗) is commutative, while the ideal IH is Morita equivalent to a commu-
tative C∗-algebra. Moreover, this short exact sequence is the quantization of, and is
K-theoretically equivalent to the short exact sequence of commutative C∗-algebras

0−!C0(T ∗X\H∗)−!C0(T ∗X)−!C0(H∗)−! 0.

The definition and explicit calculation of b is made possible by this reduction to commu-
tative C∗-algebras.
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4.1. The C∗-algebra of the Heisenberg group

The C∗-algebra C∗(THX) is a locally trivial bundle of C∗-algebras over X, whose fiber is
the group C∗-algebra C∗(G) of the Heisenberg group. We start with a careful description
of the structure of this algebra.

Let V =R2n be the standard symplectic vector space with symplectic form ω. Mul-
tiplication in the Heisenberg group G=V ×R is defined by

(v, t)·(v′, t′) =
(
v+v′, t+t′+ 1

2ω(v, v′)
)
.

The factor 1
2 is chosen so that for two vectors v, w∈V the Lie bracket is given by the

symplectic form [v, w]=ω(v, w).
Fourier transform in the R-variable for functions f∈C∞

c (G),

f̃(v, s) =
∫

R
e−itsf(v, t) dt,

completes to a ∗-isomorphism,

C∗(G)∼=C∗(V ×R∗, cω).

Here V ×R∗ denotes the vector bundle over R∗ with fiber V . We may think of it as a
smooth groupoid with object space R∗. The expression cω refers to the groupoid cocycle

cω:V ×V ×R∗−!U(1), cω((v, s), (w, s))= exp (isω(v, w)).

The C∗-algebra C∗(V ×R∗, cω) is the completion of the groupoid convolution algebra
C∞

c (V ×R∗) twisted by the cocycle cω,

(f̃ ∗c g̃)(v, s) =
∫

V

eisω(v,w)f̃(v−w, s)g̃(w, s) dw.

Elements in the C∗-algebra C∗(G) can be identified with sections in a continuous field
over R∗. The fiber at s∈R∗ is the twisted convolution C∗-algebra C∗(V, sω) (now with
fixed value of the parameter s appearing in the cocycle). At s=0 the fiber is commutative,
C∗(V )∼=C0(V ∗). If s 6=0 the field is trivial, and each fiber is isomorphic to the algebra of
compact operators, C∗(V, sω)∼=K. Restriction to s=0 gives the decomposition

0−!C∗(V ×R×, cω)−!C∗(G)−!C0(V ∗)−! 0.

A simple rescaling of the parameter s∈R×=R∗\{0} gives an isomorphism

C∗(V ×R×, cω)∼=C0(−∞, 0)⊗C∗(V,−ω)⊕C0(0,∞)⊗C∗(V, ω).
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We will identify
R×=(−∞, 0)t(0,∞)≈RtR

by the map s 7!log |s| for s∈R×. This fixes an isomorphism

C∗(V ×R×, sω)∼=C0(R)⊗C∗(V,−ω)⊕C0(R)⊗C∗(V, ω).

While both C∗-algebras C∗(V,±ω) are isomorphic to K, the algebra of compact operators
on Hilbert space, we do not identify these two algebras, for reasons that will soon become
apparent.

4.2. U(n) symmetry

A choice of contact 1-form θ and compatible complex structure J in the fibers of H

amounts to a reduction of the structure group of TX to U(n). For this reason it is useful
to consider the U(n) symmetry of the group C∗-algebra C∗(G).

With the standard identification V =R2n=Cn the canonical action of the unitary
group U(n) on V =Cn induces automorphisms of the Heisenberg group G=V ×R, and
therefore of the C∗-algebra C∗(G). Because the cocycle cω is invariant under the U(n)
action on V , U(n) also acts in the obvious way on the C∗-algebra C∗(V ×R∗, cω),

The U(n) action on functions on G=V ×R commutes with the Fourier transform in
the R-variable. Therefore the isomorphism

C∗(G)∼=C∗(V ×R∗, cω)

is U(n)-equivariant. Likewise, the isomorphism

C∗(V ×R×, cω)∼=C(R)⊗C∗(V, ω)⊕C(R)⊗C∗(V,−ω)

is U(n)-equivariant.
Now choose a representation

C∗(V, ω)∼=K(H).

Up to unitary equivalence, this is a uniquely determined irreducible unitary represen-
tation of the Heisenberg group G. Below we will choose an explicit model for this
representation. But first we consider the U(n) action on K(H) induced by its action on
C∗(V, ω). The automorphism group of K(H) is the projective unitary group U(H)/U(1)
of the separable Hilbert space H. As we will see below, the action of U(n) on K(H) lifts
to a unitary representation of U(n) on the Hilbert space H. This specific fact about the
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representation theory of the Heisenberg group is of crucial importance for our analysis,
because it implies, later on, the vanishing of the Dixmier–Douady invariant of a specific
continuous trace C∗-algebra over X, providing us with an important Morita equivalence.

For the opposite algebra C∗(V,−ω) we have the isomorphism

C∗(V,−ω)∼=K(
H),

where 
H denotes the Hilbert space that is conjugate (or dual) to H, and that carries the
dual representation of G as well as of U(n). This isomorphism is equivariant with respect
to the U(n) actions, and the Hilbert space 
H is not ismorphic to H as a representation
space of U(n).

In summary, we obtain a U(n)-equivariant isomorphism

C∗(V ×R×, cω)∼=C0(R)⊗K(H)⊕C0(R)⊗K(
H).

It will be useful to have a concrete model for the Hilbert space H with its representations
of the Heisenberg group G and the unitary group U(n)⊂Aut(G).

4.3. Bargmann–Fock space

The representation space of the Heisenberg group G that most clearly exhibits the U(n)
action is the Bargmann–Fock space. As a U(n) representation, the Bargmann–Fock space
is a completion of the space of symmetric tensors of Cn,

HBF⊃Sym Cn =
∞⊕

j=0

SymjCn

with its standard U(n) action. If we identify symmetric tensors with complex polynomials
on Cn, then the Bargmann–Fock space is the Hilbert space of entire functions on Cn with
inner product

〈f, g〉=π−n

∫
f(z)g(z)e−|z|

2
dz.

If Z1, ..., Zn is an orthonormal basis for Cn, then the monomials Zm1
1 ... Zmn

n /
√

m1! ...mn!
form an orthonormal basis for HBF. In particular, the summands Symj Cn are mutually
orthogonal.

Let us briefly review how the Heisenberg group G acts on this space. To describe the
representation it is convenient to pass to the complexified Lie group GC. In order not to
get confused, let us denote by J :V!V the standard complex structure on V =R2n and
not identify V with Cn here. The complexified space V ⊗C splits into the ±i eigenspaces
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for J as V ⊗C=V 1,0⊕V 0,1. Correspondingly, the complexification of the Lie algebra g

of G splits as a direct sum
g⊗C =V 1,0⊕V 0,1⊕C.

Recall that ω(Ju, Jv)=ω(u, v) and ω(Jv, v)>0 if v 6=0. If we extend the bilinear form ω

to a complex bilinear form on V ⊗C then the expression

〈z, w〉 := iω(z, 	w)

defines a hermitian inner product on V 1,0. Let {Z1, ..., Zn} be a basis for V 1,0 that is
orthonormal with respect to this hermitian product. For elements in the complexified
Lie algebra A,B∈g⊗C we have [A,B]=ω(A,B)=−i〈A, 
B〉. Therefore

[Zj , 	Zk] =
1
i
δjk.

Since V 1,0 is orthogonal to V 0,1, we also obtain

[Zj , Zk] = [	Zj , 	Zk] = 0.

In this picture, the Bargmann–Fock space HBF is the completion of Sym V 1,0, and can
be identified with a space of entire functions on V 0,1. The representation π of the
complexified Lie algebra g⊗C on HBF is given by

π(Zj) = izj , π(	Zj) = i
∂

∂zj
and π(1)= i.

The multiplication operator zj and the complex derivative ∂/∂zj are unbounded linear
operators on HBF. The subspace of polynomials Sym V 1,0 is an invariant subspace for
both operators, and hence also for the universal enveloping algebra U(g) of the Lie
algebra. The operators zj and ∂/∂zj are adjoints, which implies that π(W )∗=−π(�W )
for all elements W∈g⊗C. Therefore π(v) is skew adjoint for elements v∈g in the real
Lie algebra, and the corresponding representation for the group G is unitary.

