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1. Introduction

Let K be an arbitrary field of characteristic different from 2, A be a central simple K-
algebra, and 7 be an involution on A, i.e., a self-inverse ring anti-automorphism of A.
Let FCK be the subfield of T-invariant elements of K. In this paper we prove a general
isotropy theorem for algebras with involution saying that if 7 becomes isotropic over any
field extension of F' splitting A, then 7 becomes isotropic over some finite odd-degree
field extension of F'. More precisely, in the case of symplectic 7, “splitting” has to be
replaced by “almost splitting”. In the general case, note that by the example of [17], 7
over F' does not need to be isotropic even if it becomes isotropic over an odd-degree field
extension.

We refer to [15] for generalities on central simple algebras with involutions. The
involution 7 is isotropic if the algebra A contains a non-zero right ideal I satisfying
7(I)-I=0. The algebra A is split if it is isomorphic to a full matrix algebra over K; it is
almost split if it is split or isomorphic to a full matrix algebra over a quaternion division
K-algebra.
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Roughly speaking, the isotropy theorem provides a possibility to split the algebra
without harming the involution too much. It is important because it allows one to reduce
questions on involutions on central simple algebras to the case of the split algebra, where
the notion of involution is equivalent to a simpler notion of bilinear form. An example
of an application of such a reduction is given in [6, Theorem 3.8].

Concerning the history, we do not know who first raised the conjecture on the
isotropy theorem, but the first named author learned it from A. Wadsworth during a
conference in the first half of the 1990s. Numerous particular cases or relaxations of
this conjecture has been studied and proved since than. One of them is the hyperbolicity
theorem: if T becomes hyperbolic over any field extension of F' splitting A, then 7 is
hyperbolic over F'. The hyperbolicity theorem has been proved in [7] for the exponent-2
case and in [10] for the unitary case.

For algebras A of exponent 2, the isotropy theorem has been proved in [13]. More
precisely, it has been reduced to the case of orthogonal T by J.-P. Tignol and proved in the
orthogonal case by the first named author. In the remaining case, proved in Theorem 6.1
of the present paper, the involution 7 is of unitary type so that the field extension K/F
is of degree 2.

Before starting the discussion of the proof of Theorem 6.1, we would like to mention
that the orthogonal and symplectic cases of the isotropy theorem are formal consequences
of its unitary case—Theorem 6.1. This relationship is explained in [10, §5] and [8].

The proof in the unitary case, made in §6, goes along the lines of the proof of
the orthogonal case, but there are at least two important differences. First of all, the
information on orthogonal grassmannians needed in the orthogonal case was already
available: partially from topology, partially from more recent works of A. Vishik [20],
[18] partially remaking in algebraic terms the available topological material. In contrast
to this, the needed information on unitary grassmannians was not available. §3 and §4
cover this need.

To explain the second difference, we have to sketch the proof. It is easily reduced to
the case of A of index 2" with r>1. Let Y be the F-variety of isotropic right ideals in A of
reduced dimension 2". Let X be the F-variety of all right ideals in D of reduced dimension
2"~1 where D is a central division K-algebra Brauer-equivalent to A. Considering Chow
motives with coefficients in Fo:=7Z/2Z of smooth projective F-varieties, we manage to
show that a certain indecomposable direct summand of the motive of X, namely, the
so-called upper motive of X introduced in [14], is isomorphic to a direct summand of the
motive of Y. The corresponding projector 7 is a cycle class in the modulo-2 Chow group
Chyimy (Y xY). With some more effort, we come to the case where 7 is symmetric, i.e.,

invariant under the factor exchange automorphism of the Chow group. We finish by
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applying to 7 a certain operation which transforms it to a 0-cycle class in Cho(Y xY") of
degree 1 modulo 2 and therefore terminates the proof.

The shortest way to explain where the operation comes from is as follows. By [21],
the projector m can be lifted to the algebraic cobordism. Then, applying an appropriate
symmetric operation of [19] and projecting back from cobordism to the Chow group, we
get the required 0-cycle class.

Fortunately, the symmetric operations and algebraic cobordism theory are not really
needed here and thus we are not restricted to the characteristic 0. Actually, we succeed
to compute the above symmetric operation because on symmetric projectors it can be
described in terms of the Steenrod operations on the modulo-2 Chow groups. This is
done in §2. The need of Steenrod operations explains our characteristic assumption.

The needed operation is related to the difference of two other operations: sq, given
by the squaring, and st, given by a Steenrod operation. The proof succeeds if the value
of one operation turns out to be trivial and the value of the other one non-trivial, see
Lemma 2.8. The value sq(w) is computed using its relation with the rank of the motive,
see Lemmas 2.3 and 2.4; the needed ranks are calculated in §5. To compute the value st(7)
we use the information on the Steenrod operations on quasi-split unitary grassmannians
obtained in §4.

The second difference between the orthogonal and the unitary cases is as follows:
st(m) is the trivial value in the orthogonal case while sq(w) is the trivial value in the
unitary case. In particular, we have to check the non-triviality of the more sophisticated

st(m) here, which is certainly more difficult than to show its triviality.

Acknowledgements. The authors thank Alexander Merkurjev for permission to in-
clude Lemma 2.1 and Burt Totaro for information about the state of study of unitary

grassmannians in topology.

2. Operations sq and st

Let F be a field of characteristic #2. Let X be a connected smooth projective variety
over F.

We write CH for the integral Chow group and we write Ch for the Chow group with
coefficients in Fs.

We will use the following observation due to A. Merkurjev.

LEMMA 2.1. Let 0: X - X x X be the diagonal morphism. For any a,b€ CH(X x X)
one has deg(bt-a)=deg(6*(boa)), where - stands for the intersection product, o stands

for the correspondence product, and b stands for the transposition of correspondences.
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Proof. By the following commutative diagram of pull-backs and push-forwards

CH(X x X) +“— CH(X x X x X) +*— CH(X x X x X x X)

Prl*l Prls*J/

CH(X) +——— CH(X x X),

where prq(z,y)==z, pri5(z,y, 2)=(x, 2), e(z,y)=(x,y,z), and s(z,y,z)=(x,y,y, z), we
obtain

pry, (b'-a)=pry, e*s*(axb)=0*prys, s (axb) =6*(bea).
Hence deg(b?-a)=degpry, (bt -a)=deg d*(b-a). O

Definition 2.2. Our first basic operation is the map sq: Ch(X x X)—Z/47Z defined
as follows: for any a€Ch(X x X) we take its integral representative a€ CH(X x X) and
(denoting by n mod m the image of n in Z/mZ) set

sq(«) :=deg(a-a) mod 4

Since any other integral representative of the same « is of the form a+2b with some
beCH(X x X) and deg((a+2b)?)=deg(a?) (mod 4), the map sq is well defined.

We also define an auxiliary operation sq’: Ch(X x X)—Z/4Z as follows: for any
a€Ch(X x X) we take its integral representative ac CH(X x X) and set

sq'(a) :=deg(a’-a) mod 4.

Since any other integral representative of the same « is of the form a+2b with some
beCH(X x X) and deg((a+2b)*-(a+2b))=deg(a?) (mod 4), because

deg(b’-a) = deg((b"-a)") = deg(a’-b),

the map sq’ is well defined as well.

