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1. Introduction

Coherent states in the Hilbert space H=L2(Rn), introduced in the work of Schrödinger,
Bargmann, Glauber and others, are certain normalized Gaussian functions parameterized
by points in classical phase space, (p, q)∈Rn×Rn. They are denoted by |p, q〉. See, e.g.,
[10] or §2 for definitions.

Given a density matrix % on H (i.e., % is a positive semi-definite operator with trace
Tr %=1), its von Neumann entropy is S(%)=−Tr % log %. This is always non-negative,
but the usual classical Boltzmann type density, e.g., f(p, q)=Z−1 exp−β(p2+V (q)) can
have an arbitrarily negative entropy −

∫
Rn×Rn f(p, q) log f(p, q) dp dq. To remedy this and

other problems with the classical approximation to entropy, A. Wehrl [22] used coherent
states to propose another definition, as follows:

Define %cl(p, q):=〈p, q|% |p, q〉. This function has several names. One is the Husimi
Q-function [8]. Berezin [1] called it the covariant symbol. The name we shall use here is
the lower symbol of % (see [9]). Since (2π)−n

∫
Rn×Rn |p, q〉〈p, q| dp dq is the unit operator

on H, we see that %cl(p, q) is a probability density with respect to the classical measure
(2π)−n dp dq. In [1] and [9] it is shown that the trace Tr f(%) of a convex function f of %
is bounded below by the corresponding classical integral (2π)−n

∫
Rn×Rn f(%cl(p, q)) dp dq.

Together with the corresponding upper bound for what is called the upper symbol (or
contravariant symbol in [1]) they are often referred to as the Berezin–Lieb inequalities.
The inequalities are, of course, reversed for concave functions. In this paper we shall not
be concerned with the upper symbol.

Wehrl uses the lower symbol, to define

Scl(%) =−(2π)−n

∫
Rn×Rn

%cl(p, q) log %cl(p, q) dp dq. (1)
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Since 06%cl(p, q)61, we see that Scl(%)>0, as desired.

A question raised by Wehrl is which % minimizes Scl(%), and he conjectured that
this occurs exactly when % is a 1-dimensional projection onto any coherent state, i.e.,
%=|p, q〉〈p, q| for any choice of p and q. This conjecture was proved in [10]. Later
Carlen [6] gave a different proof based on the log-Sobolev inequality; this proof included
the uniqueness statement for the first time. A decade later Luo [15] gave a proof based
on hypercontractivity, which is closely related to the log-Sobolev inequality.

In [10] a similar conjecture was made for the coherent states in the Hilbert spaces
of the irreducible representations of SU(2). These angular momentum coherent states
are very useful for the physics of quantum spin systems. They are usually called Bloch
coherent states [2], [17] and will be the subject of this paper. We shall prove the conjecture
in [10] that the analog of Wehrl’s conjecture holds here as well, i.e., that the classical
entropy is minimized by coherent states. We do not prove that coherent states alone
minimize the entropy, however.

Previously, the conjecture had been established only for a few low-dimensional rep-
resentations of SU(2). The 2-dimensional spin- 1

2 case is simple as all pure states are
coherent states. This was already pointed out in [10]. For the 3-dimensional case of spin
1 the conjecture was solved by Scutaru [19] and by Schupp [18] who also solved it for
the 4-dimensional representation corresponding to spin 3

2 . Bodmann [3] proved a lower
bound on the classical entropy which is asymptotically correct for large spin J .

We prove more than that Scl(%) is minimized when % is a projection onto a coherent
state. We prove this for all concave functions f(t), not just f(t)=−t log t. In fact, the
original proof in [10] for the Gaussian Glauber states was for f(t)=−tp, p>1, and the
proof for −t log t followed by taking the limit p!1. The extension to f(t)=tp for 0<p<1
was given by Carlen [6]. To our knowledge it has not been proved for general concave
functions. In Theorem 2.2 we show exactly that, by approximating Glauber coherent
states by Bloch coherent states in an appropriate limit of large spin. The particulars of
this approximation are in the appendix.

In order to prove the conjecture for all spin we utilize a generalization of coherent
states, called coherent operators introduced by us in [13]. These are operators that map
density matrices in one SU(2) space, characterized by an angular momentum (or “spin”)
J to a density matrix in a spin-K space. These maps are, in fact, quantum channels, i.e.,
completely positive trace-preserving maps, as will be made clear in Lemma 4.1. We shall
also see that these quantum channels are equivalent to the universal quantum cloning
machines later identified in [7] and [23]. The no-cloning theorem states that exact cloning
of a quantum state is impossible. The universal quantum cloning machines are quantum
channels that achieve the best degree of cloning for general input states. As explained in
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Remark 4.2 below, the channels defined in (17), which we will show to be equivalent to
the quantum coherent operators, are identical to the universal quantum cloning machines
as represented in equation (4) in [23]. A particular realization of a universal quantum
cloning channel appears in the context of quantum information in curved space times
as the Unruh channel. It describes either the transformation of states prepared by an
inertial observer as seen from an accelerated observer, or stimulated emissions from black
holes; see, e.g., [4] and [5].