In summary, we have U(n)-equivariant ∗-homomorphisms

C∗(G)

f 7!f̃(−,1)

��

π

%%LLLLLLLLLL

C∗(V, ω)
∼= // K(HBF).

The horizontal arrow is the Bargmann integral transform, which assigns to a function
on V (or its Fourier transform on V ∗) an operator on HBF [2]. For the opposite algebra
C∗(V,−ω) we obtain a representation on the conjugate space 
HBF, which is a completion
of the space of symmetric tensors of V 0,1 carrying the dual (or conjugate) representation
of U(n). We will adopt the notation

HBF
+ =HBF and HBF

− = 
HBF.



K-homology and index theory on contact manifolds 19

Ĝ

K(HBF)∼=C∗(V, ω)

C0(V
∗)∼=C∗(V )

K(
HBF)∼=C∗(V,−ω)

Figure 1. The short exact sequence 0!C0(R×,K)!C∗(G)!C0(V ∗)!0.

4.4. Quantization

Recall that the group C∗-algebra C∗(G) is a quantization of the commutative algebra
C0(g∗)=C0(V ∗×R∗). Consider the groupoid V ×R∗×[0, 1], which is, algebraically, a
disjoint union of copies of the abelian group V parameterized by (s, ε)∈R∗×[0, 1]. For
this groupoid, define the groupoid 2-cocycle

cεω:V ×V ×R∗×[0, 1]−!U(1), cεω((v, s, ε), (w, s, ε))= exp (isεω(v, w)).

Then we have the twisted convolution C∗-algebra

A =C∗(V ×R∗×[0, 1], cεω).

We can think of elements in this C∗-algebra A as sections in a continuous field {Aε}ε

with parameter ε∈[0, 1]. For ε∈(0, 1] the field is trivial, with Aε
∼=A1=C∗(G). At ε=0

we have the commutative algebra

A0 =C∗(V ×R∗)∼=C0(V ∗×R∗).

We thus have a (strong deformation) quantization from A0 to A1. As is well known,
this quantization induces an invertible E-theory element in E(A0, A1) that, in turn,
corresponds to an element in KK(C0(g∗), C∗(G)) that implements a KK-equivalence.

Now consider the decomposition discussed in §4.1,

0−!C∗(V ×R×, cω)−!C∗(G)−!C∗(V )−! 0.

When restricted to the ideal

C∗(V ×R×, cω)∼=C0(R)⊗K(HBF
− )⊕C0(R)⊗K(HBF

+ ),
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the KK-equivalence C∗(G)∼C0(g∗) amounts to the Morita equivalence

C0(R)⊗K(HBF
− )⊕C0(R)⊗K(HBF

+ )∼C0(R)⊗C⊕C0(R)⊗C

composed with the Bott isomorphisms β−⊕β+,

...∼C0(R)⊗C0(V ∗)⊕C0(R)⊗C0(V ∗)∼=C0(V ∗×R×).

Here β+ denotes the canonical Bott generator for the complex vector space V 1,0=Cn,
while β− denotes the Bott generator for the conjugate space V 0,1,

β+ ∈KK(C, C0(V 1,0)) and β− ∈KK(C, C0(V 0,1)).

We obtain the KK-equivalence of short exact sequences

0 // C∗(V ×R×, cω) //

∼=KKU(n)

��

C∗(G) //

∼=KKU(n)

��

C∗(V ) //

∼=
��

0

0 // C0(V ∗×R×) // C0(V ∗×R∗) // C0(V ∗) // 0.

Observe that all ∗-homomorphisms and KK-equivalences are U(n)-equivariant. The di-
agram can therefore be interpreted as a commutative diagram in the category KKU(n).

4.5. Associated bundles

Our entire analysis carries over to associated bundles (of groups, Hilbert spaces or C∗-
algebras) over a contact manifold X. As above, the contact 1-form θ and complex
structure J in the fibers of H induce a reduction of the structure group of the tangent
bundle TX to U(n). Let PU denote the principal U(n) bundle of orthonormal frames in
H1,0 with respect to its hermitian structure associated with θ and J .

If α denotes the standard action α of U(n) on Cn then

H1,0 =PU×αCn.

Likewise, the tangent space TX can identified with

TX =PU×α⊕1(Cn⊕R) =H1,0⊕R.

This identification exhibits the stably almost complex (and hence Spinc) structure of
TX. The bundle of Heisenberg groups THX identifies with

THX =PU×α×1G.
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Here α×1 denotes the U(n) action on G=Cn×R. The induced action on C∗(G) gives
the convolution C∗-algebra C∗(THX) of the groupoid THX,

C∗(THX) =PU×α×1C∗(G).

Denote by % the action of U(n) on the Bargmann–Fock space HBF=HBF
+ , the completion

of the symmetric tensors Sym Cn described above. We can form the associated bundle
of Hilbert spaces

V BF
+ =PU×%HBF

+ .

Continuous sections in V BF
+ form a Hilbert module over C(X), and we have the dense

subspace
∞⊕

j=0

SymjH1,0⊂V BF
+ .

The conjugate representation to % gives rise to the dual module V BF
− with fiber HBF

− and
∞⊕

j=0

SymjH0,1⊂V BF
− .

If π denotes the Bargmann–Fock representation of G on HBF, then for fixed u∈U(n) the
operator %(u)∈U(HBF) is an intertwiner of the representations π and π�(α×1)(u) of G

for the automorphism (α×1)(u) of G,

π((α×1)(u).g) = %(u)π(g)%(u)−1.

This compatibility of α×1, % and π (respectively: U(n) acting on G, U(n) acting onHBF,
and G acting on HBF) implies that π is well defined as a representation of a fiber C∗(Gx)
of the bundle C∗(THX) on the fiber V BF

x of the Hilbert module V BF
+ . The representation

π therefore induces a ∗-homomorphism of C(X)-algebras,

π:C∗(THX)−!K(V BF
+ ).

Here K(V BF
+ ) denotes the ‘compact operators’ on the C(X) Hilbert module V BF

+ . Our
analysis of the structure of C∗(G) carries over to C∗(THX). We obtain a short exact
sequence

0−! IH −!C∗(THX)−!C0(H∗)−! 0,

where the ideal IH can be identified with

IH
∼=PU×1⊗Ad(%̄) [C0(R)⊗K(HBF

− )]⊕PU×1⊗Ad(%) [C0(R)⊗K(HBF
+ )]

∼=C0(R)⊗K(V BF
− )⊕C0(R)⊗K(V BF

+ ).

In particular, the ideal IH is Morita equivalent to the commutative algebra C0(X×R×),
and we have an explicit imprimitivity bimodule, namely the disjoint union of the pull-
back of V BF

+ to X×(0,∞) and the pull-back of V BF
− to X×(−∞, 0).
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4.6. Inverting the Connes–Thom isomorphism

In [15] we discussed the crucial role of the isomorphism

Ψ:K0(T ∗X)−!K0(C∗(THX))

for our index problem. The isomorphism Ψ is essentially the Connes–Thom isomorphism
in each fiber, which agrees with the KK-equivalence induced by the quantization from
C0(g∗) to C∗(G). We now obtain a better grip on this isomorphism by analyzing how
the quantization behaves when we decompose C∗(THX). Our analysis of C∗(G) carries
over to C∗(THX) because of the U(n) equivariance of all the relevant constructions.

Quite generally, a principal G bundle P for a compact group G and compact base
X=P/G induces a functor from the category KKG (equivariant KK-theory) to the cate-
gory KKX (RKK-theory for C(X)-algebras) in the obvious way. The functor assigns to
a G-C∗-algebra A the C(X)-C∗-algebra of G-equivariant continuous functions

P (A) = {f :P !A | f is continuous and f(pg) = g−1f(p)}.

Similarly for the morphisms: to a G Hilbert module E over A the functor assigns the
C(X) Hilbert module of G-equivariant continuous functions P!E , etc.

In this way the U(n)-equivariant KK-equivalence of short exact sequences for C∗(G)
that we derived above implies KK-equivalence of the associated sequences for bundles
over X. We obtain te commutative diagram

0 // IH
//

∼=KKX

��

C∗(THX) //

∼=KKX

��

C∗(H) //

∼=
��

0

0 // C0(H∗×R×) // C0(H∗×R∗) // C0(H∗) // 0.