LEMMA 2.3. The operations sq and sq’ satisfy the following properties:

(1) sq'(a)=sq(a) for any symmetric projector «;

(2) sq'(a+B8)=sq'(a)+sq'(B) for any orthogonal correspondences a and [(3;

(3) sd'(a)=sq'(ag) and sq(a)=sq(ag) for any field extension E/F and any a.

Proof. (1) Indeed, such an « has a symmetric integral representative: if a is any
integral representative, then a‘oa is a symmetric integral representative of o. Computing
sq(a) and sq’(«) with the help of a symmetric integral representative of a, we get the

same.
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(2) Let a,beCH(X x X)) be integral representatives of o and (. It suffices to show
that deg(b®-a)=0 (mod 2). By Lemma 2.1, deg(b’-a)=deg(d*(boa)). Since the corre-
spondences # and « are orthogonal, bea€2 CH(X x X).

(3) This is trivial. O

We are working with the Chow motives over F with coefficients in Fa, [2, Chap-
ter XII). A motive is split if it is isomorphic to a (finite) direct sum of Tate motives. A
motive is geometrically split if it splits over a field extension of F. The rank rk M of a
geometrically split motive M is the number of Tate summands in the decomposition of
Mfp for a field extension F/F such that Mg is split (this number does not depend on the
choice of E). If « is a projector on a smooth projective variety X such that the motive

(X, a) is geometrically split, we set rk a:=rk(X, ).
LEMMA 2.4. Let a€Ch(X xX) be a projector and assume that the motive (X, o) is
geometrically split (so that the rank k() €Z of « is defined). Then
sq’ (o) =1k(ar) mod 4.

Proof. By the naturality of sq’ (Lemma 2.3), we may assume that the motive (X, @)
is split, that is, that (X, «) is isomorphic to a finite sum of Tate motives. The number
of the summands is the rank. By additivity of sq’ (Lemma 2.3), we may assume that
the rank is 1. In this case « has an integral representative of the form axb with some
homogeneous a,be CH(X) having odd deg(a-b). It follows that sq’(«)=1 mod 4. O

Now we are going to define our second basic operation. Consider the total cohomo-
logical Steenrod operation S*, [2, Chapter XI]. This is a certain endomorphism of the

cofunctor Ch of the category of smooth F-varieties to the category of rings.

LEMMA 2.5. For any o, €Ch(X xX) one has

deg §°(8"oar) = deg(pry, (S° (@) -Pra. (S7(8)) e (~Tx)),

where Tx 1is the tangent bundle of X, c. is the total (modulo-2) Chern class, the map
pry: X x X — X is the projection onto the second factor, and deg: Ch—Fy is the degree

homomorphism modulo 2.

Proof. Let pris,prog: X x X x X —X x X, and pr;: X x X =X be the projections
(x,y,2)— (2, 2), (z,9,2)— (y,2), and (z,y)—x.
Since ftea=pry;, ((ax[X])-([X]x3")), we have

S (B o) =pryg. ((S*(a) x [X])- ([X] < S*(8")) - ([X] < e. (- Tx ) x [X])).
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Note that degepr;s, =degopry, o prys,. By the projection formula, we have
Py, ((S° () x [X])- ([X]x S (")) ([X] x o (~Tx) x [X]))
=8°(B")(pra. (" (@) x [X])- (e (~Tx ) x [X])
and

pry. (S°(B) (pra, (S () x [X])-(ce (~Tx) X [X])) = 1y, (S* (@) -Pr, (S°(8))-co (~Tx).
Therefore
deg S° (8" o) = deg(pry, (S* (@) - pra, (S°(8)) ¢ (~Tx))- O
Definition 2.6. Our second basic operation is the map st: Ch(X x X)—Z/47Z defined
as follows: for any a€Ch(X x X) we choose an integral representative a€ CH(X x X) of
S*()eCh(X x X) and set
st(a) := deg(pry, (a)*-c.(—Tx)) mod 4,
where ¢, refers now to the integral total Chern class. Clearly, the map st is well defined

because the choice of a does not affect the resulting value.

LEMMA 2.7. The operation st satisfies the following properties:

(1) st(a) mod 2=deg S*(atcq) for any «; in particular, st(a) mod 2=deg S*(a) if
the correspondence « is a symmetric projector;

(2) the equality st(a+5)=st(a)+st(8) holds for any correspondences o and 3 such
that deg S*(Btoa)=0; in particular, the additivity formula holds for orthogonal symmetric
correspondences « and [3;

(3) st(a)=st(ag) for any field extension E/F and any c.

Proof. (1) This is the particular case S=a of Lemma 2.5.
(2) Let a,beCH(X x X) be integral representatives of S*(«) and S*(5). Then a+b

is an integral representative of S*(a+ /) and it suffices to show that
deg(pra. (a)-pra. (b)-c.(~=Tx))=0 (mod 2).

This is indeed so, by Lemma 2.5 and the condition on « and £.
(3) This is trivial. O

The two operations sq and st are related as follows.
LEMMA 2.8. Let d=dim X. For any symmetric projector aGChd(XxX) one has
sq(a) =st(a) (mod 2).
If moreover X has no closed points of odd degree, then

sq(a) =st(a).
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Proof. The value sq(a) is given by the degree of a certain integral representative
a of a®. By Lemma 2.7, the value st(a) is given by the degree of a certain integral
representative b of S%(a). Since S¢(a)=a?, it follows that a—be2 CH(X x X). As

deg CH(X x X) =deg CH(X),

we get that dega—degbe2deg CH(X). In particular, deg a—degbe4Z+2 deg CH(X) as

claimed. O

Remark 2.9. Lemma 2.8 in particular says that the difference st —sq restricted to

the set of symmetric projectors SPCChd(X x X)), is divisible by 2. The resulting map
(st —sq):SP—Z/2Z

can be viewed as a replacement for a certain symmetric operation. One advantage of
this replacement is that it works over an arbitrary field of characteristic #2. Note that

symmetric operations are defined only over fields of characteristic 0.

3. Chow ring of quasi-split unitary grassmannians

Let K be a field of arbitrary characteristic. Let V' be a finite-dimensional vector space
over K. We set n:=dim V. Although in relation with our main purpose we are only
interested in the case of even n, we treat the case of odd n because it differs from the
even one only in a few places. For any subset IC{l, 2, [%n] }, where [%n] :%n for
even n and [in]=1(n—1) for odd n, we write G;(V') for the variety of flags of subspaces
in V of dimensions given by I. In particular, for any integer ke {1, e [%n] }, the variety
G k) (V), which we simply denote as G (V), is the grassmannian of k-planes.

Let us consider the closed subvariety Hy=H;(V') of the product G;(V)xGr(V*),
where V* is the dual vector space of V', defined by the orthogonality condition: Hj is
the variety of pairs of flags such that each space of the first flag is orthogonal to the
corresponding space of the second flag (or, equivalently, the biggest space of the first flag

is orthogonal to the biggest space of the second flag).

Ezample 3.1. The variety Hy is the variety of pairs of k-planes UCV and U'CV*
such that U-U’'=0. It is canonically isomorphic to the variety of flags in V' consisting of

a k-plane contained in an (n—k)-plane.

We now fix a non-degenerate symmetric bilinear form b on V' which gives a self-dual
isomorphism V~V*. This endows the variety G;(V)xGr(V*) with a switch involution
and the subvariety Hy is stable under it. The induced involution on CH(H) will be
denoted by 0. We are going to show that ¢ does not depend on the choice of b.
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LEMMA 3.2. The involution on CH(G[(V)xG(V*)) induced by the switch involu-
tion on Gy(V)xGr(V*) given by b does not depend on b.

