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Introduction

Let S be a finite p-group, with p being a prime. A fusion system on S is a category
whose objects are the subgroups of S, and whose morphisms are injective group homo-
morphisms, among which are all of those which are induced by conjugation by elements
of S. A fusion system F on S is saturated if it satisfies some further conditions, such as
would be found to hold if S were a Sylow subgroup of a finite group G and if the mor-
phisms in F were the homomorphisms between subgroups of S induced by conjugation
within G.

Saturated fusion systems were introduced by Lluis Puig (as “Frobenius categories”)
in notes which, although widely influential, remained unpublished for some years. Puig’s
formalism provided a setting for the Brauer theory of blocks of characters of finite groups,
in which no ambient finite group need be assumed. Somewhat later, David Benson [5]
suggested the possibility of associating a “classifying space” to each Frobenius category.
The notion of such a classifying space was then formulated in a rigorous way by Carles
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Broto, Ran Levi, and Bob Oliver in [7], thereby providing a generalized setting for the
homotopy theory of p-completed classifying spaces of finite groups. Here also, as in Puig’s
setup, no ambient finite group is required. Instead, what is required is a “linking system”
(or “p-local finite group”) attached to a given saturated fusion system, and which has a
richer and, in many respects, a more “group-like” structure than the fusion system alone.

More recently, linking systems and their homotopy-theoretic correlatives have been
further generalized by Bob Oliver and Joana Ventura [16] to “transporter systems”. More
recently still, the notions of linking system and transporter system have been treated by
Puig in his book [18], where they are called “F-localities”—but where the homotopical
context is absent (as will also be the case in the present work).

This paper is intended, in part, as a step toward providing a setting for the methods
of the so-called “p-local analysis” from finite group theory, in which no ambient finite
group is required. The formalism developed here turns out to be equivalent in a technical
sense to that of [7] and [16], but it is pitched in a completely different language—one
which involves nothing of categories and functors—and it has a more recognizably finite
group-like flavor. Partly for this reason, and partly because the “p-local” in “p-local
finite groups” already has a meaning for finite group theorists, we have chosen to adopt
Puig’s terminology; and so this paper involves the study of what we call localities. We
retain the terminology from [7] for the special sort of locality known as a linking system.
The aim is to establish some basic structural properties of localities in general, and to
prove the following result.

Theorem. (Main theorem) Let F be a saturated fusion system on the finite p-group
S, with p being a prime. Then there exists a centric linking system L such that F is the
fusion system generated by the conjugation maps in L between subgroups of S. Further,
L is uniquely determined by F , up to an an isomorphism which restricts to the identity
map on S.

We remark that if L is a centric linking system on S, then it is straightforward to
show that the fusion system FS(L) generated by the conjugation maps in L between
subgroups of S is saturated (see Proposition 2.18 (a) below). Thus, the effect of the main
theorem is that there is a one-to-one correspondence, up to a rigid notion of isomorphism,
between saturated fusion systems and centric linking systems.

In this introduction we shall outline our proof of the main theorem, and point out the
indirect way in which it relies on the classification of the finite simple groups (hereinafter
referred to as the CFSG).

A group may be regarded as a set G together with an “inversion map” and a mul-
tivariable “product” Π:W!G, where W=W(G) is the free monoid on G. The usual
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definition of a group is easily formulated in terms of Π instead of the binary multipli-
cation. To obtain the notion of “partial group”, one drops the requirement that Π be
defined on all words in W, and one places certain conditions on the subset D of W
on which Π is defined, while retaining the essential properties that one expects from a
product.

Once Definition 2.1 is given, partial analogs of basic group-theoretic notions imme-
diately suggest themselves, including the notions of homomorphism and subgroup. A
partial subgroup of a partial group may in fact be a group. Moreover, it may be the case
for a given partial group M that there is a collection ∆ of subgroups which determines
the domain D of the product Π. Namely, it may happen that a word w=(f1, ..., fn)
is in the domain D if and only if there exists a sequence (X0, ..., Xn) of “objects” (i.e.
members of ∆) such that Xi−1 is conjugated by fi to Xi for all i, 16i6n. If such is the
case, and if moreover any subgroup of an object containing a conjugate of an object is
again an object, then the pair (M,∆) is an objective partial group.

Our interest is in objective partial groups L=(M,∆) such that the set ∆ of objects
has a unique maximal member S with respect to inclusion, and where S is a finite p-group
which is maximal (though not necessarily uniquely so) in the poset of all p-subgroups
of M. When these conditions are met, and M is finite, then the triple L=(M,∆, S)
is a locality. A locality L is a ∆-linking system if, for any object P∈∆, the centralizer
subgroup CL(P ) is just the center Z(P ) of P . If, moreover, ∆ is the set of all subgroups
P of S such that CS(Q)=Z(Q) for every L-conjugate Q of P with Q6S, then L is a
centric linking system.

With any locality L=(M,∆, S) is associated a fusion system F :=FS(L) on S, whose
morphisms are those maps φ from one subgroup of S into another, such that φ is a
composition of restrictions of L-conjugation maps between objects. We find that for any
locality L, the pair (L,FS(L)) is essentially the same thing as a “transporter system” in
the sense of Oliver and Ventura [16], and we show that all transporter systems arise from
localities in this way. The proof is given in an appendix, so as not to interrupt the flow
of the development. The appendix includes also a proof that the main theorem implies
the corresponding result for “centric linking systems” taken in the sense of [7].

In §1 we introduce saturated fusion systems (and the notion of “fully normalized”
subgroup) in an unconventional way, in analogy to the way in which one defines a scheme
as a gluing-together of affine schemes. In this analogy, the “affine” things are the fusion
systems FR(H) of finite groups H at a Sylow p-subgroup R, where H has the property
that CH(Op(H))6Op(H). A fusion system F on a finite p-group S is saturated provided
that F is locally affine, F is “generated” by its affine subsystems and every F-centric
subgroup of S has a fully normalized F-conjugate. Another way to say this is that our
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definition of saturation is based on the notion, due to Aschbacher [2], of a “model” of a
“constrained” fusion system. In any case, our formulation is equivalent to those found
in [7] and elsewhere. Readers who are already familiar with fusion systems and with
models will find little new after Definition 1.4. Indeed, the purpose of §1 is primarily to
fix terminology and notation—and to state a result (Proposition 1.10) due independently
to Oliver and Puig—which lies at the foundation of this work.

The definitions pertaining to partial groups, objective partial groups, and localities
are introduced, and a few of their elementary consequences are derived, in §2. Among
these consequences is the basic one (Proposition 2.11) that for any locality L=(M,∆, S)
and any f∈M the set Sf of elements x∈S such that the product xf :=f−1xf is defined
and is an element of S, is in fact an object, and hence a subgroup of S. As a corollary,
we obtain the result (Proposition 2.22) that every subgroup of M is contained in the
normalizer of an object, and that all p-subgroups of M are conjugate to subgroups of S.

In §3 we introduce homomorphisms of partial groups and of partial normal sub-
groups. A few very basic consequences of the definitions are derived, but it is not until
the focus is restricted to localities, in §4, that these concepts begin to bear fruit. We make
no attempt in this paper to formulate a general notion of homomorphism of localities
beyond an obvious notion of isomorphism.

In §4 we provide some basic computational tools for working with a locality L=
(L,∆, S) and a partial normal subgroup NEL. The “Frattini lemma” (Corollary 4.8)
says that every element f∈L can be written as a product xh (or hy :=hxh) with x, y∈N
and with h∈NL(S∩N ). The section ends with a result (Lemma 4.9) on extending an
automorphism of a sub-locality of a finite group to an automorphism of the group itself.

It is in §5 that the proof of the main theorem begins to take shape. The main results
(Theorems 5.14 and 5.15) yield a concrete procedure for constructing a locality L+ from
a locality L having a smaller set of objects. Thus, suppose that one is given a locality
L with the set ∆ of objects, and maximal object S; and suppose that one is given also
a fusion system F on S such that L is “F-natural”, in the sense that for any object P ,
the set of L-conjugation maps from P into S is equal to the set of F-homomorphisms of
P into S. Now suppose further that one is given a subgroup T of S, such that T is not
in ∆, but with the property that every pair of distinct F-conjugates of T in S generates
a member of ∆. One may assume (upon replacing T by a suitable L-conjugate) that T
is fully normalized in F , in the sense of Definition 1.2. There are then two questions to
consider. First: under what conditions is it possible to regard L as the “restriction” to
∆ of an F-natural locality L+ whose set ∆+ of objects is the union of ∆ and the set
of overgroups in S of F-conjugates of T? Second: under what conditions are two such
“extensions” of L to ∆+ “rigidly isomorphic” (i.e. isomorphic via an isomorphism which
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restricts to the identity map on S)? Theorems 5.14 and 5.15 provide a complete answer
to these questions; and in doing so they provide a blueprint for the proof of the main
theorem.

In brief, Theorem 5.14 says that there exists an F-natural locality L+ extending L
in the prescribed manner, provided that there exists

(1) a finite group M containing NS(T ) as a Sylow p-subgroup, and with fusion
system FNS(T )(M) equal to NF (T ), and

(2) a rigid isomorphism λ from the normalizer locality NL(T ) to a locality L∆T
(M)

contained in M ,
where ∆T is the set of objects Q∈∆ such that T6Q6NS(T ), and L∆T

(M) is the lo-
cality obtained by restricting the group M (itself viewed as a locality) to ∆T . Further,
Theorem 5.15 says that if λ and λ′ are two isomorphisms as in (2), then the resulting
localities L+(λ) and L+(λ′) are rigidly isomorphic if and only if the composition λ−1

followed by λ′ extends to an automorphism of M .

Lemma 5.18 establishes that every locality L=(M,∆, S) can be constructed in the
above way, by an iterative procedure. For example, one may begin with the group NL(S),
regarded as the restriction of L to a locality with a single object. One then proceeds (via
the “+-operation” outlined above) to construct the restriction of L to larger and larger
sets of objects, until the set ∆ has been exhausted. At that point L itself will have been
recovered as a “filtration” of its restrictions to an increasing sequence of subsets of ∆.

In §6 we provide a proof of the main theorem modulo a technical condition on local-
ities in finite groups which is proved in §7 as Proposition 7.1. In somewhat more detail:
the proof of the main theorem depends on being able to produce an iterative procedure,
of the kind described in the preceding paragraph, by which to create a linking system
rather than to recover one, starting only with a saturated fusion system F on S and with
the set ∆=Fc of F-centric subgroups of S. The procedure begins with the linking system
L0 of NF (R) for some suitably chosen R∈∆; and where the existence and uniqueness of
L0 is given by a result (see Proposition 1.10 below), obtained independently by Oliver
and Puig, which lies at the foundation of this paper. The difficulty, in going from one
step to the next via the +-construction, lies in showing that what has already been con-
structed (and constructed uniquely, up to rigid isomorphism) yields an essentially unique
rigid isomorphism λ at the local level required for the next step. This requires finding a
good way to descend, step by step, through ∆—and this is what is achieved in §6. The
argument focuses on properties of one version of the Thompson J -subgroup J(R) of a
finite p-group R, and on properties of finite groups G such that R is a Sylow p-subgroup
of G, F ∗(G)=Op(G) and J(R) is not a normal subgroup of G. Thus, §6 provides a
method of “descent”, while Proposition 7.1 enables the argument in §6 and completes
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the proof of the main theorem. By ordering things in this way, all of the non-elementary
finite group theory involved in the proof of the main theorem is pushed to the very end.

Proposition 7.1 concerns so-called FF-pairs (G,V ), where G is a finite group such
that Op(G)=1, and where V is a faithful G-module over the field of p elements, having
the following property:

There exists a non-identity abelian p-subgroup A of G (called a “best offender”
in G on V ) such that |A| |CV (A)|> |B| |CV (B)| for every subgroup B of A,

(∗)

and where G is generated by the set of such best offenders. The classification of such pairs
(G,V ) has been carried out piecemeal, over a period of many years, by many authors.
It has only very recently been given a complete treatment (including the determination
of the best offenders in the case where V is irreducible and G is almost simple) by
Meierfrankenfeld and Stellmacher [15], as part of the project initiated by Meierfrankenfeld
to provide an alternative approach to the classification of finite simple groups of local
characteristic p. Parts of the classification of FF-pairs (for example the decomposition
into “J -components”) are elementary, but as things stand at this date, the determination
of the possible J -components themselves relies on the CFSG. Though we have attempted
to organize the arguments on the basis of general principles where possible (see for
example Definition 7.9), any proof based on the CFSG, by its very nature, is opportunistic
to some degree, and not entirely principled.

We should alert those readers who are familiar with arguments involving the Thomp-
son J -subgroup J(P ) of a finite p-group P , that in this paper J(P ) is not defined in
the way that has gained currency over the course of the decades since Thompson first
introduced his version of J(P ). That is, we define J(P ) to be the subgroup of P that is
generated by the abelian subgroups of P of maximal order (as in [20]), rather than the
elementary abelian subgroups of maximal order. This is the definition which is needed
here, for reasons that will become clear from the arguments in §6 and §7.

Remark. Our tendency is toward right-hand notation for mappings, in any discussion
which may involve composition of mappings. In particular, if C is a category, and X, Y ,
and Z are objects of C, then composition defines a mapping

MorC(X,Y )×MorC(Y, Z)−!MorC(X,Z).

Consistent with this policy, conjugation within any group G is taken in the right-handed
sense, so that xg=g−1xg for any x, g∈G.

Acknowledgements. First, to my friends at Christian-Albrechts Universität zu Kiel,
I wish to extend my thanks for their kind hospitality during my visits, over the course of
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thanks are due to Bob Oliver for his hospitality in the fall of 2007, at Paris XIII, where
the ideas that led to this paper were first conceived, and for his guidance past some
fundamental misconceptions. My most heartfelt thanks go to Bernd Stellmacher, not
least for his insightful reading of portions of earlier versions of this paper. His comments
and suggested revisions, often given in great detail, have led to the simplification and
clarification of many arguments, and to corrections of errors too embarassing to mention.
In particular, the definition of “partial group” owes a great deal to his intervention, as
does much of §4. The remaining errors and infelicities are all my own.

1. Fusion systems, saturation, and models

This section is, in part, a review of the basic notions pertaining to fusion systems and
saturation; but the definitions of “fully normalized subgroup” and of saturation that
turn out to be most convenient for the task at hand are not the standard ones. Still, the
ideas are due to Puig [17], while the terminology that we employ is that of [7], which has
gained broad currency.

Let p be a prime, G be a finite group, and S be a Sylow p-subgroup of G. For
subgroups P and Q of S, set

NG(P,Q) = {g ∈G |P g 6Q}.

Here P g is the set of elements xg :=g−1xg, for x∈P . Set

HomG(P,Q) = {cg:P !Q | g ∈NG(P,Q)},

where cg:P!Q is the conjugation map x 7!xg induced by g. The fusion system FS(G)
induced on S by G is the category whose objects are the subgroups of S, and where the
set of morphisms P!Q is HomG(P,Q). More generally, we give the following definition.

Definition 1.1. Let S be a finite p-group. A fusion system on S is a category F ,
whose objects are the subgroups of S, and whose morphisms satisfy the following two
conditions:

(a) HomS(P,Q)⊆HomF (P,Q) for all subgroups P and Q of S;
(b) every F-homomorphism can be factored in F as an F-isomorphism followed by

an inclusion map, and every F-isomorphism is an isomorphism of groups.
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Example. For any finite p-group S there is the total fusion system 
F(S), character-
ized by

Hom
F(S)(P,Q) = Inj(P,Q),

where Inj(P,Q) is the set of all injective group homomorphisms P!Q.

Let F be a fusion system on S and let P6S be a subgroup of S. A subgroup Q6S

is an F-conjugate of P if Q=Pφ for some F-isomorphism φ.

Definition 1.2. Let F be a fusion system on S. A subgroup P of S is fully normalized
in F provided that, for each F-conjugate Q of P , there exists an F-homomorphism
ψ:NS(Q)!NS(P ) such that Qψ=P .

Example. If F=FS(G), with G being a finite group, and S∈Sylp(G), then every
subgroup of S has a fully normalized F-conjugate, by Sylow’s theorem.

Definition 1.3. Let S be a finite p-group and let F be a subset of Hom(
F(S)) (i.e.
a subset of the set of morphisms of the total fusion system on S) such that F contains
Hom(FS(S)). The fusion system on S generated by F is the category whose objects are
the subgroups of S, and whose morphisms are the homomorphisms φ:P!Q such that φ
is a composition of restrictions of members of F.

We note that it is immediate from Definition 1.1 that the “fusion system generated
by F” is in fact a fusion system on S.

Example. Let F be a fusion system on S and let T6S be a subgroup of S, with T
fully normalized in F . Define NF (T ) to be the fusion system on NS(T ) generated by the
set of all F-homomorphisms φ:P!NS(T ) such that TEP and such that Tφ=T .

A collection ∆ of subgroups of S is closed under F-conjugation (or, is F-invariant)
if Pφ∈∆ whenever P∈∆ and φ∈HomF (P, S). We say that ∆ is overgroup closed if Q∈∆
whenever Q is a subgroup of S which contains a member of ∆.

Example. For any fusion system F on S, let Fc be the largest F-invariant collection
∆ of subgroups P of S such that CS(P )6P for all P∈∆. Then S∈Fc, and Fc is
overgroup closed in S. The members of Fc are the F-centric subgroups of S.

Definition 1.4. Let F be a fusion system on S and let ∆ be a non-empty collection
of subgroups of S, such that ∆ is both overgroup closed and closed under F-conjugation.
Then F is ∆-saturated if the following two conditions hold:

(A) every member of ∆ has a fully normalized F-conjugate;
(B) for each P∈∆∩Fc such that P is fully normalized in F , there exists a finite

group M such that NS(P )∈Sylp(M), and with NF (P )=FNS(P )(M).
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If F is Fc-saturated, and F is generated by the union of its subsystems NF (P ) as
P ranges over the fully normalized members of Fc, then F is saturated.

Remark 1.5. (a) The above definition of saturation is equivalent to the (by now)
standard one given in [7], and hence also to the various equivalent formulations found in
[6] and [19]. Actually, in view of the main theorem, one may be satisfied to know that a
fusion system satisfying the standard definition of saturation satisfies the conditions of
Definition 1.4. That the standard definition implies (A) is an easy exercise, while (B)
follows from [2, statements 2.4 and 2.5]. The reverse implication (that Definition 1.4
really does define saturation in the standard sense) is given by [6, Theorem A].

(b) For any finite group G with Sylow p-subgroup S, the fusion system FS(G)
is ∆-saturated, for any non-empty, overgroup closed, FS(G)-invariant collection ∆ of
subgroups of S.

Definition 1.6. Let F be a fusion system on S, and let T6S be a subgroup of S.
Then T is normal in F if F=NF (T ). The (unique) largest subgroup of S which is normal
in F is denoted Op(F). More generally, T is strongly closed in F if Pφ6T whenever
P6T and φ∈HomF (P, S). More generally still, T is weakly closed in F if Tφ=T for all
φ∈HomF (T, S).

Lemma 1.7. Let F be a saturated fusion system on S, let P6S be a subgroup
of S such that P is fully normalized in F , and let U be a subgroup of P such that
NS(P )6NS(U). Then there exists φ∈HomF (P, S) such that both Pφ and Uφ are fully
normalized in F .

Proof. By condition (A) in Definition 1.4, there exists φ∈HomF (NS(U), S) such
that V :=Uφ is fully normalized in F . Set Q=Pφ. As NS(P )6NS(U), and P is fully
normalized, φ restricts to an isomorphism NS(P )!NS(Q). Now let ψ∈HomF (Q,S) and
set R=Qψ. Then R is an F-conjugate of P , and so there exists η∈HomF (NS(R), NS(P ))
with Rη=P . Composing η with φ yields an F-homomorphism NS(R)!NS(Q), so Q is
fully normalized in F .

Definition 1.8. Let F be a saturated fusion system over S. Then F is constrained
if Op(F) is F-centric.

The following terminology is taken from [2].

Definition 1.9. Let F be a constrained fusion system over S, and let M be a finite
group. Then M is a model for F provided that

(1) S is a Sylow p-subgroup of M ,
(2) F=FS(M), and
(3) CM (Op(M))6Op(M).
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Notice that if M is a model for F then Op(M)=Op(F).
The definition of model in [2] (or, equivalently, of “localizer” in [18]) is somewhat

more flexible than the one we have given here; but Definition 1.9 will suffice for our pur-
poses. The following quoted result may be interpreted as saying that the main theorem
holds in the case where F is constrained. This special result lies at the foundation of our
proof of the main theorem.

Proposition 1.10. Let F be a constrained fusion system over the finite p-group S.
Then the following hold :

(a) There exists a model M for F .
(b) Let M1 and M2 be models for F . Then there exists an isomorphism

β:M1−!M2

such that β restricts to the identity map on S. Moreover, if β′ is any other such iso-
morphism, then the automorphism β−1

�β′ of M2 is an inner automorphism cz, given
by conjugation by an element z∈Z(S). In particular,

(c) if M is a model for F then {cz |z∈Z(S)} is the set of automorphisms of M

which restrict to the identity map on S.

Proof. Statement (a), and the uniqueness of M up to isomorphism, appear as Propo-
sition 4.3 in [6]. A different treatment, along with the “strong uniqueness” of M in state-
ment (b), is due to Puig [18, Theorem 18.6]. There is also a subsequent (and independent)
proof by Oliver—including the important statement (b) [3, §III, Theorem 5.10].

Lemma 1.11. Let M be a model of the saturated, constrained fusion system F
over S, and let E be a saturated fusion system on S such that the set Hom(E) of E-
homomorphisms is contained in Hom(F). Then M contains a unique model H for E.

Proof. Set T=Op(M), and let H be the set of all g∈M such the conjugation auto-
morphism cg of T is in E . The set of all such cg with g∈H is equal to AutE(T ), so H is
a subgroup of M . Moreover, S6H as FS(S)⊆E .

Let E ′ be the fusion system FS(H). Then

Λ :=AutE′(T ) =AutH(T ) =AutE(T ).

Fix λ∈Λ, let h∈H with ch=λ, and let Pλ be the largest subgroup P of S such that
AutP (T )λ6AutS(T ). Set P=Pλ and let Q be the preimage in S of AutP (T )λ. As
conjugation by h induces an automorphism of AutH(T ), the natural isomorphism of
AutH(T )!H/Z(T ) yields Ph=Q. That is, α extends to an E ′-isomorphism φ:P!Q.
Since E is constrained, also E has a model, and so α extends also to an E-isomorphism
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ψ:P!Q. Then φ�ψ−1 is an F-automorphism which restricts to the identity on T , and
so ψ=φ�cz for some z∈Z(T ). Since FS(S)⊆E∩E ′, we conclude that Iso(E)=Iso(E ′).
Then Hom(E)=Hom(E ′) by Definition 1.1 (b). Thus, E=E ′, and H is a model for E .

Now suppose that there is another subgroup K of M which is a model for E . Let
c:M!Aut(T ) be the map which sends g∈M to the automorphism cg of T . Then Ker(c)=
Z(T )6H∩K, and Kc=AutK(T )=AutH(T )=Hc, so K=H.

By a group of Lie type in characteristic p we mean a finite group Op
′
(C�K(σ)), where

�K is a semisimple algebraic group over the algebraic closure �Fp of the field of p elements,
and where σ is a Steinberg endomorphism of �K. The following well-known result will
play an important role in §7.

Lemma 1.12. Let G be a group of Lie type in characteristic p, let S∈Sylp(G) be
a Sylow p-subgroup of G, and let X be a parabolic subgroup of G containing S. Then
Op(X) is weakly closed in FS(G).

Proof. Let Φ be the root system (or twisted root system) associated with G, and let
Φ+ be the set of positive roots, taken so that S is generated by the set of root subgroups
Uα for α∈Φ+. Set Q=Op(X), set B=NG(S), and let H be a complement to S in B. For
any subset ∆ of Φ+ let ∆′ be the set of roots −α such that α∈Φ+ and α/∈∆. Standard
results concerning the structure of parabolic subgroups (see [12, Theorem 2.6.5]) yield
the existence of a subset ∆:=∆(X) of Φ+, such that

Q= 〈Uδ | δ ∈∆〉, Op
′
(X) = 〈Uγ | γ ∈Φ+∪∆′〉, and X =Op

′
(X)H. (∗)

Let g∈NG(Q,S). By Alperin’s fusion theorem there is a sequence (R1, ..., Rn) of
subgroups of S, and elements gi∈NG(Ri), such that gi∈NG(Ri), Q6R1, Qg1...gi 6Ri for
all i, and such that g=hg1 ... gn for some h∈CG(Q). Moreover, the groups Ri may be
chosen so that Ri=Op(NG(Ri)) and NS(Ri)∈Sylp(NG(Ri)), and then a theorem of Borel
and Tits [12, Theorem 3.1.3] yields the result that each NG(Ri) is a parabolic subgroup
of G over S. Thus, in order to prove that Q′=Q, and hence that Q is weakly closed
in FS(G), it suffices to consider the case where g=g1∈Y for some parabolic subgroup
Y =NG(R) of G over S, with Q6R=Op(Y ).

Set Γ=∆(NG(R)). Then ∆⊆Γ and Γ′⊆∆′. Applying (∗) to both NG(R) and X,
we obtain NG(R)6X. Thus g∈NG(Q), as required.

2. Partial groups, objective partial groups, and localities

For any set X we write W(X) for the free monoid on X. Thus, an element of W(X)
is a finite sequence of (or word in) the elements of X, and the multiplication in W(X)
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consists of concatenation of sequences (denoted u�v). The use of the same symbol “�” for
concatenation of sequences and for composition of functions should cause no confusion.

The length `(w) of the word w=(x1, ..., xn) is n. The “empty word” is the word
(∅) of length 0. We shall make no careful distinction between the set X and the set of
words of length 1. That is to say, we regard X as a subset of W(X) via the identification
x 7!(x).

Definition 2.1. Let M be a non-empty set, and let W=W(M) be the free monoid
on M. Let D be a subset of W such that

(1) M⊆D, and
u�v ∈D =⇒ u, v ∈D.

(Notice that (1) implies that also the empty word is in D.) A mapping Π:D!M
is a product if

(2) Π restricts to the identity map on M, and
(3) u�v�w∈D⇒u�(Π(v))�w∈D and Π(u�v�w)=Π(u�(Π(v))�w).
An inversion on M consists of an involutory bijection f 7!f−1 on M, together with

the mapping u 7!u−1 on W given by

(f1, ..., fn) 7−! (f−1
n , ... f−1

1 ).

A partial group consists of a product Π:D!M, together with an inversion ( ·)−1 on M,
such that

(4) u∈D⇒u−1
�u∈D and Π(u−1

�u)=1,
where 1 denotes the image of the empty word under Π.

We list some elementary consequences of the definition, as follows.

Lemma 2.2. Let M (with D, Π and inversion) be a partial group.
(a) Π is D-multiplicative. That is, if u�v is in D then the word (Π(u),Π(v)) of

length 2 is in D, and
Π(u�v) =Π(u)Π(v),

where Π(u)Π(v) is an abbreviation for Π((Π(u),Π(v)).
(b) Π is D-associative. That is,

u�v�w∈D =⇒ Π(u�v)Π(w) =Π(u)Π(v�w).

(c) If u�v∈D then u�(1)�v∈D and Π(u�(1)�v)=Π(u�v).
(d) If u�v∈D then both u−1

�u�v and u�v�v−1 are in D, Π(u−1
�u�v)=Π(v), and

Π(u�v�v−1)=Π(u).
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(e) (Cancellation rule) If u�v, u�w∈D, and Π(u�v)=Π(u�w), then Π(v)=Π(w)
(and similarly for right cancellation).

(f) If u∈D then u−1∈D, and Π(u−1)=Π(u)−1. In particular, 1−1=1.
(g) (Uncancellation rule) Let u, v, w∈W, and suppose that both u�v and u�w are in

D and that Π(v)=Π(w). Then Π(u�v)=Π(u�w). (Similarly for right uncancellation.)

Proof. Let u�v∈D. Then condition (3) in Definition 2.1 applies to (∅)�u�v and
yields the result that (Π(u))�v∈D with Π(u�v)=Π((Π(u))�v). Now apply again (3) to
(Π(u))�v�(∅), to obtain (a).

Let u�v�w∈D. Then u�v and w are in D by condition (1) in Definition 2.1, and
D-multiplicativity yields Π(u�v�w)=Π(u�v)Π(w). Similarly, Π(u�v�w)=Π(u)Π(v�w),
and (b) holds.

Notice that statement (c) is immediate from condition (3) in Definition 2.1.
Assume that u�v∈D. Then v−1

�u−1
�u�v∈D by condition (4) in Definition 2.1, and

then also u−1
�u�v∈D. Multiplicativity then yields

Π(u−1
�u�v) =Π(u−1

�u)Π(v) =1Π(v) =Π(∅)Π(v) =Π((∅)�v) =Π(v).

As (w−1)−1=w for any w∈W, one obtains w�w−1∈D for any w∈D, and Π(w�w−1)=1.
From this one easily completes the proof of (d).