The Bloch coherent states map density matrices from J to functions on the classical
phase space, i.e., the 2-sphere S2 (which can be thought of as K=∞ [9]) via the lower
symbol map mentioned above. We do this in small steps, so to speak, by going from J to
J+ 1

2 to J+1, etc. For each finite K on the way we prove that projections onto coherent
states in J minimize the von Neumann entropy of the lifted density matrix in K. In
other words we determine the minimal output entropy of the quantum coherent operator
channels to be the entropy of the output of a coherent state. We then show that after
an appropriate scaling, the limit K!∞ gives us the desired classical (lower symbol)
entropy, and thus we prove the conjecture for the entropy and for any concave function.

An important observation in our procedure is to note that the quantum coherent
operator channels have a simple expression in terms of bosonic second quantization, i.e.,
bosonic creation and annihilation operators.

Coherent states can be generalized to any compact semi-simple Lie group, not just
SU(2) (see [16] and [20]), and there we expect that a similar result holds. For any compact
semi-simple Lie group, Sugita proved in [21] that coherent states minimize the classical
Wehrl entropy corresponding to Rényi entropies of integer order.

In §2 we define Bloch coherent states, lower symbols, and discuss the corresponding
Berezin–Lieb inequality. We also introduce the quantum coherent operator channels from
J to K. (While we are interested here in K>J , the map is also defined when K<J .) In
§3 we derive a more explicit formula for the quantum coherent operator channel which
allows us, in §4, to give a bosonic second quantization representation of the channels. In
fact, §3 is not important for our main conclusion as we could have defined the quantum
channels from the second quantization formulation in §4. We include §3 in order to
connect to our previous work in [13]. Following that, we show, in §5, that coherent states
in J minimize the output von Neumann entropy in K or, more generally, the trace of
any concave function. In particular, we have found the minimal output entropy of the
universal quantum cloning machinces.

In the last §6 we study the classical limit K!∞ and use the Berezin–Lieb inequality
to prove the conjecture about the classical entropy.
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2. Basic definitions and main results

For all integer or half-integer J we letHJ denote the spin-J representation space of SU(2),
i.e., HJ =C2J+1. The corresponding classical phase space is S2, the unit sphere in R3.
For each point ω∈S2 we have the 1-dimensional coherent state projection P J

ω =|ω〉
J J
〈ω|

projecting HJ onto the subspace of maximal spin in the direction ω, i.e., the 1-dimesional
subspace of HJ corresponding to the eigenspace of ω ·SJ with eigenvalue J . Here SJ is
the vector of spin operators, i.e, the representation on HJ of the standard generators
S=(Sx, Sy, Sz) of SU(2). The vector |ω〉

J
is only defined up to a phase, but this will not

play a role here as only the projection P J
ω is important. We will use the notation that

", #∈S2 are respectively the north and south pole.
The coherent state transform is based on the identity that

2J+1
4π

∫
S2
|ω〉

J J
〈ω| dω=

2J+1
4π

∫
S2
P J

ω dω= IJ , (2)

where IJ is the identity on HJ . If % is a density matrix on HJ its lower symbol is the
function on S2 given by

Φ∞(%)(ω) =
J
〈ω|% |ω〉

J
=TrJ(P J

ω %), (3)

where TrJ is the trace on HJ . The classical entropy of % is

Scl(%) =−2J+1
4π

∫
S2

Φ∞(%)(ω) log(Φ∞(%)(ω)) dω.

We are using the notation Φ∞ for the lower symbol since we shall consider it as the
natural classical limit k!∞ of the quantum channels Φk defined below.
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The Berezin–Lieb [1], [9] inequality for the lower symbol states that for any concave
function f : [0, 1]!R we have

TrJ f(%) 6
2J+1

4π

∫
S2
f(Φ∞(%)(ω)) dω. (4)

The inequality follows from (2) as a consequence of Jensen’s inequality.
The conjecture from [10] that we shall prove here is that Scl is minimized when

the density matrix is any coherent state projection, e.g., %=|"〉
J J
〈"|. In this case the

lower symbol is Φ∞(|"〉
J J
〈"|)(ω)=

∣∣
J
〈ω|"〉

J

∣∣2. In fact, we shall prove the more general
statement that the same is true if the function −t log t is replaced by any concave funtion.
Our main theorem is the following.

Theorem 2.1. (Lower symbols of Bloch coherent states minimize concave averages)
Let f : [0, 1]!R be a concave function.(1) Then for any density matrix % on HJ we have

2J+1
4π

∫
S2
f(

J
〈ω|% |ω〉

J
) dω>

2J+1
4π

∫
S2
f
(∣∣

J
〈ω|"〉

J

∣∣2) dω. (5)

By SU(2) invariance " could be replaced by any other point on S2.

The following analogous result for the Glauber coherent states is proved by an easy
limiting argument which we give in the appendix.

Theorem 2.2. (Lower symbols of Glauber coherent states minimize concave av-
erages) Let f : [0, 1]!R be a continuous concave function with f(0)=0. Then for any
density matrix % on L2(Rn) we have

(2π)−n

∫
Rn×Rn

f(%cl(p, q)) dp dq> (2π)−n

∫
Rn×Rn

f
(∣∣〈p0, q0|p, q〉

∣∣2) dp dq (6)

for all p0, q0∈Rn.

Remark 2.3. As in the main Theorem 2.1, we could have allowed limt!1− f(t)=−∞
(see footnote (1)). We could, in fact, also allow f(0) 6=0, but in this case the integrals
on both sides of (6) are either both +∞ or both −∞. Even if f(0)=0 the integrals may
still be +∞, but the inequality holds in the sense that either both sides are +∞ or the
right-hand side is finite.