Proof. The group Aut(V) x Aut(V*) acts trivially on CH(G; (V) x Gr(V*)), see [12,
Corollary 4.2]. m

LEMMA 3.3. The ring CH(H;) is generated by the Chern classes of pull-backs of the
tautological bundles on Gr(V)xGr(V*).

Proof. Using projection on components, decompose the structure morphism
H; — Spec K

into a chain of grassmannian bundles and apply [3, Proposition 14.6.5]. O

COROLLARY 3.4. The involution o on CH(Hj) does not depend on b. It is the

unique involution for which the diagram

CH(G[(V)xG(V*)) —— CH(G1 (V) x G (V™))

| |

CH(H;) CH(H)

commutes.

We are going to study the subring CH(H;)? CCH(H) of the o-invariant elements.
Why we are interested in this subring is explained in Example 3.12. More precisely,
we will study the quotient of this subring by its “elementary part”—the norm ideal
(14+0) CH(Hy). We are basically interested in the case when #I=1.

3a. I={1}

We start with the case I={1}. Note that the varieties G1(V) and G1(V*) are projective
spaces of dimension n—1. If we choose a basis of V' and use the dual basis of V*, then we
identify G1 (V) and G1(V*) with P"~! and H; becomes the hypersurface in P?=! x P!

given by the equation
n
Z TiYi = 07
i=1

where x; and y; are the respective homogeneous coordinates. Such a hypersurface is
known under the name Milnor hypersurface, [16, §2.5.3].

Let h be the hyperplane class in CH' (G (V)) or in CH*(G1(V*)) and let us define
the elements a,bGCHl(Hl) as the pull-backs of Ahx1 and 1xh. For any >0, one has
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a'=c;(—A) and bi=c;(—B), where A and B are the corresponding tautological vector
bundles on H;.

The ring CH(H;) is generated by the two elements a and b subject to the rela-
tions a”=0 and a" " '+a""2(=b)+...+(=b)""1=0 (implying b"=0). The involution o
exchanges the generators a and b.

Let 7 be the vector bundle on H; whose fiber over a point (U,U’) is U®U’ (i.e.,
T=A®B). We write ¢; for ¢;(—7). We have ¢;=a’+a*~'b+...+b'€ CH(H,)°.

The elements ¢, _1, ¢p, ... are divisible by 2. Indeed,

Cno1=a""14a" 30 4 Hab" =" 24

N~

and %cn,lﬂ»:(%cn,l)-ai:(%cn,l)-bi for any 7>0.

LEMMA 3.5. The ring CH(H1)? /(1+0) CH(H,) is additively generated by the classes
of the elements

1 1
€05 Cly ey Cn—2  GNd  5Cp_1,5Cn, ...

Moreover, for any odd i<n—2 the class of c¢; is 0, for any even i=n—1 the class of %ci

is 0, and for any i>2n—3 the class of %cl- is 0.

Proof. The group CH<""!(H,) is freely generated by a’b’ with i+j<n—1. There-
fore the quotient CH(H;)?/(1+0) CH(H;) in codimensions <n—1 is (additively) gener-
ated by the classes of a’b’ (2i<n—1) which are also represented by ca;.

For any t=n—1,n,...,2n—3, the group CHi(Hl) is generated by the elements

anflbif(nfl),an72bi7(n72), “',aif(nfl)bnfl

whose alternating sum is 0, and this is the only relation on the generators. The quotient
of the subgroup of g-invariant elements by the norms is therefore trivial for even ¢ and
generated by the class of %Ci for odd 1.

Finally, for i>2n—3=dim H;, the group CH'(H,) is trivial. O

Remark 3.6. Here is a complete analysis of the graded ring
R:=CH(H,)°/(1+0) CH(H,),

which is now easily done. Similarities as well as differences with the Chow ring of a split
projective quadric are striking.

In the case of even n, the ring R is generated (as a ring) by two elements: (the
classes of) ab€ R? and c:= %cn,l €R" ! (R* and R"~! are the graded components of R).

n/2

The relations are (ab)™/?=0 and ¢*=0. The non-zero homogeneous elements of R are

(ab)' =cs; and c(ab)’ =1Lc, 1405 withi=0,1,...,3(n—2).
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If n is odd, the ring R is generated by two elements: (the classes of) abe R? and

(n—1)

c::%anR”. The relations are (ab) /2=0 and ¢*=0. The non-zero homogeneous

elements of R are
(ab)’ =c; and c(ab)' =1icnyi0, withi=0,1,...,1(n—3).

The geometric description of the generators (for arbitrary parity of n) is as follows.

The element (ab)’ is the pull-back of h? x h'€ CH* (G (V) x G1(V*)). To describe c(ab)?,

we take some orthogonal subspaces UCV and U’ CV* of dimension [%n] —i. Then c(ab)

is the class of the (closed) subvariety L;C H; of pairs of lines with one line in U and the
other in U’.

3b. I={k}

We now start to study the case of I={k} where k satisfies 1 <k< [%n] . Although the ring
CH(H},) can easily be described by generators and relations, and o can easily be described
in terms of the generators, we do not know an easy way to understand CH(H*)“.

We write 7 for the vector bundle on Hj whose fiber over a point (U, U’) is UgU’
(in particular, 7;=T).

We consider the natural projections m1: Hyy gy — Hy and mg: Hyy gy — Hg.

LEMMA 3.7. (Cf. [20, Proposition 2.1]) For any integer i one has
ci(=Ty) = (Wk)ﬂikciw(k—l)(—ﬂ)
Proof. For any smooth scheme X with a rank-k vector bundle £ one has
ci(=€) =mcipr-1(—0(-1)),

where 7 is the morphism P(£)—X and O(—1) is the tautological (line) bundle on P(E).
If now &; and & are two rank-k vector bundles on X and 7 is the morphism P(&;) X x
P(&2)— X, we get that

ci(=(E18&2)) = miciyah—1)(—(O1(=1)@02(-1))).
In particular, taking m=mj, we see that
ci(—=Tx) = (Tr)«Civo(k—1) (—(O1(=1) B O2(-1))).

Since O1(—1)~77A and Oz(—1)~7;B, we are done. O
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COROLLARY 3.8. The o-invariant elements
Cn—2k+1(—=Tk), cn—2k+2(—Tk), ..., Con—2k—1(—T) € CH(Hy)°

are divisible by 2.

We consider the projections mx: Hyy 1y — Hy and 71 Hyg gy1y — Hi+1. The vec-
tor bundle 77y is a sub-bundle of the vector bundle 7} 7x11 (the quotient is a direct
sum of two line bundles), and we write o€ CH?(H{y, 113) for co(m 1 Titr /75 Th).-

LEMMA 3.9. (Cf. [20, Lemma 2.6]) For i€{0,1,...,n—2k} one has
TCi(=Tk) =71 Ci(—Toy1) T Cia(—Tiq1)  (mod 1+0).
For i>n—2k+1 one has
3mici(=T) = g1 ci(=Tepr) +3a-cia(=Tirr)  (mod 140).

Proof. We consider the commutative diagram

Hiky
2
Hiker1y
Hii g1y Higryy
Hi 1,

where H is defined as the fiber product of Hyy 11y and Hyy 41y over Hyy1. The variety
H{q . k+1y is naturally a closed subvariety (of codimension 2) in H and 6 is the closed
imbedding. Note that m,=8 and mp41=12. By Lemma 3.7, the elements ¢;(—7) and
1ci(—T) are 3,1%(z) for certain 2€CH(H;)?. Let us compute y:=8*3,1%(z) for an
arbitrary € CH(H;).