Now let u�v and u�w be in D, with Π(u�v)=Π(u�w). Then (d) (together with
multiplicativity and associativity, which will not be explicitly mentioned hereafter) yield

Π(v) =Π(u−1
�u�v) =Π(u−1)Π(u)Π(v) =Π(u−1)Π(u)Π(w) =Π(u−1

�u�w) =Π(w),

and (e) holds.
Let u∈D. Then u�u−1∈D, and then Π(u)Π(u−1)=1. But also (Π(u),Π(u)−1)∈D,

and Π(u)Π(u)−1=1. Now (f) follows by cancellation.
Let u, v and w be as in (g). Then u−1

�u�v and u−1
�u�w are in D by (d). By two

applications of (d), Π(u−1
�u�v)=Π(v)=Π(w)=Π(u−1

�u�w), so Π(u�v)=Π(u�w) by (e).
That is, Π(u)Π(v)=Π(u)Π(w), and (g) holds.

Lemma 2.3. Let M be a partial group, and write xy for Π(x, y) when (x, y)∈D.
(a) For each x∈M, both (x,1) and (1, x) are in D, and 1x=x1.
(b) For each x∈M, both (x−1, x) and (x, x−1) are in D, and x−1x=1=xx−1.
(c) If W(M)=D then M is a group via the binary operation (x, y) 7!xy.

Proof. As x=∅�x=x�∅, and as Π(x)=x by condition (2) in Definition 2.1, and
since Π(∅)=1, statement (a) follows from Lemma 2.2 (a). Point (b) is immediate from
condition (4) in Definition 2.1. Thus, 1 is an identity element for M by (a), and x−1

is an inverse for x by (b). Finally, if M×M×M⊆D then the operation (x, y) 7!xy is
associative by Lemma 2.2 (b). In particular, (c) holds.
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Examples 2.4. (1) The first example is the basic one, in which M is a group G,
1 is the identity element of G, g−1 is the inverse of g in G, D=W(G), and Π is the
(multi-variable) product in G. Let “ ·” be the binary operation given by restricting Π to
M×M. Then (M, ·) is a group by Lemma 2.3 (c), and visibly that group is equal to G.
Conversely, if (M,D,Π) is a partial group in which D=W then (M, ·) is a group, again
by Lemma 2.3 (c).

(2) Let G be a group and let ∆ be a collection of subgroups ofG. ForX∈∆ and g∈G
write Xg for the subgroup g−1Xg6G. One then obtains a partial group M=M(G,∆),
for which D is the set of all words w=(g1, ..., gn)∈W(G) such that there exists X∈∆
with Xg1...gi∈∆ for all i (16i6n). Take Π to be the restriction to D of the multivariable
product in G, inversion as the restriction to M of inversion in G, and 1 as the identity
element of G. Notice that if there exists X∈∆ with Xg∈∆ for all g∈G, then all products
are defined, and one then recovers G as a bona fide group.

(3) Here is a special case of example (2). Let G be the group O+
4 (2) (or equivalently,

the wreath product S3 oC2). Thus, G is a group of order 72, with a normal elementary
abelian subgroup A of order 9, and with a dihedral Sylow 2-subgroup S acting faithfully
on A. Let ∆ be the set of subgroups of S of order 2. Then, as a set, the partial group M
(defined as in example (2)) is equal to G, since every element of G fuses some involution
of S into S. But D(M) is a proper subset of W(M), so M is not a group.

It is often convenient to eliminate the symbol “Π” and to speak of “the product
f1 ... fn”. More generally, if {Xi}ni=1 is a collection of subsets of M then the “product
set X1 ... Xn” is by definition the image under Π of the set of words (f1, ..., fn)∈D such
that fi∈Xi for all i. If Xi={fi} is a singleton, then we may write fi in place of Xi in
such a product. Thus, for example, the product Xfg stands for the set of all Π(x, f, g)
with (x, f, g)∈D, and with x∈X.

A word of urgent warning: in writing products in the above way one may be led,
mistakenly, into imagining that “associativity” holds in a stronger sense than that which
is given by Lemma 2.2 (b). For example, one should not suppose, if (f, g, h)∈W, and
both (f, g) and (fg, h) are in D, that (f, g, h) is in D. That is, it may be that “the
product fgh” is undefined, even though the product (fg)h is defined. Of course, one is
tempted to simply extend the domain D to include such triples (f, g, h), and to “define”
the product fgh to be (fg)h. The trouble is that it may also be the case that gh and
f(gh) are defined (via D), but that (fg)h 6=f(gh).

Let M be a partial group and let H be a non-empty subset of M. Then H is a
partial subgroup of M if H is closed under inversion (f∈H implies f−1∈H) and with
respect to products. The latter condition means that Π(w)∈H whenever w∈W(H)∩D.
If in fact W(H) is contained in D, then H is a subgroup of M (i.e. a partial subgroup



fusion systems and localities 61

which is a group) by Lemma 2.3.
For a partial group M and f∈M, write D(f) for the set of all x∈M such that the

product f−1xf is defined. There is then a mapping

cf :D(f)−!M

given by x 7!f−1xf (and called conjugation by f). Since our preference is for “right-
hand” notation, we write

x 7−! (x)cf or x 7−!xf

for conjugation by f .
At this early point, and in the context of arbitrary partial groups, one can say very

little about the maps cf . The cancellation rule (Lemma 2.2 (e)) implies that each cf is
injective, but beyond that, the following lemma may be the best that can be obtained.

Lemma 2.5. Let M be a partial group and let f∈M. Then the following hold :
(a) 1∈D(f) and 1f=1;
(b) D(f) is closed under inversion, and (x−1)f=(xf )−1 for all x∈D(f);
(c) cf is a bijection D(f)!D(f−1), and cf−1 =(cf )−1;
(d) M=D(1), and x1=x for each x∈M.

Proof. By condition (4) in Definition 2.1, f �∅�f−1=f �f−1∈D, so 1∈D(f) and then
1f=1 by Lemma 2.3 (a). Thus (a) holds. Now let x∈D(f) and set w=(f−1, x, f). Then
w∈D, and w−1=(f−1, x−1, f) by Definition 2.1. Then condition (4) in Definition 2.1
yields w−1

�w∈D, and so w−1∈D by condition (1). This shows that D(f) is closed under
inversion. Also, condition (4) yields 1=Π(w−1

�w)=(x−1)fxf , and then (x−1)f=(xf )−1

by Lemma 2.2 (f). This completes the proof of (b).
As w∈D, Lemma 2.2 (d) implies that f �w and then f �w�f−1 are in D. Now con-

dition (3) in Definition 2.1 and two applications of Lemma 2.2 (d) yield

fxff−1 =Π(f, f−1, x, f, f−1) =Π((f, f−1, x)�f �f−1) =Π(f, f−1, x) =x.

Thus xf∈D(f−1) with (xf )f
−1

=x, and hence (c) holds.
Finally, 1=1−1 by Lemma 2.2 (f), and ∅�x�∅=x∈D for any x∈M, proving (d).

If X is a subgroup of M with X⊆D(f), write Xf for {xf |x∈X}. Example 2.4 (3),
with X a fours group contained in S, and with f a suitable element of order 3, shows
that Xf need not be a group with respect to the product Π.

For subgroups X and Y of M, set

NM(X,Y ) = {f ∈M|X ⊆D(f) and Xf 6Y },
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and set
NM(X) = {f ∈M|X ⊆D(f) and Xf =X}.

In practice, all of the objective partial groups that will be encountered in this paper have
the property that their objects are finite, so we will always have NM(X,X)=NM(X) by
Lemma 2.5 (c). Write CM(X) for the set of all f∈NM(X) such that xf=x for all x∈X.

Henceforth, if X is a subgroup of a partial group M, any statement involving the
expression “Xf” should be understood as being based on the tacit hypothesis X⊆D(f).

Example 2.4 (2) may be formalized and generalized as follows.

Definition 2.6. Let M be a partial group and let ∆ be a collection of subgroups of
M. Let D∆ be the set of all w=(f1, ..., fn)∈W(M) such that

there exists (X0, ..., Xn)∈W(∆) with (Xi−1)fi =Xi for all i (1 6 i6n). (∗)

Then (M,∆) is an objective partial group (in which ∆ is the set of objects), if the
following two conditions hold:

(O1) D=D∆;
(O2) whenever X,Z∈∆, Y is a subgroup of Z, and f∈M is such that Xf is a

subgroup of Y , then Y ∈∆.

We say that a word w=(f1, ..., fn) is in D via (X0, ..., Xn) if the condition (∗) in
Definition 2.6 applies specifically to w and (X0, ..., Xn). We may also say, more simply,
that w is in D via X0, since the sequence (X0, ..., Xn) is determined by w and X0.

Remark. Notice that in the preceding definition, one needs to already have D in
order to know what D∆ is, since D∆ is defined in terms of conjugation in the partial
group defined by D. In practice, when one tries to construct an objective partial group, it
is often easy to decide on a suitable D which yields the partial group that one wants, and
which has the property that D⊆D∆. But it can then be very difficult to establish the
reverse inclusion D⊇D∆. In fact, much of this paper is built around three such exercises:
one of them in the appendix (in order to establish that Oliver–Ventura “transporter
systems” give rise to localities), and one each in §4 and §5.

Remark. Condition (O2) in Definition 2.6 has been stated in the form appropriate
for this paper, where objects will always be finite p-groups, from Definition 2.9 on. A
more general formulation would be:

(O2)′ whenever X,Z∈∆, Y 6Z is a subgroup of Z, and f∈M with Xf6Y , then
NY (Xf )∈∆.

Lemma 2.7. Let (M,∆) be an objective partial group.
(a) NM(X) is a subgroup of M for each X∈∆.
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(b) Let f∈M and let X∈∆ with Xf∈∆. Then NM(X)⊆D(f), and

cf :NM(X)−!NM(Xf )

is an isomorphism of groups.
(c) Let w=(f1, ..., fn)∈D via (X0, ..., Xn). Then

cf1 �...�cfn
= cΠ(w)

as maps from X0 to Xn.

Proof. We start by proving (c). Let w and (X0, ..., Xn) be as in (c). For any
x∈X0 set ux=w−1

�(x)�w. Then ux∈D∆ via Xn. Setting f=Π(w), and recalling that
Π(w−1)=f−1 (by Lemma 2.2 (f)), we get

Π(f−1, x, f) =Π(ux) = ((... (x)f1) ... )fn ,

by repeated application of Lemma 2.2 (a). This yields (c).
Let X∈∆ and set L=NM(X). Then L is non-empty since 1∈L by Lemma 2.5 (b).

Further, L is closed with respect to inversion by Lemma 2.5. For any w∈W(L), the
condition (O1) in Definition 2.6 implies that w∈D via X, and then Π(w)∈L by (c).
Now (a) follows from Lemma 2.3 (c).

Let f∈M with X⊆D(f) and Xf∈∆. Let x, y∈L and set u=(f−1, x, f, f−1, y, f).
Then u∈D∆ via Xf . Thus u∈D by (O1), and then Lemma 2.2 (a) yields Π(u)=xfyf .
We note also that Definition 2.1 (3) and Lemma 2.3 (b) yield

Π(x, f, f−1, y) =Π(x�1�y)

and so Π(x, f, f−1, y)=xy by Lemma 2.3 (b). Then

Π(u) =Π(f−1
�(x, f, f−1, y)�f) = (xy)f

by Definition 2.1 (3), and thus cf :L!Lf is a homomorphism of groups. Hence cf is an
isomorphism by Lemma 2.5 (c), proving (b).

Remark 2.8. We mention two structures associated with a given objective partial
group (M,∆).

(1) There is a category C=Cat(M,∆) whose set of objects is ∆, whose morphisms
are triples (f,X, Y ) with X,Y ∈∆ and with f∈NM(X,Y ), and where composition of
morphisms is given by the product in M:

(f,X, Y )�(g, Y, Z) = (fg,X,Z),
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(in right-hand notation). The morphisms (1, X, Y ) with X6Y are called inclusion mor-
phisms. Notice that every morphism in C can be factored in a unique way as an isomor-
phism followed by an inclusion morphism.

(2) There is a category F=F(M,∆), to be called the fusion system of (M,∆), and
defined as follows. First, the objects of F are the groups U such that U6X for some
X∈∆. Then, the morphisms in F from U to V are taken to be the group homomorphisms
φ:U!V such that φ can be factored as a composition of restrictions of conjugation
homomorphisms cf :X!Y between objects.

(3) There is another category F∗=F∗(M,∆), in which Ob(F∗)=Ob(F(M,∆)),
but where HomF∗(U, V ) is the set (containing HomF (U, V )) of all homomorphisms
φ:U!V such that φ is a composition of restrictions of conjugation homomorphisms
cf :X!Y between subgroups X and Y of M. Here X and Y are not assumed to be
objects. It appears to be a highly non-trivial question, as to whether the fusion systems
F and F∗ are necessarily equal—even in the case of localities or linking systems (defined
below).

Here is the main definition.

Definition 2.9. Let p be a prime, let L be a partial group, and let S be a finite
p-subgroup of L. Then (L, S) is a locality if L is finite, and provided that there exists a
set ∆ of subgroups of S such that S∈∆ and such that the following two conditions hold:

(L1) (L,∆) is objective;
(L2) S is maximal in the poset (ordered by inclusion) of finite p-subgroups of L.

We also say that L is a locality on S via ∆.

There are a number of special sorts of localities that deserve special names. In order
to assign names to them in a way that is consistent with established usage, we define
F :=FS(L) to be the fusion system on S whose homomorphisms are the compositions
of restrictions of conjugation maps in L from one object to another. That is, F is the
fusion system F(L,∆) defined in Remark 2.8 (2).

A locality L is a ∆-linking system if CL(P )6P for each P∈∆. If moreover ∆ is the
set of all F-centric subgroups of S then L is a centric linking system.

Example/Lemma 2.10. Let M be a finite group, let S be a Sylow p-subgroup of M ,
set F=FS(M), and let Γ be a non-empty F-invariant collection of subgroups of S such
that Γ is overgroup closed in S. Let L be the set of all g∈M such that S∩Sg∈Γ, and set
D=DΓ (as defined in Definition 2.6). Then L is a partial group via the restriction of
the multivariable product in M to D. Moreover, (L, S) is a locality via Γ, to be denoted
LΓ(M).
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Proof. If g∈L then (S∩Sg−1
)g=S∩Sg∈Γ, and then (S∩Sg−1

)∈Γ since Γ is F-
invariant. Thus L⊆D, and L is contained in the partial group M=M(M,Γ) given by
Example 2.4 (2). In that example, M is the set of all g∈M such that there exists P∈Γ
with P g∈Γ. Such an element g has the property that S∩Sg∈Γ since Γ is overgroup
closed, and so L=M. Example 2.4 (2) now shows that L is a partial group with respect
to the multivariable product and the inversion in G. The condition (O1) for objectivity
is given by the definition of D, while (O2) is immediate from the assumption that Γ
is overgroup closed and F-invariant. Thus, (L,Γ) is objective. All members of Γ are
subgroups of S, and S is maximal in the poset of p-subgroups of G, so (L, S) is a locality
via Γ.

For any locality (L, S), let Ω(L, S) be the set of all collections ∆ of subgroups of S,
such that S∈∆ and such that (L,∆) is objective. We say that (L, S) is complete if it
satisfies the following condition:

For each ∆∈Ω(L, S) and each f ∈L, the set Sf = {s∈S | sf ∈S}
is a member of ∆. In particular, Sf is a subgroup of S.

(∗)

Proposition 2.11. Every locality is complete.

Proof. Let L be a locality on S, let ∆∈Ω(L, S), and let f∈L. The word (f) of
length 1 is in D:=D(L), so there exists P∈∆ with Q:=P f∈∆. Let a∈Sf , and set b=af .
Then {a, a−1, f}⊆NL(P, S), while b∈NL(Q,S). Thus (a−1, f, b)∈D via P a. Then also
(f, b)∈D, while (a, f)∈D via P a

−1
. From f−1af=b we get af=fb by Lemma 2.2 (e),

and hence
a−1fb= a−1(fb) = a−1(af) = f,

by D-associativity. Since a−1fb conjugates P a into S, we conclude that
(1) P a6Sf for all a∈Sf and for all P∈∆ for which P f6S.
In order to show that Sf is a subgroup of S it suffices to show that xy∈Sf for all

x, y∈Sf , since by Lemma 2.5 (b) Sf is closed under inversion. From (1), both P x and
(P x)y are subgroups of S, and hence in ∆ by (O2). Further, (1) yields P xf and (P xy)f

in ∆. Thus

w := (f−1, x, f, f−1, y, f)∈D via (P f , P, P x, P xf , P x, P xy, (P xy)f ).

Then (f−1xf)(f−1yf)=f−1(xy)f , and since xfyf∈S we get (xy)f∈S. That is, xy∈Sf ,
and Sf is a subgroup of S. As Sf contains a member of ∆, (O2) then yields Sf∈∆.

Corollary 2.12. Let L be a locality on S. There is then a unique smallest collec-
tion Γ of subgroups of S such that (L,Γ) is objective.
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Proof. Set Ω=Ω(L, S) and set Γ=
⋂

Ω. That is, Γ is the set of all P such that
P∈∆ for all ∆∈Ω. Let w=(f1, ..., fn)∈D. Then for each ∆∈Ω there exists P∆∈∆ such
that w∈D via ∆, by (O1). Set Q0=〈P∆ |∆∈Ω〉. Then Proposition 2.11 shows that
Q06Sf1 and that there is a well-defined sequence (Q0, ..., Qn) of subgroups of S such
that Qi=(Qi−1)fi for all i with 16i6n. Each Qi is in Γ by (O2), so (L,Γ) satisfies
(O1). Now let X,Y ∈Γ and let f∈L with Xf6Y . As Y ∈∆ for all ∆∈Ω, (O2) implies
that the same holds for Xf , and so Xf∈Γ. That is, (L,Γ) satisfies (O2), and (L,Γ) is
objective.

Lemma 2.13. Let L be a locality on S. Then there is a unique largest set Γ of
subgroups of S such that (L,Γ) is objective.

Proof. Let ∆1,∆2∈Ω:=Ω(L, S) and set ∆=∆1∪∆2. It will suffice to show that
∆∈Ω.

Let (P0, ..., Pn)∈W(∆), and let (f1, ..., fn)∈W(L) be such that P fk

k−1=Pk for all k
from 1 to n. Since all objects are subgroups of S, and S∈∆i for all i, the condition (O2)
on (L,∆i) implies that if P0∈∆i then also each Pk is in ∆i. Thus,

D∆⊆D∆1∪D∆2 =D(L)⊆D∆,

and so D∆=D(L). That is, (L,∆) satisfies condition (O1).
It remains to show that (L,∆) satisfies (O2). So, let X,Y ∈∆ and let f∈L with

Xf6Y . Then Xf6S∈∆1∩∆2. If X∈∆i then (O2) applied to (L,∆i) yields Xf∈∆i,
so Xf∈∆ and the proof is complete.

For any word w in W(L), L being a locality on S, we have also the notion of Sw,
treated in the following lemma.

Lemma 2.14. Let L be a locality on S, set D=D(L), and let ∆∈Ω(L, S). Let
w=(f1, ..., fn)∈W(L), and define Sw to be the set of all elements s0∈S such that there
is a sequence (s0, s1, ..., sn) of elements of S given by (si−1)fi =si, 16i6n. Then the
following properties hold :

(a) Sw is a subgroup of S, and Sw∈∆ if and only if w∈D.
(b) Let w,w′∈D with Π(w)=Π(w′), and with Sw=Sw′ . Let u, v∈W. Then

u�w�v ∈D ⇐⇒ u�w′�v ∈D.

Proof. (a) Let x0, y0∈Sw, and define xi recursively by xi=(xi−1)fi , 16i6n. Sim-
ilarly define yi. Then xi−1yi−1∈Sfi by Proposition 2.11, and (xi−1yi−1)fi =xiyi by
Lemma 2.7 (b). Thus Sw is closed under multiplication. Since Lemma 2.5 (b) shows
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that Sw is closed under inversion, and since 1∈Sw, Sw is then a subgroup of S. If Sw∈∆
then w∈D by (O1). Conversely, if w∈D via some P∈∆, then P6Sw and (O2) yields
Sw∈∆.

(b) Set a=u�w�v and b=u�w′�v, and assume that a∈D. Then (Sa)Π(u)6Sw�v and

Sw�v = {s∈Sw | sΠ(w) ∈Sv}= {s∈Sw′ | sΠ(w′) ∈Sv}=Sw′�v.

Thus (Sa)Π(u)6Sw′�v and b∈D via Sa.

For any locality (L, S), we write FS(L) for the fusion system on S generated by
the conjugation maps in L between objects. Notice that FS(L) does not depend on the
choice ∆ of the set of objects, since Proposition 2.11 shows that Sf is independent of ∆
for f∈L.

Definition 2.15. Let L=(L,∆, S) be a locality and let P∈∆ be an object. Then P
is centric in L if CL(P )/Z(P ) is a p′-group; radical in L if P=Op(NL(P )); and essential
in L provided that

(i) P is centric in L,
(ii) NS(P )∈Sylp(NL(P )), and
(iii) NL(P )/P has a strongly p-embedded subgroup.

Notice that condition (iii) implies that P is radical in L.

Definition 2.16. Let L=(L,∆, S) be a locality, let ∆e be the set of objects Q∈∆
such that Q is essential in L, and set A=A(L)=∆e∪{S}. Let f∈L. Then f is A-
decomposable if there exists w=(g1, ... gn)∈D(L) such that the following hold:

(i) Sf6Sw and f=Π(w);
(ii) for all i, Sgi is in A, and either gi∈Op

′
(NL(Sgi)) or Sgi =S.

The Alperin–Goldschmidt fusion theorem [10] implies that in a locality L=LΓ(M)
of a finite group G, an element f∈L is A-decomposable provided that CG(Sf )6Sf . In
particular, each f∈L is A-decomposable if CM (Op(M))6Op(M). The following result
provides a generalization to linking systems. Recall the definition of ∆-linking system
preceding Example/Lemma 2.10.

Proposition 2.17. Let L=(L,∆, S) be a ∆-linking system and define A(L) as
above. Let f∈L. Then f is A(L)-decomposable.

Proof. Among all f for which the lemma fails to hold, choose f with P :=Sf as large
as possible. Then P 6=S. Set P ′=P f and set A=A(L).

Let Q be a fully normalized L-conjugate of P (and hence also of P ′), and let g, h∈
L with Q=P g=(P ′)h. Thus, NS(Q)∈Sylp(NL(Q)). By Lemma 2.7 (b) and Sylow’s
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theorem, g and h may be chosen so that NS(Q) contains both NS(P )g and NS(P ′)h.
The maximality of P then implies that g and h are A-decomposable. Then g−1 and h−1

are A-decomposable via the inverses of words which yield A-composability for g and h.
Set f ′=g−1fh, M=NL(Q), and R=NS(Q). Then f ′∈M , and u:=(g, f ′, h−1)∈

D via P , and Π(u)=f . If f ′ is A-decomposable then so is f , and therefore we may
assume that f=f ′ and P=Q. That is, we are reduced to establishing the proposition
for the finite group M rather than the locality L. If P∈A then f is A-decomposable by
definition, so we may assume that this is not the case. Applying the Alperin–Goldschmidt
theorem to M , cf∈Aut(P ) is a composition cf=cg1 �...�cgn

with gi∈NM (Ei) for some
Ei∈A(M). As P /∈A, |P |<|Ei| for all i. The maximality of P then implies that each gi
is A-decomposable, and hence also g :=g1 ... gn is A-decomposable. Finally, z :=fg−1∈
CM (P )=Z(P ), so f=zg is A-decomposable.

Proposition 2.18. Let (L, S) be a locality via ∆, and let F :=FS(L) be the asso-
ciated fusion system on S. Then the following properties hold :

(a) F is ∆-saturated, and if Fc⊆∆ then F is saturated ;
(b) for each P∈∆, the map NL(P )!AutF (P ) given by f 7!cf is a surjective ho-

momorphism with kernel CL(P );
(c) if P∈∆ and P is fully normalized in F then NS(P ) is a Sylow p-subgroup of

NL(P );
(d) if P∈∆ and φ∈HomF (P, S) then φ=cf for some f∈NL(P, S).

Proof. We first show the following:
(1) For each P∈∆ there exists f∈NL(P, S) such that NS(P f ) is a Sylow p-subgroup

of NL(P f ).
By (L2), (1) holds for P=S (and for f=1). Among all P∈∆ for which (1) fails,

choose P so that |S :P | is as small as possible. We are free to replace P with any
L-conjugate of P in S, so we may assume that |NS(P )| is maximal among all such
conjugates. Set R=NS(P ), and let R∗ be a Sylow p-subgroup of NL(P ) containing R.
Then R is a proper subgroup of R∗, and hence also a proper subgroup of NR∗(R). By
the minimality of |S :P |, there exists an L-conjugate Q:=Rf of R such that NS(Q) is a
Sylow p-subgroup of NL(Q). Without loss, we may replace f with fg for any g∈NL(Q)
since any such product fg is defined via (R,Q,Q). By Sylow’s theorem, we may therefore
assume that NR∗(R)f6NS(Q). But NR∗(R)f normalizes P f , and we thereby contradict
the maximality of |NS(P )|. Thus, (1) is proved.

Next, let P∈∆ and φ∈HomF (P, S). By definition, φ is a composition φ=φ1�...�φn,
where φi is given by conjugation by an element hi of L, and where

P (φ1�...�φi) 6S (2)
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for all i with 16i6n. Then the word w=(h1, ..., hn) is in D via P , and Lemma 2.7 (c)
yields Pφ=Ph, where h=Π(w). Thus (d) holds, and one observes that point (b) follows
immediately from (d).

We may now complete the proof of (a) and (c). Namely, let P∈∆ and let Q=P f

be an L-conjugate of P , as in (1), so that NS(Q)∈Sylp(NL(Q). As NS(P )f6NL(Q),
there then exists g∈NL(Q) such that (NS(P )f )g6NS(Q). As cf �cg∈F , we conclude
that Q is fully normalized in F , in the sense of Definition 1.2. Thus, F satisfies condition
(A) in Definition 1.4 for ∆-saturation. On the other hand, suppose that P itself is fully
normalized in F . Then, by (2), there exists h∈L such that NS(Q)h=NS(P ) and with
Qh=P . This shows that NS(P )∈Sylp(NL(P )) (and thus (c) holds).

Set M=NL(P ). By definition, each φ in NF (P ) extends to an F-homomorphism
which maps P to P . Then (d) implies that φ=cf for some f∈M . Thus FNS(P )(M)=
NF (P ), so that F satisfies condition (B) in Definition 1.4 for ∆-saturation. This com-
pletes the proof that F is ∆-saturated.

Suppose that L is a centric linking system. Then ∆ is the set of F-centric subgroups
of S, by definition. By Proposition 2.17, F is generated by the fusion systems NF (P )
for P∈∆ in this case, so by Definition 1.4, F is saturated. This completes the proof of
(a), and of the lemma.

Recall the notion of normalizer from Lemma 2.7.

Lemma 2.19. Let (L, S) be a locality via the set ∆ of objects, let T be a subgroup
of S, and set ∆T={NP (T )|T6P∈∆}.

(a) NL(T ) is a partial subgroup of L.
(b) If ∆T⊆∆, then (NL(T ),∆T ) is an objective partial group.
(c) If ∆T⊆∆, and |NS(T )|>|NS(U)| for every L-conjugate U of T in S, then

(NL(T ), NS(T )) is a locality via ∆T .

Proof. Let w=(f1, ..., fn)∈W(NL(T )), and suppose that w∈D:=D(L) via a se-
quence (P0, ..., Pn) of objects. Then 〈Pi−1, T 〉6Sfi for all i, by completeness, and then

〈Pi−1, T 〉fi = 〈Pi, T 〉.

Thus, T6Sw, and we may assume for the sake of simplicity that T6Pi for all i. Set
f=Π(w). Then Lemma 2.7 (c) yields T f=T , and so NL(T ) is closed under products. One
observes that if f∈NL(T ) and x∈T , with (f−1, x, f)∈D via P∈∆, then (f, x−1, f−1)∈D
via P x

f

. Since an analogous statement holds when x is replaced by x−1, it follows that
NL(T ) is closed under inversion, and so (a) is proved.

For the remainder of the proof, we may assume that ∆T⊆∆. Set

DT =D∆∩W(NL(T ))
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(where D∆ is defined as in Definition 2.6). With w and (P0, ..., Pn) as in the proof of
(a), we may then replace Pi with NPi(T ), and this shows that DT is contained in the
subset D∆T

of W(NL(T )). The reverse inclusion is obvious, so (NL(T ), NS(T )) satisfies
the condition (O1) for objectivity. Any overgroup in NS(T ) of an element of ∆T is again
in ∆T , so the condition (O2) is satisfied, and (NL(T ),∆T ) is an objective partial group.
Thus, (b) holds.