Observe that the bottom sequence is just

0−!C0(T ∗X\H∗)−!C0(T ∗X)−!C0(H∗)−! 0,

induced by the inclusion H∗⊂T ∗X. Following our analysis of C∗(G) we see that the
KK-equivalence IH∼C0(H∗×R×) is a composition of the isomorphism of C∗-algebras

IH
∼=C∗(H×R×, cω)∼=C0(R)⊗K(V BF

− )⊕C0(R)⊗K(V BF
+ )

with the Morita equivalence

...∼C0(X×R)⊕C0(X×R)
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and, finally, the two Thom isomorphisms τ−⊕τ+,

...∼C0(H0,1×R)⊕C0(H1,0×R)∼=C0(H∗×R×).

Here τ+ and τ− denote the Thom classes for the complex bundles H1,0 and H0,1, respec-
tively.

Let us isolate the maps in K-theory that are relevant for our purposes. We summa-
rize the conclusion of our analysis in the form of a proposition.

Proposition 4.6.1. The following diagram commutes:

K0(T ∗X\H∗) // K0(T ∗X)

Ψ Connes–Thom

��

K0(X×R×)

∪τ± Thom isom.

OO

K0(IH)

Morita equiv.⊗V BF
±

OO

// K0(C∗(THX)).

All vertical maps in the diagram are isomorphisms, and the horizontal maps (induced by
inclusions) are surjective. The vertical arrows on the left are explicitly given by

K0(H0,1×R)⊕K0(H1,0×R)
∼= // K0(T ∗X\H∗)

K0(X×R)⊕K0(X×R)
∼= //

∪τ−⊕∪τ+ Thom isom.

OO

K0(X×R×)

OO

K0(C0(R)⊗K(V BF
− ))⊕K0(C0(R)⊗K(V BF

+ ))
∼= //

Morita equiv.⊗V BF
− ⊕⊗V BF

+

OO

K0(IH).

OO

Proof. We only need to check the claim about surjectivity of the maps represented by
the horizontal arrows. The inclusion of each connected component of T ∗X\H∗ into T ∗X

is a homotopy equivalence. Thus K0(T ∗X\H∗)!K0(T ∗X) is surjective. As all vertical
maps are isomorphisms, the same is true for the map K0(IH)!K∗(C∗(THX)).

4.7. Non-commutative Poincaré duality

Definition 4.7.1. The non-commutative Poincaré duality map

b:K0(C∗(THX))−!Ktop
0 (X)
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is defined by choosing an arbitrary lift of an element in K0(C∗(THX)) to an element in
K0(IH), followed by the composition of maps

K0(IH)∼=K1(X)⊕K1(X)
∩[X−]⊕∩[X+]−−−−−−−−−−!Ktop

0 (X)⊕Ktop
0 (X)−!Ktop

0 (X).

From left to right, these maps are (1) Morita equivalence induced by the Bargmann–Fock
Hilbert modules V BF

− and V BF
+ , (2) Poincaré duality for the two natural Spinc structures

on X and (3) addition of K-homology classes.

Remark 4.7.2. Let us repeat here that the implicit isomorphism

K0(X×R×)∼=K0(X×R)⊕K0(X×R)∼=K1(X)⊕K1(X)

is chosen such that the identifications (−∞, 0)≈R and (0,∞)≈R are given by the map
s 7!log |s|, i.e., each component of R× is oriented from 0 to ±∞.

Remark 4.7.3. The K-theory class of the symbol [σH(P )]∈K0(C∗(THX)) only de-
pends on the principal symbol of P in the Heisenberg calculus, and is uniquely defined
by P , independent of arbitrary choices. In §6 we will see that lifting [σH(P )] to K0(IH)
amounts to taking a distribution σH(P )∈E ′(THX) that represents a full Heisenberg
symbol for P , and possibly perturbing it by a compactly supported smooth function in
C∞

c (THX) in order to give it an extra property. Such a perturbation does not affect
the principal Heisenberg symbol. The choice of such a perturbation is always possible,
but not uniquely determined by P . However, the equivalence class of b(σH(P )) in the
K-homology group Ktop

0 (X) does not depend on the choice of this perturbation, and so
the map b is well-defined. The proof of this fact is implicit in the proof of the following
theorem.

Lemma 4.7.4. The following diagram commutes:

K0(X×R)
∪τ+

//

∼=
��

K0(T ∗X)

c

��

K1(X)
∩[X+]

// Ktop
0 (X).

Here the left vertical arrow is the suspension isomorphism in K-theory ; the upper hor-
izontal arrow is the Thom isomorphism resulting from the direct sum decomposition
T ∗X=H1,0⊕R; the lower horizontal arrow is Poincaré duality on the Spinc manifold X,
i.e., is cap product with the K-homology fundamental cycle [X+]; and the right vertical
arrow is the “clutching construction”, i.e., cap product with the K-homology fundamental
cycle of the Spinc manifold T ∗X.
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Proof. Commutativity of the diagram follows from commutativity of the two trian-
gles that appear if we introduce the diagonal arrow which is the Thom isomorphism for
the Spinc vector bundle T ∗X on X,

K0(X×R)
∪τ+

// K0(T ∗X)

c

��

K1(X)
∩[X+]

//

88qqqqqqqqqqq
∼=

OO

Ktop
0 (X).

Commutativity of the two triangles is standard algebraic topology, which we now briefly
indicate. The upper triangle commutes because the Thom class for T ∗X=H1,0⊕R is
the product of the Thom classes used for the left vertical arrow and the upper hor-
izontal arrow. For commutativity of the lower triangle, use the following notation:
β∈KK1(C(X), C0(T ∗X)) is the Thom class for T ∗X, and α∈KK1(C0(T ∗X), C(X)) is
the KK-element given by the family of Dirac operators for the fibers of T ∗X. The Dirac-
dual Dirac identity in this context is the assertion that the Kasparov product β#α is the
unit element of the ring KK0(C(X), C(X)),

β#α =1∈KK0(C(X), C(X)).

The total space of T ∗X is itself a (non-compact) Spinc manifold, and its K-homology
fundamental class [T ∗X] is the Kasparov product of α and [X+],

[T ∗X] = α#[X+]∈KK0(C0(T ∗X), C).

It now follows that

β#[T ∗X] = β#α#[X+] = [X+],

which gives commutativity of the lower triangle.

Theorem 4.7.5. The following diagram commutes:

K0(T ∗X) Ψ //

c

��

K0(C∗(THX))

b
wwooooooooooo

Ktop
0 (X),

where b is as in Definition 4.7.1, and c is the “clutching construction” introduced in [3,
§22].
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Proof. If we identify X×(0,∞)∼=X×R, then Lemma 4.7.4 gives commutativity of

K0(X×(0,∞))
∪τ+

//

∼=
��

K0(T ∗X)

c

��

K1(X)
∩[X+]

// Ktop
0 (X).

Similarly, for the conjugate Spinc structure on X we have

K0(X×(−∞, 0))
∪τ−

//

∼=
��

K0(T ∗X)

c

��

K1(X)
∩[X−]

// Ktop
0 (X).

The sign of the isomorphism K0(X×(0,∞))∼=K1(X) depends on the orientation of
(0,∞), i.e., on the orientation of the normal bundle N=X×R, which in turn depended
on the choice of contact form. In order to make the second diagram commute we must
orient (−∞, 0) from 0 to −∞. This is because the reversed orientation of the normal
bundle N is built into the definition of the fundamental cycle [X−], and also affects the
choice of the isomorphism

K0(X×(−∞, 0))∼=K0(X×R)∼=K1(X).

Combining the two components of X×R×, we obtain a single diagram

K0(X×(−∞, 0))⊕K0(X×(0,∞))
∪τ−⊕∪τ+

//

∼=
��

K0(T ∗X\H∗) // K0(T ∗X)

c

��

K1(X)⊕K1(X)
∩[X−]⊕∩[X+]

// Ktop
0 (X)⊕Ktop

0 (X) // Ktop
0 (X).

Comparing this diagram with Corollary 4.6.1 proves the proposition.

5. The index theorem as a commutative triangle

The symbol σH(P ) of a hypoelliptic operator in the Heisenberg calculus naturally de-
termines an element in K0(C∗(THX)). In this section we prove that the Poincaré dual
b(σH(P ))∈Ktop

0 (X) of the Heisenberg symbol is the desired K-cycle

µ−1(P ) = b(σH(P )).