Using the fact that the Glauber coherent state |p, q〉∈L2(Rn) is explicitly given by

π−n/4 exp
(
− (x−q)2

2
+ipx

)
,

(1) It is, in fact, enough to assume that f : [0, 1)!R, i.e., to allow that limt!0− f(t)=−∞. Only
coherent state projections have lower symbols that attain the value 1. If % is not a coherent state

projection we can find a concave function f̃ : [0, 1]!R such that f̃>f and f̃(J〈ω|%|ω〉J )=f(J〈ω|%|ω〉J ).
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we have

〈p, q|ψ〉=π−n/4

∫
exp

(
− (x−q)2

2
−ipx

)
ψ(x) dx

for ψ∈L2(Rn). The inequality (6) for the rank-1 state |ψ〉〈ψ| then states that∫
Rn×Rn

f
(∣∣〈p, q|ψ〉∣∣2) dp dq

is minimized for concave f when ψ is a Glauber coherent state.
We now define the quantum coherent operator channels. We refer to [13] for details.

For fixed K and J we let P− be the projection in HJ⊗HK onto the minimal total
spin |K−J |, i.e., onto the unique copy of H|K−J|⊆HJ⊗HK on which the tensor product
representation acts irreducibly.(2) For simplicity we omit in our notation the dependence
of P− on K and J .

In the language of elementary quantum mechanics, a particle of angular momen-
tum K and one of angular momentum J can combine in exactly one way to produce a
composite particle of angular momentum |K−J |. The Hilbert space of this composite
particle is the subspace H|K−J|⊆HJ⊗HK .

If we let k=2K−2J∈Z, we consider the map Φk from operators on HJ to operators
on HK defined by the partial trace

Φk(%) =
2J+1

2|K−J |+1
TrJ P−(%⊗IK). (7)

This is a trace-preserving completely positive map (see also (16) and Lemma 4.1), i.e.,
using the language of quantum information theory it is a quantum channel. The reader
might find it useful at this point to look at the formulation of this map in terms of boson
creation and annihilation operators in §4. The trace-preserving property is easily seen,
since the partial traces TrJ P− and TrK P− are both proportional to the identities. In
particular, Φk maps density matrices to density matrices. In the notation we have for
simplicity omitted the dependence of Φk on K and J and only kept the dependence on
the difference in dimension k=2K−2J .

Our main result about these channels is that they are majorized by coherent states
in the following sense.

Theorem 2.4. (Coherent states majorize Φk) For a density matrix % on HJ and
k=2(K−J) the sequence of eigenvalues of the density matrix Φk(%) is majorized by
the sequence of eigenvalues of Φk(|ω〉〈ω|), which by SU(2)-invariance is independent of
ω∈S2.

(2) Strictly speaking the isometric imbedding of H|K−J| into HJ⊗HK is given uniquely only up
to a phase.
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To say that a finite real sequence a1>a2>...>aM majorizes another real sequence
b1>b2>...>bM , written (a1, ..., aM )�(b1, ..., bM ), means that

a1 > b1,

a1+a2 > b1+b2,

...

a1+...+aM−1 > b1+...+bM−1,

a1+...+aM = b1+...+bM . (8)

Note the equality in the last condition (8).
It is a fact that (a1, ..., aM )�(b1, ..., bM ) if and only if

M∑
j=1

f(aj) 6
M∑

j=1

f(bj)

for all concave functions f : R!R. This is often called Karamata’s theorem,(3) cf. [12,
Remark 4.7 after equation (4.5.4)]. It is, in fact, enough that the concave function is
defined on the interval [aM , a1].

If A and B are two Hermitian matrices of the same size we write A�B if the eigen-
value sequence of A majorizes the eigenvalue sequence of B. The notion of majorization
of sequences can be easily generalized to infinite summable sequences and trace-class
operators but we will not need this here.

It is an easy exercise, using the variational principle, to prove that if A, B and C

are Hermitian matrices such that A�B and A�C, then

A�λB+(1−λ)C (9)

for all 06λ61.
As a consequence it follows from Theorem 2.4 that the minimal output (von Neu-

mann) entropy of the channel Φk is achieved for a coherent state, i.e.,

min
%
S(Φk(%))=S(Φk(|ω〉〈ω|)).

More generally, the output of coherent states minmize the trace of concave functions.

Corollary 2.5. (Minimization of the trace of concave functions) If f : [0, 1]!R is
concave, % is a density matrix on HJ and k=2(K−J), then

TrK f(Φk(%))>TrK f(Φk(|ω〉〈ω|))

for all ω∈S2.

Of course, the inequalities about concave functions are reversed for convex functions.

(3) In [12] the concave function is assumed to be monotone increasing. With the assumption of
equality in (8) the assumption of monotonicity is not required.
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3. A formula for P−

Our goal here is to find an explicit formula for the projection P− that projects HJ⊗HK

onto the subspace HK−J , under the assumption that K>J .
We start by choosing the standard preferred basis

|M〉
L
, M =−L, ..., L,

in HL, in which Sz is diagonal and Sx is real. This specifies the basis up to an over-all
phase. We introduce the anti -unitary map UL:HL!HL given by

UL

L∑
M=−L

αM |M〉
L

=
L∑

M=−L

(−1)L−M
�αM |−M〉

L
.