The square 3-8-7-2 is transversal cartesian. Therefore 8*3,=7.2*. By commutativity
of the square 1-2-5-4, we have 2*1*=5%4* so that y=7,5"4*(x). By commutativity of
the triangles 5-6-9 and 6-7-10, y=10.6.6"9"4"(2)=10.[H {1 gk4+1}]-974" (). The class
[H{17k,k+1}]€CH2(H) is computed modulo 140 as 9*4*(ab)+10*(«). It follows that
y=10,9"4*(abx)+a-10,9*4*(z). Since the square 9-10-12-11 is transversal cartesian,
10,9*=12*11,, so that we finally get y=12*11,4*(abx)+«a-12*11,4*(z) (mod 1+4o0).
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We get the first (resp. second) desired congruence taking r=c;;o(x—1)(—71) (resp. z=
%Ci+2(k_1)(—7'1)) by Lemma 3.7, because abc;io,—1)(—7T1)=¢ito(k+1)(—71) (mod 1+40)
(resp. 2abc;iog—1)(—T1)=3Cir2(k+1)(—71) (mod 1+0)) for the corresponding values of
i (cf. Remark 3.6). O

PRrROPOSITION 3.10. (Cf. [20, Proposition 2.11]) The ring CH(Hy)? is generated (as
a ring) modulo the ideal (1+0) CH(H}) by the elements ¢;(—7;) with even i satisfying
0<i<n—2k and the elements %ci(—’fk) with odd © satisfying n—2k+1<i<2n—2k—1.

Proof. For each integer | with 1<I<k, we consider the projection m;: Hyy, . xy—H;

and the elements

71 ¢;(—7;) with even i satisfying 0 <i<n—2[ and »
*
17 e;(—T;) with odd i satisfying n—20+1<i<2n—20—1.
LeEMMA 3.11. (Cf. [20, Lemma 2.12]) The ring CH(H{y,.. 1})7 is generated modulo
the ideal (14+0) CH(H{y .. x}) by the elements () (with | running over 1,....k).

Before we prove Lemma 3.11, we have to explain the link to hermitian forms.

Ezxample 3.12. Assume that the field K is separable quadratic over some subfield
FCK and let h be a K/F-hermitian form on V. Let Y; be the flag variety of totally
isotropic subspaces in V. The K-variety (Y7)k is canonically isomorphic to H;. For
any k=1,..., [%n], the identification Hy=(Y%)k transforms 7 to the tautological vec-
tor bundle on (Y%)k, defined over F'. The non-trivial automorphism of K/F induces
an automorphism of CH(Y])k identified with 0. The image of the change of field ho-
momorphism CH(Y;)—CH(H;) is contained in the subring CH(H;)? CCH(H;) of the
o-invariant elements. Moreover, if h is hyperbolic, the change of field homomorphism
CH(Y;)—CH(H;) is injective and its image coincides with CH(H)? so that we have
a canonical identification CH(Y7)=CH(H[)?; the ideal (14-0) CH(H;)CCH(H )? coin-
cides with the image of the norm homomorphism CH(Y;)x —CH(Y7). The statement on
hyperbolic h is a consequence of the motivic decomposition of the motive of a projective

homogeneous variety under a quasi-split semisimple affine algebraic group obtained in [1].

Proof of Lemma 3.11. Since the statement does not depend on the base field K,
we may assume that K is quadratic separable over some subfield F'. Then we fix a
hyperbolic K/F-hermitian form on V' and replace CH(Hyy,... x})” by CH(Y[1,.. x}) (see
Example 3.12).

We proceed by induction on k. The case k=1 is Lemma 3.5. To pass from k—1 to k,
we apply [12, Lemma 5.6], a variant of [20, Statement 2.13]. Let Y — X be the projection
Y2, k3> Y(1,2,... k—1) and let B be the subgroup of CH(Y) generated by the norms
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and the elements (%) with [=k. We have to show that B=CH(Y) and [12, Lemma 5.6]
tells us that it suffices to verify the following two conditions:

(a) for the generic point € X, the composition B— CH(Y)—»CH(Yp) is surjective;

(b) for any point x€ X, at least one of the following two holds:

(b1) the specialization CH(Yy)— CH(Y;) is surjective;

(b2) for the filtration on CH(Y) whose ith term F* CH(Y') is the subgroup generated
by the classes of cycles on Y with image in X of codimension >i, and for r:=codim z,
the image of CH(Y,)—F" CH(Y)/F ! is in the subgroup of classes of elements of

BNF" CH(Y).

Each fiber of our morphism Y —X is a hermitian quadric given by a hyperbolic
hermitian space of dimension n—2(k—1). Let us check that condition (a) holds. The
restriction of 7} 7}, to the generic fiber of the projection is isomorphic to the direct sum of
71 and a trivial vector bundle of rank 2(k—1). Therefore the pull-backs of the elements

(*) to the generic fiber give the elements

¢i(—=7;) with even ¢ satisfying 0 <i<n—2k and
1¢i(—T) with odd i satisfying n—2k+1<i<2n—2k—1.

which generate the group CH(Y') modulo the norms by Lemma 3.5. Note that
2(n—2(k—1))—3<2n—2k—1.

Now let us check that condition (b) holds. Although the specialization homomor-
phism from the Chow group of the generic fiber to the Chow group of the fiber over a
point x is not surjective in general, it is surjective by Lemma 3.5 if the residue field of
x does not contain a subfield isomorphic to K. We finish the proof by showing that in
the opposite case the image of CH(Y,) in the associated graded group of the filtration
on CH(Y') is in the image of 1+o0.

Let T be the closure of z in X. Let Y=Y xxT<Y be the preimage of T un-
der Y—X. The image of the homomorphism CH(Y,)—F" CH(Y)/F"+1 CH(Y), where
r=codimy z, is in the image of the push-forward CH(Yr)—F" CH(Y)/F 1 CH(Y).
Since z is the generic point of T' and F(x)=F(T)DK, a non-empty open subset UCT
possesses a morphism to Spec K. Its preimage Yy CYr is open and also possesses a
morphism to Spec K. Therefore (Yy)x~Yy [[Yu and, in particular, the push-forward
CH((Yy)x)—CH(Yy) is surjective.
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We consider the commutative diagram

Yk Y > X
Yr)gk —— J:T %l
Yo)g — j/; %l

Tt follows that the image of the push-forward CH((Yr) ) — CH(Y7) generates CH(Y7)
modulo the image of CH(Yr\Yy). Since the image of CH(Yr\Yy)—CH(Y) is contained
in 7t CH(Y), it follows that the image of CH(Y7) in the quotient of the filtration on
CH(Y) is contained in the image of F" CH(Yx), that is, in the image of 1+0. O

Let I=[1,k]={1,2,...,k}. For every i€l, let A; and B; the the tautological vector
bundles on H; (so that 7,=A;®B;). We define a;, b; GCHl(HI) as the first Chern classes
of the line bundles

(H[ — Hl)*Az/(H[ —>HZ',1)*.AZ;1 and (H] — HZ)*Bl/(H[ —)Hifl)*Bl;l.