Now assume further that T has been chosen so that |NS(T )|>|NS(U)| for each L-
conjugate U of T in S. In order to show that (NL(T ), NS(T )) is a locality via ∆T , it
suffices to show that NS(T ) is maximal in the poset of p-subgroups of NL(T ). Set R=
NS(T ), let R1 be a p-subgroup of NL(T ) containing R, and set R2=NR1(R). As R∈∆,
there exists f∈L such that Q:=Rf is fully normalized in FS(L), by Proposition 2.18 (a).
Then NS(Q) is a Sylow p-subgroup of NL(Q), and so there exists g∈NL(Q) such that
(R2)fg6NS(Q). But (R2)fg6NS(T fg), and the maximality condition on R then yields
R=R2 and R=R1. This completes the proof of (c).

Definition 2.20. Let (L,∆, S) be a locality, and let Γ⊆∆ be a non-empty subset
such that Γ is both overgroup-closed in S and FS(L)-invariant. Set D=D(L), set

D|Γ := {w∈D |Sw ∈Γ},

and let L|Γ be the set of words of length 1 in D|Γ, regarded as a subset of L. The
restriction of L to Γ consists of L|Γ together with the restriction to D|Γ of the product
in L, and the restriction to L|Γ of the inversion in L.

Lemma 2.21. Let (L,∆, S) be a locality, and let Γ be a non-empty subset of ∆ such
that Γ is both overgroup-closed in S and FS(L)-invariant.

(a) D|Γ is the set DΓ of Definition 2.6, and (L|Γ,Γ, S) is a locality.
(b) If L is a group M , then L|Γ is the locality LΓ(M) in Example/Lemma 2.10.

Proof. Set M=L|Γ. For any w∈W, the condition that Sw be in Γ is the defining
condition for D|Γ, and in view of Lemma 2.14 (a) it is also the defining condition for
DΓ. These subsets of W are therefore identical, and (M,Γ) satisfies the condition (O1)
for objectivity. Condition (O2) is given by the assumption that Γ is closed in FS(L), so
(M,Γ) is objective. All members of Γ are subgroups of S, and S is maximal in the poset
of p-subgroups of M since the corresponding statement holds in L. As L is finite, so is
M, thus M is a locality, and (a) holds.

Suppose that L is in fact a group M , and set K=LΓ(M). By definition, an element
g of M is in K if and only if S∩Sg∈Γ. The latter condition means that Sg=S∩Sg

−1
,

so g∈K if and only if Sg∈Γ. Similarly, w∈D(K) if and only if Sw∈Γ. This shows that
D(K)=DΓ, and then (b) follows from (a).
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We shall refer to the locality (L|Γ,Γ, S) as the restriction of L to Γ.
The following proposition gives two applications of completeness to localities.

Proposition 2.22. Let L be a locality on S and let ∆∈Ω(L, S). Then the following
hold :

(a) Every subgroup of L is a ∆-local subgroup. That is, for any subgroup H of L,
there exists U∈∆ such that H6NL(U).

(b) Every p-subgroup of L is conjugate to a subgroup of S.

Proof. (a) Let w=(h1, ..., hn)∈W(H) be chosen so that the sequence (g1, ..., gn), in
which gi=h1 ... hi, includes all of the elements of H. As H is a subgroup of L, we have
W(H)⊆D (all products in H are defined), and so w∈D. Thus, there exists P∈∆ such
that P gi∈∆ for all i. Set U=〈P gi |16i6n〉, which is a subgroup of S. As H={gi}ni=1,
U=〈PH〉, and so H6NL(U). Here U∈∆ as ∆ is overgroup closed in S.

(b) Let Q be a p-subgroup of L. Then Q is finite, as L is. By (a) there exists U∈∆
with Q6NL(U). By Proposition 2.18 (a) there is an L-conjugate V =Uf of U such that
NS(V ) is a Sylow p-subgroup of NL(V ). By Sylow’s theorem, there then exists g∈NL(V )
such that Qfg6NS(V ).

3. Homomorphisms and partial normal subgroups

Whenever M and M′ are partial groups, we write W for W(M) and W′ for W(M′).
Similarly for D and D′, for Π and Π′, and for 1 and 1′. We shall make no such careful
distinction regarding the inversion maps for M and M′.

Definition 3.1. Let M and M′ be partial groups, let β:M!M′ be a mapping, and
let β∗:W!W′ be the induced mapping. Then β is a homomorphism (of partial groups)
if

(H1) Dβ∗⊆D′, and
(H2) (Π(w))β=Π′(wβ∗) for all w∈D.
The kernel of β is the set Ker(β) of all g∈M such that gβ=1′. We say that β is an

isomorphism if there exists a homomorphism β′:M′!M such that β�β′ and β′�β are
identity mappings.

Lemma 3.2. Let β:M!M′ be a homomorphism of partial groups. Then 1β=1′

and (f−1)β=(fβ)−1 for all f∈M.

Proof. Since 11=1, (H1) and (H2) yield 1β=(11)β=(1β)(1β), and then 1β=1′

by left or right cancellation. Since (f, f−1)∈D for any f∈M, by Lemma 2.3 (b), (H1)
yields (fβ, (f−1)β)∈D′, and then 1β=(ff−1)β=(fβ)((f−1)β) by (H2). Finally, since
1β=1′=(fβ)(fβ)−1, left cancellation yields (f−1)β=(fβ)−1.
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Lemma 3.3. Let β:M!M′ be a homomorphism of partial groups, and set N=
Ker(β). Then N is a partial subgroup of M, and f−1N f⊆N for all f∈M. That is,
gf∈N whenever g∈N∩D(f).

Proof. By Lemma 3.2, N is closed under inversion. If w is in W(N )∩D then the map
β∗:W!W′ induced by β sends w to a word of the form (1′, ...,1′). Then Π′(wβ∗)=1′,
and thus Π(w)∈N . This shows that N is a partial subgroup of M. Now let f∈M and
let g∈N∩D(f). Then

(f−1, g, f)β∗ =((fβ)−1,1′, fβ) (by Lemma 3.2),

so that

(gf )β=Π′((f−1, g, f)β∗) =Π′(fβ)−1,1′, fβ) =1′.

Definition 3.4. Let M be a partial group and let N be a partial subgroup of M.
Then N is a partial normal subgroup of M if f−1N f⊆N for all f∈M. (That is, xf∈N
whenever x∈N∩D(f).)

We may write NEM to indicate that N is a partial normal subgroup of M.

Definition 3.5. Let L=(L,∆, S) and L′=(L′,∆, S) be localities having the same set
of objects. An isomorphism β:L!L′ of partial groups is rigid (over S) if β restricts to
the identity map S!S.

Lemma 3.6. Let (L,∆, S) and (L′,∆, S) be localities having the same set ∆ of
objects, and let β:L!L′ be a surjective homomorphism of partial groups. Suppose that

(1) Sf=Sfβ for all f∈L, and
(2) Ker(β)=1.
Then β is an isomorphism.

Proof. Let h∈L′ and let f, g∈L with fβ=gβ=h. Then Sf=Sg by (1), so (f−1, g)∈D
via (Sf )f , and (f−1g)β=1. Thus f=g by (2), and β is a bijection.

Let w′=(h1, ..., hn)∈D(L′), set gi=hiβ−1, and set w=(g1, ..., gn). Then w∈D via
Sw′ by (1), and Π(w)β=Π′(w′) as β is a homomorphism. Thus

Π′(w′)β−1 =Π(w′(β−1)∗))

and β−1 is a homomorphism.

Lemma 3.7. Let L=(L,∆, S) be a locality and let N be a partial normal subgroup
of L. Set Γ={P∩N |P∈∆} and suppose that Γ⊆∆. Then (N ,Γ, S∩N ) is a locality.
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Proof. Let w=(f1, ..., fn)∈D via P∈∆. Then also w∈D via Q:=P∩N , and hence
(N ,Γ) is objective. Each member of Γ is a subgroup of T :=S∩N , and N is finite, so it
only remains to show that T is maximal in the poset of p-subgroups of N , in order to
conclude that (N ,Γ, T ) is a locality.

Let R be a p-subgroup of N containing T . As T6Sx for each x∈S, it follows from
the definition of partial normal subgroup (Definition 3.4) that TES. As T∈Γ, S is
then a Sylow p-subgroup of the group NL(T ), and hence NR(T )g6S for some g∈NL(T ).
The definition of partial normal subgroup then yields NR(T )g6N , so NR(T )g=T and
NR(T )=T . Thus R=T , as required.

Lemma 3.8. Let (L,∆, S) be a ∆-linking system, and let β be a rigid automorphism
of L. Let (K,Γ, R) be a locality such that K is a partial subgroup of L, and such that
Γ⊆∆. Then β restricts to a rigid automorphism of (K,Γ, R).

Proof. Let f∈K and set P=Rf . That is, P is the largest subgroup of R which is
conjugated by f into R (obtained by applying Proposition 2.11 to the locality K). Then
P∈Γ by Proposition 2.11, and hence P∈∆. Since L is a ∆-linking system, one has
CK(P )=CL(P )=Z(P ). Now Proposition 2.17 implies that f is A-decomposable, where
A is the union of {R} and the set of K-essential objects in Γ. Thus f=Π(w), where
w=(g1, ..., gn)∈D(K), each gi normalizes some Qi∈A, Qi=Rgi , and P6Sw.

Since β is rigid, each Qi is β-invariant, and β then restricts to an automorphism
γi on each NL(Qi) by Lemma 2.7 (b). But also β centralizes Qi, and CL(Qi)=Z(Qi).
Taking commutators in the subgroup AutL(Qi)〈β〉 of Aut(Qi), we then obtain

[NL(Qi), β]6Z(Qi) 6NK(Qi).

We have thus shown that each of the groups NK(Qi) is β-invariant. Then

fβ=(Π(w))β=Π(wβ∗) =Π(g1β, ..., gnβ)∈K,

and so K is β-invariant. The same holds for β−1, so β restricts to an automorphism βK

of K. As R6S, we have that βK is rigid.

Lemma 3.9. Let M be a finite group, and let K6M be a subgroup. Let S be a
Sylow p-subgroup of M , set F=FS(M), and let Γ be a non-empty F-invariant set of
subgroups of S, such that Γ is overgroup closed in S. Let L:=LΓ(M) be the locality
given by Example/Lemma 2.10, and set K=K∩L. Then K is a partial subgroup of L,
and is a partial normal subgroup if KEM .

Proof. One observes first of all that K is closed under the inversion in M , which is
the inversion in L. Let w=(x1, ..., xn)∈D(L)∩W(K). Then Π(w)∈L∩K, and so K is a
partial subgroup of L.
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Now assume that KEM , let f∈L and let x∈K∩D(f). Then xf∈L and xf∈K, so
xf∈K. Thus K is a partial normal subgroup of M.

Recall from Definition 2.16 the notion of L-essential subgroup.

Lemma 3.10. Let (L,∆, S) be a ∆-linking system and let β be an endomorphism of
the partial group L such that β restricts to the identity automorphism on Op

′
(NL(R))

for each L-essential subgroup R6S, and restricts to the identity automorphism also on
NL(S). Then β is the identity automorphism of L.

Proof. Let f∈L and set Q=Sf . Let A be the union of {S} and the set of all L-
essential subgroups of S. Then f is A-decomposable by Proposition 2.17. In particular,
f=Π(w) for some w=(g1, ..., gn)∈D such that gi∈NL(Ri) for some Ri∈A. It is then
immediate from Definition 3.1 and from the hypothesis concerning β, that fβ=f .

4. The Frattini lemma

This section develops two of the main computational tools that will enable the later
arguments. We obtain an analog of the Frattini lemma in Corollary 4.8, which shows
that if N is a partial normal subgroup of a locality L, then each element of L may be
written as a product of an element f∈N and an element g∈NL(T ), where T=S∩N . The
“splitting lemma” (Lemma ??) refines the choice of f and g. We end with an important
application (Lemma 4.9) which provides a criterion for extending an automorphism of a
linking system in a finite group to an automorphism of the group itself.

The notation Sf and Sw, defined in Proposition 2.11 and Lemma 2.14, will be
employed without further comment.

The following hypothesis (and notation) will be assumed throughout this section.

Hypothesis 4.1. There is given a locality L=(L,∆, S) and a partial normal subgroup
N of L. Set T=S∩N .

Lemma 4.2. The following hold :
(a) T is strongly closed in FS(L) and T is maximal in the poset of all p-subgroups

of N ;
(b) If P∈∆ and x∈N with P6Sx, then PT=P xT ;
(c) If T=1, then NN (P, S)=CN (P ) for all P∈∆.

Proof. Let x∈T and let φ∈F :=FS(L) such that x lies in the domain of φ. As
φ is a composition of restrictions of conjugation maps between objects, it suffices, in
proving (a), to consider only the case where xφ=xf for some f∈L; and in that case we
have xφ∈N . Thus xφ∈S∩N=T , and so T is strongly closed in F . Now let R be a
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p-subgroup of N containing T . By Proposition 2.22 (b) we may choose R with R6S,
and then R=T . Thus (a) holds.

Next, let g∈P∈∆ and let x∈NN (P, S). Then the word w=(x−1, g, x, g−1) is in D via
P x, and then Π(w)=x−1xg

−1
=gxg−1. Thus Π(w)∈N∩S=T , and gx∈gT . In particular,

this proves (c), and it shows that P x6PT . Upon replacing (P, x) with (P x, x−1), the
same argument shows that P6P xT , and this yields (b).

Definition 4.3. Let L�∆ be the set of all pairs (f, P )∈L×∆ such that P6Sf .
Define a relation " on L�∆ by (f, P )"(g,Q) if there exist elements x∈NN (P,Q) and
y∈NN (P f , Qg) such that xg=fy.

This relation may be indicated by means of a commutative diagram

Q
g

// Qg

P

x

OO

f
// P f

y

OO

(∗)

of conjugation maps, labeled by the conjugating elements, and in which the horizontal
arrows are isomorphisms and the vertical arrows are injective homomorphisms. The
relation (f, P )"(g,Q) may also be expressed by

w := (x, g, y−1, f−1)∈D via P and Π(w) =1.

It is easy to see that " is a reflexive and transitive relation on L�∆. We say that
(f, P ) is maximal in L�∆ if (f, P )"(g,Q) implies that |P |=|Q|. As S is finite there exist
maximal elements in L�∆. Since (f, P )"(f, Sf ) for (f, P )∈L�∆, we have P=Sf for every
maximal element (f, P ). For this reason, we introduce the following terminology.

Definition 4.4. Let f∈L. Then f is "-maximal in L if (f, Sf ) is maximal in L�∆.

The following is the first main result of this section.

Proposition 4.5. Let f∈L and suppose that f is "-maximal. Then T6Sf .

The proof requires two preliminary lemmas.

Lemma 4.6. Let (g,Q), (h,R)∈L�∆ with (g,Q)"(h,R) and suppose that T6R.
Then there exists a unique y∈N with g=yh. Moreover,

(a) y∈NN (Q,R) and Q6S(y,h);
(b) if NT (Qg)∈Sylp(NN (Qg)), then NT (Qy)∈Sylp(NN (Qy)).
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Proof. By the definition of ", there exist elements u∈NN (Q,R) and v∈NN (Qg, Rh)
such that (u, h, v−1, g−1)∈D via Q, and such that Π(w)=1, as indicated in the diagram

R
h // Rh

Q

u

OO

g
// Qg

v

OO

In particular, uh=gv. Since T6R, points (a) and (b) of Lemma 4.2 yield

T =Th, QuT =QT 6R, and QgT =QgvT 6Rh.

Then
w := (u, h, v−1, h−1)∈D via (Q,Qu, Quh, Quhv

−1
=Qg, Qgh

−1
).

Set y=Π(w). Then y=u(v−1)h
−1∈NN (Q,R). Since (u, h, v−1, h−1, h) and (g, v, v−1) are

in D (as L is a partial group), we get yh=uhv−1=g. This yields (a), and the uniqueness
of y is given by right cancellation.

Suppose now that NT (Qg)∈Sylp(NN (Qg)). As NT (Qy)h=NT (Qg), it follows from
Lemma 2.7 (b) that NT (Qy)∈Sylp(NN (Qy)).

Lemma 4.7. Suppose that f is "-maximal and let y∈NN (Sf , S). Then

|T∩Sf |= |T∩(Sf )y| and (f, Sf ) " (y−1f, (Sf )y).

In particular, y−1f is "-maximal.

Proof. Set P=Sf . Then P yT=PT , by Lemma 4.2 (b). Thus

|P y :P y∩T |= |P yT :T |= |PT :T |= |P :P∩T |,

and so |T∩P |=|T∩P y|. The diagram

P y
y−1f

// P f

P

y

OO

f
// P f

1

OO

shows that (f, P )"(y−1f, P y).

Proof of Proposition 4.5. Let f be "-maximal. Set P=Sf and Q=P f , and sup-
pose first that NT (P )∈Sylp(NN (P )). Then NT (P )f∈Sylp(NN (Q)), by Lemma 2.7 (b),
and there exists x∈NN (Q) such that NT (Q)6(NT (P )f )x. Here (f, x)∈D via P , so
(NT (P )f )x=NT (P )fx, and then (f, P )"(fx,NT (P )P ). As f is "-maximal, we conclude
that NT (P )6P , and hence T6P . Thus T6Sf if NT (P )∈Sylp(NN (P )). Assuming that
f provides a counterexample to Proposition 4.5, we conclude that

(1) NT (P ) /∈Sylp(NN (P )).
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Among all counterexamples to Proposition 4.5, choose f so that first |P∩T | and then
|P | are as large as possible. Choose g∈NL(Q,S) so that Qg is fully normalized in FS(L),
and set h=fg and R=Ph. As R=Qg is fully normalized we have NS(R)∈Sylp(NL(R)),
and then NT (R)∈Sylp(NN (R)). Let (h−1, R)"(h′, Sh′), where h′ is "-maximal, and set
R′=Sh′ and P ′=(R′)h

′
. Thus, there exist y, z∈N such that yh′=h−1z, Ry6R′, and

P z6P ′, as indicated in the diagram

R′
h′ // P ′

R

y

OO

h−1
// P.

z

OO

Then (T∩R)y6T∩R′.
Suppose that T�R′. The conditions on the choice of f then yield (T∩R)y=T∩R′

and Ry=R′. Since NT (R)∈Sylp(NN (R)), we get NT (R)y∈Sylp(NN (R′)), and so there
exists x∈NN (R′) such that (NT (R)y)x=NT (R′). Replacing y and h′ with yx and x−1h′,
we then obtain NT (R)y=NT (R′). But then T6R′ by (1), in any case, and then also
T6P ′.

Evidently (h, P )"((h′)−1, P ′), so by Lemma 4.6 there exists ỹ∈NN (P, S) such that
h=ỹ(h′)−1, P6S(ỹ,(h′)−1), and NT (P ỹ)∈Sylp(NN (P ỹ)). Then Lemma 4.7 applies to
(f, P ) and ỹ, and yields the result that ỹ−1f is "-maximal and Sỹ−1f=P ỹ. Thus (1)
implies that T6P ỹ, and then also T6P .

Recall from Definition 2.18 (c) that the partial group NL(T ) is a locality via the set
∆T of objects Q∈∆ with Q6T .

Corollary 4.8. (Frattini lemma) Let L=(L,∆, S) be a locality, let N be a partial
normal subgroup of L, and set T=S∩N . Then L=NNL(T ) as a product of partial
subgroups of L.

Proof. Let f∈L, set P=Sf , and choose (g,Q)∈L�∆ so that (f, P )"(g,Q) and so
that g is "-maximal. By transitivity of ", we may take Q=Sg. Then T6Q by Proposi-
tion 4.5, and then by Lemma 4.6 there exists y∈NN (P,Q) with f=yg. Here g∈NL(T )
by Lemma 4.2 (a).

Lemma 4.9. Let M be a finite group, let S be a Sylow p-subgroup of M , and let
K be a normal subgroup of M . Set F=FS(M) and let Γ be a non-empty, overgroup
closed, F-invariant collection of subgroups of S. Let L:=LΓ(M) be the locality given
by Example/Lemma 2.10, and let β be a rigid automorphism of L. Assume that the
following three conditions hold :

(1) Q∩K∈Γ for all Q∈Γ;
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(2) CM (Op(M))6Op(M)6K;
(3) Γ is a set of F-centric subgroups of S.
Set Φ={Q∩K |Q∈Γ}, and set K=LΦ(K). Then
(a) β restricts to a rigid automorphism � of K, and
(b) β extends to an automorphism of M if and only if � extends to an automor-

phism of K.

Proof. Set Y =Op(M) and let P∈Γ. Since CM (Y )6Y by (2), the Thompson A×B
lemma [11, Theorem 5.3.4] implies that CM (P ) is a p-group. Then CM (P )=CL(P )=
Z(P ), as P is F-centric by (3). Point (a) then follows from Lemma 3.8. Further,
Proposition 2.17 yields

(4) every f∈L is a product Π(f1, ..., fn), where fi is in a normalizer NL(Ri) for
some Ri∈Γ.

Let (M,β) be a counterexample to (b) with |M | as small as possible. Let K0 be
the subgroup of K generated by the subset K of K. Let g∈K∩L. Then Sg∈Γ and
Sg∩K∈Φ, so g∈K. Thus K∩L⊆K. The reverse inclusion is given by the definition
of K, so K=K∩L. Then K is a partial normal subgroup of L by Lemma 3.10. Set
T=S∩K and observe that for any h∈NM (T ) we have (h−1, g, h)∈D via (Sg∩T )h, and
hence gh∈K. Thus, K is NM (T )-invariant, so also K0 is NM (T )-invariant.

Set M0=NM (T )K0 and set L0=LΓ(M0). We next show
(5) NM (P )6M0 for all P∈Γ.
Among all P for which (5) fails to hold, choose P so that |P | is as large as possible.

Suppose that P is not fully normalized in F , and let P ′ be a fully normalized F-conjugate
of P . Then Alperin’s theorem yields a sequence w=(g1, ..., gn) of elements of M and a
sequence (R1, ..., Rn) of fully normalized F-centric subgroups of S, such that P0 :=P6R1,
Pi :=P g1...gi 6Ri for all i, and P ′=PΠ(w). One may assume that n is minimal for these
conditions, and hence Pi 6=Ri for any i. The maximality of |P | in the choice of P then
yields NM (Ri)6M0 for all i, and hence Π(w)∈M0. Without loss, then, we may assume
that P=P ′.

With P fully normalized in F we obtain NT (P )∈Sylp(NK(P )). As NK(P )ENM (P ),
the Frattini lemma yields

NM (P ) =NK(P )(NM (NT (P ))∩NM (P )). (∗)

If T6P then (∗) yields NM (P )6K0NM (T )=M0, contrary to the choice of P . Thus
T�P , and hence NT (P )�P . Set Q=NT (P )P . Then NM (Q)6M0 by the maximality of
|P |, and then (∗) again implies that NM (P )6M0. This completes the proof of (5). Now
(4) yields L⊆M0. Thus,

(6) L0=L.
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Suppose next that K0 is a proper subgroup of K. Then K∩M0=NK(T )K0=K0,
and so M0 is a proper subgroup of M . Since L0=L, the minimality of |M | then yields an
extension of β to an automorphism γ of M0. The condition (2), together with Proposi-
tion 1.10 (c) then implies that γ=cz is conjugation by some z∈Z(S). Since cz is also an
automorphism of M , we have an extension of β to an automorphism of M in this case,
so we conclude that K0=K.

Let h, h̄∈K, let x, x̄∈NM (T ), and suppose that (h, x) and (h̄, x̄) are in D(L) with
hx=h̄x̄. Set P=Sh∩K and 
P=Sh̄∩K, and set Q=Ph and 
Q=
P h̄. Then (h, x, x̄−1)∈D
via P , and Π(h, x, x̄−1)=h̄. It follows that P=
P and that (h−1, h̄)∈D via Q. Then

Π(h−1β, h̄β) = (h−1h̄)β=(xx̄−1)�. (∗∗)

By hypothesis, there exists an extension η of � to an automorphism of K. It follows
from (∗∗) that there is a well-defined mapping γ:M!M given by γ:hx 7!(hη)(xβ) for
h∈K and x∈NM (T ).

In order to show that γ is a homomorphism, it suffices to show that (hη)xβ=(hx)η
for all h∈K and x∈NM (T ). As K0=K we may write h as a product ΠK(h1, ..., hn) with
hi∈K. Then

(hx)η=(hx1 ... h
x
n)η=(hx1)η ... (hxn)η=(h1η)xβ ... (hnη)xβ =(h1η ... hnη)xβ =(hη)xβ ,

as required.

We check that Ker(γ)=1. Namely, if (hη)(xβ)=1 with h and x as above, then
x∈NK(T ) and xβ=xη, and then hx=1 as η is injective. Thus γ is injective, and is
therefore an automorphism of M .

5. Filtrations

Recall that for any partial group M and subgroups X and Y of M, NM(X,Y ) is the
set of all f∈M such that X⊆D(f) and Xf⊆Y . Write HomM(X,Y ) for the set of all
conjugation maps cf :X!Y with f∈NM(X,Y ).

Definition 5.1. Let S be a finite p-group, let F be a fusion system on S, and let
∆ be a non-empty, F-invariant collection of subgroups of S, closed with respect to
overgroups in S. Let L be a partial group such that ∆ is a set of subgroups of L, and
such that D(L)=D∆ in the sense of (O1) in Definition 2.6. Then L is F-natural if
HomL(P,Q)=HomF (P,Q) for all P,Q∈∆.
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Definition 5.2. Let M be a finite group, let S be a Sylow p-subgroup of M , and
set F=FS(M). Let Γ be an F-invariant, overgroup-closed collection of subgroups
of S. Let L=LΓ(M) be the locality given by Example/Lemma 2.10. (Equivalently,
by Lemma 2.20 (b), L is the locality obtained by restricting the group M , itself viewed
as a locality on the set of all subgroups of S, to the set Γ.) Let Aut0(L) be the set of
rigid automorphisms of L, and let γ, γ′∈Aut0(L). Then γ and γ′ are M -equivalent if
γ−1

�γ′ extends to an automorphism of the group M .

Notice that M -equivalence is in fact an equivalence relation on Aut0(L).

Hypothesis 5.3. Assume given:
(1) a fusion system F on the finite p-group S;
(2) an F-natural locality (L,∆, S);
(3) a subgroup T of S, fully normalized in F , and having the property that 〈U, V 〉∈∆

for every pair of distinct F-conjugates U and V of T ;
(4) a finite group M such that TEM , NS(T )∈Sylp(M), and NF (T )=FNS(T )(M);

and
(5) a rigid isomorphism λ:NL(T )!L∆T

(M), where ∆T is the set of all P∈∆ such
that TEP (and where L∆T

(M) is the locality given by Example/Lemma 2.10).

Hypothesis 5.3 will be assumed throughout the remainder of this section. The sym-
bols W, D, and Π will always refer to L, while ΠM denotes the multivariable product
in the group M .

Lemma 5.4. Let U be an F-conjugate of T . Then the following hold :
(a) NP (U)∈∆ for every object P∈∆ such that U6P ;
(b) There exists x∈L such that T x=U and such that NSx(T )x=NS(U).

Proof. (a) Let P∈∆ with U6P . If UEP then there is nothing to prove, while
if U is not normal in P then NP (U) contains an L-conjugate of Ug 6=U of U , where
g∈NP (NP (U)). As HomS(U, S)⊆HomF (U, S), Ug is an F-conjugate of T , and then
Hypothesis 5.3 (3) yields 〈U,Ug〉∈∆. As ∆ is overgroup closed in S, we obtain (a).

As T is fully normalized in F , there exists ψ∈HomF (NS(U), S) such that Uψ=T .
Here NS(U)∈∆ by (a). As L is F-natural, ψ is given by conjugation by an element
x′∈L. Setting x=(x′)−1, (b) follows.

Let Θ be the set of all triples

θ=(x−1, g, y)∈L×M×L

which satisfy
(1) T6Sx∩Sy, NSx(T )x=NS(T x), and NSy (T )y=NS(T y).
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Define a relation ∼0 on Θ as follows:
(2) (x−1, g, y)∼0(x̄−1, ḡ, ȳ) if
(i) T x=T x̄, T y=T ȳ, and
(ii) (x̄x−1)λ·g=ḡ ·(ȳy−1)λ (as elements of M).
Notice that (2) (ii) makes sense. Namely, taking U :=T x=T x̄ (by (i)), we get

(x̄, x−1)∈D via (NSx̄
(T ), NS(U), NSx

(T )) by (1) and Lemma 5.4 (a), and hence we have
x̄x−1∈NL(T ). Similarly, ȳy−1∈NL(T ).

One may depict the relation ∼0 by means of a diagram, as follows:

U
x−1

// T
g

// T
y

// V

U
x̄−1

// T

(x̄x−1)λ

OO

ḡ
// T

(ȳy−1)λ

OO

ȳ
// V,

where V =T y=T ȳ. As L is F-natural, the conjugation maps

cx−1 :Sx−1 −!S and cy−1 :Sy−1 −!S

are in F , and thus U and V are F-conjugates of T .

Lemma 5.5. ∼0 is an equivalence relation on Θ.