For convenience of the reader, we start with a brief sketch of the main features of the
Heisenberg calculus. References are [21], [6] and [13].
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5.1. The Heisenberg filtration

Consider a differential operator P on a smooth manifold X, given in local coordinates
by an expression

P =
∑
|α|6d

aα∂α, α =(α1, ..., αn), |α|=
n∑

j=1

αj , ∂α =
n∏

j=1

(
∂

∂xj

)αj

,

where the coefficients aα are smooth functions. The highest-order part of P is not well
defined as a differential operator on X. The algebra of differential operators is only
filtered, not graded. But the highest-order part at a point x∈X,

Px =
∑
|α|=d

aα(x)∂α,

can be interpreted as a constant coefficient operator on the tangent fiber TxX. As such
it is well defined and independent of coordinate choices.

The root of the Heisenberg calculus is a simple but important idea, proposed by
Folland and Stein in [19], to equip the algebra of differential operators with an alternative
filtration. The filtration on the algebra of differential operators proposed by Folland and
Stein is generated by a filtration on the Lie algebra of vector fields, defined as follows: All
vector fields in the direction of the contact hyperplane bundle H have order 1, as usual,
but any vector field that is not everywhere tangent to H is given order 2. For example, a
sublaplacian ∆H has order 2, as in the classical calculus. But in the Heisenberg calculus
the Reeb vector field T is also a second-order operator.

What sort of object is the highest-order part of a differential operator if we adopt
this Heisenberg filtration? Abstractly, for any filtered algebra, the notion of highest-
order part refers to an element in the associated graded algebra. Observe that in the
associated graded algebra smooth functions f commute with all vector fields W , because
the commutator [W, f ]=W.f is of order zero. This implies that elements in the graded
algebra can be localized at points x∈X. Therefore, just as in the classical case, the
highest-order part of a differential operator P will consist of a family of operators Px

parameterized by x∈X. But they are not exactly constant-coefficient operators here.
Instead, they are translation-invariant operators for a certain nilpotent group structure
on TxX.

In all that follows, X denotes a closed contact manifold with a contact hyperplane
bundle H⊂TX. We denote by N=TX/H the quotient line bundle, and assume that
there exists a global contact form θ, so that we can identify N=X×R. Also, the Reeb
vector field provides us with a section N⊂TX, so that we can identify TxX=Hx×R.
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Moreover, dθ restricted to Hx is a symplectic form and the tangent space Gx=Hx×R is
then a Heisenberg group with group operation

(v, t)·(v′, t′) =
(
v+v′, t+t′− 1

2dθ(v, v′)
)
, v, v′ ∈Hx, t, t′ ∈R.

Algebraically, the smooth groupoid THX is the disjoint union of Heisenberg groups

THX =
⊔

x∈X

Gx.

The highest-order part {Px |x∈X} of a differential operator P in the Heisenberg cal-
culus can be interpreted as a smooth family of translation-invariant operators Px on
the Heisenberg groups Gx=Hx×R∼=TxX, or, equivalently, a right-invariant differential
operator on the Lie groupoid THX.

For example, for the second-order operators Pγ =∆H +iγT that are locally repre-
sented as

P =−
2n∑

j=1

W 2
j +iγT,

freezing coefficients at a point x∈X results in

Px =−
2n∑

j=1

Wj(x)2+iγ(x)T (x).

This formal polynomial in the tangent vectors Wj(x), T (x)∈TxX should be interpreted
as an element in the universal enveloping algebra U(gx) of the Heisenberg Lie algebra
gx=Hx⊕R, or, equivalently, as an invariant differential operator on the group Gx. In
other words, the vector Wj(x) should not be identified with a vector field on TxX that
is translation-invariant for the usual vector space structure on TxX, but rather with a
vector field on TxX that is translation-invariant for the Heisenberg group structure on
TxX.

5.2. Heisenberg pseudodifferential calculus

When we restrict attention to differential operators the Heisenberg calculus is fairly
straightforward. Constructing the corresponding Z-filtered algebra of Heisenberg pseu-
dodifferential operators requires more work (see [21], [6] and [13]). In this section we
sketch one possible approach.

Just like the classical pseudodifferential calculus, the Heisenberg algebra consists of
pseudolocal continuous linear operators

P :C∞(X)−!C∞(X).
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In other words, they are operators with a Schwartz kernel k(x, y) that is a smooth function
off the diagonal in X×X. The Heisenberg calculus (as well as its filtration) is defined by
asymptotic expansions of the singularity of k in the direction transversal to the diagonal.

Choose a connection ∇ on TX that preserves the distribution H (this is an im-
portant technical condition). Consider the exponential map exp∇ associated with this
connection ∇,

h:THX −!X×X,

(x, v) 7−! (exp∇x (v), x).

The map h is a local diffeomorphism of a neighborhood of the zero section of THX with a
neighborhood of the diagonal in X×X. We pull back the distribution k to the groupoid
THX by the map h, and then chop it by a cut-off function. Let φ be an arbitrary smooth
function on THX that is compactly supported and equals 1 in a neighborhood of the zero
section. At a point x∈X let kx be the distribution on the Heisenberg group Gx=TxX

defined by
kx(v) =φ(x, v)k(h(x,−v)), v ∈TxX.

The smooth family of distributions {kx |x∈X} defines a compactly supported distribution
on THX. The action of the operator P with kernel k is approximated (in a neighborhood
of the point x∈X) by convolution with the compactly supported distribution kx on the
Heisenberg group Gx, in a sense that can be made precise. This was the basic idea
introduced by Folland and Stein in [19].

Because the kernel k is smooth off the diagonal, each distribution kx is regular, i.e.,
it is a smooth function when restricted to Gx\{0}. We say that P is a pseudodifferential
operator of order d if each distribution kx has an asymptotic expansion near 0∈Gx,

kx∼ k0
x+k1

x+k2
x+... .

The asymptotic expansion should be interpreted in the usual way: the remainder

k−
N∑

j=0

kj

becomes more regular as N increases, and the entire expansion determines kx modulo
compactly supported smooth functions C∞

c (THX). The defining feature of the Heisen-
berg calculus is that the terms kj

x in this expansion must be homogeneous with respect
to the ‘parabolic’ dilation structure of the Heisenberg group Gx=TxX=Hx×R,

δs:Hx×R−!Hx×R,

(v, t) 7−! (sv, s2t), s > 0.
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Formally, the term kj
x in the expansion must satisfy

kj
x(δsv) = sj−(2n+2) kj

x(v).

This notion of homogeneity based on the dilations δs corresponds to the Heisenberg
filtration for differential operators that assigns order 1 to vector fields tangent to H

and order 2 to vector fields transveral to H. But we now obtain a filtered algebra of
pseudodifferential operators that differs from the classical pseudodifferential algebra.

The existence of an asymptotic expansion is independent of the choice of exponential
map exp∇ and cut-off function φ, as long as the exponential map satisfies the technical
condition that it preserves sections in H.(2) We denote the operator of convolution with
the distribution kx by Px, and we write

σH(P ) = {Px |x∈X}.

We regard σH(P ) as an element in the convolution algebra E ′(THX) of compactly sup-
ported distributions on the groupoid THX, and we can think of it as the ‘full symbol’ of
P . While the value of σH(P ) depends on the choice of exponential exp∇ and cut-off φ,
the highest-order part σd

H(P )={k0
x |x∈X} in the asymptotic expansion of σH(P ) is in-

variantly defined as a smooth family of convolution operators on THX, independent of
exp∇ and φ.

The collection of all Heisenberg pseudodifferential operators on X is a Z-filtered
algebra: if P and Q are Heisenberg pseudodifferential operators of order a and b, respec-
tively, then PQ is a Heisenberg pseudodifferential operator of order a+b. Moreover, the
leading term in the asymptotic expansion of σH(PQ) is obtained by convolution of the
leading terms in the expansions of σH(P ) and σH(Q), i.e.,

σa+b
H (PQ) =σa

H(P )∗σb
H(Q).

As usual, if the leading term σd
H(P ) of an order-d symbol σH(P ) is invertible (in the

convolution algebra), then we can derive an asymptotic expansion for an inverse of the
full symbol σH(P ) modulo C∞

c (THX). This implies that P itself is invertible in the
Heisenberg algebra modulo smoothing operators, and hence a hypoelliptic Fredholm
operator on X. It is precisely for such operators that we prove our index formula.