For any i€, we identify CH(H[ j)) with a subring in CH(H[) via the pull-back.
Note that a;, b;€ CH(H] 1) for i€[l+1, k].
By induction on [€1, we prove the following statement; note that for [=Fk this is the

statement of Proposition 3.10.

LeEMMA 3.13. The ring CH(H[; )7 is generated modulo 1+o by the elements of
Proposition 3.10 and the elements {a;b;}ic(i4+1,k)-

Proof. The induction base [=1 follows from Lemmas 3.11 and 3.9 (the latter showing
that the missing generators of Lemma 3.11 are expressible in terms of the kept generators
and the added generators). Let us do the inductive step (from {—1 to I).

The projection Hj;_ ) — H ) is (canonically isomorphic to) a product of two rank-
(I—1) projective bundles (given by the dual of the rank-I tautological vector bundles A4,
and B; on Hy ). The CH(H| y))-algebra CH(H_q k) is therefore generated by the two

elements a; and b; subject to the two relations

! ‘ ! ‘
Sei(A)al =0 and Y (Bl =0.
=0 i=0
In particular, the CH(HJ; x))-module CH(H[;_1 1)) is free; a basis is given by the products
aib] with 4, j€[0,1—1].
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The involution o exchanges a and b. Therefore the module CH(Hy_q x))7/(1+0)
over the ring CH(Hy; 1)?/(1+0) is free of rank [; a basis is given by the (classes of the)
products aibj with i€[0,1—1]. In particular, we have that the CH(Hj; 4;)? /(1+0)-algebra
CH(H[;—1,4))7/(1+0) is generated by a;b;. This generator satisfies the following equality
in the quotient CH(H;_1 4])°/(1+0):

Xl: Cgi(’ﬂ)(albl)lizi =0.

i=0
This is the only relation on the generator because its powers up to [—1 form a basis.
Now let CCCH(H; 4))?/(1+40) be the subring generated by the elements of Propo-
sition 3.10 and the elements {a;b;}icp+1,4. Note that the coefficients of the above
relation are in C: they are expressible in terms of ¢;(—7;) (which are non-zero mod-
ulo 140 only for i=0,2,...,n—2] by Lemmas 3.5 and 3.7). Therefore the subring of
CH(H[j—1,1))?/(1+0) generated by C and a;b; is also a free C-module of rank /. On the
other hand, this subring coincides with the total ring by the induction hypothesis and it
follows that C=CH(H[,x)?/(14+0). This proved Lemma 3.13. O

Proposition 3.10 is proved. O

Remark 3.14. (Geometric description of the generators) Proposition 3.10 provides
us with generators of the ring CH(Y%) modulo the K/F-norms via the identification
CH(Y%)=CH(H})? of Example 3.12. These generators have precisely the same geometric
description as the standard generators of the Chow ring of an orthogonal grassmannian.
Namely, they are obtained via the composition (Yiy xy—Yk)«o(Y{1,63 —Y1)* out of the
additive generators of CH(Y7) modulo the norms. Moreover, for any odd 4 satisfying
n—2k+1<i<2n—2k—1, the generator %ci(—'fk) is the class of the Schubert subvariety
of the subspaces intersecting non-trivially a fixed totally isotropic subspace in V' of certain

K-dimension. This is a consequence of Remark 3.6 and Lemma 3.7.

4. Steenrod operations for split unitary grassmannians

In this section, the dimension n of the K-vector space V' is supposed to be even.

Let H=Hj.. One more tool for studying CH(H) is given by the morphism in: H — X,
where X is the variety of totally isotropic 2k-planes of the hyperbolic quadratic form
H(V)=V@V*. The morphism associates with a point (U,U’) of H the point U®U’ of
X. This is a closed imbedding by [4, Corollary 10.4].

Note that the image of the pull-back in*: CH(X)—CH(H) is contained in CH(H)?.

Indeed, fixing a non-degenerated symmetric bilinear form on V giving an identification
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of V with V*, we get the exchange involution on H (inducing ¢ on CH(H)) and an
involution on X given by the automorphism VeV *=V*@V. The imbedding H—X
commutes with these involutions, and the involution induced on CH(X) is the identity
because V is of even dimension.

The power of this tool is explained by the fact that CH(X), in contrast to CH(H),
is very well studied. An advantage of the variety X is that (in contrast to H) it has
twisted forms with closed points of “high” degrees.

The meaning of the imbedding H<— X is as follows. Assume that V is endowed
with a K/F-hermitian form h. We consider the variety Yj. Let Xop be the variety of
2k-planes in the vector F-space V totally isotropic with respect to the quadratic form
on V given by h. We have a natural closed imbedding in: Y < X5, which becomes the
above imbedding over K. Choosing a hyperbolic h, we get another proof of the fact that
the image of CH(X)—CH(H) is in CH(H)?: this is so because CH(X)=CH(X2) and
CH(Y)=CH(H)°.

Recall (see [20]) that the ring CH(X) is generated by certain elements w; € CH'(X),
with i=0,1,...,n—2k, and z;€CH'(X), with i=n—2k,n—2k+1,...,2n—2k—1. They
satisfy w;=c¢;(—7Tx) for all ¢ and zizéci(f’fx) for i#n—2k, where Tx is the tautological

vector bundle on X.

LEMMA 4.1. The pull-back CH(X)—CH(H)?/(1+0) is surjective. The image of

each z; with even i#n—2k is 0.
Remark 4.2. One may show (see [12]) that the pull-back
in*: CH(X32x) — CH(Y%)/(1+0)
is surjective (for any h). Moreover, the push-forward in, induces an injection
in,: CH(Y%)/(1+0) — Ch(Xax),

where Ch:=1 CH. It follows that the ring CH(Y})/(1+0) is naturally identified with
Ch(X2;,) modulo the kernel of the multiplication by [Y;,]€Ch(Xyy). In the case of k=3n
and hyperbolic h, the computation of the class [Y}] given below together with the com-
putation of Ch(X2x) given in [2], provides the following presentation of CH(Y,, /2)/(140)
by generators and relations: the generators are e;€ CH', i=1, 3, ..., n—1; the relations are

e?=0 for each i.

Proof of Lemma 4.1. The generators of the ring on the right-hand side given in
Proposition 3.10 come from CH(X) because the pull-back of the tautological vector
bundle Tx on X to H is 7, and the Chern classes ¢;(—7x) are divisible by 2 for :>n—2k.
This gives the surjectivity.

The image of z; with even i#n—2k is 0 by Lemmas 3.7 and 3.5. O



ISOTROPY OF UNITARY INVOLUTIONS 243

LEMMA 4.3. The element [H]e CH(X) is a square.

Proof. Let x€CH(X) be the class of the Schubert subvariety SCX of the sub-
spaces UCV@V* satisfying dimUNV >k. We claim that [H]=x2. Indeed, z can be
also represented by the Schubert subvariety S’ C X of the subspaces UCV @®V* satisfy-
ing dimUNV*>k. Since SNS'=H and codimx H=codimx S+codimx S’, [H]=[S]-[5]
by [2, Corollary 57.22]. O

We now pass to the modulo-2 Chow group Ch(X)=4 CH(X) and we use the notion
of level for elements of Ch(X) introduced in [13]. Namely, an element of Ch(X) is of
level [ if it can be written as a polynomial in the generators of z-degree <! (we use the
same notation w; and z; for the classes of the integral generators). We recall that (see
[13, proof of Proposition 12]) by the formula of [20, Proposition 2.9] the cohomological
Steenrod operation preserves the level. In particular, the squaring preserves the level.