Proof. It is evident that ∼0 is reflexive and symmetric. Let θi=(x−1
i , gi, yi)∈Θ,

16i63, with θ1∼0θ2∼0θ3. Then T x1 =T x3 and T y1 =T y3 . Notice that

(x3, x
−1
2 , x2, x

−1
1 )∈D via NS(U)x

−1
3

and
(y3, y−1

2 , y2, y
−1
1 )∈D via NS(V )y

−1
3 .

Then

(x3x
−1
1 )λ·g1 =(x3x

−1
2 )λ·(x2x

−1
1 )λ·g1 =(x3x

−1
2 )λ·g2 ·(y2y−1

1 )λ

= g3 ·(y3y−1
2 )λ·(y2y−1

1 )λ= g3 ·(y3y−1
1 )λ,

which completes the proof.

Define a relation ` from L to Θ, by taking f`(x−1, g, y) if

g ∈ Im(λ), (x−1, gλ−1, y)∈D, and f =Π(x−1, gλ−1, y).

Let ∼1 be the symmetrization of `, and let ≈ be the weakest equivalence relation on
L∪Θ containing the union of ∼0 and ∼1. The ≈-class C of an element θ=(x−1, g, y) of
Θ may be denoted [x−1, g, y].

The following lemma is immediate from the definition of ∼0.
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Lemma 5.6. Let Σ be a ∼0-equivalence class in Θ, let θ=(x−1, g, y)∈Σ, and set
U=T x and V =T y. Then the pair (U, V ) depends only on Σ, and not on the choice of
representative θ.

Lemma 5.7. Let f∈L, and suppose that Sf contains an F-conjugate U of T . Set
V =Uf , and let Ξ=Ξ(f, U, V ) be the set of all θ∈Θ such that U=T x, V =T y and f∼1θ.
Then the following hold :

(a) Ξ is a ∼0-class of Θ;
(b) If f̄∈L and f̄∼1θ for some θ∈Ξ, then f=f̄ .

Proof. As T is fully normalized in F , and since L is F-natural, there exist elements
x, y∈L such that both NS(U)x

−1
and NS(V )y

−1
are contained in NS(T ), and such that

T x=U and T y=V . Then (x, f, y−1)∈D via NSf
(U)x

−1
, and the product h=xfy−1 is an

element of NL(T ). Set g=hλ. Then (x−1, g, y)∈Γ.
Set E=NSf

(U), and set A=Ex
−1

, B=Ag, and F=Ef . Then B=F y
−1

, and each
of E, A, B and F is in ∆ by Lemma 5.4 (a). Let Σ be the ∼0-class containing θ, and
let θ̄=(x̄−1, ḡ, ȳ)∈∆. Then U=T x̄ and V =T
Y , by Lemma 5.6. By the definition of Θ,
we have E6Sx̄−1 and the group Ā:=Ex̄

−1
is contained in NS(T ). Similarly, F6Sȳ−1

and 
B :=F ȳ
−1

6NS(T ). These facts, together with the rigidity of λ, result in a sequence
of conjugation maps between objects in ∆, in which the conjugating elements are as
indicated in the following diagram:

E
x−1

// A
xx̄−1

// Ā
(x̄x−1)λ

// A
g

// B
(yȳ−1)λ

// 
B
ȳy−1

// B
y

// F. (∗)

As θ∼0 θ̄, we have
(x̄x−1)λ·g ·(yȳ−1)λ= ḡ,

and thus (∗) yields

E
x̄−1

// Ā
ḡ

// 
B
ȳ

// F.

As Ā and 
B are in ∆, it follows that ḡ=h̄λ for some h̄∈NL(T ). But also

f =Π(x−1, h, y) =Π(x−1, x, x̄−1, x̄x−1, h, yȳ−1, ȳ, y−1, y) =Π(x̄−1, x̄x−1, h, yȳ−1, ȳ)

=Π(x̄−1, ((x̄x−1)λ·g ·(yȳ−1)λ)λ−1, ȳ) =Π(x̄−1, (ḡ)λ−1, ȳ) =Π(x̄−1, h̄, ȳ).

Thus f∼1 θ̄, and (a) holds. If f̄∈L with f̄∼1θ, then f=Π(x−1, h, y)=f̄ , and we have
(b).

Let L+ be the set (L∪Θ)/≈ of equivalence classes, and let L+
0 be the set of all C∈L+

such that C∩Θ 6=∅.
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Lemma 5.8. Let C∈L+.
(a) If C∩L=∅ then C is a ∼0-class in Θ.
(b) If C∩Θ=∅ then C={f} for some f∈L.

Proof. This is immediate from the definitions of ∼0 and ∼1.

Lemma 5.9. (a) Let f, g∈L. Then f≈g if and only if f=g.
(b) If θ∈Θ and f∈L with f≈θ, then f∼1θ.

Proof. (a) As f≈g, there is a sequence

(f = f0, θ1, θ̄1, f1, ..., fn−1, θn, θ̄n, fn = g)

such that θi and θ̄i are in Θ, fi is in L, and with fi−1∼1θi∼0 θ̄i∼1fi. Then fi−1=fi by
Lemma 5.7 (b), and so f=g.

(b) Let θ∈Θ and f∈L with f≈θ. Statement (a), together with Lemma 5.7 (a) and
Lemma 5.6, then yields a sequence

f ∼1 θ1∼1 f ∼1 ...∼1 f ∼1 θn = θ,

and this proves (b).

Define D+
0 to be the set of words w=(C1, ..., Cn)∈W(L+

0 ) such that, for some choice
of representatives (x−1

i , gi, yi) of the classes Ci, the products yix−1
i+1 are defined in L and

lie in NL(T ), 16i<n. For such a word w, and such a choice of representatives, set

w0 =(g1, (y1x−1
2 )λ, g2, ..., (yn−1x

−1
n )λ, gn).

We now wish to define a mapping Π+
0 :D+

0!L
+
0 by taking

Π+
0 (w) = [x−1

1 ,ΠM (w0), yn]. (∗)

Of course, we will define Π+
0 (∅) to be [1, 1M ,1].

Lemma 5.10. There is a well-defined mapping Π+
0 :D+

0!L
+
0 , given by (∗).

Proof. By induction on word-length, we need only show that Π+
0 is well defined on

words w=(C1, C2)∈D+
0 of length 2. Let D(w) be the set of all pairs (θ1, θ2)∈C1×C2,

where θi=(x−1
i , gi, yi), such that (y1, x−1

2 )∈D and T y1 =T x2 . That is, D(w) is the set of
all (θ1, θ2) for which it is possible to form a “product” as in (∗). The problem is to show
that [x−1

1 , g1 ·(y1x−1
2 )λ·g2, y2] is independent of the choice of representatives θi∈Ci.

Fix (θ1, θ2)∈D(w) and set U0=T x1 , U1=T y1 =T x2 , and U2=T y2 . Suppose first that
Ci∩L6=∅ for both i=1 and i=2, and that (f1, f2)∈D, where fi is the unique element



84 a. chermak

(see Lemma 5.8 (b)) of Ci∩L. Set v=(f1, f2), set E1=N(Sv)f1 (U1), and set E0=(E1)f
−1
1

and E2=(E1)f2 . Then v∈D via E0. Using the definition of Θ, one observes that

A1 := (E0)x
−1
1 6NS(T ) and B1 := (A1)g1 =(E1)y

−1
1 .

Similarly, one has

A2 := (E1)x
−1
2 6NS(T ) and B2 := (A1)g2 =(E2)y

−1
2 .

Thus, the groups Ai and Bi are in ∆, and g1 ·(y1x−1
2 )λ·g2∈Im(λ). Setting hi=giλ−1,

one then has (h1, y1x
−1
2 , h2)∈D via A1, and

(x−1
1 , g1 ·(y1x−1

2 )λ·g2, y2)∼1 f1f2.

The result is independent of the choice of (θ1, θ2)∈D(w), so the lemma holds in this case.
Thus, we may assume that no such pair (f1, f2) exists.

We now aim to show that (U0, U1, U2) is independent of the choice of (θ1, θ2)∈D(w).
This is given by Lemmas 5.6 and 5.8 (a) if Ci∩L=∅ for both i=1 and i=2. Suppose next
that C1∩L=∅ 6=C2∩L. Here C1 uniquely determines (U0, U1), and then U1=T x2 since
y1x

−1
2 ∈NL(T ). Setting U2=(U1)f2 for f2∈C2∩L, it follows from Lemma 5.9 (a) that,

again, (U0, U1, U2) depends only on (C1, C2) and not on the choice of representatives. The
next case, where C1∩L6=∅=C2∩L, evidently yields the same result. By assumption, we
have v=(f1, f2) /∈D, and so Sv /∈∆. There is then a unique L-conjugate U0 of T with
U06Sv. Set U1=(U0)f1 and U2=(U1)f2 . Then each Ui is an L-conjugate of T ; and
(U0, U1, U2) is uniquely determined by (C1, C2), as desired.

Let (θ̄1, θ̄2)∈D(w), with θ̄i=(x̄−1
i , ḡi, ȳi). The result of the preceding paragraph,

taken with Lemmas 5.7 (a) and 5.8 (a) then yields θi∼0 θ̄i. The definition of ∼0 then
yields the commutative diagram

U0

x−1
1 // T

g1 //

r1

��

T
y1 //

h1

��

U1

x−1
2 // T

g2 //

r2

��

T
y2 //

h2

��

U2

U0
x̄−1
1

// T
ḡ1

// T
ȳ1

// U1
x̄−1
2

// T
ḡ2

// T
ȳ2

// U2.

(Here ri=(xix̄−1
i )λ and hi=(yiȳ−1

i )λ.) The “middle” portion of this diagram leads at
once to a commutative diagram in M as follows:

T
g1 //

r1

��

T
(y1x

−1
2 )λ

//

h1

��

T
g2 //

g2

��

T

h2

��

T
ḡ1

// T
(ȳ1x̄

−1
2 )λ

// T
ḡ2

// T.
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The result is a diagram

U0

x−1
1 // T

ΠM (w0)
//

r1

��

T
y2 //

h2

��

U2

U0
x̄−1
1

// T
ΠM (	w0)

// T
ȳ2

// U2

which establishes that Π+
0 is well defined.

Let u=(f1, ..., fn)∈W and let v=(C1, ..., Cn)∈W(L+
0 ). We shall write u≈v to in-

dicate that fi∈Ci for all i. Write D+
0 ∩D for the set of all v∈D+

0 such that there exists
u∈D with u≈v.

Lemma 5.11. Π+
0 and Π agree on D+

0 ∩D.

Proof. Let w=(C1, ..., Cn)≈(f1, ..., fn) be in D+
0 ∩D, and let θi=(x−1

i , gi, yi)∈Ci be
chosen so that fi∼1θi. Let (U0, ..., Un) be the sequence of L-conjugates of T given by
T xi =Ui−1 and T yi =Ui. As Ci≈fi, we have gi∈Im(λ), and (x−1

i , (gi)λ−1, yi) is in D via
a subgroup of NSgi

(Ui−1). This shows that when w is viewed as an element of D, one
has U06Sw. Setting P0=NSw(U0), we get P0∈∆ by Lemma 5.4 (a), and w∈D via P0.

Set hi=(gi)λ−1, and set

v=(x−1
1 , h1, y1, ..., x

−1
n , hn, yn) and v0 =(h1, y1x

−1
2 , ..., yn−1x

−1
n , hn).

Set Pi=P
f1...fi

0 . Then Lemma 5.4 (a) implies that v∈D via P0, since each Pi−1 is a
member of ∆ contained in Sfi∩NS(T ). Then also v0∈D via (P0)x1

−1
, and since also

v0∈W(NL(T )), the isomorphism λ:NL(T )!L∆T
(M) sends Π(v0) to ΠM (w0), where

w0 =(g1, λ(y1x−1
2 ), ..., λ(yn−1x

−1
n ), gn).

We now obtain

Π+
0 (C1, ..., Cn) = [x−1

1 ,ΠM (w0), yn]≈Π(f1, ..., fn)

since (x−1
1 ,Π(v0), yn)∈D (via P0). This yields the lemma.

By Lemmas 5.8 and 5.9 (a), we may identify L+
0 and L with their images in L+

via ≈. Set L0=L+
0 ∩L and L1=L\L0. Thus, L+ is the disjoint union of L+

0 and L1. Set
D+=D+

0 ∪D. By Lemma 5.11, there is a “product”

Π+ =Π+
0 ∪Π:D+−!L+
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whose restriction to D+
0 is Π+

0 , and whose restriction to D is Π. Set 1+=[1, 1M ,1] (or
equivalently, via ≈, 1+=1). We now define an “inversion map” on L+

0 by

[x−1, f, y] 7−! [y−1, f−1, x].

(That this is indeed a well-defined involutory bijection of L+
0 will be shown in the proof

of Lemma 5.12, immediately below.) We extend the inversion on L+
0 to all of L+ in the

obvious way, by forming the union with the inversion on L.

Lemma 5.12. L+, with the above product, identity element and inversion, is a partial
group.

Proof. That D+ contains L+ as words of length 1 is immediate from the definition,
as is the fact that u�v∈D+ implies u, v∈D+. Thus Definition 2.1 (1) holds for L+. That
Π+ restricts to the identity map on L+, and that Π+ is multiplicative is immediate from
the definition of Π+, and so points (2) and (3) of Definition 2.1 hold for L+. It remains
to check that inversion is well defined and that L+ satisfies Definition 2.1 (4).

Let θ=(x−1, g, y)∈Θ and set θ−1=(y−1, g−1, x). The conditions on x (immediately
following Lemma 5.4) which define θ as being in Θ are that T6Sx and that T x6S and
NSx(T )x=NS(T x); and these are the same conditions on x that are required in order
that θ−1 be in Θ. The analogous set of conditions applies to y, by symmetry, so we
obtain θ−1∈Θ. Now let θ̄=(x̄−1, f̄ , ȳ)∈Θ, with θ∼0 θ̄. Thus T x=T x̄, T y=T ȳ, and

(x̄x−1)λ·g= ḡ ·(ȳy−1)λ. (∗)

The condition (∗) concerns multiplication in the group M , where inversion and straight-
forward manipulation yields

(ȳy−1)λ·g−1 = ḡ−1 ·(x̄x−1)λ.

This shows that θ−1∼0 θ̄
−1. Now suppose that f∈L and that θ∼1f . This means that

g∈Im(λ), (x−1, gλ−1, y)∈D, and f=Π(x−1, gλ−1, y). Then f−1=Π(y−1, g−1λ−1, x) by
Lemma 2.2 (f), and so θ−1∼1f

−1. This completes the verification that there is a well-
defined mapping [x−1, g, y] 7![y−1, g−1, x] on ≈-classes, and which agrees with the inver-
sion map from L on L+

0 ∩L. Evidently, this inversion map on L+ is then an involutory
bijection. One readily verifies that u−1

�u∈D+ if u∈D+, and that then Π+(u−1
�u)=1+.

Thus Definition 2.1 (4) holds for L+, and L+ is a partial group.

Let ∆+ be the union of ∆ and the set of subgroups P of S such that P contains an
F-conjugate of T . We now have a candidate, in the partial group L+, for a locality whose
set of objects is ∆+. In order to establish the conditions (O1) and (O2) for objectivity
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in Lemma 2.5, it must be shown that if A is an object in ∆+, and C∈L+ with AC6S,
then either C∈L or else C is of the form [x−1, g, y] with T x=A and T y=AC . This is
not immediate, since the statement “AC6S” merely says that for each a∈A, we have
(C−1, a, C)∈D+ and aC∈S. The following lemma addresses this issue.

Lemma 5.13. Let θ=(x−1, g, y)∈Θ, let C be the ≈-class of θ, and let A be an
F-conjugate of T such that AC6S.

(a) If θ≈f∈L, then A6Sf .
(b) If C∩L=∅, then A=T x and AC=T y.

Proof. (a) Let a∈A and set b=aC . Set P=Sf and Q=P f . Then (a−1, f, b)∈D via
(P a, P,Q,Qb), since a and b are elements of S, and similarly (a, f) and (f, b) are in D.

Set w=(C−1, a, C). As w∈D+, we have also (a,C)∈D+ and the axioms for a partial
group (Definition 2.1) yield

Π+(a,C) =Π+((C)�w) =Π+(C,Π+(w))= Π+(C, b).

(In particular, (C, b)∈D+.) Since

Π+(C−1, a, C) = b=Π(f−1, f, b) =Π+(C−1, C, b)

by Lemma 5.11, left cancellation and Lemma 5.11 again yield Π(a, f)=Π(f, b). Then

f =Π(a−1, a, f) =Π(a−1, f, b),

by Lemma 2.2 (e). Since conjugation by a−1fb carries P a to Qb, we conclude that
P a6Sf . That is, P a=P , and then (f−1, a, f)∈D (via Q). Apply Lemma 5.11 to get
af=b in the partial group L. Thus a∈Sf , and (a) holds.

(b) Here C is a ∼0-class by Lemma 5.8 (a). Set U=T x and V =T y, and recall
that U and V depend only on C, by Lemma 5.6. Again let a∈A and set b=aC . As
(C−1, a, C)∈D+, it follows that (C−1, a, C)∈D+ via (V,U, U, V ), and thus a∈NS(U).
Similarly, b∈NS(V ). Then, by (1) in the definition of Θ, both ax

−1
and by

−1
are in

NS(T ).
Set w=(a−1x−1,1, xa2)∈W(L), and observe that w∈D via NS(U), and that also

w∈D+ via (U, T, T, U). In particular, we get a∼1D:=[a−1x−1, 1M , xa2]. The representa-
tives (y−1, g−1, x) of C−1, (a−1x−1, 1M , xa2) of D, and (x−1, g, y) of C have the property
that Π+(C−1, D,C) may be given in terms of these representatives. That is, we have

Π+(C−1, a, C) =Π+(C−1, D,C) = [y−1, g−1(xax−1)g, y] = [y−1, (ax
−1

)g, y],



88 a. chermak

since the products x(a−1x−1) and (xa2)x−1 are defined in L and lie in NL(T ). As aC=b,
we then have

b≈ (y−1, (ax
−1

)g, y).

The reader may verify that y∼1(y, 1M ,1) and that

v := ((1, 1M , y), (y−1, (ax
−1

)g, y), (y−1, 1M ,1))∈D+,

and further that
Π+(v) = [1, (ax

−1
)g,1].

Then, appealing to Lemma 5.9 (b), we get

(1, by
−1
,1)∼1 b

y−1
∼1 (1, (ax

−1
)g,1).

Now (1, by
−1
,1)∼0(1, (ax

−1
)g,1) by Lemma 5.7 (a). A glance at the diagram following

the definition of ∼0 will now convince the reader that by
−1

=(ax
−1

)g. Thus (Ax
−1

)g=
By

−1
, and we obtain a sequence of conjugation maps (between subgroups of S) as follows:

UA
x−1

// TAx
−1 g

// TB
y−1

//
y

// V B.

Since C /∈L, it follows that UA/∈∆, whence A=U and B=V . This completes the proof
of (b).

The following two theorems, along with proposition Proposition 1.10 above, form
the foundation for our proof of the main theorem.

Theorem 5.14. Assume Hypothesis 5.3 and let ∆+ be the union of ∆ and the set
of subgroups P of S such that P contains an F-conjugate of T . Then (L+,∆+, S) is
an F-natural locality. Moreover,

(a) the isomorphism λ:NL(T )!L∆T
(M) extends in a unique way to an isomor-

phism λ+:NL+(T )!M of groups, such that

[x−1, g, y]λ+ =ΠM (x−1λ, g, yλ) (∗)

for any x, y∈NL(T );
(b) if L is a ∆-linking system and CM (T )6T , then L+ is a ∆+-linking system.

Proof. Let w=(C1, ..., Cn)∈W(L+) and (U0, ..., Un)∈W(∆+), with UCi
i−1=Ui for all

i, 16i6n. Suppose first that U0 (and hence each Ui) is an L-conjugate of T . Then
Lemma 5.13 implies that w∈D+

0 . On the other hand, if U0∈∆ then each Ui is in ∆, and
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w∈D. Thus, either way, we get w∈D+, so that (L+,∆+) satisfies condition (O1) in the
Definition 2.6 of objectivity.

We next check that L+ is F-natural. For P and Q in ∆ we have HomL+(P,Q)=
HomL(P,Q) by construction, and therefore HomL+(P,Q)=HomF (P,Q) in this case.
Now let U and V be L-conjugates of T , and let C∈NL+(U, V ). If C≈f for some f∈L
then Uf=V ; and since cf :Sf!S is an F-homomorphism we conclude that cC :U!V is
an F-homomorphism. On the other hand, suppose that C∈L+\L, and let (x−1, g, y)∈C.
Then Lemma 5.13 yields T x=U and T y=V . Here FNS(T )(M)=NF (T ) by hypothesis, so
each of cx, cgλ−1 , and cy is an F-homomorphism, and then so is cC . Thus HomL+(U, V )⊆
F , and L+ is F-natural. Then also L+ satisfies condition (O2) for objectivity, and so
(L+,∆+) is an objective partial group.

By definition, S is the unique maximal member of ∆+. Since NL+(S)=NL(S), it
follows that also S is maximal in the poset of finite p-subgroups of L+, and so L+ satisfies
conditions (L1) and (L2) in Definition 2.9. As L and M are finite, so is the set Θ of
triples (x−1, g, y), and thus L+ is a locality.

Set H=NL+(T ) and K=NL(T ). Let C=[x−1, g, y]∈H. Then x, y∈K, and we
have C=[1, (x−1λ)g(yλ),1]. Because of this, it is now readily verified that there is a
well-defined mapping λ+:H!M given by C 7!(x−1λ)g(yλ), that λ+ coincides with λ

on K, and that λ+ is a homomorphism of groups. Suppose that C∈Ker(λ+). Then
(x−1λ)g(yλ)=1M , so g=(xy−1)λ∈Im(λ), and then (x−1, g−1, y)∼11. Thus Ker(λ+)=1,
and λ+ is then an isomorphism since M is finite. The uniqueness of λ+ is immediate
from condition (∗), so (a) holds.

Suppose next that L is a ∆-linking system and that CM (T )6T . Let U∈∆+ with
U /∈∆. Then there is a unique F-conjugate U0 of T contained in U , and hence we
have NL+(U)6NL+(U0). As L+ is F-natural, there exists C∈L+ such that (U0)C=T .
Conjugation by C induces an isomorphism of NL+(U0) with NL+(T ), and hence with M .
Since CM (X)6X for any p-subgroup X of M containing T , it follows that CL+(U)6U .
By construction, NL+(P )=NL(P ) for P∈∆, so we conclude that L+ is a ∆+-linking
system. Thus (b) holds.

We also write L+(λ) for the locality constructed by Theorem 5.14, in order to em-
phasize its dependence on the isomorphism λ:NL(T )!L∆T

(M). In the same vein, we
may write L+

0 (λ) for the partial subgroup L+
0 of L+.

Theorem 5.15. Assume Hypothesis 5.3, and let ∆+ be the union of ∆ and the set
of all subgroups of S which contain an F-conjugate of T .

(a) Let L∗ be a locality via the set ∆+ of objects, let L′ be the restriction of L∗ to
∆, let β:L!L′ be a rigid isomorphism, and let βT :NL(T )!NL′(T ) be the isomorphism
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induced by restriction of β. Assume that there is given an isomorphism µ:M!NL∗(T ) of
groups, such that µ restricts to the identity map on NS(T ). Let µ0 be the restriction of µ
to L∆T

(M), and set λ=βT �µ−1
0 . Then there exists a unique isomorphism β+:L+(λ)!L∗

such that β+ restricts to β on L and to λ+
�µ on NL+(λ)(T ).

(b) Let (L,∆, S) and (L′,∆, S) be localities having the same set ∆ of objects, let
β:L!L′ be a rigid isomorphism, and let βT :NL(T )!NL′(T ) be the rigid isomorphism
given by restriction of β. Further, let λ:NL(T )!L∆T

(M) and λ′:NL′(T )!L∆T
(M) be

rigid isomorphisms, and let µ0 be the automorphism λ−1
�βT �λ

′ of L∆T
(M).

(i) There exists an isomorphism β+:L+(λ)!(L′)+(λ′) extending β if and only if
µ0 extends to an automorphism µ of M .

(ii) Let µ be an extension of µ0 to M . Then there is a unique isomorphism

β+:L+(λ)−! (L′)+(λ′)

having the property that β+ restricts to β on L and to λ+
�µ�((λ′)+)−1 on NL+(T ).

Moreover, β+ is then given explicitly on L+
0 (λ) by

[x−1, g, y] 7−! [x−1β, gµ, yβ]

for (x−1, g, y)∈Θ.
(c) Suppose that there exists a rigid isomorphism NL(T )!L∆T

(M), and that all
rigid automorphisms of L∆T

(M) are M -equivalent (as in Definition 5.2). Then, up to
rigid isomorphism, there exists a unique locality (L∗,∆+, S) whose restriction to ∆ is L,
and having the property that NL∗(T ) is equal to M .

We now prove the points (b), (a) and (c) of Theorem 5.15, in this order.

Proof of Theorem 5.15 (b). Set N=NL(T ) and N ′=NL′(T ). Let Θ′ be the subset
of L′×M×L′ defined by the conditions immediately following Lemma 5.4, but now with
respect to λ′. In order to avoid confusion, we shall distinguish the relations ∼0, ∼1 and
≈ in the two cases, by the following sort of notational device. Thus, for example, if
φ=(x−1, g, y) and φ̄=(x̄−1, ḡ, ȳ) are in Θ′, then we shall write

φ∼0 φ̄ (rel λ′)

to indicate that the products x̄x−1 and ȳy−1 exist, and are elements of N ′, and satisfy
the condition

(x̄x−1)λ′ ·g= ḡ ·(ȳy−1)λ′.

The expressions “f∼1θ (rel λ′)”, and “f≈θ (rel λ′)” should be understood similarly.
The relations ∼0, ∼1, and ≈ on Θ will be provided with a corresponding “rel λ” in order
to lend emphasis to this distinction.
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Set µ0=λ−1
�βT �λ

′ and assume that µ0 extends to an automorphism µ of M . Let
α be the mapping on Θ given by

α: (x−1, g, y) 7−! ((xβ)−1, gµ, yβ).

Since β is rigid, Tβ=T , and from this it is easily verified that Im(α)⊆Θ′. There is an
obvious inverse to α, so in fact α is a bijection Θ!Θ′.

We claim that α sends ∼0-classes (rel λ) to ∼0-classes (rel λ′). Namely, let θ and
θ̄ be elements of Θ, written in the usual way, and assume that θ∼0 θ̄ (rel λ). Setting
a=x̄x−1 and b=ȳy−1, we then have (aλ)·g=ḡ ·(bλ) in M . Applying µ, we obtain

(aβ)λ′ ·gµ= ḡµ·(bβ)λ′,

and thus ((xβ)−1, gµ, yβ)∼0((x̄β)−1, ḡµ, ȳβ) (rel λ′). This proves the claim.
Now let f∈L, and suppose that f∼1θ (rel λ). That is, suppose that there exists h∈N

with g=hλ, that (x−1, h, y)∈D, and that f=Π(x−1, h, y). Then ((xβ)−1, hβ, yβ)∈D′

and fβ=Π′((xβ)−1, hβ, yβ). Since (hβ)λ′=gµ, we conclude that α sends ∼1-classes (rel
λ) into ∼1-classes (rel λ′). By Lemmas 5.8 and 5.9, any ≈-class C relative to λ is either
a ∼0-class or is of the form {f}∪X, where X is the set of all θ∈Θ such that f∼1θ. Since
the same is true for ≈-classes relative to λ′, we conclude that α respects the ≈-relations
relative to λ and λ′.

Set L+=L+(λ) and (L′)+=(L′)+(λ′), and similarly define L+
0 and (L′0)+. Thus α

induces a mapping

γ:L+
0 −! (L′0)

+,

[x−1, g, y] 7−! [(xβ)−1, gµ, yβ],
(∗)

and fγ=fβ for all f∈L such that f∼1θ for some θ∈Θ. Since L+ is the union of L and
L+

0 , α extends to a mapping
γ:L+−! (L′)+,

which restricts to the identity map on L. Further, since all of the above arguments can
be carried out with α−1 in place of α, γ is a bijection.

We next show that γ is a homomorphism of partial groups. Set D(λ)=D((L′)+(λ)),
and similarly define D(λ′). Let Π+ and (Π′)+ be the corresponding products. Let
w=(C1, ..., Cn)∈D(λ) and set Q=Sw. If Q contains no L-conjugate of T , then Ci∈L
for all i, wγ∗=wβ∗, and hence (Π′)+(wγ∗)=(Π+(w))γ. On the other hand, suppose that
Q contains an L-conjugate of T . Then Ci=[x−1

i , gi, yi] for some (x−1
i , gi, yi)∈Θ, and

Π+
λ′(wγ

∗)=[(x1β)−1,ΠM (u0), ynβ], where

u0 =(g1µ, (y1x−1
2 )βλ′, ..., (yn−1x

−1
n )βλ′, gnµ).



92 a. chermak

One observes that u0=w0µ
∗, where

w0 =(g1, (y1x−1
2 )λ, ..., (yn−1x

−1
n )λ, gn),

and hence (Π′)+(wγ∗)=(Π+(w))γ, and γ is a homomorphism. Since the roles of (L, λ)
and (L′, λ′) can be reversed, γ is then an isomorphism, and γ is rigid since β is rigid.