This map has the property that

U−1
L SLUL =−SL. (10)

It is the unitary operator eiπSy followed by complex conjugation in the preferred basis.
Any anti-unitary operator satisfying (10) agrees with UL up to an over-all phase. Note
that U−1

L =(−1)2LUL and hence

〈ULφ|ψ〉= 〈ULψ|ULULφ〉=(−1)2L〈ULψ|φ〉 (11)

for all φ, ψ∈HL.
If K>J then HK⊆HK−J⊗HJ (recall that HK−J⊆HJ⊗HK as we said in the be-

ginning). We thus have a sesquilinear map

HJ×HK 3 (ψ, φ) 7−!
J
〈ψ‖φ〉

K
∈HK−J ,

where the partial inner product
J
〈ψ‖φ〉

K
is defined by the inner product in HK−J as

follows

K−J
〈η|

J
〈ψ‖φ〉

K
〉
K−J

= (K−J)⊗J
〈η⊗ψ|φ〉(K−J)⊗J

for all η∈HK−J , where the last inner product is in HK−J⊗HJ .

Theorem 3.1. (Formula for P−) If K>J then we have for all ψ∈HJ and φ∈HK

P−(ψ⊗φ) =µ
J
〈UJψ‖φ〉K , (12)

where µ∈C satisfies

|µ|2 =
2(K−J)+1

2K+1
.
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Proof. Formula (12) above for P−(ψ⊗φ) is clearly a bilinear map in ψ and φ. It
is thus enough to prove the above formula for a linear spanning set for φ and ψ. Such
spanning sets are provided by the coherent states |ω〉

J
and |ω〉

K
for ω∈S2. It is thus

enough to prove the formula for ψ=|ω′〉
J

and φ=|ω〉
K

. For simplicity we will write
UJ |ω′〉J =|UJω

′〉
J
, where UJ is the anti-unitary operator defined above.

In the following we let SJ and SK , respectively, denote the spin operators on HJ

and HK , respectively, and we let S be the total spin operator on HJ⊗HK , i.e.,

S=SJ⊗IK +IJ⊗SK .

Since ω ·SK |ω〉K =K|ω〉
K

, and since η=|ω′〉
J
−|UJω〉J J

〈UJω|ω′〉J has no component in the
subspace ω ·SJ =−J , it is clear that P−η⊗|ω〉K =0, for otherwise the total ω ·S component
of this vector would be bigger than the maximal possible namely K−J . Hence

P−|ω′〉J ⊗|ω〉K =
J
〈UJω|ω′〉JP−|UJω〉J ⊗|ω〉K . (13)

We have ω ·S|UJω〉J ⊗|ω〉K =(K−J)|UJω〉J ⊗|ω〉K and thus, since P− commutes with ω ·S,

P−|UJω〉J ⊗|ω〉K =µ′|ω〉
K−J

=µ′
J
〈ω‖ω〉

K
(14)

for some complex scalar µ′. Here we have used that
J
〈ω‖ω〉

K
=|ω〉

K−J
in HK−J⊗HJ ,

since |ω〉
K

=|ω〉
K−J

⊗|ω〉
J
. Inserting (14) into (13), we obtain

P−|ω′〉J ⊗|ω〉K =µ′
J
〈UJω|ω′〉J J

〈ω‖ω〉
K
.

Since U2
J =(−1)2J and UJ is anti-unitary, we have UJ(|ω′〉

J
−η)=(−1)2J

J
〈ω′|UJω〉J |ω〉J .

Moreover, UJη has no component in the space ω ·SJ =J , hence
J
〈UJη‖ω〉K =0 and thus

P−|ω′〉J ⊗|ω〉K =µ′
J
〈UJω|ω′〉J J

〈ω‖ω〉
K

=µ
J
〈UJω

′‖ω〉
K
,

with µ=(−1)2Jµ′, which is what we wanted to prove.
We can find the modulus of µ from the fact that Φ−k, with k=2(K−J), is trace-

preserving:

|µ|2 =(
J
〈UJω|⊗K

〈ω|)P−(|UJω〉J ⊗|ω〉K ) =TrJ TrK(P−|ω〉K K
〈ω|)

=
2(K−J)+1

2K+1
TrJ Φ−k(|ω〉

K K
〈ω|) =

2(K−J)+1
2K+1

.

If k=2(K−J)>0, we therefore have

K
〈φ|Φk(|ψ〉

J J
〈ψ|)|φ〉

K
=

2J+1
2K+1

∥∥
J
〈UJψ‖φ〉K

∥∥2

K−J
. (15)
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If we introduce the channel
Φ̃k(%) =Φk(UJ%U

−1
J ), (16)

we see that

K
〈φ|Φ̃k(|ψ〉

J J
〈ψ|)|φ〉

K
=

2J+1
2K+1

∥∥
J
〈ψ‖φ〉

K

∥∥2

K−J
,

or equivalently

Φ̃k(%) =
2J+1
2K+1

PK(IK−J⊗%)PK , (17)

where PK is the projection onto HK in HK−J⊗HJ . In particular, Φ̃0 is the identity
map.