(2) In the literature, the class of exponential maps that is implicit in the definition of the Heisenberg
calculus differs from author to author. The underlying geometric properties of these exponential maps
are clarified in [18].
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5.3. The Heisenberg symbol in K-theory

In [15, Definition 15] we constructed a K-theoretic symbol in K0(C∗(THX)) for a hypoel-
liptic differential operator P in the Heisenberg calculus. As we have seen, the principal
symbol σd

H(P ) is then a family of differential operators Px on Gx, where each Px is
obtained from P by a simple procedure of ‘freezing coefficients’ at x∈X. The result is
independent of a choice of exponential map THX!X×X or cut-off function φ. In fact,
the construction given in [15] makes no reference to the Heisenberg pseudodifferential cal-
culus at all. In [16] we gave an alternative definition that works for order-zero operators
in the Heisenberg calculus.

Perhaps the easiest way to define the K-theory element

[σH(P )]∈K0(C∗(THX))

is to follow the general ideas set out by Connes in [10, §II.9.α]. The resulting construction
works for arbitrary hypoelliptic operators in the Heisenberg algebra.

Compactly supported smooth functions C∞
c (THX) form a two-sided ideal in the

convolution algebra E ′(THX) of compactly supported distributions on the groupoid THX.
The asymptotic expansion for products of full symbols in the Heisenberg calculus implies
that if the principal symbol of an operator P is invertible, then the full symbol σH(P )
has an inverse modulo the ideal C∞

c (THX). By a general argument explained in [10,
§II.9.α], this implies that σH(P ) has an ‘index’ in the K-theory group K0(C∗(THX)).
First, the full symbol σH(P ) determines an element in algebraic relative K-theory,

[σH(P )]∈K0(E ′(THX), C∞
c (THX)).

By excision, we have

K0(E ′(THX), C∞
c (THX))∼=K0(C∞

c (THX)),

and, finally, the inclusion of rings C∞
c (THX)⊂C∗(THX) maps the element [σH(P )] to

the K-theory group K0(C∗(THX)) (which is the same in algebraic and C∗-algebraic
K-theory). To make this more explicit, if Q is a parametrix for P (an inverse modulo
smoothing operators), then the K-theory element

[σH(P )]= [e]	[e0]∈K0(C∗(THX))

is represented by the formal difference of the idempotents

e=
(

S2
0 S0σH(Q)

S1(1+S1)σH(P ) 1−S2
1

)
and e0 =

(
0 0
0 1

)
,

where S0=1−σH(Q)σH(P ) and S1=1−σH(P )σH(Q). (See [10, §II.9.α] for the details
of the general construction.)
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5.4. The “choose an operator” maps

In this section we prove the analog of the Poincaré duality (Theorem 4.7.5) for analytic
K-homology KK(C(X), C). The proof of this theorem closely follows the steps of [15,
§3.7], generalizing everything from a statement in K-theory to a statement about the
functor KK(C(X),−). We refer the reader to [15] for details of the proof in K-theory,
and indicate here how the argument can be stengthened to prove Theorem 5.4.1.

The Poincaré duality map

Ope:K
0(T ∗X)−!KK0(C(X), C)

is defined as follows. Given σ∈K0(T ∗X), choose an elliptic order-zero pseudodifferential
operator P on X such that in K0(T ∗X),

[σ(P )]= σ.

Then Ope(σ) is the element in KK0(C(X), C) determined by P . The non-trivial point
here is that if two elliptic pseudodifferential operators P and Q satisfy [σ(P )]=[σ(Q)] in
K0(T ∗X), then P and Q determine the same element in KK0(C(X), C)—i.e., a homotopy
of symbols can be lifted to a homotopy of operators. (See [1] and [3, §23].) Instead of
attempting a direct construction for the Heisenberg pseudodifferential calculus, we will,
in the proof below, construct a map

OpH :K0(C∗(THX))−!KK(C(X), C),

and then prove a posteriori that if P is an order-zero operator in the Heisenberg calculus
with principal symbol σH(P ), then

OpH([σH(P )])= [P ].

This justifies referring to the map OpH as the “choose a hypoelliptic operator” map for
the Heisenberg calculus.

Theorem 5.4.1. There exists a map

OpH :K0(C∗(THX))−!KK0(C(X), C),

such that (i) if P is an order-zero operator in the Heisenberg algebra with invertible
principal symbol σH(P ) then OpH(σH(P ))=[P ] in KK0(C(X), C), and (ii) the diagram

K0(T ∗X) Ψ //

Ope

��

K0(C∗(THX))

OpH

xxppppppppppppppp

KK0(C(X), C)

commutes.
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Proof. The proof is a strengthening of the groupoid arguments developed in [15].
The main difference is that we need to replace the K-theory KK(C,−) by the functor
KK(C(X),−). What makes this possible is that all C∗-algebras that play a role in our
argument are of type I, and hence nuclear. Therefore all ideals are semi-split (by [9]), and
since C(X) is separable (X is a compact manifold) the KK(C(X),−) functor has 6-term
exact sequences [7, Theorem 19.5.7]. As a result, the quotients by various contractible
ideals that play a role in the tangent groupoid argument induce isomorphisms not only
in K0(−)∼=KK(C,−), but also in KK(C(X),−).

We briefly review the argument and indicate how it can be strengthened. For a
differential Heisenberg operator P with invertible principal symbol we constructed in
[15, §3.6] an element in the K-theory of the parabolic tangent groupoid,

[P]∈K0(C∗(THX)).

The ‘parabolic tangent groupoid’ THX is algebraically the disjoint union of THX and the
family of pair groupoids X×X×(0, 1], similar to Connes’ tangent groupoid. The ‘blow-
up’ of the diagonal in X×X is defined using the parabolic dilations δs in the Heisenberg
groups Gx [15, §3]. The class [P] combines the principal Heisenberg symbol of P with P

itself into a single K-theory element for the tangent groupoid.
We must modify this construction and apply it to order-zero operators. This is

actually a considerable simplification, especially if we construct [P] in KK-theory. Let
E=C∗(THX)⊕C∗(THX) be the obvious Z2-graded Hilbert module over C∗(THX). The
adjointable operator

P∈L(E)∼=M(C∗(THX))⊗M2(C)

restricts to the principal symbol(
0 P ∗

x

Px 0

)
∈M(C∗(Gx))⊗M2(C)

for the fiber at s=0 and x∈X, and to(
0 P ∗

P 0

)
∈L(L2(M)⊕L2(M))∼=M(C∗(X×X))⊗M2(C)

for all other values s>0. The principal symbol is, by definition, the highest-order part
in an asymptotic expansion of the operator kernel of P , and these asymptotics agree
precisely with the parabolic ‘blow-up’ of the diagonal in X×X that defines THX.

What we did not realize in [15] is that (E , P) actually defines an element in the
KK-group,

[P]∈KK(C(X), C∗(THX)).
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There is an obvious diagonal representation

φ:C(X)−!L(E) =M(C∗(THX))⊗M2(C).

At s=0 it restricts to the identification of C(X) with the center of M(C∗(THX)), while at
s>0 we have the representation of continuous functions on X as multiplication operators
in M(C∗(X×X))∼=L(L2(X)). One easily verifies compactness of commutators [P, φ(f)]∈
K(E) for continuous functions f∈C(X).

Just as in [15], the restriction map at s=0 has a contractible ideal and therefore
induces an isomorphism

e0: KK(C(X), C∗(THX))∼=KK(C(X), C∗(THX)).

Observe that, by construction of the Fredholm module [P], we have e0([P])=[σH(P )].
Restriction to the fiber at s=1 induces a map

e1: KK(C(X), C∗(THX))−!KK(C(X), C∗(X×X))∼=KK(C(X), C).

Again, by construction, e1([P])=[P ]. It follows that the combined map

e1�e
−1
0 : KK(C(X), C∗(THX))−!KK(C(X), C),

is the “choose a hypoelliptic operator” map,

e1�e
−1
0 ([σH(P )])= [P ].

The exact same argument, using the tangent groupoid TX=TXt(X×X×(0, 1]) of
Connes, works for elliptic order-zero operators.