Set N+=NL+(T ) and (N ′)+=N(L′)+(λ′)(T ), and suppose that there is given an
isomorphism σ:L+(λ)!(L′)+(λ′) such that σ restricts to β on L. Let σT :N+!(N ′)+

be the isomorphism induced by σ. Then µ0 extends to the automorphism

ν=(λ+)−1
�σT �(λ′)+

of M , and this completes the proof of (b) (i). In order to obtain (b) (ii), one need only
observe that the formula (∗) defines the unique mapping L+(λ)0!L+(λ′)0 which, in
union with β, defines a homomorphism β+:L+!(L′)+ which restricts to β on L and to
λ+
�µ�((λ′)+)−1 on N+.

Proof of Theorem 5.15 (a). Let λ′:NL′(T )!L∆T
(M) be the restriction of µ−1 to

NL′(T ). To simplify the notation, we shall write L(λ) for L+(λ), and L′(λ′) for (L′)+(λ′).
Set LT=NL(T ) and L(λ)T=NL(λ)(T ), and similarly define L′T and L′(λ′)T . Also, set
L∗T=NL∗(T ), and let µ0:L∆T

(M)!L′T be the restriction of µ.
Suppose first that Theorem 5.15 (a) holds in the case where L=L′ and where β is

the identity map on L. We shall show that Theorem 5.15 (a) then holds in generality.
Thus, taking (L′, λ′) in the role of (L, λ), the assumed special case of Theorem 5.15 (a)
yields an isomorphism φ:L′(λ′)!L∗ such that φ restricts to the identity on L′ and to
(λ′)+

�µ on L′(λ)T .
Since λ=βT �µ−1

0 by hypothesis, we have

λ−1
�βT �λ

′ =µ0�β
−1
T �βT �µ

−1
0 = idL∆T

(M).

Thus λ−1
�βT �λ

′ extends to the identity automorphism of M . By Theorem 5.15 (b)
(proved above) there then exists an isomorphism γ:L(λ)!L′(λ′) whose restriction to L
is β, and whose restriction to L(λ)T!L′(λ′) is λ+

�((λ′)+)−1. Now set β+=γ�φ. Then
β+ restricts to β:L!L′, and on L(λ)T to

(λ+
�((λ′)+)−1)�((λ′)+

�µ) =λ+
�µ.

Thus, β+ fulfills the requirements of the statement of Theorem 5.15 (a). The uniqueness
of β+ subject to the given conditions follows in the usual way (for example, as in the
proof of uniqueness in Theorem 5.15 (b)), and is omitted.
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We assume for the remainder of the proof that L=L′ and that β is the identity
automorphism of L. Then also βT is the identity automorphism of LT , and λ−1=µ0.

Let θ=(x−1, g, y)∈Θ. Then (x−1, gµ, y)∈D∗ via the object T x, and one checks that
the product Π∗(x−1, gµ, y) in L∗ remains unchanged when θ is replaced by any θ̄ such
that θ∼0 θ̄. In some detail: let θ̄=(x̄−1, ḡ, ȳ) with θ∼0 θ̄. Then T x=T x̄ by Lemma 5.6.
Since µ0=λ−1, we get

Π∗(x−1, gµ, y) =Π∗(x̄−1, x̄x−1, gµ, yȳ−1, ȳ) =Π∗(x̄−1, ḡ, ȳ).

Suppose next that f∈L with f∼1θ. Then g=hλ for some h∈NL(T ), (x−1, h, y)∈D,
and f is equal to the product x−1hy in L. This yields

Π∗(x−1, gµ, y) =Π∗(x−1, h, y) = f,

since β is the identity automorphism of L. Now Lemma 5.9 (b) implies that Π∗(x−1, gµ, y)
depends only on the ≈-class of θ, and we have a well-defined mapping γ0:L+

0!L∗ given
by

γ0: [x−1, g, y]−!Π∗(x−1, gµ, y)

and which restricts to the identity map on L+
0 ∩L. One also observes that

[x−1, g, y]λ+ =ΠM (x−1λ, g, yλ)

for [x−1, g, y]∈NL+(T ).
We now define the mapping γ:L+!L∗ to be the union of the identity map on L

and γ0. Notice that if C=[x−1, g, y]∈NL+(T ), then

Cλ+ =(x−1λ·g ·yλ) and (x−1λ·g ·yλ)µ=Π∗(x−1, gµ, y).

Thus the restriction of γ to NL+(T ) is λ+
�µ.

We next show the following fact:
(1) Let C∈L+, set f∗=Cγ, and let a∈S. Then

aC ∈S ⇐⇒ af
∗
∈S and aC = af

∗
.

The proof is as follows. First, let C=[x−1, g, y]∈L+
0 \L, and let (U, V ) be the pair

of F-conjugates of T , uniquely determined by C, such that U=T x and V =T y. Then
Ux

−1
=T=T g=V y

−1
. For any a∈U we then get

aC =((ax
−1

)g)y =(((ax
−1

)g)µ)y =((ax
−1

)gµ)y = aCγ (∗)
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as Cγ=Π∗(x−1, gµ, y), where the second and third equalities follow since µ is rigid.
More generally, we find that (∗) holds for C∈L+

0 and any a∈SC . Namely, if C∩L=
{f} and a∈Sf , then a=aγ and f=fγ, and hence aC=af=(af )γ=afγ=aCγ .

One observes that (1) and (∗) may be read “in reverse”. Namely, if f∗∈L∗, and
f∗=Cγ with C∈L+

0 \L, then af
∗
=aC for any a∈S such that af

∗∈S. Finally, in the case
where C∈L+ with C∩L6=∅, there is really nothing to show since S6L. Thus (1) holds.

We may now show that γ is a homomorphism of partial groups. Namely, let γ∗ be
the map W(L+)!W(L∗) induced by γ. Let w∈D+, set X=Sw, and suppose first that
X∈∆. Then w∈D(L) viaX, and w=wγ∗. On the other hand, suppose thatX /∈∆. Then
w=(C1, ..., Cn), where Ci∈L+

0 , and there is a uniquely determined sequence (U0, ..., Un)
of F-conjugates of T such that UCi

i−1=Ui for all i from 1 to n. Set f∗i =Ciγ and set

w∗=(f∗1 , ..., f
∗
n). Then (1) yields Uf

∗
i
i−1=Ui for all i, and thus w∗∈D∗. The verification

that
Π∗(w∗) = (Π+(w))γ,

and thus that γ is a homomorphism, is now a formality. We treat the case n=2 in
detail; and for this it suffices to consider the case where w=(C1, C2)∈D+

0 , since the
restriction of γ to L is the identity map. Let θi=(x−1

i , gi, yi)∈Ci, with (y1, x−1
2 )∈D and

with y1x−1
2 ∈NL(T ). Then Π+(w)=[x−1

1 , g1 ·(y1x−1
2 )λ·g2, y2], and

Π+(w)γ=Π∗(x−1
1 , (g1 ·(y1x−1

2 )λ·g2)µ, y2) =Π∗(x−1
1 , g1µ·(y1x−1

2 )λµ·g2µ, y2)

=Π∗(x−1
1 , g1µ·y1x−1

2 ·g2µ, y2) =Π∗(x−1
1 , g1µ, y1, x

−1
2 , g2µ, y2),

where the last equality is obtained by observing that (1) implies that

(x−1
1 , g1µ, y1, x

−1
2 , g2µ, y2)∈D∗.

Now
Π∗(x−1

1 , g1µ, y1, x
−1
2 , g2µ, y2) =Π∗(x−1

1 (g1µ)y1, x−1
2 (g2µ)y2) =Π∗(w∗).

The case w=(C1, ..., Cn) with n>2 differs in no essential way from the case n=2, so the
above argument establishes that γ is a homomorphism.

The next step will be to show the following fact:
(2) For each P,Q∈∆+, the mapping γP,Q:NL+(P,Q)!NL∗(P,Q) is surjective.
Of course, we may assume that NL∗(P,Q) is non-empty. If P∈∆ then Q∈∆ and

γP,Q=βP,Q is bijective. So assume that P /∈∆. Then P contains a unique L-conjugate
U of T , and hence UEP . Let f∗∈NL∗(P,Q) and set V =Uf

∗
. By Lemma 5.4 (b), there

exist elements x, y∈L with T x=U and T y=V , and such that NSx(T )x=NS(U) and
NSy (T )y=NS(V ). Then (x, f∗, y−1)∈D∗ via T , and we set h∗=Π∗(x, f∗, y−1). Then
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(x−1, x, f∗, y−1, y)∈D∗ via U , so f∗=Π∗(x−1, h∗, y) by Definition 2.1 (3). Moreover, we
have h∗∈NL∗(T ). Now [x−1, h∗µ−1, y] is mapped to f∗ by γ, and so (2) holds.

Next, we show
(3) Ker(γ)=1.
As γ|L=id, the set of non-identity elements of Ker(γ) is contained in L+

0 . Let
C=[x−1, g, y]∈Ker(γ), and let U and V be the conjugates of T associated with C by
Lemma 5.6. Then 1∗=Cγ=Π∗(x−1, gµ, y), and (1) implies that U=V =T . Hence

C = [1, x−1λ·g ·yλ,1]∈NL+(T ).

Since µ is injective, we conclude that C=1+, and thus (3) holds.
Since Sh∈∆ for all h∈L′, it is immediate from (2) that γ is surjective, and from (1)

that Sf=Sfγ for all f∈L. Then (3) and Lemma 3.6 imply that γ is an isomorphism,
and hence a rigid isomorphism by construction. Thus, it remains only to establish the
uniqueness of γ, subject to the conditions that γ|L=idL and that γ|NL(T )=λ+

�µ. Let
γ′:L+!L∗ be another such isomorphism. Then, for any C=[x−1, g, y]∈L+

0 , we get

Cλ′ =([x−1, 1M ,1][1, g,1][1, 1M , y])λ′ =Π∗(x−1, gµ, y) =Cλ,

and this completes the proof.

Proof of Theorem 5.15 (c). Assuming that there exists a rigid isomorphism

NL(T )−!L∆T
(M),

Theorem 5.14 yields the existence of a locality (L∗,∆+, S) with the required properties,
and Lemma 5.5 (b) implies that L∗ is rigidly isomorphic to some L+(λ). Assuming further
that all rigid automorphisms of L∆T

(M) are M -equivalent, Theorem 5.15 (b) yields the
uniqueness of L∗ up to rigid isomorphism. That is, Theorem 5.15 (c) holds, and the proof
is complete.

This completes the proof of Theorem 5.15.
It will be convenient, for the applications in the next two sections, to state a corollary

concerning a special case of Theorem 5.15.

Corollary 5.16. Assume Hypothesis 5.3, and let (L∗,∆+, S) be a locality such
that the restriction of L∗ to ∆ is equal to L, and with NL∗(T )=M . Let β be a rigid
automorphism of L and let λ:=βT be the automorphism of NL(T ) given by restricting β.

(a) There exists a unique rigid isomorphism α:L+(λ)!L∗ such that β is the re-
striction of α to L, and such that λ+ is the restriction of α to NL+(λ)(T ).

(b) β extends to an automorphism of L∗ if and only if λ extends to an automor-
phism of M .
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Proof. The locality L∗ is rigidly isomorphic to a locality of the form L+(λ), by
Theorem 5.15 (a) (and with µ being the identity automorphism of M). Then also The-
orem 5.15 (a) yields an isomorphism α:L+(λ)!L∗ with the properties required in point
(a). Point (b) is then given by Theorem 5.15 (b).

Definition 5.17. Let (L,∆, S) be a locality with fusion system F=FS(L). Let
{∆i}Ni=0 be a sequence of subsets of ∆, and let {Ri}Ni=0 be a sequence of subgroups
of S, such that each Ri is fully normalized in F . Then (∆i, Ri)Ni=0 is an F-filtration of
∆ if the following conditions hold:

(1) R0 is weakly closed in F , and ∆0 is the set of overgroups of R0 in S;
(2) For i>0, ∆i is the union of ∆i−1 and the set Ri of subgroups of S which contain

an F-conjugate of Ri;
(3) For any U, V ∈Ri, 〈U, V 〉∈Ri−1 if and only if U 6=V ;
(4) ∆=∆N .

Lemma 5.18. Let (L,∆, S) be a locality, let F=FS(L) be its fusion system, and let
R∈∆ be weakly closed in F . Then there exists an F-filtration F=(∆i, Ri)Ni=0 for L,
such that R0=R, and such that, for all i>0, Ri is of maximal order among subgroups of
S in ∆i\∆i−1.

Proof. Take R0=R and let ∆0 be the set of all overgroups of R in S. Then ∆0

is F-invariant as R is weakly closed in F . Now let m be an index with 16m6N .
Suppose that ∆m−1 has been given, and that ∆m−1 is F-invariant and overgroup closed
in S, and that ∆m−1 6=∆. Choose Q∈∆\∆m−1 so that |Q| is as large as possible, and
let Rm be a fully normalized F-conjugate of Q. Define ∆m to be the union of ∆m−1

and the set of subgroups of S which contain an F-conjugate of Rm. Then ∆m is F-
invariant and overgroup closed, so the process may be iterated until arriving at an index
N with ∆N=∆. The points (1), (2), and (4) of Definition 5.17 are given at once by this
construction, while point (3) is immediate from the maximality in the choice of Rm.

6. The reduction to FF-pairs

Our aim in this section is to establish the main theorem, modulo a result (Proposi-
tion 6.10) on localities in finite groups. In order to state that result (to be proved in the
following section), we begin by reviewing some notions from finite group theory.

For any finite p-group P , the set of elements z∈Z(P ) such that zp=1 is a character-
istic subgroup of P , often denoted Ω1(Z(P )), but which we shall write as ZP . A p-group
V is elementary abelian if V =ZV . Equivalently, V is elementary abelian if V is the
underlying group of a finite-dimensional vector space Ṽ over the field Fp of p elements.
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Let A be a group, and letD be a group on which A acts (from the right). Then [D,A]
is by definition the subgroup of D generated by the set of commutators [g, a]=g−1a−1ga,
with g∈D and a∈A. If [D,A]6CD(A), one says that A acts quadratically on D, and one
also expresses this condition by writing [D,A,A]=1.

We begin with two elementary (and well-known) results.

Lemma 6.1. Let D be an abelian p-group admitting action (from the right) by a
group X, and set V =ZD. Let A be the set of elements a∈X of order p such that
[D, a, a]=1, and suppose that G=〈A〉. Then [D,G]6V .

Proof. Let g∈D, let a∈A, and set h=[g, a]. Then h∈CD(a), and so h=ha
k

for all
integers k. Thus,

h= g−1ga =(ga)−1ga
2
= ...=(ga

p−1
)−1ga

p

.

One then observes that hp=g−1ga
p

, and then hp=1 since ap=1.
AsD is abelian, we have [g, a]−1=[g−1, a], and [g1g2, a]=[g1, a][g2, a] for all g1, g2∈D.

Thus
V > {[g, a] | g ∈D and a∈A}= [D,G].

Lemma 6.2. Let X be a finite group, let S be a Sylow p-subgroup of X, and let D
be an abelian p-group. Assume that there is given an action X!Aut(D) of X on D.
Set V =ZD, and set

W = [V,Op(X)]CV (X)/CV (X).

Then the following hold:
(a) CD(S)6[D,Op(X)]CD(X).
(b) Suppose that X=KS, where KEX is generated by elements that act quadrati-

cally on D. Then CD(S)=CV (S)CD(X).
(c) Suppose that [CW (S), X]=1. Then [CD(S), X]=1.

Proof. As X=Op(X)S, there exists a right transversal {x1, ..., xr} for S in X such
that each xi is in Op(X). Thus Ω={Sx1, ..., Sxr} is the set of right cosets of S in X, and
each x∈X defines a permutation of Ω, by right multiplication. That is, (Sxi)x=Sxj for
some j. Let g∈CD(S), and set

h= gx1 ... gxr .

Then hx=h for all x∈X, while also

h= gr[g, x1] ... [g, xr] = grd,

where d∈[D,Op(X)]. As (p, r)=1 and D is a p-group, we get hn=gdn for some n, and
thus g=d−nhn∈[D,Op(X)]CD(X). That is, point (a) holds.
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We continue the preceding setup in order to prove the following:

if [CV (S), X] = 1 then [CD(S), X] = 1. (∗)

Suppose by way of contradiction that [CV (S), X]=1 but that [CD(S), X] 6=1. The
element g in the proof of (a) may then be chosen so that g /∈CD(X) and with gp∈CD(X).
Then gp 6=1. As (gx)p=(gx)p=gp for all x∈X, we get hp=gpr (where h is defined as in
the proof of (a)), and then hp 6=1 as r is relatively prime to p. Set D0=〈dp |d∈D〉. We
may assume that D=〈gX〉, so D0=〈gp〉=〈hp〉 is cyclic. Then D=V 〈h〉, and

CD(S) =CV (S)〈h〉=CD(X).

This contradiction completes the proof of (∗).
Now suppose that [CW (S), X]=1. Applying (a) with V in the role of D, we ob-

tain CV (S)6[V,X]CV (X). Then [CV (S), X]6CV (X) by the definition of W , and so
[CV (S), Op(X)]=1. As X=Op(X)S, (c) is proved.

Finally, assume the hypothesis of (b). Then Op(X)6K, and [D,Op(X)]6V by
Lemma 6.1. Thus (a) yields CD(S)6CD(X)V , and so

CD(S) =CD(S)∩CD(X)V =CD(X)(CD(S)∩V ) =CD(X)CV (S),

and (b) holds.

Definition 6.3. Let M be a finite group, let S be a Sylow p-subgroup of M , and set
Y =Op(M). Then M is p-reduced, and (M,S, Y ) is a reduced setup, if

CM (Y ) 6Y, CS(Z(Y ))=Y and Op(M/CM (Z(Y )))= 1.

Lemma 6.4. Let (M,S, Y ) be a reduced setup, and set D=Z(Y ), V =ZY , and

G=M/CM (Z(Y )).

Let A be an abelian p-subgroup of G. Then V =ZD, and the following facts hold :
(a) CM (D)=CM (V ).
(b) If A acts quadratically on V , then A is elementary abelian. In particular, if A

acts quadratically on D, then A is elementary abelian.

Proof. Evidently V =ZD, and CM (D)6CM (V )EM . But also Op(CM (V ))6CM (D),
by [11, Theorem 5.3.10]. Thus, the image of CM (V ) inM/CM (D) is a normal p-subgroup
of M/CM (V ), and then, since M is p-reduced, we obtain point (a). Point (b) is given
by [13, statement 9.1.1 (c)].
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The following result shows how to isolate a reduced setup from any finite group M
such that CM (Op(M))6Op(M).

Lemma 6.5. Let M be a finite group with CM (Op(M))6Op(M), and let S be a
Sylow p-subgroup of M . Then there exists a unique largest (with respect to inclusion)
subgroup D of Z(Op(M)) such that Z(S)6DEM and such that Op(M/CM (D))=1.
Moreover, the following hold for Y :=CS(D), H :=NM (Y ), and F :=FS(M):

(a) (H,S, Y ) is a reduced setup;
(b) Y is strongly closed in F .

Proof. We aim first of all to define subgroups Yk and Dk of S, for all k>0, with the
following properties:

(1) Yk is strongly closed in F , and CM (Yk)6Yk;
(2) Dk=Z(Yk)EM .
The conditions (1) and (2) are satisfied by Y0 :=Op(M) and D0=Z(Y0). We shall

define Yk and Dk for k>1, in the following recursive way. Take Yk to be the preimage
in S of Op(M/CM (Dk−1)) and take Dk=Z(Yk). We now check that conditions (1) and
(2) hold for Yk and Dk under the asssumption that they hold for Yk−1 and Dk−1.

As Dk−1EM , also CM (Dk−1)EM , and then CM (Dk−1)PEM where P is defined
to be the preimage in S of Op(M/CM (Dk−1)). As P is a Sylow p-subgroup of the
normal subgroup CM (Dk−1)P of M , P is strongly closed in F . Again as P is Sylow in
CM (Dk−1)P , we have CS(Dk−1)6P , and so Yk−16P . As CM (Yk−1)6Yk−1, we obtain
CM (P )6P , and Z(P )6Z(Yk−1)=Dk−1. Here M=CM (Dk−1)NM (P ) by the Frattini
lemma, so Z(P )EM . Thus (1) and (2) hold, where Yk=P and Dk=Z(P ).

Since M is finite, there exists n minimal subject to Dn=Dn+1. Set D=Dn and
Y =Yn+1. Then CS(D)6Y andD=Z(Y ), so Y =CS(D) is a Sylow p-subgroup of CM (D).
The Frattini lemma yields M=CM (D)H, where H=NM (Y ). Also,

Y CM (D)/CM (D) =Op(M/CM (D)),

so as Y 6CM (D) we have Op(M/CM (D))=1. Since M=CM (D)H, we get M/CM (D)∼=
H/CH(D), so also Op(H/CH(D))=1. As Op(H)CH(D)/CH(D)6Op(H/CH(D))=1, it
follows that Op(H)6CS(D)=Y , so Op(H)=Y . Since CH(Y )6Y by (1), (H,S, Y ) is
then a reduced setup.

We now establish the uniqueness and maximality of D. Thus, let U be a subgroup
of Z(Y0) such that Z(S)6UEM and such that Op(M/CM (U))=1. It will suffice to show
that U6D. Assuming otherwise, we have [U, Y ] 6=1. Since Op(M/CM (U))=1, we have
U6Z(Op(M)). That is, U6D0, and so there is a largest index n such that U6Dn.
Then CM (U)Yn+1/CM (U) is a non-identity normal p-subgroup of M/CM (U), contrary
to Op(M/CM (U))=1. We conclude that U6D, as required.
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In what follows, the group H=NM (Y ) in the preceding lemma will be called the
reduced core of M with respect to S.

We next review the definition of a certain characteristic subgroup of an arbitrary
finite p-group S, and of some terms related to it. All of the themes, and much of the
terminology and notation that will be introduced here, have their origin in early work of
John Thompson, and they have been of fundamental importance to the p-local viewpoint
in finite group theory ever since.

Let d(S) be the maximum, taken over all abelian subgroups A of S, of the numbers
|A|. As in [20], we take A(S) to be the set of all abelian subgroups A of S such |A|=d(S),
and we set

J(S) := 〈A(S)〉. (∗)

Notice that J(S) is the unique subgroup of S which is isomorphic to J(S). Because
of this, the operator J has the following inheritance property: If R is a subgroup of S and
J(S)6R, then J(S)=J(R). In particular, J(S) is weakly closed in any fusion system
on S. One observes that J(S) has the further property that it is centric in any fusion
system on S.

Remark. The tendency in the last thirty years or more has been to define A(S) to
be the set of elementary abelian subgroups of S of maximal order, and then to define
J(S) by the formula (∗). But the formulation that we have chosen is the one which is
needed for the task at hand.

Let G be a finite group, let D be a finite abelian p-group, and suppose that there is
given a faithful group action (from the right, as always) ofG onD. An abelian p-subgroup
A of G is an offender (on D, in G) if |A| |CD(A)|>|D|. An offender A is non-trivial if
A 6=1, and A is a best offender if |A| |CD(A)|>|B| |CD(B)| for every subgroup B of A. A
quadratic offender is an offender A such that [D,A,A]=1. Write AD(G) for the set of
best offenders in G on D, and set JD(G)=〈AD(G)〉.

We shall most often be interested in the situation where D is a normal abelian p-
subgroup of a finite group M , and where G=M/CM (D). In this case, we say that (G,D)
is an FF-pair if Op(G)=1 and JD(G)=G. The structure of FF-pairs in the case that D
is elementary abelian is analyzed in [15], using the CFSG (the classification of the finite
simple groups), and the preceding terminology is adapted from [15].

Lemma 6.6. Let D be a finite abelian p-group and let G be a finite group acting
faithfully on D.

(a) Every non-trivial offender in G (on D) contains a non-trivial best offender.
(b) Every non-trivial best offender in G contains a non-trivial quadratic best of-

fender.
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(c) If A is a best offender in G, and U is an A-invariant subgroup of D, then
A/CA(U) is a best offender in NG(U)/CG(U) on U .

Proof. Statement (a) is a triviality: If A 6=1 is an offender on D, one has only to
choose a subgroup B 6=1 of A so as to maximize |B| |CD(B)|, in order to obtain a best
offender on D.

Point (b) is essentially given by the Timmesfeld replacement theorem [21]; but here
it must be noted that in the hypothesis of Timmesfeld’s theorem the groups D and A

are assumed to be elementary abelian. A one-page proof of this result (with the extra,
but in fact extraneous, hypothesis concerning D and A) is given as [9, Theorem 2]. At
no point in the proof is the extra hypothesis used.

The argument for (c) is again a case of asking the reader to check a very short proof
(about half a page) in which there is an extraneous hypothesis as mentioned in the proof
of (b). In this case, the relevant result is [14, Lemma 2.5 (c)].

Lemma 6.7. Let M be a finite group, let S∈Sylp(M), let D be a normal abelian
p-subgroup of M , and set G=M/CM (D). Let A∈A(S), and set Y =CS(D). Then the
following facts hold :

(a) the image of A in G is a best offender on D;
(b) J(S)�Y⇔J(S) 6=J(Y )⇒JD(G) 6=1.

Proof. We provide the standard argument for the convenience of the reader. Let Ā
be the image of A in G, and suppose that Ā is not a best offender on D. Thus, there
exists a subgroup 
B6Ā such that

(1) |
B| |CD(
B)|>|Ā| |CD(Ā)|.
Let B be the preimage of 
B in A, and set B∗=CD(B)B. Then,
(2) CB(D)=CA(D).
As A∈A(S) we have CD(A)=D∩A, and then also D∩A=CD(B)∩A. Thus,
(3) CD(B)∩A=D∩A=CD(A).
We now obtain

|B∗|= |CD(B)| |B|/|CD(B)∩B|

= |CD(
B)| |
B| |CB(D)|/|CD(B)∩B|

> |CD(
B)| |
B| |CB(D)|/|CD(B)∩A|

> |CD(Ā)| |Ā| |CA(D)|/|CD(B)∩A| by (1) and (2)

= |CD(Ā)| |Ā| |CA(D)|/|CD(A)| by (3)

= |CD(A)| |A|/|CD(A)|

= |A|.
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This contradicts the maximality of |A| among the abelian subgroups of S, and completes
the proof of (a). Point (b) follows from (a) and from the inheritance property of the
J-operator, mentioned above.

This completes the background material for this section. The next result lists some
criteria for extending rigid automorphisms of localities within finite groups to automor-
phisms of the groups themselves.

Lemma 6.8. Let M be a finite group, let S∈Sylp(M), set X=Op(M), and assume
that CM (X)6X. Set F=FS(M), and let Γ be a non-empty, F-invariant, overgroup-
closed set of subgroups of S, such that X6Q for all Q∈Γ. Set L=LΓ(M).

(a) Suppose that M=CM (Z(X))S. Then L is the unique F-natural Γ-linking sys-
tem, up to a unique rigid isomorphism. In particular, the identity automorphism is the
unique rigid automorphism of L.

(b) Let H be the reduced core of M with respect to S, set Y =Op(H), and let ΓY
be the set of all Q∈Γ such that Y 6Q. Let γ be a rigid automorphism of L, let γH be
the restriction of γ to LΓY

(H) (see Lemma 3.9), and suppose that γH extends to an
automorphism of H. Then γ extends to an automorphism of M .

(c) Set D=Z(X) and assume that CM (D)/X is a p′-group. Assume also that there
exists Q∈Γ such that M=CM (D)NM (Q), and an automorphism γ of L such that γ
restricts to the identity automorphism of NM (Q). Then γ is the identity automorphism
of L.

Proof. (a) Let M be a minimal counterexample, and choose an F-filtration

(Γk, Tk)Nk=0

for Γ, with Γ0={S} (see Definition 5.17). Let Lk be the restriction of L to Γk. Then
L0=NM (S). Since Z(S)6Z(X), we have Z(S)6Z(M), and then Proposition 1.10 (b)
shows that for any F-natural ∆0-linking system K0, there is a unique rigid isomorphism
K0!L0.

Let n be the largest index such that Ln is unique up to a unique rigid isomorphism,
in the preceding sense. Then, without loss of generality, we may assume that n=N−1.
Let K be an F-natural Γ-linking system, and let Kn be the restriction of K to Γn. There
is then no loss of generality in taking Kn=Ln. Set T=TN , and set KT=NK(T ) and
LT=NL(T ). Observe that

Op(NM (T ))6Op(M) 6CM (Z(X))6CM (Z(T )).

Thus, the hypothesis of Lemma 6.8 (a) holds with NM (T ) in place of M , and with
ΓT :={Q∈Γ|TEQ} in place of Γ. As M is a minimal counterexample, we conclude



fusion systems and localities 103

that the identity automorphism of LT is the unique rigid automorphism of LT . Now
Theorem 5.15 (b) yields a rigid isomorphism γ:K!L. Since γ restricts to the identity
automorphism on Ln and on NM (T ), γ is uniquely determined, by Corollary 5.16 (a).