We also recall that the generators satisfy the relation
27 =z2i¢;(—Tx) —zix1ci—1 (= Tx )+ ziy2ci—o(—Tx ) — ...,

which shows that any element of Ch(X) can be written as a polynomial in the generators

of z;-degree <1 for each i. A polynomial satisfying this restriction is called standard.
COROLLARY 4.4. The element [H]€Ch(X) is of level k.

Proof. Since squaring does not affect the level, it suffices to show that the level of a

homogeneous element x with 22=[H] is k. The codimension of x is equal to

1(dim X —dim H) = 1 (k(4n—6k—1)—k(2n—3k)) = $k(2n—3k—1)
=(n—2k)+(n—2k+1)+...4+(n—k-1),

and the minimal codimension of an element which is not of level k is this number plus
n—k. O

THEOREM 4.5. (Cf. [13, Proposition 12]) Let F' be a field of characteristic #2, K/F
be a quadratic field extension, V be a vector space over K of even positive dimension n, h
be a K/F-hermitian form on V| k be an integer satisfying 1 <k< %n, and 'Y be the variety
of totally isotropic k-planes in V.. Then for any i>k(n—2k), one has deg S Ch;(Y%)=0,
where S is the cohomological Steenrod operation and deg is the degree homomorphism

on the modulo-2 Chow groups.

Proof. Assume that deg S Ch’(Y)#0 for some j. Then deg S Ch? (H)?#0. Since S
commutes with o, we have that S is trivial on 1+¢. Therefore deg S Ch? (H)? /(140)#0.
It follows by Lemma 4.1 that degin* S Ch? (X)+0, or, equivalently, deg S in* Ch? (X)£0.
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Let y€Ch?(X) be a standard monomial in the generators with deg S in*(y)7#0. Since
in*(y)#0, the monomial y does not contain any z; with even i#n=2k by the second half
of Lemma 4.1. We may also assume that y does not contain z,,_ox. Indeed, in*(z,,—a) is
a polynomial in the generators of Ch(H)?/(1+0) of codimension <n—2k. In particular,
in*(z,_ox) is a polynomial in ¢;(—7;) with i<n—2k. Let P€Ch" ?*(X) be the same
polynomial in ¢;(—7x)=w;. Then in*(P)=in*(z,_2x) and we may replace z,_or by P
in y without changing in*(y).
We have
0#degin® S(y) =degin, in* S(y) =deg S([H]-y).

Since the degree of any level-(2k—1) element is 0, [13, proof of Proposition 12], the
element S([H]-y) is not of level 2k—1. As the Steenrod operation preserves the level,
the product [H]-y is not of level 2k—1. Since [H] is of level k by Corollary 4.4, y is not
of level k—1. The smallest possible codimension of a monomial not of level k—1 without

z-generators of even codimension is the sum of £ summands
(n—2k+1)+(n—2k+3)+...4+(n—1) =k(n—2k+1)+k(k—1) =k(n—k).

It follows that j<k(n—k). Since dimY —k(n—k)=k(n—2k), we are done. O

5. Some ranks of some motives

Let K/F be a separable quadratic field extension. Let M be a motive over F with
coefficients in Fy. We assume that there exists a field extension F’/F that is linearly
disjoint with an algebraic closure of F', such that the motive Mg, decomposes into a
sum of shifts of the motives of Spec F’ and Spec K/, where K’ is the field K®@p F’. Note
that the number of F” and the number of K’ appearing in the decomposition do not
depend on the choice of F': if F” is another field like that, the Krull-Schmidt principle
[1] over the field of fractions of F'®p F" gives the equalities. Here we use an easy version
of the Krull-Schimdt principle for motives with finite coefficients of quasi-homogeneous
varieties proved also in [9, Corollary 2.2].

The number of F” in the above decomposition is the F-rank rkr of M, the number
of K’ is the K-rank rkx of M. The usual rank rk M is also defined for such M and is
equal to rkp M +2rkg M.

Recall that there are functors
tr, cor: CM(K, Fo) — CM(F, Fq).

The first one (non-additive and not commuting with the shift, see [5]) is induced by the

Weil transfer. The second one (additive and commuting with the shift, see [9]) is induced
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by the functor associating with a K -variety the same variety considered as a variety over
F via the composition with Spec K —Spec F'.

Here is an example of a computation of ranks.

LEMMA 5.1. Let M be a motive over K isomorphic to a sum of n shifts of the Tate

motive. Then
tkptr M =tk M =n, rkgtrM= %n(n—l)7 rkpcor M =0, rkg cor M =n.

Proof. Since cor M (Spec K)=M (Spec K), the formulas for cor follow. The formulas
for tr follow from [11, Lemma 2.1]. O

Let D be a central division K-algebra admitting a K/F-unitary involution, and
assume that deg D=2" for some n>0. For an integer k€[0,n—1], let X; be the Weil
transfer with respect to K/F of the generalized Severi-Brauer variety X (2%, D). The
motive M (X}) satisfies the above conditions (one may take as F’ the function field of
the variety X) so that the ranks rkp M and rkx M are defined for any summand M
of M(Xy). In particular, the ranks rkp U(X}) and rkx U(X}) are defined for the upper
(indecomposable) motive U(X}). As in [6], U(X}) is defined as the summand in the
complete motivic decomposition of X} satisfying the condition Ch®(U(X}))#0.

PROPOSITION 5.2. va(tkp U(Xy))=n—k and va(rkgx U(Xy))=n—k—1.

Proof. The proof proceeds by induction on k. Let us consider the base step k=0.
According to [11, Theorem 1.2], U(Xo)=M(Xy). Since rk M (X (1, D))=2", it follows
from Lemma 5.1 that rkp U(Xo)=2" and rkx U(Xo)=2""1(2"-1).

We now assume that k>0. As tk M (X (2%, D))=b:= (gk), it follows from Lemma 5.1
that rkp M (Xy)=b and rkx M (X;)=21b(b—1). In particular, ve(rkp M (Xy))=n—k>0
and vo(rkx M(Xy))=n—k—1. Therefore, it suffices to show that for each summand M

different from U(X}) in the complete motivic decomposition of X}, we have
vo(tkp M)>n—k and wva(rkxg M)>n—k—1.

By [9] and [11], M is a shift of the motive U(X;) with some [€[0, k—1] or a shift of
the motive cory,p U(X (2!, D)) with some [€[0,k]. In the first case we are done by the

induction hypothesis. In the second case we have rkp M =0 and rkx M= (227) O

6. Unitary isotropy theorem

Let K be a field, A be a central simple K-algebra, 7 be a unitary involution on A, and F'
be the subfield of the elements of K fixed under 7. We say that 7 is isotropic if 7(I)-I=0

for some non-zero right ideal I C A; otherwise we say that 7 is anisotropic.
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THEOREM 6.1. (Unitary isotropy theorem) Assume that char F#2. If T becomes
isotropic over any field extension F'/F such that K':=K®pF’ is a field and the central
simple K'-algebra A':=AQprF’ is split, then T becomes isotropic over some finite odd-

degree field extension of F.

Proof. We can easily reduce this theorem to the case of 2-primary ind A. Indeed, it
suffices to find a finite odd-degree field extension L/F, such that A becomes 2-primary
over L. For such L/F we can take the field extension of F corresponding to a Sylow
2-subgroup of the Galois groups of the normal closure of E/F, where E is a separable
finite odd-degree field extension of K such that ind(A® g F) is 2-primary.