If K6J the corresponding result is that

P−ψ⊗φ=µ′
K
〈UKφ‖ψ〉J and |µ′|2 =

2(J−K)+1
2J+1

. (18)

In particular, in this case,

K
〈φ|Φ−|k|(|ψ〉

J J
〈ψ|)|φ〉

K
=

∥∥
K
〈UKφ‖ψ〉J

∥∥2

J−K
. (19)

Hence, if K6J and we now set Φ̃−|k|(%)=U−1
K Φk(%)UK , we obtain

K
〈φ|Φ̃−|k|(|ψ〉

J J
〈ψ|)|φ〉

K
=

∥∥
K
〈φ‖ψ〉

J

∥∥2

J−K
.

4. The Bosonic formulation

The space HJ may be identified with the completely symmetric subspace
⊗2J

symH1/2 of
the tensor product

⊗2J H1/2.
A particularly simple way to see this is to use the Schwinger representation of spin

operators in terms of creation and annihilation operators. Let H1/2 be the one-particle
space and let a∗" and a∗# be the creation operators corresponding to spin up and down,
respectively. They are the operators which, for all positive integers `, map

⊗`
symH1/2

to
⊗`+1

symH1/2, such that, for ψ∈
⊗`

symH1/2,

a∗"ψ=
√
`+1Psym(|"〉1/2⊗ψ),

and likewise for a∗# , where Psym is the projection onto the symmetric space
⊗`+1

symH1/2.
The annihilation operators a" and a# are the adjoints of a∗" and a∗# .

The symmetric subspace of
⊗2J H1/2 is the subspace corresponding to 2J bosonic

particles, i.e., the subspace
a∗"a"+a

∗
#a#=2J.
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On this (2J+1)-dimensional subspace we observe that the operators

Sx =
1
2
(a∗"a#+a

∗
#a"), Sy =

1
2i

(a∗"a#−a∗#a") and Sz =
1
2
(a∗"a"−a∗#a#)

satisfy the correct commutation relations and S2
x+S2

y +S2
z =J(J+1).

The spin representation on HJ may then be identified with the space of 2J bosons
over a 2-dimensional 1-particle space. In particular, the coherent state |ω〉

J
∈HJ is in the

bosonic language the pure condensate wave function (2J)!−1/2(a∗ω)2J |0〉, where |0〉 is the
vacuum state (i.e., the state of zero particles) and a∗ω is the creation of a particle in the
state |ω〉1/2, i.e., a∗ω=1/2〈"|ω〉1/2a

∗
"+1/2〈# |ω〉1/2a

∗
# . We will use the canonical commutation

relations, that all creation operators commute and [aω′ , a
∗
ω]=1/2〈ω′|ω〉1/2 . This gives, in

particular,
a"a

∗
"+a#a

∗
# = a∗"a"+a

∗
#a#+2 =2J+2 (20)

on HJ .
The channel Φ̃k, defined in (17), has a simple form in terms of creation and annihi-

lation operators.

Lemma 4.1. (The channel Φ̃k in second quantization) If % is a density matrix on
HJ =

⊗2J
symH1/2 and K=J+ 1

2k for some integer k>0 then

Φ̃k(%) =
(2J+1)!
(2K+1)!

∑
i1,...,ik=",#

a∗ik
... a∗i1%ai1 ... aik

. (21)

If K=J− 1
2k with k>0 we have

Φ̃−k(%) =
(2K)!
(2J)!

∑
i1,...,ik=",#

aik
... ai1%a

∗
i1 ... a

∗
ik
. (22)

Proof. We use the expression (17) for Φ̃k. The space HK =
⊗2K

symH1/2 is the totally

symmetric subspace of
(⊗2(K−J)

sym H1/2

)
⊗

(⊗2J
symH1/2

)
. Thus, by the definition of the

creation and annihilation operators,(4)

Φ̃k(%) =
2J+1
2K+1

∑
i1,...,ik=",#

PK |ik〉1/2⊗...⊗|i1〉1/2⊗%⊗1/2〈i1|⊗...⊗1/2〈ik|PK (23)

=
2J+1
2K+1

(2J)!
(2K)!

∑
i1,...,ik=",#

a∗ik
... a∗i1%ai1 ... aik

. (24)

The case K<J follows in the same way.

(4) The meaning of the operator |ψ〉⊗%⊗〈ψ| in (23) is clear if % is a rank-1 projection |φ〉〈φ| and
it is defined in general by linearity.
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Remark 4.2. As explained in the proof, PK is the projection onto the totally sym-
metric subspace. This makes it clear that the expression (17) for the channel Φ̃k is
identical to equation (4) in [23] for the universal quantum cloner that takes 2J identical
(pure) qubit states and produces 2K approximate clones. Here 2J identical pure states
mean the vector state corresponding to a tensor product of 2J identical H1/2 vectors,
i.e., exactly a coherent state. The output state is not a pure tensor product state, it is
not even a pure state, but it has the smallest entropy among all output states. This is a
consequence of our Corollary 2.5.

Remark 4.3. Note that (21) and (22) are the Kraus representations of the completely
positive trace-preserving maps Φ̃k.

We shall use the representation (21) to calculate the action of Φ̃k on coherent states.