(b) Set E=Z(Y ) and note thatM=CM (E)H by Lemma 6.5. Let βH be an extension
of γH to an automorphism of H. Then βH=cz for some z∈Z(S), by Proposition 1.10 (c).
Now let β be the automorphism cz of M . In order to complete the proof of (b) it suffices
to show that β restricts to γ on L. Both cz and γ restrict to the identity map on CM (E)S,
by (a). Set K=CL(D). Then K is a partial normal subgroup of L by Lemma 3.9, and the
Frattini lemma for localities (Corollary 4.8) yields the result that each f∈L is a product
f=gh, with g∈K and h∈H. Thus

fγ=(gh)γ=(gγ)(hγ) = g(hβ) = ghz =(gh)z = fz = fβ,

as required.
(c) Let A0 be the set of L-essential subgroups of S (see Definition 2.14), and set

A=A0∪{S}. By hypothesis, each member of Γ contains X, so CM (P )6P for all P∈Γ.
By Proposition 2.17, each f∈L is A-decomposable, so in order to prove (c) it suffices to
show that γ restricts to the identity map on Op

′
(NM (P )) for each P∈A0, and to the

identity map on NM (S).
Fix P∈A, and set N=Op

′
(NM (P )) (or N=NM (S) if P=S). Suppose first that

Q6P and let g∈N . By hypothesis, g=g1g2 (where the product is taken in M), and
where g1∈NM (Q) and g2∈CM (D). Then Qg2 =Qg6P (and thus (g1, g2)∈D(L) via P ).
As CM (D)/X is a p′-group, and X6Q, it follows that Qg2 =Q, and thus N6NM (Q).
Since γ restricts to the identity map on NM (Q), there is no more to prove in this case.
In particular, we have shown that γ restricts to the identity map on NM (S).

We are now reduced to the case where P∈A0, and where Q�P . Then NQ(P )�P .
On the other hand, NQ(P )CM (D)ECM (D)N , and thusNQ(P )CN (D)P/CN (D) is a non-
identity normal p-subgroup of N/CN (D), properly containing CN (D)P/CN (D). Since
N/P has a strongly p-embedded subgroup, it follows that N/CN (D) is a p-group. Thus
N=CN (D)NS(P ), and point (a) implies that γ restricts to the identity map on N .

Lemma 6.9. Let F be a constrained fusion system on S, let M be a model for F , let
H be the reduced core of M with respect to S, and set Y =Op(H). Suppose that there is
given an F-natural Γ-linking system (L,Γ, S) such that Y ∈Γ, and such that Op(M)6P
for all P∈Γ. Suppose also that there is given an isomorphism β:NL(Y )!H of groups,
such that β restricts to the identity map on S. Then β extends to an isomorphism
L!LΓ(M).

Proof. As Y is weakly closed in F , by Lemma 6.5 (b), Lemma 5.18 implies that there
is an F-filtration F=(∆i, Ti)Ni=0 of Γ, in which ∆0 is the set of overgroups of Y in S. For
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each k, 16k6N , let Lk be the restriction of L to Γk, and set Mk=LΓk
(M). As Y ∈Γ,

β is an isomorphism L0!M0=H. Let n be the largest index such that β extends to
an isomorphism βn:Ln!Mn. Thus n>0, and we may assume that n<N as otherwise
there is nothing to prove. There is then no loss of generality in assuming further that
n=N−1.

Set M=LΓ(M). Then CM (Op(M))6Op(M) as M is a model for the constrained
fusion system F=FS(M). Since each P∈Γ contains Op(M), by assumption, M is then
a Γ-linking system. Set T=TN , K=NM (T ), Σ={P∈Γn |TEP} and K=LΣ(K). As
T∈Γ, both NL(T ) and K are models for FNS(T )(K), so Proposition 1.10 (b) yields an
isomorphism γ:NL(T )!K which restricts to the identity map on NS(T ). We may
therefore apply Theorem 5.15 (a) with K in the role of M , and find that there are rigid
isomorphisms λ and λ′ from NLn(T ) to K such that L and M are rigidly isomorphic to
L+(λ) and L+(λ′), respectively. Moreover, λ is given explicitly as βT �γ−1, where βT is
the restriction of βn to NLn(T ), while λ′ is the composition βT �ι, where ι is the identity
map on K.

Let α be the rigid automorphism λ−1
�λ′ of K. By Theorem 5.15 (b), it suffices to

show that α extends to an automorphism of K in order to conclude that β extends to
an isomorphism L!M.

Since T /∈Γ0, we have Y �T , so T<NY (T )T , and then NY (T )T∈Γn by the construc-
tion of F. Thus α restricts to an automorphism α0 of NK(NY (T )T ) which centralizes
NS(T ), and then Proposition 1.10 (c) yields α0=cz for some z∈Z(NS(T )). We now
observe that NY (T )=NS(T )∩CS(D) is a Sylow subgroup of CK(D), and hence

K =CK(D)NK(NY (T ))=CK(D)NK(NY (T )T )

by the Frattini lemma. By Lemma 3.9, CK(D) is a partial normal subgroup of K, and
evidently NS(T )∩CK(D)=NY (T ). The Frattini lemma for localities (Corollary 4.8) then
yields

K=CK(D)NK(NY (T ))=CK(D)NK(NY (T )T ),

since NK(NY (T ))=NK(NY (T )T ), and since NY (T )T∈Σ.
Let C be the locality LΣ(CK(D)NS(Y )). Then the identity automorphism of C is

the unique rigid automorphism of C by Lemma 6.8 (a). In particular, the restriction α1

of α to C is the identity automorphism, and so cz induces α1 on C. By Corollary 4.8,
each f∈K is a product gh taken in K, where g∈CK(D) and h∈NK(NY (T )). Since Y 6T

we have z∈CM (Y )=D, and so

fα=(gh)α=(gα1)(hα0) = ghz =(gh)z = fz,

and thus α extends to the automorphism cz of K. As remarked earlier, this suffices to
complete the proof.
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Let (M,S, Y ) be a reduced setup, and set D=Z(Y ) and V =ZY . Recall from
Lemma 6.4 (a) that CM (V )=CM (D). Set G=M/CM (V ), and recall that, for any sub-
group K of G, JD(K) is defined to be the subgroup of K generated by the best offenders
in K on D, and similarly for JV (K). For the remainder of this paper, whenever such a
setup is given, and whenever H is a subgroup of M , we write J(H,D) for the preimage
in H of JD(H/CH(D)). We define J(H,V ) analogously, relative to JV (H/CH(V )).

The proof of the following proposition will be postponed to the next (concluding)
section.

Proposition 6.10. Let (M,S, Y ) be a reduced setup and set D=Z(Y ). Let Γ be
the set of all overgroups Q of Y in S such that J(Q,D) 6=Y , and assume that S∈Γ. Set
L=LΓ(M) and let γ be a rigid automorphism of L. Then γ extends to an automorphism
of M .

Proposition 6.11. Let M be a finite group, and assume that Proposition 6.10 holds
for all reduced setups (M ′, S′, Y ′) with |M ′|<|M |. Let S be a Sylow p-subgroup of M ,
and let X be a normal p-subgroup of M with CM (X)6X. Set Y =Op(M), F=FS(M),
D=Z(Y ), and let Γ be an F-invariant, overgroup-closed collection of overgroups of X

in S such that
Q∈Γ =⇒ J(Q,D)∈Γ.

Assume that J(S,D)∈Γ. Then every rigid automorphism of LΓ(M) extends to an au-
tomorphism of M .

Among all pairs (M,Γ) for which Proposition 6.11 fails, choose one so that first |M |
is as small as possible, and then so that |X| is as large as possible. Set L=LΓ(M), and
fix a rigid automorphism γ of L such that γ has no extension to an automorphism of M .
Set V =ZD.

Fact 6.12. X=Y , and Y /∈Γ.

Proof. If Y ∈Γ then LΓ(M)=M , and the conclusion of Proposition 6.11 holds triv-
ially. Thus Y /∈Γ. Now suppose that X is a proper subgroup of Y , and let ΓY be the set
of all Q∈Γ such that Y 6Q. The maximality of |X| in the choice of (M,Γ) then implies
that every rigid automorphism of LΓY

(M) extends to an automorphism of M . Let γY
be the restriction of γ to LΓY

(M) and let β be an extension of γY to an automorphism
of M .

Let Q∈Γ. Then QY ∈ΓY and NM (Q)6NM (QY ), so γ and β agree on NM (Q) for all
Q∈Γ. By Lemma 3.8, β restricts to an automorphism β0 of LΓ(M), and now Lemma 3.10
shows that β0�γ is the identity automorphism of LΓ(M). Thus, β is an extension of γ
to an automorphism of M .
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Fact 6.13. (M,S, Y ) is a reduced setup. In particular, CM (D)=CM (V ).

Proof. Suppose this is false, let H be the reduced core of M with respect to S, set
R=Op(H), and set LH=LΓ(H). If R∈Γ then LH=NM (R)=H, and then γ extends to
an automorphism of M by Lemma 6.8 (b). We conclude that R/∈Γ, and hence no member
of Γ is contained in R.

Let ΓR be the set of all products RP with P∈Γ. Thus, ΓR also has the usual
meaning. Namely, ΓR is the set of members Q of Γ such that REQ. We note that since
R=Op(H) and H is reduced, we have R=CS(Z(R)). For Q∈ΓR write J(Q,Z(R)) for
the preimage in Q of JZ(R)(Q/R). Since Y 6R, and since J(Q,D)∈Γ for all Q∈Γ by
hypothesis, Lemma 6.6 (c) implies that J(Q,Z(R))∈ΓR for each Q∈ΓR. Since R/∈ΓR,
by the preceding paragraph, the hypothesis of Proposition 6.11 is fulfilled with (H,ΓR)
in place of (M,Γ). Here H is a proper subgroup of M as (M,S, Y ) is not a reduced setup,
so we conclude that the restriction γH of γ to LΓR

(H) extends to an automorphism of H.
We appeal again to Lemma 6.8 (b) and conclude that γ extends to an automorphism ofM ,
contrary to our choice of (M,γ). Thus, (M,S, Y ) is reduced, and then CM (D)=CM (V )
by Lemma 6.4 (a).

Fact 6.14. M=J(M,D).

Proof. Set K=J(M,D). So K is the preimage in M of the subgroup of M/CM (D)
generated by best offenders on D, and thus KEM . Set S0=S∩K and let Φ be the set
of all Q∈Γ with Q6S0. Then Φ is F-invariant. Since Q∈Γ implies J(Q,D)∈Γ, by the
hypothesis in Proposition 6.11, we get Q∩S0∈Φ for all Q∈Γ. In particular, S0∈Φ since
(by hypothesis) S∈Γ. Then Φ is a non-empty, overgroup-closed collection of subgroups
of S0.

Set K=LΦ(K). Then β restricts to a rigid automorphism � of K, by Lemma 3.8.
Assume now that K 6=M , and set X0=X∩K. The hypothesis of Proposition 6.11 is
satisfied with (K,S0, X0,FS0(K),Φ) in place of (M,S,X,F ,Γ), and hence, by the min-
imality of |M | as a counterexample to Proposition 6.11, � extends to an automorphism
λ of K. But then γ extends to an automorphism of M by Lemma 4.9, and contrary to
the choice of (M,Γ). Thus M=K.

Let Φ now denote the set of all subgroups P of S such that Y 6P and such that
J(P,D) 6=Y . If Φ=Γ then Facts 6.12–6.14 yield the hypothesis of Proposition 6.10, and
then Proposition 6.10 yields an extension of γ to an automorphism of M . Thus Γ is a
proper subset of Φ. Choose T∈Φ\Γ so that

(1) T is fully normalized in F ,
(2) |J(T,D)| is as large as possible subject to (1), and
(3) |T | is as small as possible subject to (2).
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Fact 6.15. Y is a proper subgroup of T , and NM (T ) is a proper subgroup of M .

Proof. By assumption, Y 6T , and since Φ 6=Γ we know that Y 6=T . Then T�Y , and
so T is not normal in M .

Fact 6.16. The following statements hold :
(a) T=J(T,D);
(b) if P and P ′ are distinct F-conjugates of T , then 〈P, P ′〉∈Γ.

Proof. Since T∈Φ we have J(T,D) 6=Y , and therefore J(T,D)∈Φ by definition. As
J(T,D) has a fully normalized F-conjugate, point (a) then follows from the minimality
condition (3) in the choice of T . Then also P=J(P,D) for any F-conjugate P of T .
For F-conjugates P and P ′ of T , the definition of the “J( · , D)”-operator then yields
〈P, P ′〉=J(〈P, P ′〉, D). For P 6=P ′ we get |J(〈P, P ′〉, D)|>|J(T,D)|, and then (b) follows
from condition (2) in the choice of T .

Set MT=NM (T ), set R=NS(T ), and let Γ+ be the union of Γ and the set of sub-
groups of S which contain an F-conjugate of T . Let ΓT be the set of all Q∈Γ with
T6Q6R, and set LT=NL(T ). Thus,

LT =NL(T ) =LΓT
(MT ).

Fact 6.17. Let γT be the restriction of γ to LT . Then γT does not extend to an
automorphism of MT .

Proof. Suppose γT extends to an automorphism of MT . Then Corollary 5.16 (b),
with MT in the role of M and with γ in the role of β, yields an extension of γ to an
automorphism of M . Thus, as (M,γ) is a counterexample to Proposition 6.11, no such
extension of γT exists.

LetH be the reduced core ofMT with respect toR, setX=Op(H), and set U=Z(X).
Thus H=NMT

(X), and the Frattini lemma yields

MT =CMT
(U)H. (∗)

Set H=NLT
(X). Then CLT

(U) is a partial normal subgroup of LT by Lemma 3.9, and
then Corollary 4.8 yields

LT =CLT
(U)H. (∗∗)

Fact 6.18. Let β be the restriction of γT to H. Then β does not extend to an
automorphism of H. In particular, X /∈Γ.
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Proof. If β extends to an automorphism of H, then γT extends to an automorphism
of MT , by Lemma 6.8 (b), and contrary to Fact 6.17. Thus no such extension of β exists.
If X∈Γ then H=NH(X)=NH(X)=H, so we conclude that X /∈Γ.

Proof of Proposition 6.10. Since H is a proper subgroup of M by Fact 6.15, the
minimality of M in the choice of a counterexample to Proposition 6.11 implies that the
conclusion of Proposition 6.11 holds with (H,ΓX) in place of (M,Γ). This contradicts
Fact 6.18, and so the proof is complete.

Lemma 6.19. Let M , S, Y =X, D, F , and Γ be as in Lemma 3.10, and assume that
Proposition 6.10 holds for all reduced setups (M ′, S′, Y ′) with |M ′|<|M |. Then every
F-natural Γ-linking system is rigidly isomorphic to LΓ(M).

Proof. Set L=LΓ(M) and let L′ be any other F-natural Γ-linking system. Set T0=
J(S,D) and set L0=NL(T0) and L′0=NL′(T0). Then L0 and L′0 are isomorphic groups,
via an isomorphism which restricts to the identity map on S, by Proposition 1.10 (b).

Let Γ0 be the set of overgroups of T0 in S. Among all groups T1∈Γ\Γ0 such that
T1 is fully normalized in F , choose T1 so as first to maximize |J(T1, D)| and then so as
to minimize |T1|. Then T1=J(T1, D) and, as in the proof of Fact 6.16 (b), we find that
any two distinct F-conjugates P and P ′ of T1 generate a member of Γ0. Let Γ1 be the
union of Γ0 and the set of subgroups X of S such that X contains an F-conjugate of T1,
and then iterate this procedure, so as to obtain an F-filtration F=(Γi, Ti)Ni=0 of Γ. Let
Li and L′i be the restrictions of L and L′ to Γi, and let n be an index such that there
exists a rigid isomorphism Ln!L′n. Then n<N , or else there is nothing to prove. Set
T=Tn+1, and set ∆=Γn.

Set K=Ln and KT=NK(T ), and similarly define K′ and K′T . Then

KT =L∆T
(NM (T )),

and Ln+1 is rigidly isomorphic to K+(ι), where ι is the identity automorphism of KT , by
Theorem 5.15 (a). But also, L′n+1 is rigidly isomorphic to (K′)+(λ) for some rigid isomor-
phism λ:KT!L∆T

(NM (T )), again by Theorem 5.15 (a). Now, by Theorem 5.15 (b) (i), it
suffices to show that all rigid automorphisms of L∆T

(NM (T )) extend to automorphisms
of NM (T ), in order to complete the proof.

Set MT=NM (T ), YT=Op(MT ), DT=Z(YT ), and set R=NS(T ). Then R∈∆ by
Lemma 5.4 (a). Thus J(R,D) 6=T , by construction of the filtration F. Then, again
by construction of F, we get J(R,D)∈∆. If J(R,D)6YT then we have YT ∈∆ and
L∆T

(MT )=MT . Since there is nothing to prove in that case, we may assume that
J(R,D)�YT . Then also J(R,DT )�YT , by Lemma 6.6 (c). In fact, the preceding ar-
gument shows that J(Q,DT )�YT for any Q∈∆. We may then apply Proposition 6.11,
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with (MT , R,∆) in place of (M,S,Γ), in order to conclude that all rigid automorphisms
of L∆T

(MT ) extend to automorphisms of MT , and to thereby complete the proof.

Recall from Definition 2.9 that a locality (L,∆, S) is a centric linking system if it is
a ∆-linking system, where ∆ is the set of all FS(L)-centric subgroups of P . Recall also
from Proposition 2.18 (a) that if L is a centric linking system then FS(L) is saturated.

On the other hand, let F be a given saturated fusion system on S. By an F-centric
linking system we mean a centric linking system (L,∆, S) such that F=FS(L). Thus,
∆ is the set of F-centric subgroups of S if L is an F-centric linking system.

Assume now that the main theorem is false. We express this as a hypothesis, as
follows.

Hypothesis 6.20. Proposition 6.10 holds, and F is a saturated fusion system on the
p-group S such that one of the following conditions hold:

(i) There exists no F-centric linking system on S;
(ii) There exist F-centric linking systems on S which are not rigidly isomorphic.

Set X0=J(S), and define ∆0 to be the set of all overgroups of X0 in S. Then ∆0

is closed under F-conjugation since J(S) is weakly closed in F , and since J(S)=J(Q)
for all Q∈∆0. As remarked earlier, it is immediate from the definition of J(S) that
J(S)∈Fc, and hence ∆0⊆Fc.

Now suppose that ∆0 6=Fc, and let X=X1 be the set of all X∈Fc\∆0 such that X
is fully normalized in F . Among all X∈X1, choose X so that

(1) d(X) is as large as possible,
(2) |J(X)| is as large as possible (subject to (1)),
(3) J(X)∈Fc, if possible, (subject to (1) and (2)), and
(4) subject to conditions (1)–(3), |X| is as small as possible if J(X)∈Fc, and oth-

erwise |X| is as large as possible.

Set X1=X, and define ∆1 to be the union of ∆0 and the set of subgroups of S which
contain an F-conjugate of X1. If ∆1 6=Fc we then repeat the above procedure, taking
X2 to be the set of all X∈Fc\∆1 such that X is fully normalized in F , and choosing
X2∈X2 according to the rules (1)–(4). By iteration, we arrive at a sequence of pairs

F=(∆i, Xi)Ni=0,

where ∆N=Fc. Recall now the notion of F-filtration from Definition 5.17.

Lemma 6.21. F is an F-filtration of Fc. Moreover, each Xi may be chosen so that
J(Xi) is fully normalized in F .
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Proof. As X0 is weakly closed in F , point (1) of Definition 5.17 holds, while points
(2) and (4) (with Fc in the role of ∆) hold by construction. Assuming now that F is not
an F-filtration of Fc, we conclude that point (3) of Definition 5.17 fails to hold. There
is then a smallest index n such that there exist F-conjugates P and P ′ of X :=Xn such
that P 6=P ′ and 〈P, P ′〉 /∈∆n−1.

Set Q=〈P, P ′〉. Then d(Q)=d(X), and |J(Q)|=|J(X)|, and thus J(P )=J(Q)=
J(P ′). If J(P )∈Fc then X=J(X) by the minimality condition in (4). But in that case
we also obtain P=J(P ) and P ′=J(P ′), and so P=P ′, contrary to the hypothesis. Thus
J(X) /∈Fc. But then P=Q=P ′ by the maximality condition in (4), and again contrary
to the hypothesis. Thus, F is an F-filtration of Fc. The second part of the lemma follows
from Lemma 1.7.

Lemma 6.22. Let n be an index with 16n6N . Suppose that J(Xn) is F-centric
and let Q∈∆n−1 with Xn6Q. Then J(Q)∈∆n−1.

Proof. Suppose this is false, and let n be the smallest index for which the lemma
fails. Set X=Xn and set ∆=∆n−1. As J(X) is F-centric, by assumption, condition
(4) in the choice of X implies that X=J(X). If d(Q)>d(X), or if d(Q)=d(X) but
J(Q)>J(X), then J(Q)∈∆ by the maximality conditions (1) and (2) in the choice of X.
So, we conclude that J(Q)=J(X), and then J(Q)=X.

As Q∈∆, there exists an indexm with 06m<n such that Q contains an F-conjugate
U of Xm. Then the construction of F yields d(U)>d(X). But d(U)6d(Q)=d(X), so
in fact d(U)=d(X). Similarly, we obtain |J(U)|=|J(X)|, and hence J(U)∼=J(X). Here
J(U) is F-centric by condition (3) in the construction of ∆m, so U=J(U)=J(X)=X.
This is contrary to m<n, and completes the proof.

By Proposition 1.10 (a), there exists a model M0 for the fusion system NF (X0),
and M0 may then be viewed as an F-natural ∆0-linking system. Any two such linking
systems are rigidly isomorphic by Proposition 1.10 (b), so there is a largest index n such
that there exists an F-natural ∆n linking system, and such that all such linking systems
are rigidly isomorphic. By Hypothesis 6.20, we have n<N . Set ∆=∆n, and let L be the
unique (up to rigid isomorphism) F-natural ∆-linking system.

Set X=Xn+1, set R=NS(X), let MX be a model for NF (X), and let H be the
reduced core of MX with respect to R. Set Y =Op(H), and set D=Z(Y ). In view of
Lemma 6.21, we may assume that J(X) is fully normalized in F .

Lemma 6.23. Suppose that Y /∈∆, and let ∆X be the set of all P∈∆ with XEP .
Then the following hold :

(a) ∆X is the set of all subgroups Q of R, properly containing X, and such that
J(Q) 6=X;
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(b) X=J(X)=J(Y );
(c) R=NS(Y )∈∆;
(d) Y is fully normalized in F , and H is a model for NF (Y ).

Proof. Let Q be a subgroup of R containing X, and suppose that Q/∈∆. The
condition (1) in the choice of X then yields d(X)=d(Q), and thus A(X)⊆A(Q) and
J(X)6J(Q). Now Lemma 6.22 will complete the proof of (a), once it is shown that
J(X) is F-centric.

Set B=CS(J(X)). Then B is X-invariant, and

NB(X) =CR(J(X))6CR(Z(X))6CR(D) =Y,

and thus NB(X)=CY (J(X)). But J(X)=J(Y ) as Y /∈∆, and so

NB(X) =CY (J(Y ))6J(Y ) 6X.

Thus B6X, and since J(X) is fully normalized in F , we conclude that J(X) is F-centric.
Then X=J(X) by condition (4) in the choice of X. This completes the proof of (a) and
of (b).

Suppose that R/∈∆. Then J(R)=J(X)=X, by (a) and (b). Then

NS(R) 6NS(J(R))=NS(X) =R,

and therefore R=S. Hence X=J(S), and Y ∈∆0, contrary to Y /∈∆. Thus, R∈∆. We
have Y ER by Lemma 6.5. Since NS(Y )6NS(J(Y )) and J(Y )=X, we conclude that
R=NS(Y ), completing the proof of (c).

Let φ∈HomF (R,S) be chosen so that Y ′ :=Y φ is fully normalized in F , and set
X ′=Xφ. Then NS(Y ′)6NS(X ′) by (b), and since X is fully normalized it follows that
|NS(Y ′)|6|R|. Thus NS(Y ′)=Rφ, and so Y is fully normalized in F . Point (d) then
follows from Lemma 1.11.

Lemma 6.24. Y ∈∆.

Proof. Suppose that Y /∈∆. We check that the hypothesis of Proposition 6.11 (and
hence also of Lemma 6.19) holds, with the role of (M,S, Y,FS(M),Γ) being taken by
(MX , R,X,NF (X),∆X). First, CMX

(X)6X as MX is a model of the constrained fu-
sion system NF (X). Next, by Lemma 6.23 (a), Q∈∆X implies that J(Q)�X, while
Lemma 6.23 (b) implies that X=J(X) (and therefore that J(X) is F-centric). Then,
Lemma 6.22 yields J(Q)∈∆X , and so J(Q,Z(X))∈∆X by Lemma 6.7 (b). In particular,
J(R,Z(X))∈∆X , and so the claim has been verified. Since we are assuming Proposi-
tion 6.10, we are free to apply Lemma 6.19 to the setup with MX ; and so L∆X

(MX) is



112 a. chermak

the unique F∆X
(MX)-natural linking system, up to rigid isomorphism. Then all rigid

isomorphisms NL(X)!L∆X
(MX) are MX -equivalent, by Theorem 5.15 (b). Now The-

orem 5.15 (c) applies with MX in the role of M , and we conclude that there exists an
F-natural ∆n+1-linking system, and that any two such are rigidly isomorphic. This
contradicts the maximality of n.

Lemma 6.25. Y /∈∆.

Proof. Suppose that Y ∈∆. Then Y ∈∆X as X6Y . Set H=L∆X
(H). Then

H=NH(Y ) =H,

and therefore every rigid automorphism of H is in fact an automorphism of H. Hence
Lemma 6.8 (b) applies, with MX in the role of M , and so every rigid automorphism
of LDX

(MX) extends to an automorphism of MX . That is, all rigid automorphisms of
L∆X

(MX) are MX -equivalent. As in the proof of Lemma 6.25, we conclude via (b) and
(c) in Theorem 5.15 that there exists an F-natural ∆n+1-linking system, that any two
such are rigidly isomorphic, and thereby contradict the maximality of n.

With Lemmas 6.24 and 6.25 we now have a contradiction to Hypothesis 6.20. This
contradiction provides a proof of the main theorem modulo Proposition 6.10. Thus, in
order to complete the proof of the main theorem, it remains to prove Proposition 6.10.

7. The main theorem

Our aim in this section is to give a proof of Proposition 6.10, using the classification of
the finite simple groups (CFSG). As was pointed out at the end of the preceding section,
this will complete the proof of the main theorem.

We continue using the terminology and notation relating to FF-pairs. In particular,
it is important to recall that our definition of J(P ), for a p-group P , is given in terms of
abelian (and not elementary abelian) subgroups of P of maximal order.

For ease of reference, we restate Proposition 6.10, as follows.

Proposition 7.1. Let (M,S, Y ) be a reduced setup, and set D=Z(Y ). Let Γ be
the set of all overgroups Q of Y in S such that J(Q,D) 6=Y , and assume that S∈Γ. Set
L=LΓ(M), and let γ be a rigid automorphism of L. Then γ extends to an automorphism
of M .

Among all pairs (M,γ) satisfying the hypothesis of Proposition 7.1, and such that γ
does not extend to an automorphism of M , fix (M,γ) so that |M | is as small as possible.
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We note that proposition Proposition 6.11 may then be applied to groups of order less
than |M |.

Set F=FS(L), and recall the definition of F-essential subgroup of S, from Defini-
tion 2.14.

Lemma 7.2. Let A be the union of {S} and the set of FS(L)-essential subgroups
of S, and set M0=〈NM (Q)|Q∈A〉. Then M0=M . In particular, there exists no proper
subgroup of M which contains the partial subgroup L of M .

Proof. Suppose that M0 is a proper subgroup of M . We first show
(1) L⊆M0.

Indeed, in order to establish (1) it suffices, by Proposition 2.17, to show that
CM (P )6P for all P∈Γ. But CM (P )6CM (Y )=D=Z(Y ) as (M,S, Y ) is a reduced setup.
Thus (1) holds.

Since L=LΓ(M) we have also L=LΓ(M0). We now claim that the hypothesis of
Proposition 6.11 is fulfilled with (M0, Y,Γ) in the role of (M,X,∆). Set Y0=Op(M0),
D0=Z(Y0), and D=Z(Y ). Then Y 6Y0, and so D06D. We must show that J(Q,D0)∈Γ
for each Q∈Γ. Set M̃=M/CM (D). Since Q∈Γ, we have J(Q,D) 6=Y , and so there
exists A with Y 6A6Q such that the image Ã of A in M̃ is a best offender on D. By
Lemma 6.6 (c), AutA(D0) is a best offender on D0, so J(Q,D)CQ(D0)6J(Q,D0). Thus
J(Q,D0)∈Γ, as required.

Now Proposition 6.11 yields an extension of γ to an automorphism β of M0. Then
β=cz for some z∈Z(S) by Proposition 1.10 (c), and cz is then also an extension of γ to
an automorphism of M .