Having proven that each “choose an operator” map is induced by the appropriate
tangent groupoid, we can now show that these two maps commute with the isomor-
phism Ψ. The argument from [15, §3.8] involving the adiabatic groupoid of the para-
bolic tangent groupoid THX (a deformation of a deformation) applies, without essential
change, to show that the diagram

KK(C(X), C0(T ∗X)) Ψ //

��

KK(C(X), C∗(THX))

uulllllllllllllllllll

KK((C(X), C)

commutes.
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If HA denotes the standard countably generated free Hilbert A-module, then any
∗-homomorphism φ:C(X)!Z(M(A)) induces, in the obvious way, a map φ̃:C(X)!
Z(L(HA)). Thus, for a C(X)-C∗-algebra A there is a natural homomorphism

αX : KK(C, A)−!KK(C(X), A).

The map αX is a natural transformation from the KK(C,−) functor to the KK(C(X),−)
functor on the category of C(X)-C∗-algebras. In fact, it is a natural transformation for
the KKX -category.

Therefore, since the isomorphism Ψ is implemented by a KKX -element

Ψ∈KKX(C0(T ∗X), C∗(THX)),

we have a commutative diagram

KK(C, C0(T ∗X)) Ψ //

αX

��

KK(C, C∗(THX))

αX

��

KK(C(X), C0(T ∗X)) Ψ // KK(C(X), C∗(THX)).

Composing this with our result above yields the proposition.

5.5. The hypoelliptic index theorem in K-homology

The Atiyah–Singer theorem for elliptic operators amounts to commutativity of the tri-
angle [3, Theorem 23.1],

K0(T ∗X)
c

xxrrrrrrrrrr
Ope

''PPPPPPPPPPPP

K0(X)µ
−

// KK0(C(X), C).

We obtain an analogous theorem for the Heisenberg calculus.

Theorem 5.5.1. Let (X, H) be a closed contact manifold. Then there is commuta-
tivity in the diagram

K0(C∗(THX))
b

wwooooooooooo
OpH

((QQQQQQQQQQQQQ

K0(X)µ
−

// KK0(C(X), C).

Equivalently, the geometric K-cycle that corresponds to the analytic K-cycle [P ] deter-
mined by a Heisenberg-elliptic operator is

µ−1([P ])= b(σH(P )).
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Proof. The theorem is implied by commutativity of the three smaller triangles in
the diagram

K0(C∗(THX))

OpH

��

b

��

K0(T ∗X)

Ψ

OO

Ope ((QQQQQQQQQQQQQ

c
wwooooooooooo

Ktop
0 (X) µ

// KK0(C(X), C).

Modulo an explicit computation of the Poincaré dual b(σH(P )) of the Heisenberg
symbol of a hypoelliptic operator, Theorem 5.5.1 solves the general index problem for
hypoelliptic operators in the Heisenberg calculus. In §6 we discuss the explicit computa-
tion of the (M,E,ϕ)-cycle that corresponds to a Heisenberg-elliptic operator, and apply
it in concrete examples.

6. Computation of the K-cycle

In this section we explicitly calculate µ−1([P ])=b(σH(P )). A number of examples are
then considered.

6.1. Perturbing the symbol

Consider a Heisenberg-elliptic operator

P :C∞(X, F 0)−!C∞(X, F 1)

acting on sections in a C-vector bundle F 0, whose range consists of sections in a vector
bundle F 1. We wish to compute the image b(σH(P )) of the K-theory element [σH(P )]
associated with the Heisenberg symbol of a Heisenberg-elliptic operator P under the
non-commutative Poincaré duality map

b:K0(C∗(THX))−!K0(X).

Following Definition 4.7.1, the first step is to lift the element [σH(P )] in the K-theory
group K0(C∗(THX)) to an element in K0(IH).

The full Heisenberg symbol of P is a smooth family σH(P )={Px |x∈X} of operators

Px:C∞
c (Gx, F 0

x )−!C∞
c (Gx, F 1

x ).
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Each Px is an operator of convolution with a compactly supported distribution on Gx,
where Gx=Hx×R is the Heisenberg group that is the fiber at x∈X of THX. Taken
together, the operators {Px |x∈X} correspond to a compactly supported distributional
section σH(P ) of the bundle Hom(π∗F 0, π∗F 1) on THX. Recall that the operator P

determines the distribution σH(P ) on THX (its ‘full symbol’) up to a perturbation by a
compactly supported smooth section defined on THX.

Let π0 denote the representation of the Heisenberg group that assembles all scalar
unitary representations. At the level of the group algebra, π0 is the composition of the
Fourier transform C∞

c (G)!C∞(V ∗×R∗) with the restriction to s=0 in R∗,

C∞
c (G)−!C∞(V ∗).

For scalar distributions on THX this representation induces the algebra homomorphism

π0: E ′(THX)−!C∞(H∗),

where E ′(THX) is a convolution algebra, while C∞(H∗) is the algebra with pointwise
multiplication of functions.

If we take the vector bundles F 0 and F 1 into account, then the scalar representations
of Px assemble to a function

π0(Px):H∗
x −!Hom(F 0

x , F 1
x ),

and what we get is the classical symbol of P restricted to H∗,

π0(σH(P ))∈C∞(H∗,Hom(π∗F 0, π∗F 1)),

where π∗F j is the pull-back of F j from X to H∗. This classical part of the Heisenberg
symbol is ‘elliptic’ in the sense that it is invertible outside a compact set in H∗.

As a class in K0(H∗) the partial symbol π0(σH(P )) is trivial. To see this, consider
the exact sequence in K-theory

K0(T ∗X\H∗)−!K0(T ∗X)−!K0(H∗).

The first map is surjective, and so the second map is trivial. Therefore the same is true
for the isomorphic sequence

K0(IH)−!K0(C∗(THX)) π0−−−!K0(C∗(H)).

Since π0(σH(P )) is K-theoretically trivial, we may assume that, after a compactly sup-
ported perturbation of π0(σH(P )), we have

π0(σH(P ))∈C∞(H∗, Iso(π∗F 0, π∗F 1)).
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(We may have to stabilize F 0 and F 1.) Note that we can extend such a perturbation
to the full Heisenberg symbol σH(P ). We shall assume, from now on, that π0(σH(P )) is
invertible on all of H∗.

We make one further modification to the symbol. If we restrict the (perturbed)
π0(σH(P )) to the zero section in H∗, the resulting section in Hom(F 0, F 1) is an isomor-
phism of vector bundles

σ0:F 0−!F 1.

We compose the operator P with the vector bundle isomorphism σ−1
0 , and obtain a new

operator
σ−1

0 �P :C∞(X, F 0)−!C∞(X, F 0)

that represents, of course, the same K-homology class as P . The point of this modifi-
cation is that the equatorial symbol of σ−1

0 �P (i.e., its value at the spherical boundary
S(H∗) of H∗) is homotopic to the constant map from S(H∗) to the identity operator in
the fibers of F 0. In fact, we can choose the isomorphism σ0:F 0!F 1 to be any isomor-
phism with this property.

With these modifications, the full Heisenberg symbol σ−1
0 σH(P ) defines an element

in the convolution algebra E ′(THX, End(π∗F 0)), and it is invertible modulo the ideal

I∞H := {x∈C∞
c (THX, End(π∗F 0)) |π0(x) = 0}.

Since the closure of I∞H is IH , the formal difference of idempotents associated with
σ−1

0 σH(P ), as defined in §5.3, is the desired element in K0(IH).

6.2. Suspension in K-theory

The next step in Definition 4.7.1 is the isomorphism

K0(IH)∼=K1(X)⊕K1(X),

which is a composition of Morita equivalence and suspension. We may reverse the order
of the Morita equivalence and the suspension isomorphisms. Let B be the C∗-algebra

B =K(V BF
− )⊕K(V BF

+ ).

In §4 we defined an explicit isomorphism

IH
∼=C0(R)⊗B.

We will first prove a general lemma in K-theory that allows us to compute the suspension
isomorphism

K0(C0(R)⊗B)∼=K1(B).

We subsequently consider the effect of the Morita equivalence B∼C(X)⊕C(X).
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Lemma 6.2.1. Let B be a separable C∗-algebra. Let u∈Mn(B)+ be a unitary matrix
that represents a class [u]∈K1(B), and let θ denote the suspension isomorphism,

θ:K1(B)−!K0(C0(0, 1)⊗B).