Lemma 4.4. (The action of Φ̃k on coherent states) If K=J+ 1
2k for some integer

k>0, then Φ̃k(|"〉
J J
〈"|) has the orthonormalized eigenfunctions

φC,k
j = j!−1/2(2J+k−j)!−1/2(a∗#)

j(a∗")
2J+k−j |0〉, j=0, ..., 2J+k=2K,

with corresponding eigenvalues

λC,k
j =

2J+1
2J+k+1

k!(2J+k−j)!
(2J+k)!(k−j)!

=
2J+1
2K+1

(2(K−J))!(2K−j)!
(2K)!(2(K−J)−j)!

for j=0, ..., k and zero for j>k. Note that the eigenvalues are listed in decreasing order.

Proof. This follows immediately from Lemma 4.1, since

Φ̃k(|"〉
J J
〈"|) =

(2J+1)!
(2J+k+1)!

k∑
j=0

(
k

j

)
1

(2J)!
(a∗#)

j(a∗")
2J+k−j |0〉〈0|a2J+k−j

" aj
#.

An important ingredient in the proof of our main Theorem 2.4 below is to study the
operator

ΓC,k+1
m =

m∑
j=0

a"|φC,k+1
j 〉〈φC,k+1

j |a∗"+a#|φ
C,k+1
j 〉〈φC,k+1

j |a∗#

for m6k. Using the fact that a#φ
C,k+1
j =

√
j φC,k

j−1 for j>1, a#φ
C,k+1
0 =0 and

a"φ
C,k+1
j =

√
2J+k+1−j φC,k

j for j=0, ...,m,

we find that

ΓC,k+1
m =

m−1∑
j=0

(2J+k+2)|φC,k
j 〉〈φC,k

j |+(2J+k+1−m)|φC,k
m 〉〈φC,k

m |. (25)
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Remark 4.5. The expression in Lemma 4.1 for the channel Φ̃k may be generalized
to define analogous channels between bosonic many-particle spaces where the 1-particle
space instead of being 2-dimensional, as H1/2, could be of arbitrary finite dimension. We
conjecture that Theorem 2.4 holds also in this case in the sense that pure condensates
majorize these channels.

5. Proof of the main theorem for the channels Φk

Proof of Theorem 2.4. If k=2(K−J)60 then Φk(|ω〉〈ω|) has rank 1 and the result
is obvious. We now consider the case k=2(K−J)>0. We first point out that from (9)
it is enough to consider the rank-1 case, i.e., %=|ψ〉〈ψ| for some ψ∈HJ . Since IK−J has
rank

2(K−J)+1= k+1

it is clear from (17) that Φk(|ψ〉〈ψ|) has rank at most k+1. It is of course equivalent to
consider the channel Φ̃k. Let λk

j (ψ), j=0, 1, ..., 2J+k, be the eigenvalues of Φ̃k(|ψ〉〈ψ|)
in decreasing order and counted with multiplicity. Let φk

j , j=0, 1, ..., 2J+k, be the
corresponding orthonormalized eigenvectors. For all m>k we have

m∑
j=0

λk
j (ψ) =Tr Φ̃k(|ψ〉〈ψ|) = 1.

The claim is that, moreover,
m∑

j=0

λk
j (ψ) 6

m∑
j=0

λC,k
j (26)

for m=0, ..., k−1, where λC,k
j are the eigenvalues for the coherent states, which were

given in Lemma 4.4.

We shall prove (26) by induction on m. For m=0, this is easy since we clearly have
from (17) that

λk
0(ψ) 6

2J+1
2K+1

=λC,k
0 .

Let us now assume that we have proved (26) for all integers up to m−1 for some m>1.
We want to prove it for m. We shall do this by induction on k. For k6m, (26) is an
equality since both sides are 1. Let us assume, therefore, that we have proved (26) up to
some k>m. We want to prove it for k+1.
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Since φk+1
0 , ..., φk+1

m ∈HJ+(k+1)/2 are the orthonormal eigenvectors corresponding to
the m top eigenvalues of Φ̃k+1(|ψ〉〈ψ|) we have

m∑
j=0

λk+1
j (ψ) =

(2J+1)!
(2J+k+2)!

m∑
j=0

∑
i1,...,ik+1=",#

〈φk+1
j |a∗ik+1

... a∗i1 |ψ〉〈ψ|ai1 ... aik+1 |φ
k+1
j 〉

=
(2J+1)!

(2J+k+2)!

∑
i1,...,ik=",#

Tr(Γa∗ik
... a∗i1 |ψ〉〈ψ|ai1 ... aik

)

=
1

(2J+k+2)
Tr(ΓΦ̃k(|ψ〉〈ψ|))

=
1

(2J+k+2)

2J+k∑
j=0

λk
j (ψ)〈φk

j |Γ |φk
j 〉,

(27)

where

Γ =
m∑

j=0

(a"|φk+1
j 〉〈φk+1

j |a∗"+a#|φk+1
j 〉〈φk+1

j |a∗#)

is an operator on the space HJ+k/2. Observe that since φk+1
j are 2J+k+1 particle states

we have

TrΓ =
m∑

j=0

〈φk+1
j |a∗"a"+a∗#a#|φk+1

j 〉=(m+1)(2J+k+1).

Likewise, we have from (20) with 2J replaced by 2J+k, the operator inequalities

0 6Γ =a"
m∑

j=0

|φk+1
j 〉〈φk+1

j |a∗"+a#
m∑

j=0

|φk+1
j 〉〈φk+1

j |a∗# 6 a"a
∗
"+a#a

∗
# =(2J+k+2)IHJ+k/2 .