In what follows, set V =ZY . That is, V is the subgroup (to be regarded as a vector
space over the field Fp of p elements) of D consisting of those elements x∈D such that
xp=1. Set G=M/CM (D), and recall from Lemma 6.4 (a) that also G=M/CM (V ).

Lemma 7.3. G is generated by quadratic best offenders on D, and any quadratic
best offender on D is also a quadratic best offender on V .

Proof. Let G0 be the subgroup of G generated by the set of all subgroups A of G
such that A is a quadratic best offender on D. Let M0 be the preimage of G0 in M ,
and set S0=S∩M0. Then Y 6Op(M0). The reverse inclusion holds since M0EM , so
Y =Op(M0).

Let Q∈Γ, and set P=Q∩S0. Here Y =CS(D)6S0, and the image Q̃ of Q in G

contains a best offender on D, so by Lemma 6.6 (b) there is a non-trivial quadratic best
offender B̃6Q̃. The preimage B of B̃ in S is contained in P , by the definition of M0, so
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P̃ 6=1. Now let Φ be the set of all subgroups Q∩S0 of S0 with Q∈Γ. Thus,

Φ⊆Γ. (∗)

Let K be the partial normal subgroup M0∩L of L, as given by Lemma 3.9. Then
Lemma 3.10 gives K the structure of a locality K=LΦ(M0). Further, the hypothesis of
Lemma 6.19 holds with (M0, S0,Γ0) in the role of (M,S,Γ). By Lemma 4.9 (a), γ restricts
to an automorphism γ0 of K, and if M0 6=M then γ0 extends to an automorphism β0 of
M0 by Lemma 6.19. Then γ extends to an automorphism of M by Lemma 4.9 (b),
contrary to the hypothesis, and completing the proof.

Any group that acts faithfully and quadratically on an elementary abelian p-group
is itself elementary abelian, by [13, statement 9.1.1 (c)]. For that reason the preceding
lemma effects the transition from “abelian offenders on abelian p-groups” to “elementary
abelian offenders on vector spaces over Fp” that is needed in order to apply the results
of Meierfrankenfeld and Stellmacher [15, Theorems 1 and 2] on FF-pairs.

The set of all non-identity subgroups X of G such that X=[X,G] is a poset, with
respect to inclusion, consisting of normal subgroups of G. Define X to be the set of
minimal elements of this poset. The elements of X are the J-components of G. The
product of the set X of J-components is then a normal subgroup of G, henceforth to be
denoted by G0. Set V =ZY and set

W = [V,G0]CV (G0)/CV (G0).

For any X∈X set WX=[W,X] and VX=[V,X].
It will turn out that for each X∈X, either X is quasisimple, or p∈{2, 3} and X

is isomorphic to the commutator subgroup of SL2(p) (a group of order 3 if p=2, and
a quaternion group of order 8 if p=3). It will be convenient to set up some further
notation, in order to accomodate such solvable J-components. Thus, let Xsol be the set
of all subgroups X of G such that X is a direct factor of G, X∼=SL2(p) (with p=2 or
p=3), [X,X]∈X, and |VX |=p2. Let X∗ be the union of Xsol and the set of non-solvable
J-components of G. The elements of X∗ will be referred to as the J∗-components of G.
Set G∗0=〈X∗〉.

Theorem 7.4. The following statements hold :
(a) Each J∗-component of G is normal in G.
(b) G∗0 is the direct product of the J-components of G.
(c) Let A6G be a best offender on V . Then A is a best offender on every A-

invariant subspace of V and on every A-invariant subspace of W .
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(d) If A6G is a best offender on V , and X∈X, then CA(X)=CA(VX)=CA(WX),
and either [X,A]=1 or [X,A]=X.

(e) W is the direct sum of its subspaces WX for X∈X∗, and [V,X1, X2]=0 whenever
X1 and X2 are distinct members of X∗.

(f) G=G0R where R is the image of S in G.

Proof. See [15, Theorem 1]. We remark that points (a)–(e) are “elementary” in that
they are proved without appealing to the CFSG.

In Theorem 7.5 and Proposition 7.6 we sum up the remaining parts of the general
FF-module theorem in the form that will be needed here, and eliminate some special
cases. As in [15] we write U (r) for the direct sum of r copies of a module U .

Theorem 7.5. Suppose that G has only one J∗-component. Then one of the fol-
lowing holds (where q is a power of p):

(1) G is a linear group SLn(q), and W is a direct sum U (r)⊕(U∗)(s), where U is a
natural module for G and U∗ is the dual of U . Moreover, if both r and s are non-zero
then n>4.

(2) G is a classical group (unitary, symplectic, or orthogonal) in characteristic p,
and W is a direct sum U (r) of natural modules for G. Specifically,

(i) G∼=Sp2n(q) (n>2);
(ii) G∼=SUn(q) (n>4);
(iii) p is odd, G∼=Ω2n+1(q) (n>2);
(iv) G∼=Ωε2n(q) (n>3); or
(v) p=2, G∼=Oε2n(q) (n>3).
(3) p=2, G is a symmetric group of degree n>5, and W is a natural module for G.

Proof. Let R be the image of S in G. In the list of groups and their modules given
by [15], all but the three types listed above are eliminated by Lemma 7.2. In detail: by
[15, Theorem 2], G0 is either a group of Lie type in characteristic p or an alternating
group. If G0 is of Lie type in characteristic p then, in the cases other than the above
three, [15] states that either R contains a unique quadratic best offender A or that
G∼=Spin7(q) and that W is a spin module of order q8. In the case of a unique quadratic
offender A, it follows from Lemma 6.6 (b) that the image in G of the normalizer in M

of any object in Γ is contained in NG(A). Since every element of L is a product of
elements of normalizers of objects, by Proposition 2.17, it follows that L is contained in
the proper subgroup CM (D)NM (B), where B is the preimage of A in S; and we thereby
obtain a contradiction to Lemma 7.2. In the case where G∼=Spin7(q), it is pointed out
in [15, Theorem 2] that every quadratic best offender A has the same commutator space
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on W . Then L is contained in the M -stabilizer of that subspace, and so in either case
we contradict Lemma 7.2.

Finally, if G0=G is an alternating group, then [15] (see Proposition 7.6 immedi-
ately below) says that R contains a unique quadratic best offender, leading again to a
contradiction to Lemma 7.2.

Proposition 7.6. Suppose that G is a symmetric group Sym(n) (n>5), and that
W is a natural module for G. Let R be the image of S in G. Then every offender in G

on W is a best offender, and one of the following holds:
(1) n is odd, and each offender A is generated by transpositions;
(2) n is even, and for any quadratic offender A6R, there exists a set {t1, ..., tk} of

pairwise commuting transpositions in R such that one of the following holds:
(a) A=〈t1, ..., tk〉;
(b) n=2k and A=〈t1t2, ..., tl−1tl〉×〈tl+1, ..., tk〉 for some l with 1<l6k;
(c) n=2k and A=〈t1t2, s1s2〉×〈t3, ..., tk〉, where s1 and s2 are commuting transpo-

sitions distinct from t1 and t2, and where Supp(s1s2)=Supp(t1t2);
(d) n=8=|A|=|W/CW (A)|, and A acts regularly on the standard G-set.
Moreover, if A is a quadratic offender and |A|>|W/CW (A)|, then n is even, and

A is generated by the set of all transpositions in R.

Proof. See [15, Theorem 2].

Lemma 7.7. G has a unique J∗-component.

Proof. Suppose this is false, let �K :=�K1 be a J∗-component of G, and let �K2 be the
product of the J∗-components other than �K. Let Ki be the preimage of �Ki in M . Then
Ki is S-invariant by Theorem 7.4 (a). Set Wi=CW (Ki). Then Wi is S-invariant, as is
CM (Wi). Set Mi=CM (Wi)S. Then Mi=KiS by Theorem 7.4 (e).

Set Li=LΓ(Mi), and set L=LΓ(M). Further, define Ci to be the set of all g∈L
such that [Wi, g]=1. Then Ci is a partial subgroup of L, and in fact a partial normal
subgroup since each Wi is M -invariant. Since Γ is S-invariant, an element g of M is in
L1 if and only if g=hs for some h∈CM (W2) such that Sg∈Γ, and thus Li=CiS. Also,
for any h∈Ci we have hγ∈Ci, since γ centralizes V by rigidity. Thus Li is a γ-invariant
locality contained in L. Let γi be the restriction of γ to Li.

We have Mi=KiS by Theorem 7.4 (e), so Mi is a proper subgroup of M . We may
then apply Proposition 6.11 with (Mi, Y ) in place of (M,X), and thereby conclude that
γi extends to an automorphism βi of Mi. Then βi centralizes S, and since CM (Y )6Y it
follows from Proposition 1.10 (c) that βi is conjugation by zi for some zi∈Z(S).

Set Di=[D,Ki]. Then Z(S)6CD(Ki)Di by Lemma 6.2 (a), and we may therefore
take zi∈Di. We now claim that z1 centralizes K2 (and by symmetry of argument, that z2
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centralizes K1). To prove the claim, we recall that [W,K1] centralizes K2. Observe also
thatD1 isK2-invariant, sinceK1EM . Set V1=V ∩D1 and set U1=[V1,K1]/C[V1,K1](K1).
Then U1 is M -isomorphic to W1, and so [U1,K2]=1. We now apply Lemma 6.2 (c) with
D1, V1, and K2 in place of D, V , and X, and conclude that [CD1(S),K2]=1. Thus,
[z1,K2]=1 as claimed, and similarly [z2,K1]=1.

Since M=M1M2=K1K2S it now follows that g extends to the automorphism cz1z2
of M . This contradicts the choice of (M,γ), and completes the proof.

Lemma 7.8. Let T be a subgroup of S, such that T is weakly closed in F and
properly contains Y . Let Γ+ be the union of Γ and the set of subgroups P of S such
that T6P . Then γ extends to an automorphism of LΓ+(M).

Proof. Set Φ=Γ+, K=LΦ(M), LT=NL(T ), and let ΓT be the set of all Q∈Γ such
that T6Q. Then LT=LΓT

(NM (T )) since T6Sw for all w∈D(L)∩W(NM (T )).
Let H be the reduced core of NM (T ) with respect to S, set YT=Op(H), and set

DT=Z(YT ). Also, set H=NL(YT ), let γT be the restriction of γ to LT , and let η be the
restriction of γ to H. Recall that YT is weakly closed in NF (T ) by Lemma 6.5. Then,
since T is weakly closed in F , it follows that also YT is weakly closed in F . If YT ∈Γ
then H=H by Lemma 2.3 (c), and η is an automorphism of H. On the other hand,
suppose that YT /∈Γ, and let R be the set of all R∈Γ containing YT . Since J(Q,V )∈Γ
for all Q∈Γ, by Lemma 6.6 (c), it follows that J(R, V )�YT for any R∈R. Setting
VT=Ω1(DT ), Lemma 6.6 (c) yields also J(R, VT ) 6=YT for R∈R. Similarly, J(S,D)�YT ,
and then J(S,DT ) 6=YT . Thus, the hypothesis of Proposition 6.11 is satisfied with (H,R)
in place of (M,Γ), and we conclude that η extends to an automorphism of H. Thus,
in any case, η either is, or extends to, an automorphism of H, and then Lemma 6.8 (b)
implies that γT extends to an automorphism βT of NM (T ).

Since T is weakly closed in F , it is vacuously true that any pair of distinct F-
conjugates of T generates a member of Γ. Then Theorem 5.15 (a) implies that γ extends
to an automorphism β of K, such that β restricts to γ on L and to βT on NM (T ). This
yields the lemma.

Definition 7.9. Let 	S be the image of S in G, and let Q be the set of all non-identity
subgroups U of 	S such that N�S(U)∈Sylp(NG(U)) and such that NG(U)/U has a strongly
p-embedded subgroup. We say that G has an essential splitting if there exists a subgroup
H of G having the following properties:

(1) NG(	S)6H;
(2) Op(H) 6=1 and Op(H) is weakly closed in F�S(G);
(3) For each U∈Q, either Op

′
(NG(U))6H or Op

′
(NG(U)) centralizes CW (U).

Proposition 7.10. G has no essential splitting.
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Proof. Suppose this is false, and let H be a subgroup of G satisfying conditions
(1)–(3) in Definition 7.9. Set 
B=Op(H), and let B be the preimage of 
B in S. Then we
have that B=S∩CM (D)B is a Sylow p-subgroup of CM (D)B, and it follows that B is
weakly closed in F :=FS(M).

Let Σ be the union of Γ and the set of overgroups of B in S. By Definition 5.17
there is an F-filtration F=(Σi, Ri)Ni=0 of Σ with R0=B, and with the property that Ri
is fully normalized in F , and of maximal order subject to Ri /∈Σi−1 (16i6N). Thus, Σ0

is the set of overgroups of B in S, and ΣN=Σ.
Set K=LΣ(M) and let Ki be the restriction of K to Σi, as in Example/Lemma 2.10.

Thus K0=NM (B). Let σ be an extension of γ to an automorphism of K, as given
by Lemma 7.8, and let σi be the restriction of σ to Ki. Then σN=σ, while σ0 is a
rigid automorphism of the group NM (B). Since H contains the image of S in G, we
have S6NM (B), and then Proposition 1.10 (c) yields σ0=cz (conjugation by z) for some
z∈Z(S). If also σ is given on all of K by z-conjugation, then γ is given by z-conjugation
on L, and γ extends to the automorphism cz of M . Since (M,γ) is a counterexample
to Proposition 7.1, we conclude that the largest index m such that σm=cz is smaller
than N .

Set R=Rm+1, L=NM (R), and let X be the subgroup of L generated by CL(Z(S))
together with the set of all NL(P ) as P varies over the set of proper overgroups of R in
NS(R). Each such P is in Σm by the construction of F. The restriction of σL to L (see
Lemma 3.8) acts on X, and σL�cz−1 centralizes a set of generators for X, so σL acts
as cz on X. If X=L then Theorem 5.15 (a) implies that σm+1 is given by cz on all of
Km+1, contrary to the choice of m. Thus X 6=L, and hence X/R is strongly p-embedded
in L/R. Moreover, we now have [Z(S), Op

′
(L)] 6=1.

For any subgroup E of L, let 
E be the image of E in G. Then L̄ 6=�X as CL(D)6X.
Then �X/	R is strongly p-embedded in L̄/	R, and then condition (3) in Definition 7.9 says
that either Op

′
(L̄)6H or [CW (S), Op

′
(L̄)]=1. Suppose Op

′
(L̄)6H. As B6Ri for all i,

where B is weakly closed in F , it follows that L6NM (B), and hence σL=cz. Again,
Theorem 5.15 (a) implies that σm+1=cz on Km+1, contradicting the choice of m. Thus,
Op

′
(L̄) centralizes CW (S), and then Op

′
(L̄) centralizes Z(S) by Lemma 6.2 (c). Then

also Op
′
(L) centralizes Z(S).

Set C=LΣ(CM (Z(S))). Then C is the set of all f∈K such that [Z(S), f ]=1, and
thus C is σ-invariant. Since |C|<|L|, Lemma 6.19 applies and yields an extension of
σ to an automorphism σ∗ of CM (Z(S)). Then σ∗ is the identity automorphism, by
Proposition 1.10 (c), and thus σL is the identity automorphism of L. Hence σL=cz, and
we again have a contradiction via Theorem 5.15 (a).

In the remaining arguments, whenever X is a subgroup of M we write �X for the
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image CM (D)X/CM (D) of X in G.

Lemma 7.11. Assume that G is one of the classical groups that appear in Theo-
rem 7.5. Then either G has an essential splitting in the sense of Definition 7.9, or
G=SL2(q) (q being a power of p).

Proof. In Theorem 7.5 it is given that W is a direct sum of copies of the natural
G-module U , or that G=SLn(q) (n>4) and W is a direct sum of copies of U and its
dual U∗. Then CG(CW (S)) is equal to either CG(CU (S)) or, in the exceptional case,
to CG(CU (S))∩CG(CU∗(S)). Since the definition of essential splitting depends only on
G, and on the subgroup CG(CW (S)) of G, we may therefore assume, for the sake of
simplicity, that W=U or, exceptionally, that W=U⊕U∗. In either case, write W0 for
the subspace U of W .

Set G0=[G,G] if p=2 and G=Oε2n(q), and otherwise set G0=G. Let T be the Sylow
p-subgroup 	S of G, set T0=T∩G0, let P be the set of minimal parabolic subgroups L
of G0 over T0 such that CW (T0) is not L-invariant, and set H=〈P〉T . Let Q be the set
of all subgroups Q of T such that NT (Q)∈Sylp(NG(Q)) and such that NG(Q)/Q has a
strongly p-embedded subgroup. Set K=CG(CW (T )). It will then suffice to show

(a) Op(H) is weakly closed in FT (G), and if G 6=SL2(q) then Op(H) 6=1;
(b) there exists a parabolic subgroup K∗ of G0 such that Op

′
(K∗)T6K6K∗T ;

(c) for each Q∈Q, either NG(Q)6H or Op
′
(NG(Q)) centralizes CU (T ).

Indeed, only (a) and (c) are needed, but (b) will play a role in obtaining these points.

We note at the outset that |G/G0|62 and that p=2 if |G/G0| 6=1.

Set K∗=NG0(CW (T0)). If W is irreducible then CW (T0) is a 1-dimensional subspace
of W , and K∗ is a maximal parabolic subgroup of G0 over T0. On the other hand, if
W is reducible, so that G=SLn(q) with n>4, then K∗ is the parabolic subgroup of Lie
corank 2 obtained as the intersection of the two maximal parabolic subgroups L1 and L2

such that Li/Op(Li)∼=GLn−1(q). Then Op
′
(K∗) centralizes CU (T0) and we obtain (b).

Further,
(1) either there is a unique minimal parabolic subgroup X of G0 over T0 not con-

tained in K∗, or there are two such (to be denoted X1 and X2). In the latter case, X1X2

is a group, and Op
′
(X1X2)/Op(X1X2)∼=SL2(q)×SL2(q).

Set H0=H∩G0. Then (1) shows that either G=G0 and H is a parabolic subgroup
of G; or else G 6=G0, H=H0T , and H0 is a minimal parabolic subgroup of G0. Set
P=Op(H) and set P0=P∩G0. By Lemma 1.12, P0 is weakly closed in FT0(G0). As
H=NG(P0)=NG(P ), P is weakly closed in F :=FT (G). If H=G then G0 is itself a
minimal parabolic subgroup of G0, since the exceptional case where H0 is not a minimal
parabolic subgroup occurs only when the Lie rank of G0 is greater than that of H0. In
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the list of groups under consideration from Theorem 7.5, only SL2(q) has Lie rank equal
to 1, so (a) holds.

Let Q∈Q, set N=NG(Q) and N0=N∩G0. Also, set E=Op
′
(N), E0=E∩G0, and

Q0=Q∩G0. In proving (c) we may assume that [CW (T ), E] 6=0.

As N/Q has a strongly p-embedded subgroup we have Q=Op(N). Suppose that
N6G0. Since NT (Q)∈Sylp(NG(Q) by the definition of Q, a theorem of Borel and Tits
[12, Theorem 3.1.3] implies that NG0(Q) is a parabolic subgroup of G0 over T0. Thus
N/Q is a group of Lie type, as is E/Q. The only groups of Lie type having a strongly
p-embedded subgroup are those of Lie rank 1, so N is a minimal parabolic subgroup
of G0. Since [CU (T ), E] 6=0, we have [CU (T0), E] 6=0, and thus N is either the unique
minimal parabolic subgroup over T0 which does not normalize CU (T0), or N is one of
the two such minimal parabolic subgroups given by (1). Thus N6H, and we have (c) in
this case. We have thus reduced the proof of (c) to the case where G 6=G0, so p=2 and
G=Oε2n(q) for some sign ε.

Suppose next that Q6G0. Then O2(N0)6O2(N)=Q, so the Borel–Tits theorem
implies that N0 is a parabolic subgroup of G0 over T0. Let K be an overgroup of Q in
N such that K/Q is strongly embedded in N/Q, and set K0=K∩G0. Then |K0/Q| is
divisible by 2 since NT0(Q)6K, and hence K0/Q is strongly embedded in N0/Q. As
in the preceding paragraph, it follows that N0 is a minimal parabolic subgroup over T0,
and N0 is then the unique minimal parabolic subgroup over T0 which does not normalize
CW (T0). Then N06H, and since N=N0T where T6H, (c) holds in this case. We may
therefore assume that Q�G0.

Set R=Op(NG0(Q0)). Then R is E-invariant, as is NR(Q0). Hence NQR(Q)6Q
as Q=Op(N), and thus R=Q0. By the Borel–Tits theorem, NG0(Q0) is a parabolic
subgroup of G0 over T0.

Suppose Q0=1. Then |Q|=2 and O2(CG0(Q))=1. Hence [4, statement 8.7] implies
that E0

∼=Sp2n−2(q). But E0
∼=E/Q in this case, so E0 has a strongly embedded subgroup.

This yields n=2, whereas Theorem 7.5 (2) excludes Oε4(q). Thus 
Q0 6=1, and NG0(Q0) is
a proper parabolic subgroup of G0.

Set L=O2′(NG0(Q0)), and set L̃=L/Q0. The Levi decomposition for NG(Q0) yields
a direct product decomposition

L̃= L̃1×...×L̃k,

where each L̃i is a (possibly disconnected) group of Lie type, and where each L̃i is
Q̃-invariant. We choose such a decomposition so as to maximize k. Then

Ẽ0 =CẼ1
(Q̃)×...×CẼk

(Q̃),
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and each CẼi
(Q̃) has even order. But Ẽ0

∼=E/Q, so Ẽ0 has a strongly embedded subgroup.
We conclude that k=1.

Suppose that NG0(Q0) is disconnected. Then L̃ is a direct product of two factors
(each of them a group of Lie type) which are interchanged by Q̃, and Ẽ is isomorphic
to each of the factors. Thus Ẽ∼=SL2(q) as Ẽ has a strongly embedded subgroup, and
NG0(Q0) is a product of two minimal parabolic subgroups, with root system of type
A1×A1 acted on non-trivially by T/T0. But there is a unique minimal parabolic subgroup
X over T0 which does not normalize CU (T0), and hence NG0(Q0) normalizes CU (T0).
Hence [CU (T0), E0]=1 and [CU (T ), E]=1, contrary to the choice of Q. We conclude that
NG0(Q0) is a connected parabolic subgroup, and moreover, X=NG0(Q0).

From the discussion in [12, §2.7] on the relation between classical groups and groups
defined as groups of Lie type, it now follows that NG0(Q0) is contained in the stabilizer
of a singular j-space U for some j>1, and that L/Q0 acts as SLj(q) on U . Let t be
an Fq-transvection in T on U . Then t centralizes every singular T0-invariant subspace
of U , so [L, t]6O2(L)=Q0. Since E06L, Q0〈t〉 is then an E-invariant subgroup of T .
But Q0 is the unique largest E0-invariant subgroup of T0, so Q is the unique largest
E0-invariant subgroup of T , and thus Q=Q0〈t〉. Then Q is L-invariant, and so L=E0.
Again, as E0/Q0 has a strongly embedded subgroup, we conclude that L/Q0 has Lie
rank 1, and thus E0=O2′(X). As H=XT we obtain E=E0T6H. Further, we now have
H=NG(Q0), and so N6H. This completes the proof of (c).

Remark. The group Sym(8) is well known to be isomorphic to O+
6 (2), by means of a

quadratic form on the natural irreducible Sym(8)-module preserved by Sym(8). Thus, the
preceding lemma applies to the case where G=Sym(8) and W is the natural irreducible
module.

Lemma 7.12. Suppose that p=2, and suppose that G=Sym(n) is a symmetric group,
with n>5, and that W is isomorphic to the natural irreducible G-module over F2. Then
n=8, and W is a natural module for G.

Proof. We assume throughout that n 6=8. Let Ω={1, 2, ..., n} be the standard G-set,
and let G0=Alt(n) be the subgroup of index 2 in G. Let Ṽ be the natural permutation
module for G, identified with the set 2Ω of subsets of Ω (where addition is given by
symmetric difference of subsets). Let W̃ be the submodule of Ṽ consisting of subsets of
Ω of even order, and let Z̃ be the 1-dimensional submodule {∅,Ω} of Ṽ . By definition,
W∼=W̃ if n is odd, and W∼=W̃/Z if n is even.

Recall the notation V =Ω1(D). We now write V =V0×V1, where V16CV (G), and
where V1 is a G-submodule of V chosen to be as small as possible subject to V =V0CV (G).
Thus, V0 is indecomposable for G. We claim that V0 is isomorphic to a G-submodule
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of Ṽ or of Ṽ /Z. Indeed, by an elementary calculation [1, p. 74, Exercise 3] we have
|H1(G0,W )|=1 if n is odd, |H1(G0,W )|=2 if n is even, and Ṽ indecomposable for G0

if n is even. The claim follows in a straightforward way from this exercise, and from
the observations made in the preceding paragraph. In particular, transpositions in G are
transvections on V0, and hence also on V .

Set K=CM (CW (S)) and let �K be the image of K in G. Then K6CM (CD(S))
by Lemma 6.2 (c). By Lemma 3.8 there is an automorphism γK of LΓ(K) given by
restricting γ. Since |K|<|M |, and since best offenders on D are also best offenders
on CD(O2(K)) by Lemma 6.6 (c), we may apply Lemma 6.19 with (K,S,O2(K),Γ) in
the role of (M,S, Y,Γ). Thus γK extends to an automorphism of K. As [Z(S),K]=1,
Proposition 1.10 (c) yields

(1) The identity map on K is the unique extension of γK to an automorphism of K.
Let T be the set of subgroups T of S such that Y 6T , and such that 	T is generated

by a transposition. For any subgroup P of S set

PT = 〈T ∈T |T 6P 〉Y.

Set R=ST , set R0=R∩M0, where M0 is the preimage of Alt(n) in M , and set H=
NM (R). Then H=NM (R0), and �H∼=2moSym(m), where m is the greatest integer 6 1

2n.
If the set {	R, 	R0} contains all of the quadratic best offenders on D contained in 	S,

then every member of Γ contains R0, and then L=LΓ(M)=H, contrary to Lemma 7.2.
Thus there exists a quadratic best offender Ā6	S with Ā /∈{	R, 	R0}. As n 6=8 by assump-
tion, Proposition 7.6 implies that |W/CW (Ā)|=|Ā| and that Ā contains a transposition
t. Notice that

|W/CW (Ā)|6 |V/CV (Ā)|6 |D/CD(Ā)|. (∗)

Since Ā is a best offender on D, and hence also on V by Lemma 6.6 (c), we conclude that
the inequalities in (∗) are equalities, and hence that D=CD(Ā)V . Then CD(Ā)CV (t)
has index 2 in D, and thus |D/CD(t)|=2. Since G is generated by n−1 transpositions,
we conclude that |D/CD(G)|62n−1, and hence

(2) D=CD(G)V .
Further, since |D/CD(t)|=2, the preimage in S of any subgroup of 〈T 〉 generated

by transpositions is in Γ. Thus
(3) T ⊆Γ, and QT ∈Γ for any Q∈Γ such that NM (Q)�H.
Notice that (3) yields O2(H)∈Γ, so H=NL(O2(H)), and then γ restricts to an

automorphism of H. By Proposition 1.10 (c), γ|H=cz for some z∈Z(S), and where of
course cz is also an automorphism of M . Replacing γ with γ�c−1

z , we may assume
(4) γ restricts to the identity automorphism on H.
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Suppose that n=2m is even, let Q∈Γ with NM (Q)�H, and let Q0 be a fully nor-
malized F-conjugate of QT . As H is m-transitive on T , Q0 is in fact an H-conjugate of
QT . Set X=NM (Q0). Then �X∼=(2koSym(k))×Sym(n−2k), where k is the number of
transpositions in 
Q0. Since n is even it follows from [8, Lemma 2.8] that �X is generated
by its subgroups �X∩�H and �X∩�K. Since CX(D)6K, we then have X=〈X∩H,X∩K〉.
Let γX be the restriction of γ to X. Then (1) and (5) imply that γX induces the identity
map on X. Here NM (QT )=Xh for some h∈H. We have (h−1, x, h)∈D(LΓ(M)) via QT
for each x∈X, so γ restricts to the identity on NM (QT ) by (5). Since NM (Q)6NM (QT )
we conclude that γ restricts to the identity map on NM (Q). Thus γ is the identity auto-
morphism of L in the case where n is even, and we may therefore assume that n=2m+1
is odd.

Let G1 be a subgroup of G such that 	S6G1, and with G1
∼=Sym(2m). Let M1 be

the preimage of G1 in M and set L1=LΓ(M1). Then L1 is γ-invariant by Lemma 3.8.
Let γ1 be the restriction of γ to L1. Then M1=〈H,K〉 (again by [8, Lemma 2.8]). The
hypothesis of Proposition 7.1 holds with M1 in place of M , so the minimality of |M |
implies that γ1 extends to an automorphism β1 of M1. Then (1) and (5) imply that β1

is the identity automorphism.