If F (t), t∈[0, 1], is the norm-continuous family that linearly interpolates between F (0)=1
and F (1)=u,

F (t) = 1−t+tu∈Mn(B)+,

then F∈C0([0, 1],Mn(B))+ is invertible modulo C0((0, 1),Mn(B)), and defines a relative
class

[F ]∈K0(C0(0, 1)⊗B),

with [F ]=θ([u]).

Proof. We will prove this by making use of the flexibility of KK-theory. For ease of
notation, let us write A=C0((0, 1), B). Since Mn(B)+⊂Mn(M(A))=L(An), we can think
of F as an adjointable operator on the Hilbert A-module An. The fact that F0=1, F1=u

and Ft=1 modulo Mn(B) for all t∈[0, 1] implies that F is invertible modulo compact
operators K(An)=C0((0, 1),Mn(B)). In other words, the relative K-theory class defined
by F can also be represented as a Kasparov module

[F :An!An]∈KK(C, A).

We will prove that this Fredholm module corresponds to θ([u]) under the standard iden-
tification KK(C, A)∼=K0(A).

Choose a continous family of unitary operators z(t)∈M2n(B+), t∈[0, 1], such that

z0 =
(

1n 0
0 1n

)
and z1 =

(
u 0
0 u−1

)
.

Let

pn =
(

1n 0
0 0

)
,

and let e denote the continuous family of projections

et = ztpnz−1
t .

Observe that e0=e1=pn. Then the proof of [7, Theorem 8.2.2] implies that

θ([u])= [e]−[pn]∈K0(C0((0, 1), B)).
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Consider the family of partial isometries

G(t) = z(t)pn.

Observe that G(0)=pn, G(1)=u and that G(1)=pn modulo K(A2n), while

1−G∗G =1−pn and 1−GG∗=1−e.

Let φ: C!L(B2n) denote the homomorphism with φ(1)=pn. With this choice of a non-
unital map φ the operator G satisfies the Fredholm property, and we obtain a Kasparov
module

z[G:A2n!A2n, φ]∈KK(C, A).

Moreover, the module [G:A2n!A2n, φ] is homotopic to [F :An!An, pnφpn], where

pnφpn: C−!L(An)

is just the standard unital map. But unlike F the operator G has closed range, and we
can take its index

IndexG = [1−G∗G]−[1−GG∗] = [e]−[pn] = θ([u]).

It follows that [G] corresponds to θ([u]), and therefore so does [F ].

6.3. The general formula

We now derive an explicit formula for the K-homology element µ−1([P ])=b(σH(P )) for
an arbitrary Heisenberg-elliptic operator P .

Theorem 6.3.1. Let P be a Heisenberg-elliptic operator on a closed oriented contact
manifold that acts on sections in a complex vector bundle,

P :C∞(X, F 0)−!C∞(X, F 1).

Let σ0:F0!F1 be a vector bundle isomorphism such that the pull-back of σ0 to the sphere
bundle S(H∗) is homotopic to the equatorial symbol σ(P )|S(H∗).

Then the element in K-homology determined by the Fredholm operator P is

[P ] = π+(σ−1
0 σ+

H(P ))∩[X+]+π−(σ−1
0 σ−H(P ))∩[X−].

Here π± denote the Bargmann–Fock representations on the Hilbert modules V BF
± ⊗F 0 of

the two components of the principal Heisenberg symbol of the operator σ−1
0 �P .



K-homology and index theory on contact manifolds 41

Proof. Choose hermitian structures for the vector bundles F 0 and F 1 such that
σ0:F 0!F 1 is a unitary isomorphism. For technical reasons, replace P by

P̃ =σ−1
0 �P (1+P ∗P )−1/2.

Then P̃ is an order-zero Heisenberg pseudodifferential operator that represents the same
K-homology class as P . But the principal Heisenberg symbol of P̃ is unitary.

Let B=K(V BF
− )⊕K(V BF

+ ) and

IH
∼=C0(R, B)∼=C0((0, 1), B),

where we choose an arbitrary orientation-preserving homeomorphism R≈(0, 1).
Recall that the equatorial symbol of P̃ is homotopic to the identity. We first assume,

for simplicity, that the equatorial symbol of P̃ is equal to the identity. Then we can define
the unitary element of the C∗-algebra B+,

u =π−(σ−H(P̃ ))⊕π+(σ+
H(P̃ ))∈B+.

The difference between the full symbol σH(P̃ ) and 1−t+tu is an element in C0((0, 1), B),
so that σH(P̃ ) and 1−t+tu represent the same element in K0(IH). Therefore, by
Lemma 6.2.1, the K-theory element

[u]∈K1(B)∼=K1(K(V BF
− ))⊕K1(K(V BF

+ ))

corresponds, under the suspension isomorphism, to [σH(P̃ )]∈K0(IH). Completing the
steps in Definition 4.7.1, we obtain the formula stated in the theorem.

In general, the equatorial symbol of P̃ is homotopic to the constant map from S(H∗)
to the identity operator on F 0, and so essentially the same argument applies.

Remark 6.3.2. In Theorem 6.3.1 we did not explicitly address the Morita equivalence
that is part of the definition of the map b. Strictly speaking, we only defined elements

[π±(σ−1
0 σ±H(P ))]∈K1(K(HBF

± )),

but we have not yet indicated what to do about the Morita equivalences

K1(K(HBF
± ))∼=K1(X).

But this is a standard procedure in K-theory. Let V N
± !X denote the complex vector

bundles on X defined by

V N
+ =

N⊕
j=0

SymjH1,0 and V N
− =

N⊕
j=0

SymjH0,1,
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and let
SN
± :V BF

± −!V N
±

be the family of orthogonal projections in each fiber. Let us denote by πN
± the Bargmann–

Fock representations compressed by the projections SN ,

πN
± (a) := SN

± π±(a)SN
± .

For sufficiently large values of the integer N , we have

[π±(σ−1
0 σ±H(P ))]= [SNπ±(σ−1

0 σ±H(P ))SN +(1−SN )]∈K1(K(HBF
± )),

where the correct value of N depends on π±(σ−1
0 σ±H(P )). Observe that with this choice

of N , the elements πN
± (σ−1

0 σ±H(P )) define automorphisms of the vector bundles V N
± , so

that
[V N , πN

± (σ−1
0 σ±H(P ))]∈K1(X).

The compression

K1(K(HBF
± ))−!K1(X),

[π±(σ−1
0 σ±H(P ))] 7−! [V N

± , πN
± (σ−1

0 σ±H(P ))],

implements the Morita equivalence (where the size of N depends on P , as mentioned).
So we have, more precisely,

[P ] = [πN
− (σ−1

0 σ−H(P ))]∩[X−]+[πN
+ (σ−1

0 σ+
H(P ))]∩[X+].

6.4. Toeplitz operators

The index formula for Toeplitz operators of Boutet de Monvel [8] is a special case of
Theorem 6.3.1. If the contact manifold X is the boundary of a strictly pseudoconvex
complex domain, then the Szegő projector S is defined as the projection of L2(X) onto
the Hardy space H2(X). Let f be a smooth map

f :X −!GL(r, C).

In an evident fashion, the function f defines a multiplication operator Mf on L2(X)⊕r.
The Toeplitz operator Tf is the compression of Mf to H2(X)⊕r, i.e.,

Tf =SrMfSr,
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where Sr=S⊕r. The Toeplitz operator Tf is a Fredholm operator, and Boutet de Monvel’s
formula is

IndexTf = 〈ch(f)∪Td(X), [X]〉,

where Td(X) is the Todd class of the Spinc manifold X+, and [f ] is viewed as an element
in K1(X).

As shown in [13], the operator

T̃f =Tf +1−Sr

is an order-zero operator in the Heisenberg calculus. It is immediate that T̃f is a Fredholm
operator on L2(X)⊕r with Index T̃f =IndexTf . To derive Boutet de Monvel’s result from
our general formula, we use the calculation in [13] of the principal Heisenberg symbol of
T̃f . Within the Bargmann–Fock space HBF

+ there is the vacuum summand C=Sym0Cn.
Hence, the Hilbert module V BF

+ contains the trivial line bundle C=Sym0 H1,0. The
Bargmann–Fock representations π± of the Heisenberg symbol of T̃f are

π+(σH(T̃f ))= f acting on Cr,

π+(σH(T̃f ))= 1 on the orthogonal complement of Cr,

π−(σH(T̃f ))= 1.