To get an upper bound to the expression in (27) we optimize the expression with the
restrictions that

〈φk
j |Γ |φk

j 〉6 2J+K+2 and
2J+k∑
j=0

〈φk
j |Γ |φk

j 〉=(m+1)(2J+k+1).

The optimizer is easily seen to correspond to the first m−1 values of 〈φk
j |Γ |φk

j 〉 being
maximal and the mth value chosen so as to give the correct trace. This is a special
case of the bathtub principle, see [11]. We would therefore get an upper bound to the
expression in (27) if Γ is replaced by

m−1∑
j=0

(2J+k+2)|φk
j 〉〈φk

j |+(2J+k+1−m)|φk
m〉〈φk

m|. (28)
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This gives the bound

m∑
j=0

λk+1
j (ψ) 6

2J+k+1−m
2J+k+2

λk
m(ψ)+

m−1∑
j=0

λk
j (ψ)

=
2J+k+1−m

2J+k+2

m∑
j=0

λk
j (ψ)+

m+1
2J+k+2

m−1∑
j=0

λk
j (ψ).

We conclude from the induction hypotheses on both m and k that

m∑
j=0

λk+1
j (ψ) 6

2J+k+1−m
2J+k+2

m∑
j=0

λC,k
j +

m+1
2J+k+2

m−1∑
j=0

λC,k
j =

m∑
j=0

λC,k+1
j (ψ).

That the last recursive identity holds for the coherent eigenvalues follows since for coher-
ent states we know from (25) that Γ is, in fact, equal to the optimizing expression (28).
This can also be seen from the explicit formulas in Lemma 4.4 (e.g. using induction).
The induction is thus complete.

Note that as a special case we have seen in the proof that, for k=2(K−J)>0,

‖Φk(%)‖6
2J+1
2K+1

. (29)

6. The classical limit of the channels Φk

In this section we consider the limit as the dimension of the output space tends to infinity,
i.e., K!∞.

Lemma 6.1. (The large K limit of coherent state outputs) Let f : [0, 1]!R be a
continuous function. Then

lim
K!∞

2J+1
2K+1

TrK f

(
2K+1
2J+1

Φk(|"〉
J J
〈"|)

)
=

2J+1
4π

∫
S2
f
(∣∣

J
〈ω|"〉

J

∣∣2) dω. (30)

Proof. We may of course replace the channel Φk by Φ̃k. This a simple calculation
based on the explicit expressions in Lemma 4.4. If θ denotes the polar angle of ω, i.e.,
cos θ is the z -component of ω, then

∣∣
J
〈ω|"〉

J

∣∣2=cos4J
(

1
2θ

)
. The integral over the sphere

may hence be rewritten as

2J+1
4π

∫
S2
f
(∣∣

J
〈ω|"〉

J

∣∣2) dω=(2J+1)
∫ 1

0

f(t2J) dt.
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On the other hand, the explicit eigenvalues in Lemma 4.4 give

2J+1
2K+1

TrK f

(
2K+1
2J+1

Φk(|"〉
J J
〈"|)

)
=

2J+1
2K+1

2(K−J)∑
j=0

f

((
2K+1
2J+1

)
λC

j

)

=
2J+1
2K+1

2(K−J)∑
j=0

f

(
(2(K−J))!(2K−j)!
(2K)!(2(K−J)−j)!

)
.

It is an easy exercise which we leave to the reader to show that this converges to the
above integral in the limit as K!∞.

It can be proved that the same limiting equality (30) holds even if |"〉
J J
〈"| is replaced

by any density matrix % on HJ , at least for a large class of functions f . We will not do
this here. Instead, we shall restrict ourselves to an inequality similar to (30) for concave
functions f . To do this, we shall use the Berezin–Lieb inequality (4).

Lemma 6.2. (The classical integral dominate the trace of concave functions of Φ)
Let f : [0, 1]!R be a concave function. Then for any density matrix % on HJ we have,
for all integers k=2(K−J)>0,

2J+1
2K+1

TrK f

(
2K+1
2J+1

Φk(%)
)

6
2J+1

4π

∫
S2
f(

J
〈ω|% |ω〉

J
) dω.

Proof. Again we consider the equivalent channel Φ̃k. The result follows from the
Berezin–Lieb inequality (4) if we can show that the lower symbol of Φ̃k(%) satisfies

K
〈ω|Φ̃k(%) |ω〉

K
=

2J+1
2K+1 J

〈ω|% |ω〉
J
.

This is straightforward from (17).

We are now in a position to prove the main result Theorem 2.1. In fact it is the
analog of the main Theorem 2.4, or rather the equivalent formulation Corollary 2.5 for
the classical map Φ∞ from density matrices on HJ to functions on (the classical phase
space) S2. For classical functions the trace is replaced with the integral over phase space.

Proof of Theorem 2.1. From Corollary 2.5 and Lemma 6.2 we have, for all integers
k=2(K−J)>0,

2J+1
2K+1

TrK f

(
2K+1
2J+1

Φk(|"〉
J J
〈"|)

)
6

2J+1
2K+1

TrK f

(
2K+1
2J+1

Φk(%)
)

6
2J+1

4π

∫
S2
f(

J
〈ω|% |ω〉

J
) dω.