Because of the above reduction, we assume that the index of A is a power of 2.

We follow the lines of the proof of [13, Theorem 1]. We prove Theorem 6.1 over
all fields simultaneously using an induction on ind A. The case of ind A=1 is trivial.
From now we are assuming that ind A=2" for some integer r>1, and we fix the following
notation:

F is a field of characteristic different from 2;

K/F is a quadratic field extension;

A is a central simple K-algebra of index 2" (with r>1);

7 is an F-linear unitary involution on A;

D is a central division K-algebra (of degree 2") Brauer-equivalent to A;

V is a right D-module of D-dimension v with an isomorphism Endp(V)~A (in par-
ticular, rdim V=deg A=2"-v, where rdim V:=dimp V/deg D is the reduced dimension);

we fix an arbitrary F-linear unitary involution ¢ on D;

h is a hermitian (with respect to ) form on V such that the involution 7 is adjoint
to h;

Y=X(2";(V,h))=X(2"; (A, 7)) is the variety of totally isotropic submodules in V' of
reduced dimension rdim=2" which is isomorphic (via Morita equivalence) to the variety
of right totally isotropic ideals in A of the same reduced dimension;

X is the Weil transfer (with respect to K/F') of the generalized Severi-Brauer K-
variety X (2" 1; D).

We are going to apply the assumption of Theorem 6.1 to only one field extension
F'/F, namely, to the function field of the Weil transfer of the Severi-Brauer variety
X(1; D) of D. So, starting from this point, F’ stands for this function field. Clearly,
K':'=K®pF'is a field and A’ is split. We assume that the involution 7" (and therefore,
the hermitian form hgv) is isotropic and we want to show that & (and 7) becomes isotropic
over a finite odd-degree extension of F. According to [10, Theorem 1.4], the Witt index
of hps is a multiple of 2" =ind A. In particular, v>2. If the Witt index is greater than 2",

we replace V' by a submodule in V' of D-codimension 1 and we replace h by its restriction
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on this new V. The Witt index of hps drops by 2" or stays unchanged. We repeat the
procedure until the Witt index becomes equal to 2". In particular, v is still >2.

The variety Y has an F’-point and the index of the central simple K®pF(X)-
algebra A®@p F(X) is equal to 2"~ (note that K®pF(X) is a field). Consequently, by
the induction hypothesis, the variety Yg(x) has an odd-degree closed point. We prove
Theorem 6.1 by showing that the variety Y has an odd-degree closed point.

We will use and we recall the following statement from [13].

PROPOSITION 6.2. Let X be a geometrically split, geometrically irreducible F-variety
satisfying the nilpotence principle, and let Y be a smooth complete F-variety. Assume
that there exists a field extension E/F such that

(1) for some field extension E(X)/E(X), the image of the change of field homomor-
phism Ch(yE(x))%Ch(y%) coincides with the image of the change of field homomor-
phism Ch(yp(x))%Ch(y%);

(2) the E-variety Xg is p-incompressible;

(3) a shift of the upper indecomposable summand of M(X)g is a summand of
M)E.

Then the same shift of the upper indecomposable summand of M(X) is a summand

of M(Y).

We are going to apply Proposition 6.2 with p=2, X=X, Y=Y, and E=F(Y). We
need to check that conditions (1)—(3) are satisfied for these X, Y, and E. First of all,
we need a motivic decomposition of ¥ over a field extension F/F, such that Y (F)#@
and K=K® Fﬁ is a field. Over such an F , the hermitian form A decomposes into
the orthogonal sum of the hyperbolic 5—plane and a hermitian form A’ on a right D-
module V’ with rdim V'=2"(v—2), where D is the central simple K-algebra D@y F.
Let L/F(X) be a finite odd-degree extension such that Y (L)#@. Recall that a smooth
projective variety is anisotropic, if it has no odd-degree closed points (by [7, Lemma 6.3],

the motive of an anisotropic variety does not contain a Tate summand).

LEMMA 6.3. The shift of the motive of Xz and two Tate motives are the motivic
summands of Yz. In the case f‘zL, any other motivic summand of Y is a shift of

some anisotropic L-variety.

Proof. According to [4, Theorem 15.8], the variety Yz is a relative cellular space (as
defined in [2, §66]) over the (non-connected) variety Z of triples (I, J, N), where I and
J are right ideals in D, and where N is a submodule in V' such that the submodule
I®JE®NCV is a point of Yz (that is, ex(I)-J=0, N is totally isotropic, and the reduced
dimension of the D-module I&JHN CV is equal to deg f)) Thus, by [2, Corollary 66.4],

the motive of Y5 is the sum of shifts of the motives of the components of Z.
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The shift of the motive of X is given by the motive of the component of the triples
{(1,J,0)|rdim I =rdim J=1 deg 5} The rational points (0, D,0) and (D,0,0) of Z are
the components of Z which produce the two promised Tate summands. In the case
F=L we have ind 5:% deg D=2r-1, Therefore, to prove the second statement of this
lemma, we only need to check that the component of Z of triples (0,0, N) is anisotropic.
It is true, because this component is naturally identified with the anisotropic L-variety
Y'=X(2" (V' h)). O

Remark 6.4. The two Tate motives mentioned in Lemma 6.3 are clearly Fo and
Fy(dimY). In the case F=L, by duality, the motivic summand M (X.) of Y has as
shifting number the integer

d:=1(dimY —dim X).

Since Y (F(Y))#@, condition (3) of Proposition 6.2 is checked by Lemma 6.3. Let
us now check condition (2). By [11, Theorem 1.1], the variety X p(y) is 2-incompressible
if (and only if) the K®@p F(Y)-algebra D@p F(Y) is a division algebra. This is indeed

the case.
LEMMA 6.5. The algebra DRp F(Y) is a division algebra, that is,
ind(D®pF(Y))=ind D.
Proof. The proof is similar to the proof of [13, Lemma 6]. Assume that
ind(D®pF(Y)) <ind D.

Then we could prove, as in [13, Lemma 6], that the upper indecomposable motivic sum-
mand of X is a motivic summand of Y. This implies (as the variety X is 2-incompressible)
that the complete motivic decomposition of the variety Yp(x) contains the Tate summand
Fao(dim X). By Lemma 6.3 and Remark 6.4, we get a contradiction. O

We have checked condition (2) of Proposition 6.2. To check the remaining condition
(1), we will need the same property for the variety Y as in [13, Lemma 7]. We can prove
it for a more general class of varieties. Let Z be a projective homogeneous variety under
an arbitrary absolutely simple algebraic group G of type A,, over a field k (we can replace
“absolutely simple of type A,” by the condition, that G is semisimple and becomes of
inner type over some quadratic separable field extension of k). In other words, Z is
a variety of flags of isotropic right ideals of a central simple algebra over a quadratic

separable field extension of k endowed (the algebra) with a unitary k-linear involution.

LEMMA 6.6. Let k'/k be a finite odd degree field extension and let k be an algebraic

closure of k containing k'. Then

Im(Ch(Z) — Ch(Z;)) = Im(Ch(Z)) — Ch(Z3)).
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Proof. For any field extension FCk of k, we write I for the image of
Ch(Zg) — Ch(Zy).

We only need to show that I C I because, clearly, Ij, C .