The equatorial symbol of T̃f is 1, and the formula of Theorem 6.3.1,

[Tf ] = [π+(σ+
H(T̃f ))]∩[X+]+[π−(σ−H(T̃f ))]∩[X−],

reduces to
[Tf ] = [f ]∩[X+].

Equivalently, the K-cycle which solves the index problem for T̃f is (X+×S1, Ef , ϕ),
where Ef is the vector bundle on X×S1 obtained from a clutching construction—using
trivial vector bundles of fiber dimension r—with f , and ϕ:X×S1!X is the projection.
In particular, the formula of Boutet de Monvel is now a corollary.

6.5. Second-order scalar operators

For Heisenberg-elliptic differential operators P , the principal Heisenberg symbol and
its action on the Bargmann–Fock spaces can be explicitly computed by an algorithmic
procedure. Theorem 6.3.1 then gives an explicit (M,E,ϕ)-cycle that corresponds to
[P ]. We will illustrate this by computing the geometric K-cycle for the Heisenberg-
elliptic operators Pγ =∆H +iγT . The procedure is essentially the same for all differential
Heisenberg-elliptic operators, but it is most easily illustrated by an explicit example.
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Because of Darboux’s theorem the contact manifold X can locally be identified with
an open subset of the Heisenberg group R2n+1. Let Xj , Yj and T be the standard
right-invariant vector fields on the Heisenberg group with [Xj , Yj ]=T . In such local
coordinates, the operator Pγ can be written as

Pγ =
n∑

j=1

−(X2
j +Y 2

j )+iγT +...,

where we ignore first order terms in Xj and Yj . These lower-order terms may appear
because the sublaplacian ∆H =

∑
−(X2

j +Y 2
j )+... is unique only up to lower-order terms.

We have JXj =Yj , and so Zj =(Xj−iYj)/
√

2. A simple computation shows that
2Zj

	Zj =X2
j +Y 2

j +i[Xj , Yj ], and so

n∑
j=1

−2Zj
	Zj =

n∑
j=1

−(X2
j +Y 2

j )+inT.

We can therefore write

Pγ =
n∑

j=1

−2Zj
	Zj−i(n−γ)T +... .

The Bargmann–Fock representation on (HBF
+ )x of the symbol σH(P )={Px |x∈X} is

π+(Px) =
n∑

j=1

2zj
∂

∂zj
+n−γ(x).

The symmetric powers of H1,0 are eigenspaces of π+(Px). To see this, observe that

π+(Px)zα =(2|α|+n−γ(x))zα,

where zα=zα1
1 ... zαn

n and |α|=α1+...+αn. Therefore, on Symj H1,0, the operator π+(Px)
acts as the scalar

aj(x) = 2j+n−γ(x).

In the dual Bargmann–Fock representation the roles of Z and 	Z are reversed. So, from

n∑
j=1

−2	ZjZj =
n∑

j=1

−(X2
j +Y 2

j )−inT,

we get

Pγ =
n∑

j=1

−2	ZjZj +i(n+γ)T.
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The representation of σH(P ) on the conjugate Bargmann–Fock spaces (HBF
− )x is then

given by

π−(Px) =
n∑

j=1

2z̄j
∂

∂z̄j
+n+γ(x),

and we find that π−(Px) acts on Symj H0,1 as the scalar

bj =2j+n+γ(x).

Replacing P by

P̃ =P (1+P ∗P )−1/2,

we obtain an order-zero operator whose principal symbols act on the symmetric powers
of H1,0 by the scalar aj/

√
1+|aj |2, and similarly for H0,1. For large values of j these

renormalized scalars are close to 1, and so they contribute only trivial summands to the
K-cycle and can be ignored. We can use the non-normalized scalars, because as vector
bundle automorphisms they are homotopic to their normalized versions. The result is
the following formula in K-homology.

Proposition 6.5.1. Let Pγ =∆γ +iγT be a Heisenberg-elliptic operator. Then the
element in K-homology represented by Pγ is

∞∑
j=0

([Symj H1,0]∪[2j+n−γ])∩[X+]+
∞∑

j=0

([Symj H0,1]∪[2j+n+γ])∩[X−].

Here the vector bundles Symj H1,0 and Symj H0,1 represent elements in the K-theory
group K0(X), while the functions 2j+n−γ and 2j+n+γ represent elements in odd
K-theory K1(X).

Corollary 6.5.2. The Chern character of the K-cycle [Pγ ] is the Poincaré dual
of the cohomology class

P.D. ch([Pγ ])=
N∑

j=0

ch(2j+n−γ)∪ch(Symj H1,0)∪ec1(H
1,0)/2∪Â(X)

+(−1)n+1
N∑

j=0

ch(2j+n+γ)∪ch(Symj H0,1)∪ec1(H
0,1)/2∪Â(X).

Here the odd Chern character ch(f)∈H1(X, Z)=[X, S1] refers to the 1-cocycle associated
with the continuous map f :X!C×∼S1.
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Example 6.5.3. In [17] we derived an explicit topological formula for the Fredholm
index of Pγ in the simplest possible case where X is a 3-manifold. We now see that this
index formula, while correct, was incomplete. Let us calculate the K-cycle, and compare
it with the index formula in [17].

On a 3-manifold X we have Â(X)=1, while the bundle H1,0 is a line bundle. Then
Symj H1,0=(H1,0)⊗j . Writing c1=c1(H1,0), we have

ch(Symj H1,0)ec1/2 =(1+jc1)
(
1+ 1

2c1

)
=1+ 1

2 (2j+1)c1.

Denote by

Wk =ch(γ−k) =
[
− 1

2πi

dγ

γ−k

]
∈H1(X, Z)

the 1-cocycle that encodes the winding of the coefficient γ around the odd integer k,

γ:X −!C\{odd integers}.

We find that

P.D. ch(Pγ) =
∑

k odd

Wk+
∑

k odd

kWk∪
c1

2
∈H1(X, Z)⊕H3(X, Z).

Here all cocycles are integer cocycles. The Poincaré dual of the 3-cocycle∑
k odd

kWk∪
c1

2

is a 0-cycle whose image under the map H0(X, Z)!H0(pt, Z)=Z is just the Fredholm
index of Pγ . This term in our K-cycle contains exactly the same information as the
index formula of [17]. The Poincaré dual of the term

∑
k odd Wk is a 2-cycle. If we twist

Pγ by a complex vector bundle F!X, then this 2-cycle will pair with c1(F ), and the
curvature of F will contribute to the index of F⊗Pγ . The information contained in the
term

∑
k odd Wk cannot be derived or guessed from the formulas of [16] and [17]. The

following formula highlights the gap between the result of the present paper and the
earlier formula,

Index(F⊗Pγ) = rank(F ) Index Pγ +
∑

k odd

∫
X

ch(γ−k)∧c1(F ).

Example 6.5.4. The formula for the K-cycle of Pγ easily extends to the case where
Pγ acts on sections in a trivial vector bundle. With X as above, let r be a positive integer
and let γ be a C∞ map from X to the C-vector space M(r, C) of all r×r matrices,

γ:X −!M(r, C).
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Then—entirely analogous to the case r=1—a differential operator Pγ is given by

Pγ =∆H⊗Ir+iT⊗γ:C∞(X, Cr)−!C∞(X, Cr),

where (as usual) Ir is the r×r identity matrix. Pγ is elliptic in the Heisenberg calculus
if and only if, for all x∈X,

γ(x)−λIr is invertible for all λ∈{...,−n−4,−n−2,−n, n, n+2, n+4, ... }.

As above, Pγ determines an element [Pγ ] in KK0(C(X), C). The K-cycle which solves the
index problem for [Pγ ] is (X+×S1, E+, ϕ)t(X−×S1, E−, ϕ), where (X+×S1)t(X−×S1)
and ϕ are as above, and

E+ =
N⊕

j=0

(νγ
2j+n⊗ϕ∗ Symj H1,0),

E− =
N⊕

j=0

(νγ
−(2j+n)⊗ϕ∗ Symj H0,1).

Here νγ
2j+n (resp. νγ

−(2j+n)) is the C-vector bundle of fiber dimension r on X×S1 obtained
by doing a clutching construction using γ−(2j+n)Ir (resp. γ+(2j+n)Ir).
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