The result now follows from Lemma 6.1.
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Appendix A. Proof of the generalized Wehrl conjecture (Theorem 2.2)

It is enough to prove Theorem 2.2 for n=1. The general case follows by induction as
follows. Assume that we have proved it for n−1. Then for each (p′, q′)∈Rn−1 we define
an operator %̃p′,q′ on L2(R) by

〈φ| %̃p′,q′ |ψ〉= 〈φ|⊗〈p′, q′|% |p′, q′〉⊗|ψ〉.

Then
%p′,q′ =(TrL2(R) %̃p′,q′)−1%̃p′,q′

is a density matrix on L2(R) and we get from the inequality for n=1 that

(2π)−n

∫
Rn×Rn

f(%cl(p, q)) dp dq> (2π)−n

∫
Rn×Rn

f
(
TrL2(R) %̃p′,q′

∣∣〈0, 0|pn, qn〉
∣∣2) dp dq.

We have, however, that TrL2(R) %̃p′,q′=〈p′, q′|Trn % |p′, q′〉, where Trn % is the density ma-
trix on L2(Rn−1) obtained by taking the partial trace on the nth variable. Thus, from
the induction hypothesis, we find that

(2π)−n

∫
Rn×Rn

f(%cl(p, q)) dp dq> (2π)−n

∫
Rn×Rn

f
(∣∣〈0, 0|p′, q′〉∣∣2 ∣∣〈0, 0|pn, qn〉

∣∣2) dp dq
=(2π)−n

∫
Rn×Rn

f
(∣∣〈0, 0|p, q〉∣∣2) dp dq.

It remains to prove (6) in the case n=1. We first observe that, by possibly replacing
f(t) by f(t)+at, we may assume that f is non-negative. Moreover, using the monotone
convergence theorem, we may assume that f is piecewise linear. In this case we have the
inequality

|f(x)−f(y)|6C|x−y|

for some C>0 and all x, y∈[0, 1]. Hence for all density matrices %1 and %2 we have∫
Rn×Rn

|f(%cl
1 (p, q))−f(%cl

2 (p, q))| dp dq6C

∫
Rn×Rn

|%cl
1 (p, q)−%cl

2 (p, q)| dp dq

6C

∫
Rn×Rn

〈p, q| |%1−%2| |p, q〉 dp dq

=C‖%1−%2‖1,

where the the norm on the right is the trace norm. Hence it is enough to prove (6) for a
subset of density matrices that is dense in trace norm.

Let |n〉 denote the eigenfunctions of the harmonic oscillator(
− d2

dq2
+q2

)
|n〉=(2n+1)|n〉.
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We will prove (6) for the dense family of % satisfying the property that there exists a
positive integer N such that

〈n|% |m〉=0 if n>N or m>N . (31)

We shall apply the convenient complex notation, where

z=2−1/2(q+ip) and z̄=2−1/2(q−ip).

The Glauber coherent states may then be written as

|p, q〉= |z〉=
∞∑

n=0

e−|z|
2/2 zn

√
n!
|n〉.

We identify the subspace HJ with span{|0〉, ..., |2J〉} in L2(R) in such a way that |M〉
J
=

|M+J〉 for M=−J, ..., J . Moreover, we also identify the 2-sphere with the complex plane
through stereographic projection, such that the measure is

(
1+ 1

4 |z|
2
)−2

d2z. With these
identifications we can conveniently write the Bloch coherent states (see [9]) as

|z〉
J

=
2J∑

n=0

(
2J
n

)1/2(
1+

|z|2

4

)−J(
z̄

2

)n

|n〉.

It is now straightforward to see that if % satisfies assumption (31) then

〈z|% |z〉= lim
J!∞ J

〈(
2
J

)1/2

z̄

∣∣∣∣% ∣∣∣∣( 2
J

)1/2

z̄

〉
J

.

Using the fact that (1+|z|2/2J)−2J 6(1+|z|2/2K)−2K for all z∈C and all J>K, we
easily see that, for J>N+2,

J

〈(
2
J

)1/2

z̄

∣∣∣∣% ∣∣∣∣( 2
J

)1/2

z̄

〉
J

6C%,N

(
1+

|z|2

2(N+2)

)−2

if % satisfies (31). Since f is non-negative and bounded above by t 7!at for some a>0 we
immediately find from dominated convergence that∫

C
f(〈z|% |z〉) d2z= lim

J!∞

∫
C
f

(
J

〈(
2
J

)1/2

z̄

∣∣∣∣% ∣∣∣∣( 2
J

)1/2

z̄

〉
J

)(
1+

|z|2

2J

)−2

d2z

= lim
J!∞

J

2

∫
C
f(

J
〈z|% |z〉

J
)
(

1+
|z|2

4

)−2

d2z.

(32)

Our main Theorem 2.1 and the observation that |0〉=|0〉
J

implies that∫
C
f(

J
〈z|% |z〉

J
)
(

1+
|z|2

4

)−2

d2z>
∫

C
f
(∣∣

J
〈z|0〉

∣∣2)(1+
|z|2

4

)−2

d2z.

Since the density matrix |0〉〈0| clearly satisfies (31), we see from our main result and
(32) that (6) holds for all % satisfying (31) and hence by approximation for all density
matrices on L2(R).
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Note added in proof. The method used in this paper does not transport easily to
SU(N). However, we have recently been able to make such an extension [14].
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