If G is of inner type, the variety Z is a variety of flags of right ideals of a central
simple k-algebra. Therefore the group Aut(k/k) acts trivially on Ch(Z23). It follows that
[k':k]- Iy C I and therefore Iy, CIj.

Now we assume that G is of outer type. Let K Ck be the separable quadratic field
extension of k such that G is of inner type. Consider two subgroups Aut(k/K) and
Aut(k/k') of the group Aut(k/k). Acting on Ch(Zz), they act trivially on I;/. The index
of the first subgroup is 2 while the index of the second one is odd (a divisor of [k':k]).
Indeed,

Aut(k/k) = Aut(keep/k) and  Aut(k/K) = Aut(keep/K),

where ksep is the separable closure of k in k, so that Aut(k/k)/Aut(k/K)=Aut(K/k); if
k" is the separable closure of k in k', then Aut(k/k’)=Aut(k/k"), so that the index of
Aut(R/K') in Aut(i/k) is [K”:k].

It follows that Aut(k/k) acts trivially on I,. Therefore we still have the inclusion
[K':k]- I C Iy giving Iy C 1. O

COROLLARY 6.7. U(X)(d) is a motivic summand of Y.

Proof. As planned, we apply Proposition 6.2 to p=2, X=X, Y=Y, and E=F(Y).
Since E(X)CL(Y), we have the commutative diagram

CH(Yg(x)) — CH(YL(v)) —— CH(Y )

| T

CH(YF(X)) E— CH(YL),

where the maps are the change of field homomorphisms and L(Y") is an algebraic closure

of L(Y'). We check condition (1) for E(X)=L(Y). For any field extension FCL(Y") of

F, we write Ir for the image of Ch(y]:)—>Ch(yL(Y)). We only need to show that

IE(X) CIF(X)'

We have Ip(x)CIp(yy. Since Y (L)#, the field extension L(Y')/L is purely transcenden-
tal. Therefore resy,(yy,r, is surjective and Ir(yy=1r. Finally, by Lemma 6.6, I, =Ip(x).
We obtain the necessary inclusion Ig(x)Clyvy=Ir=Irx)-
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As already pointed out, condition (2) is satisfied by Lemma 6.5, and condition (3)
is satisfied by Lemma 6.3. Therefore, by Proposition 6.2, a shift of U(X) is a motivic
summand of Y. By Remark 6.4, it follows that the shifting number of this motivic
summand U(X) is equal to d. O

As in [13] we need the following enhancement of Corollary 6.7.

PROPOSITION 6.8. There exists a symmetric projector ™ on Y such that the motive
(Y, m) is isomorphic to U(X)(d).

Proof. We can follow the lines of the proof of [13, Proposition 9] if we know that
the complete motivic decomposition of Yz x) cannot contain two copies of Fa(d). This
is true by Lemma 6.3 and Remark 6.4. O

The following proposition finishes the proof of Theorem 6.1.

PROPOSITION 6.9. Let F' be a field of characteristic #2. Let K/F be a quadratic
field extension. Let D be a central division K-algebra of degree 27, for some r>1, ad-
mitting a K/F-unitary involution. Let X be the Weil transfer of the generalized Severi—
Brauer variety X (2771, D). Let A be a central simple K-algebra Brauer-equivalent to D
endowed with a K/F-unitary involution. Let Y be the variety of isotropic rank-2" right
ideals in A. Assume that there is a symmetric projector m€ Chgimy (Y XY') such that the
motive (Y, m) is isomorphic to U(X)(d). Then Y has a closed point of odd degree.

Proof. By Lemma 2.8, it is enough to show that sq(m)#st(7). Computing sq and
st, we may go over any field extension of F'. There exists a field extension F /F over
which A is split and the unitary involution on A is hyperbolic, but I~(::K®Fﬁ is still a
field. The variety Y can be identified with the variety of 2"-dimensional totally isotropic
subspaces of some vector space V/ F endowed with a hyperbolic K / F-hermitian form h.

Since the motive of X over F is a sum of shifts of the motives of Spec F and Spec K ,
7 decomposes into a sum of two orthogonal projectors a and 3 such that (Yz, @) is a sum
of shifts of the motive of Specﬁ and (Y, 3) is a sum of shifts of the motive of Spec K.

First of all we will show that the projectors « and 8 can be chosen to be symmetric.
Let us consider the Fo-vector space Ch(Y) together with the non-degenerate symmetric
bilinear form b: (v, u)—deg(v-u)€Fy. As 7 is symmetric, the image V:=Ch, (Y, 73) of
the projector 7,: Ch(Y%)— Ch(Y %) is orthogonal to its kernel. In particular, the subspace
V is non-degenerate (with respect to b). Since the projectors a,,a*=(at),:V—=V are

adjoint, we have (Im a*)*=Ker a,. The subspace Im a,, CV is non-degenerate: as

(140)V CradV?
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(because b is o-invariant) and
Ima,®(1+0)V=V=Ima*®(1+0)V,
we have that rad Im a., CIm ., N(Im a*)l- =Im a.NKer a,=0. It follows that
1% zlma*@(lma*)L.

Since the subspace (Im a,)* is homogeneous and o-invariant, the orthogonal projections
of V onto the summands of this orthogonal decomposition are realized by some (uniquely

determined) projectors

O/, ﬁ/ S End(Yﬁ, 7T1;) C Chgim y(Y X Y)I;
The projectors o’ and ' are orthogonal, symmetric, and satisfy o/ +3 =m. Since the
motive (Y%, ') is split of the same rank as (Y%, a), the motive (Yz, ') is a sum of shifts

of the motive of Spec K by the Krull-Schmidt principle.
Replacing a by o and 8 by 5/, we have (see Lemmas 2.3 and 2.4)

sq(a) =1rkp(Y,7) mod 4=rkp U(X) mod 4=2

and
sq(B) =2rkg (Y, m) mod 4 =21k U(X) mod 4=2

by Proposition 5.2. On the other hand, st(a)=0. Indeed, a over F is a sum of axb with
a,beCh4(Y%), where
d=%(dimY —dim X) = £ (k(2n—3k) — 3£?)
with k:=2"=ind A and n:=deg A. Since d>k(n—2k), deg S(a)=0 by Theorem 4.5. Thus
pry, S(axb)=0. It follows that pr,,(a) is divisible by 2 for an integral representative a
of S(axb). Therefore pry, (a) is divisible by 2 if now a is an integral representative of
S(a). It follows that prs, (a)? is divisible by 4 and consequently st(a)=0.
Finally, let us check that st(3)=sq(3). The point is that 3 is in

(14+0) Ch(Y x V) z =Im(Ch(Y xY) z = Ch(Y xY) 5 — Ch(Y x V) ).

Therefore the element 7 €Ch(Y xY') % is a sort of “always rational” element: this is an
element of the Chow group of the square of the completely split unitary grassmannian
such that for any hermitian form A’ (hyperbolic or not and over any field F’) of the same
dimension and the corresponding unitary grassmannian Y, this element considered in
BeCh(Y'xY")p=Ch(Y xY) is rational. Taking anisotropic h' (in which case the
variety Y’ has no odd-degree closed points), we get by Lemma 2.8 that st(5)=sq(3).
We have calculated the values of the operations sq and st on « and 3. We have by
Lemmas 2.3 and 2.7 that sq(7m)=sq(a)+sq(8)=0 and st(7)=st(a)+st(8)=2. In partic-
ular, sq(m)#st(m). O

Theorem 6.1 is proved. O
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