Now let G2 be a subgroup of G such that G2
∼=Sym(m)×Sym(m+1), and such that

	S∩G2∈Syl2(G2). Let M2 be the preimage of G2 in M , set S2=S∩M2, and let Γ2 be the
set of all subgroups Q of S2 with Q∈Γ. One observes that R6M2, so Γ2 is non-empty.
Set L2=LΓ2(M2). Then L2 is γ-invariant by Lemma 3.8. Let γ2 be the restriction of γ to
L2. As |M2|<|M |, Lemma 6.19 applies with (M2, S2,Γ2) in the role of (M,S,Γ), yielding
an extension of γ2 to an automorphism β2 of M2. Then β2=cu for some u∈Z(S2). As n
is odd, and as remarked above, we have H1(G,W )=0. Thus V may be identified with
W×CV (G). As G is generated by n−1 transpositions, it follows that |D/CD(G)|=2n−1

and that D=W×CD(G). Thus, we may take u∈W .

Recall that Ω denotes the standard G-set. We may then take G1 to be the stabilizer
in G of n, and we may take G2 to be the stabilizer in G of the partition (∆1,∆2) of
Ω, where ∆1={1, ...,m}. Identify W with the set of even-order subsets of Ω. As β1

is the identity map on M1, cu centralizes M1∩M2, and it follows that cu is either the
identity map on M2 or that cu is given on M2 by taking u=Ω\{n}. In either case, the
automorphism cu of M induces βi on Mi (i=1, 2). Replacing γ with γ�c−1

u , we may
assume that both β1 and β2 are identity maps.

We now argue as we did in the case where n is even, taking an arbitrary Q∈Γ, taking
Q0 to be a fully normalized F-conjugate of QT , and setting X=NM (Q0). As before, we
have �X∼=(2koSym(k))×Sym(n−2k), and now �X is generated by its subgroups �X∩G1

and �X∩G2. Thus X=〈X∩M1, X∩M2〉. As each βi is an identity map, the restriction
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γX of γ to X is the identity map on X. Since NM (Q)6NM (ΓT ), and NM (QT ) is an
H-conjugate of X, it follows as in the case where n is even that γ restricts to the identity
map on NM (Q). Thus, γ is the identity automorphism of L, and we have obtained a
contradiction to the assumed non-existence of an extension of γ to an automorphism
of M .

Proof of Proposition 7.1. By Lemma 7.7, G has a unique J-component, and Theo-
rem 7.5 then yields the possibilities for the structure of G and for the action of G on W .
Recall that (M,γ) is a counterexample to Proposition 7.1. By Lemma 7.12, if G is a
symmetric group Sym(n), and W is its natural irreducible module, then n=8. Since
Sym(8)∼=O+

6 (2) via a quadratic form on the natural irreducible module for Sym(8) (see
the remark following Proposition 7.10), Proposition 7.10 and Lemma 7.11 imply that G
is a symmetric group Sym(n) with n 6=8 and with W being the natural module—or else
that G=SL2(q). Thus, we have only the case where G=SL2(q) and (by Theorem 7.5)
W is the natural SL2(q)-module left to consider. But in this last case, G has a strongly
p-embedded subgroup NG(	S), and hence CM (D)NM (S) is a proper subgroup of M con-
taining LΓ(M). This contradicts Lemma 7.2, and thus the proof of Proposition 7.1 is
complete.

Proof of the main theorem. As pointed out at the beginning of this section, Propo-
sition 7.1 provides the remaining step required for the proof of Proposition 6.10. Then
Proposition 6.11, and Lemmas 6.21–6.25—which were proved under the assumption that
Proposition 6.10 holds—yield a contradiction to the presumed non-existence or non-
uniqueness of a centric linking system L whose fusion system FS(L) is a given saturated
fusion system.

Appendix A.

In [16], Bob Oliver and Joana Ventura introduced a category T of “transporter systems”
and isomorphisms of transporter systems. Part of the structure of any given transporter
system consists of a functor %: T !F , where T is a category and where F is a fusion sys-
tem on a finite p-group; and one says that the given transporter system is a “transporter
system on (or over) F ”. The category T has a full subcategory Tc of “centric linking
systems” whose definition is far different from the one given in Definition 2.9 here. The
aim of this section is to show that transporter systems are the “same” as localities, that
the two definitions of centric linking systems are essentially equivalent, and to obtain the
following result.



fusion systems and localities 125

Theorem A. Let F be a saturated fusion system on a finite p-group S. Then there
exists a centric linking system T over F (in the sense of [16] or [7]), and T is unique
up to isomorphism of transporter systems.

In this way we will establish that our main theorem yields existence and uniqueness
of “centric linking systems” in either sense of this term. In order to do this, we first
review the definitions in [16].

Let S be a finite p-group and let X be a collection of subgroups of S with S∈X.
There is then a category TX(S) whose set of objects is X, and whose morphism-sets are
given by

MorTX(S)(P,Q) =NS(P,Q)

for P,Q∈X. Composition is given by multiplication in S.
Here is the definition of transporter system from [16], but with the notions of left and

right composition reversed from their original meanings, in order to maintain consistency
with our policy of taking all categories in the right-handed sense.

Definition A.1. Let F be a fusion system over a finite p-group S. A transporter
system associated with F is a non-empty finite category T , together with a pair of
functors

TOb(T )(S) ε // T
%

// F

satisfying the following conditions:
(A1) Ob(T )⊆Ob(F), and Ob(T ) is closed under F-conjugacy and overgroups. Also,

ε is the identity on objects and % is the inclusion on objects.
(A2) For each P,Q∈Ob(T ), the kernel

E(P ) def= Ker[%P : AutT (P )!AutF (P )]

acts freely on MorT (P,Q) by left composition, and %P,Q is the orbit map for this action.
Also, E(Q) acts freely on MorT (P,Q) by right composition.

(B) For each P,Q∈Ob(T ), εP,Q:NS(P,Q)!MorT (P,Q) is injective, and the com-
position %P,Q�εP,Q sends g∈NS(P,Q) to cg∈HomF (P,Q).

(C) For all φ∈MorT (P,Q) and all g∈P , the diagram

P
φ

//

εP (g)

��

Q

εQ(g′)

��

P
φ

// Q

commutes in T , where g′ is the image of g under %(φ).
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(I) εS(S)∈Sylp(AutT (S)).
(II) Let φ∈IsoT (P,Q), and let PE
P6S and QE
Q6S be such that

φ−1
�εP (
P )�φ6 εQ(
Q).

Then there exists φ̄∈MorT (
P , 
Q) such that εP,	P (1)�φ̄=φ�εQ,
Q(1).
If moreover F is saturated, Ob(T )=Fc, and E(P )=Z(P ) for all objects P , then T

is a centric linking system.

Definition A.2. Let T =(T , ε, %) and T ′=(T ′, ε′, %′) be transporter systems over a
fusion system F on S, with Ob(T )=Ob(T ′). An isomorphism T !T ′ (of transporter
systems) consists of an invertible functor α: T !T ′ (of categories) such that, in right-hand
notation, ε�α=ε′ and α�%′=%.

Let L=(L,∆, S) be a locality over S. Set

T =Cat(L,∆)

(as defined in Remark 2.8 (1)) and let F be the fusion system FS(L) on S, generated by
the conjugation maps between objects. There is a functor

ε: T∆(S)−! T

for which εOb:∆!Ob(T ) is the identity map, and where each

εP,Q:NS(P,Q)−!MorT (P,Q)

is an inclusion map. There is also a functor

%: T −!F

such that %Ob:∆!Ob(F) is the inclusion map of ∆ into the set of all subgroups of
S, and such that %P,Q(φ) is the conjugation map cg:P!Q, where g is the unique ele-
ment of L such that φ=(g, P,Q). (See the discussion in Remark 2.8 (1)). We note that
the functoriality of % depends on condition (O2) in Definition 2.6 of “objective partial
groups”.

Proposition A.3. (a) Let L=(L,∆, S) be a locality. Then the diagram

T∆(S) ε // T
%

// F (∗)

of categories and functors is a transporter system, and if L is a centric linking system in
the sense of Definition 2.9, then T is a centric linking system in the sense of [7] or [16].

(b) Let L=(L,∆, S) and L′=(L′,∆, S) be localities having the same set ∆ of ob-
jects, and let β:L!L′ be a rigid isomorphism. Define (T , ε, %) as above, and define
(T ′, ε′, %′) in the analogous way. There is then an isomorphism T !T ′ of localities,
given on objects by P 7!P and on morphisms by (f, P,Q) 7!(fβ, P,Q).
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Proof. (a) By the definition of T , ∆=Ob(T ), and then also ∆⊆Ob(F) as ∆ is
a set of subgroups of S. Since F is generated by the conjugation maps cf :P!Q with
f∈NL(P,Q), where P,Q∈∆, condition (O2) in Lemma 2.5 implies that ∆ is closed under
F-conjugacy. Since ∆ is overgroup closed by Definition 2.9, we then have (A1).

Let P,Q∈∆ and define E(P ) and E(Q) as in (A2). Since left and right cancellation
holds in L, by Lemma 2.2, E(P ) acts freely on MorT (P,Q) by left composition, and
E(Q) acts freely by right composition. Let (f, P,Q) and (g, P,Q)∈MorT (P,Q) lie in the
same fiber of the map %P,Q:MorT (P,Q)!HomF (P,Q). Then the conjugation maps cf
and cg from P to Q are equal. Set P ′=P f (=P g) and regard cg−1 as a map from P ′ to P .
Then cfg−1 =cf �cg−1 is the identity map on P , so that fg−1∈E(P ). This shows that
each fiber of %P,Q is contained in an orbit of E(P ). The reverse inclusion holds since

%P,Q(hf) = %(hf) = %(h)%(f) = %(f)

for any h∈E(P ). Thus (A2) holds.
Condition (B) follows immediately from the definitions of the functors ε and %. The

commutativity of the diagram in (C) is no more than the observation that if (f, P,Q)∈
MorT (P,Q) and g∈P , then gf is defined (via P f ), and gf=g(%(f))∈Q. Condition (I)
is given by the hypothesis, in Definition 2.9, that S∈∆, so it only remains to establish
(II). Here NL(P ) is isomorphic to AutT (P ) via the map g 7!(g, P, P ) for P∈∆. Let
P, 
P ,Q, 
Q∈∆, with PE
P and QE
Q, and let f∈L with P f=Q. Then cf induces an
isomorphism NT (P )!NT (Q). If (
P )cf=
Q then the T -isomorphism (f, P,Q) extends to
the T -isomorphism (f, 
P , 
Q). Thus (II) holds, and T is a transporter system.

Now suppose that L is a centric linking system in the sense of Definition 2.9. That
is, assume that ∆ is the set of all F-centric subgroups, and that CL(P )6P for all P∈∆.
Then F is saturated, by Proposition 2.18 (a), and E(P )=Z(P ) for all P∈∆, so T is a
centric linking system in the sense of [16]. Thus (a) holds.

(b) Let T , T ′, and β:L!L′ be as given. Let α: T !T ′ be the pair of maps, given
on Ob(T )=∆ by P 7!P , and on morphisms by (f, P,Q) 7!(fβ, P,Q). That α is then a
functor is immediate from the fact that β is a homomorphism which sends each subgroup
P of S to P . The invertibility of α is immediate from the invertibility of β, and it is
trivially verified that ε�α=ε′ (in right-hand notation). In order that α�%′ be equal to %
it is necessary and sufficient that each conjugation map cf :P!Q with P,Q∈∆ be equal
to the conjugation map cfβ . Thus, let x∈P . Then xf∈Q, so xf∈S, and then

xf =(xf )β=(xβ)fβ =xfβ .

Hence cf=cfβ as required, and (b) holds.
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Corollary A.4. Let F be a saturated fusion system on a finite p-group S. Then
there exists a centric linking system (T , ε, %) whose fusion system is F .

Proof. The main theorem provides a centric linking system (L,∆, S) in the sense
of Definition 2.9, with F=FS(L), and then Proposition A.3 (a) provides the required
centric linking system in the sense of [16].

For the remainder of this appendix, let

T∆(S) ε // T
%

// F

be a transporter system. Set ιP,Q=εP,Q(1), write ιP for εP (1), and observe that ιP is
the identity element of AutT (P ) by Definition A.1 (C). The morphisms ιP,Q are called
inclusion morphisms, and condition (B) implies that % sends inclusion morphisms in T
to inclusion maps in F . Whenever P6P ′6S and Q6Q′6S are in Ob(T ), and whenever

P
φ

//

ιP,P ′

��

Q

ιQ,Q′

��

P ′
φ′

// Q′

is a commutative square in T , we say that φ is a restriction of φ′ (and sometimes write
φ′|P,Q=φ); or we may say that φ′ is an extension of φ. Some of the results that follow
can be found in [18, §24]. Most notably, point (a) of Lemma A.8 (and which is the key
point of this appendix) appears to be prefigured in [18, Remark 24.12].

The following lemma collects what are for our purposes the key properties of T ,
established in [16].

Lemma A.5. The following statements hold :
(a) All morphisms of T are both monomorphisms and epimorphisms in the categor-

ical sense. That is, we have left and right cancellation for morphisms in T .
(b) For every φ∈MorT (P,Q), and every P0, Q0∈Ob(T ) such that P06P , Q06Q,

and %(φ) maps P0 into Q0, there is a unique φ0∈MorT (P0, Q0) such that φ0=φ|P0,Q0 .
In particular, every morphism in T is the composition of an isomorphism followed by an
inclusion morphism.

(c) Let φ and φ′ be T -homomorphisms P!Q, and let P0 and Q0 be objects of
T with P06P and Q06Q. Suppose that %(φ) and %(φ′) map P0 into Q0, and that
φ|P0,Q0 =φ′|P0,Q0 . Then φ=φ′.

(d) Let P , 
P , Q and 
Q be objects of T , with PE
P and QE
Q. If φ̄∈MorT (
P , 
Q)
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is an extension of φ∈IsoT (P,Q), then the square

P
φ

//

εP (x)

��

Q

εQ(x(%(φ)))

��

P
φ

// Q

commutes for all x∈
P .

Proof. Three of these points are given by the following results in [16]: (a) by
Lemma 3.2 (b) and Lemma 3.8, (b) by Lemma 3.2 (c), and (d) by Lemma 3.3.

For the proof of (c): write ψ for φ|P0,Q0 , and hence also for φ′|P0,Q0 . Then

ιP0,P �φ=ψ�ιQ0,Q = ιP0,P �φ
′,

and (c) follows from left cancellation.

Lemma A.6. Let φ0:P0!Q0, φ:P!Q, and φ′:P ′!Q′ be T -isomorphisms, and
suppose that both φ and φ′ are extensions of φ0. Then the following statements hold :

(a) P=P ′ if and only if Q=Q′;
(b) There is a unique extension of φ0 to a T -isomorphism φ1:P∩P ′!Q∩Q′, and

each of φ and φ′ is an extension of φ1.

Proof. (a) Suppose that P=P ′. Let x∈NP (P0), and let y and y′ be the images of x
under %(φ) and %(φ′), respectively. Then Lemma A.5 (d), with φ0 in the role of φ, yields

φ−1
0 �εP0(x)�φ= εQ0(y) = εQ0(y

′).

As εQ0 is injective, by condition (B), we get y=y′, and thus %(φ) and %(φ′) agree on
P1 :=NP (P0). Let Q1 be the image of P1 under %(φ). By Lemma A.5 (b), there is a
restriction φ1:P1!Q1 of φ and a restriction φ′1:P1!Q1 of φ′, and Definition A.2 (c)
implies that φ1=φ′1. Replacing φ0 by φ1 in (a), and applying induction on the index of
P0 in P , we obtain Q=Q′ as desired. On the other hand, if Q=Q′ then we obtain P=P ′

by working with φ−1
0 , φ−1, and (φ′)−1.

(b) Set P1=P∩P ′ and Q1=Q∩Q′. Then φ and φ′ have restrictions φ1 and φ′1 to
P1 which, in turn, restrict to φ0. Then (a) implies that φ1 and φ′1 are T -isomorphisms
P1!Q1, and Lemma A.5 (c) yields φ1=φ′1.

Define a relation " on the set Mor(T ) of morphisms of T by φ"φ′ if φ′ is an extension
of φ. That is, φ"φ′ if φ:P!Q and φ′:P ′!Q′ with P6P ′, Q6Q′, and with

ιP,P ′ �φ
′ =φ�ιQ,Q′ .

We may write also φ′#φ for φ"φ′.
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Lemma A.7. The following statements hold :
(a) The relation " induces a partial order on Iso(T ).
(b) The relation " respects composition of morphisms. That is, if φ"φ′ and ψ"ψ′,

and the compositions φ�ψ and φ′�ψ′ are defined, then (φ�ψ)"(φ′�ψ′).

Proof. The transitivity of the relation " is easily verified. Suppose that both φ"φ′

and φ#φ′, where φ∈IsoT (P,Q) and φ′∈IsoT (P ′, Q′). Then P=P ′, Q=Q′, ιP,P ′=ιP , and
ιQ,Q′=ιQ. Further, ιPφ′=φ�ιQ and then φ′=φ since ιP and ιQ are identity morphisms
in T . Thus (a) holds.

Suppose that we are given φ"φ′ and ψ"ψ′, with φ�ψ and φ′�ψ′ defined on objects
P and P ′ respectively. Set Q=Pφ and R=Qψ, and set Q′=P ′φ′ and R′=Q′ψ′. The
following diagram, in which the vertical arrows are inclusion morphisms, adequately
demonstrates that φ�ψ"φ′�ψ′:

P ′
φ′

// Q′
ψ′

// R′

P
φ

//

OO

Q
ψ

//

OO

R.

OO

This yields (b).

Let ≡ be the equivalence relation on Iso(T ) generated by the restriction of " to
isomorphisms. Let L be the set Iso(T )/≡ of equivalence classes. For φ∈Iso(T ) we write
[φ] for the equivalence class containing φ.

Lemma A.8. Let f∈L.
(a) There is a unique maximal φ∈f with respect to ", and φ−1 is then maximal

in [φ−1].
(b) f∩IsoT (P,Q) has cardinality at most 1 for any P,Q∈Ob(T ).

Proof. Let φ:P!Q be maximal in f with respect to ". Suppose that there exists
φ′:P ′!Q′ in f such that φ is not an extension of φ′. Then φ′ may be chosen so that
there exists φ0:P0!Q0 in f with φ0"φ and φ0"φ′. Among all such pairs (φ′, φ0), choose
one so that |P0| is as large as possible. Then Lemma A.6 (b) implies that P0=P∩P ′ and
Q0=Q∩Q′. It follows that NP ′(P0)�P , and so we may replace φ′ by the restriction of
φ′ to NP ′(P0)!NQ′(Q0). That is, we may assume that P0EP ′ and Q0EQ′.

Let λ: AutT (P0)!AutT (Q0) be the isomorphism induced by conjugation by φ0.
Set P1=NP (P0) and Q1=NQ(Q0). Also, set P ′′=〈P1, P

′〉 and Q′′=〈Q1, Q
′〉. Then

Lemma A.5 (d) implies that λ maps εP0(P
′′) onto εP0(Q

′′). By condition (II) in Defini-
tion A.1, there is an extension of φ0 to a T -isomorphism P ′′!Q′′, and the maximality of
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P0 then yields P ′′6P . Thus P ′6P , and we have a contradiction. Hence f has a unique
maximal element φ.

Set ψ=φ−1 and let ψ"ψ̄. Then ψ̄: 
Q!
P for some 
Q containing Q and some 
P

containing P . Then φ"ψ̄−1, so φ=ψ̄−1 and ψ=ψ̄. Thus φ−1 is maximal in its ≡-class,
and (a) holds.

In order to prove (b), let ψ,ψ′∈f∩IsoT (P,Q). Then both ψ and ψ′ are restrictions
of a single φ∈f , by (a). Now Lemma A.5 (b) implies that ψ=ψ′.

Define D to be the set of words w=(f1, ..., fn)∈W(L) such that there exists a
sequence (φ1, ..., φn) of T -isomorphisms with φi∈fi, and a sequence (P0, ..., Pn) of objects
of T with φi:Pi−1!Pi for all i. We also say that w∈D via (P0, ..., Pn), or via P0. Define

Π:D−!L

by setting Π(w)=f , where f is the unique maximal element of [φ1�...�φn] given by
Lemma A.8 (a). That Π is well defined follows from Lemma A.7 (b) and an obvious
induction on the length of w. Set 1=[ιS ], and for any f∈L let f−1 be the equivalence
class of φ−1, where φ is the unique maximal member of f .

Proposition A.9. L, with the above structures, is a partial group. Moreover, the
following statements hold :

(a) For any g∈S, [εS(g)] is the set of all εP,Q(g) such that P g=Q, and εS(g) is
the maximal member of its class;

(b) [ιS ] is the set of all ιP , P∈Ob(T ), and ιS is the maximal member of its class;
(c) For any φ∈Iso(T ), [φ−1] is the set of inverses of the members of [φ].

Proof. We first check that L is a partial group. Of course L is non-empty since T is
non-empty. For any f∈L and any representative φ of f , f is a T -isomorphism between
objects of T , so the word (f) of length 1 is in D. Now let w=(f1, ..., fn) be in D. Clearly,
any prefix u=(f1, ..., fk) and any suffix v=(fk+1, ..., fn) of w is in D, so Definition 2.1 (1)
holds for L. By definition Π(f)=f for f∈L, so Definition 2.1 (2) holds. Definition 2.1 (3)
is a straightforward consequence of associativity of composition of isomorphisms in T ,
and of the definition of Π.

Lemma A.8 (a) implies that the inversion map f 7!f−1 is an involutory bijection.
Now let u=(f1, ..., fn)∈D via (P0, ..., Pn), and set u−1=(f−1

n , ..., f−1
1 ). Then u−1∈D

via (Pn, ..., P0), so u−1
�u∈D. One obtains a representative in the class Π(u−1

�u) via a
sequence of cancellations φ−1

k �φ of representatives φk∈fi, so Π(u−1
�u) is the equivalence

class containing ιP0 . Since ιP0 "ιS , and since 1=[ιS ] by definition, we get Π(u−1
�u)=1.

Thus Definition 2.1 (4) holds in L, and L is a partial group.



132 a. chermak

We now prove (a). Let P6P ′ and Q6Q′ in Ob(T ), and let g be an element of S
such that P g=Q and (P ′)g=Q′. The functoriality of ε yields

εP,P ′(1)�εP ′,Q′(g) = εP,Q′(g) = εP,Q(g)�εQ,Q′(1),

which means that εP,Q(g)"εP ′,Q′(g). In particular, we get εP,Q(g)"εS(g). In order
to complete the proof of (a), it now suffices to show that for any φ∈IsoT (P,Q) with
εS(g)≡φ, we have φ=εP,Q(g).

Suppose this is false, and let σ=(φ1, ..., φn) be a sequence of T -isomorphisms with
φ=φ1, εS(g)=φn, and with either φi"φi+1 or φi#φi+1 for all i with 16i<n. Among
all (φ, P,Q) with φ 6=εP,Q(g) and εS(g)≡φ, choose (φ, P,Q) so that the length of such a
chain σ is as small as possible. Set ψ=φ2. Then ψ=εX,Y (g), where X and Y are objects
of T with Xg=Y . Suppose φ"ψ. Applying the functor % to the commutative diagram

X
εX,Y (g)

//

ιP,X

��

Y

ιQ,Y

��

P
φ

// Q,

and applying condition (B) in Definition A.1 to %(εX,Y (g)), we conclude that %(φ) is
the restriction of cg to the homomorphism %(φ):P!Q. In particular, we get P g=Q,
so that also εP,Q(g) is a restriction of εX,Y (g). Then Lemma A.5 (a) yields φ=εP,Q(g),
contrary to assumption. On the other hand, if φ#ψ, then φ=εP,Q(g) by Lemma A.6,
again contrary to assumption. This completes the proof of (a), and then (b) is the special
case of (a) given by g=1.

Let f=[φ] be an equivalence class, with φ maximal in f . One checks (by reversing
pairs of arrows in the appropriate diagrams) that if ψ is a T -isomorphism, and ψ is a
restriction of φ, then the T -isomorphism ψ−1 is a restriction of φ−1. Point (c) follows
from this observation.

In view of Proposition A.9 (a), there is no harm in writing g to denote the equivalence
class [εS(g)], for g∈S.

Lemma A.10. Let φ:Z!W be a T -isomorphism which is maximal in its ≡-class.
Let X and Y be objects of T contained in Z, and let U and V be the images of X and
Y , respectively, under %(φ). Suppose that there exist elements g and g′ in S such that
the following diagram commutes:

X
φ|X,U

//

εX,Y (g)

��

U

εU,V (g′)

��

Y
φ|Y,V

// V.

(∗)
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Then g∈Z, and g′ is the image of g under %(φ).

Proof. Let φ′ be the composition (in right-hand notation)

φ′ = εZg,Z(g−1)�φ�εW,W g′ (g′).

Thus, φ′∈IsoT (Zg,W g′), and the commutativity of (∗) yields φ|Y =φ′|Y . Hence, φ≡φ′,
and the maximality of φ:Z!W implies that Zg6Z and W g′6W . That is, g∈NS(Z)
and g′∈NS(W ). There is then a commutative diagram as follows:

Z
φ

//

εZ(g)

��

W

εW (g′)

��

Z
φ

// W.

Condition (I) in Definition A.1 implies that there is an extension of φ to a T -isomorphism
〈Z, g〉!〈W, g′〉, and the maximality of φ then yields g∈Z and g′∈W . Condition (C) in
Definition A.1 implies that g′ is the image under %(φ) of g.

Set ∆=Ob(T ).

Corollary A.11. Let f∈L and let P∈∆ with the property that, for all x∈P ,
(f−1, x, f)∈D and Π(f−1, x, f)∈S. Let Q be the set of all such products Π(f−1, x, f).
Then Q∈∆ and there exists ψ∈f such that ψ∈IsoT (P,Q).

Proof. As (f−1, x, f)∈D, there exist U,X, Y, V ∈∆ and representatives ψ and ψ̄ of
f such that

U
ψ̄−1

// X
εX,Y (x)

// Y
ψ

// V

is a chain of T -isomorphisms, and where the middle arrow in the diagram is indeed
εX,Y (x) by Proposition A.9 (a). Since Π(f−1, x, f)∈S, there exists x′∈S such that ψ̄−1

�

εX,Y (x)�ψ=εU,V (x′). Let φ:Z!W be the maximal element of f . Then Lemma A.10
implies that x∈Z, and x′ is the image of x under %(φ). In particular, we have P6Z and
Q6W , and we may therefore take X=Y =P and U=V =Q, obtaining ψ∈IsoT (P,Q).

Lemma A.12. Let ψ:P!Q be a T -isomorphism, and let f=[ψ] be the equivalence
class of ψ. Then P6D(f), and P f=Q in the partial group L.

Proof. For any g∈P , we have the composable sequence

Q
φ−1

// P
εP (g)

// P
φ

// P

of T -isomorphisms, so (f−1, g, f) is in D, and P⊆D(f). By Definition A.1 (C),

ψ−1
�εP (g)�ψ= εQ(g′),
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where g′∈Q. The class [εQ(g′)] is the same as [εS(g′)] by Lemma A.8 (a); and we recall
that we have introduced the convention to denote this class simply as g′. Thus gf=g′,
and so P f⊆Q. The conjugation map g 7!gf is injective by Example 2.4 (c), so P f=Q,
as required.

Proposition A.13. (L,∆, S) is a locality, and if (T , ε, %) is a centric linking sys-
tem (in the sense of [7] and [16]) then L is a centric linking system in the sense of
Definition 2.9.

Proof. First, L is a partial group, by Proposition A.9. In order to show that
(L,∆) is objective, let w=(f1, ..., fn)∈D. By definition, there exist representatives ψi
of the classes fi, and a sequence (P0, ..., Pn) of objects of T , such that each ψi is a
T -isomorphism Pi−1!Pi. Then P fi

i−1=Pi for all i, by Lemma A.12. Conversely, given
w=(f1, ..., fn)∈W, and given (P0, ..., Pn)∈W(∆) with P fi

i−1=Pi for all i, it follows from
Corollary A.11 that w∈D. Thus, (L,∆) satisfies condition (O1) of Definition 2.6. Con-
dition (O2) is given by Corollary A.11, so (L,∆) is objective. That is, condition (L1) for
a locality holds. Also, since T is finite by Definition A.1, L is finite.

The mapping AutT (S)!NL(S) given by ψ 7![ψ] is a homomorphism, as follows
from Lemma A.7. It is surjective by the definition of L, and injective by Lemma A.8 (b).
As εS(S)∈Sylp(AutT (S)), by Definition A.1 (I), we conclude that S∈Sylp(NL(S)), and
hence S is maximal in the poset of p-subgroups of L. That is, (L2) holds for L, and thus
L is a locality.

Now suppose that (T , ε, %) is a centric linking system. That is, suppose that
∆=Ob(T ) is the set Fc of F-centric subgroups of S, and suppose for each object P
that Z(P )=Ker(%P ). Let µ: AutT (P )!NL(P ) be the mapping φ 7![φ]. Then µ is a
homomorphism by Lemma A.7 (b). Let φ∈Ker(µ). Then [φ]=[ιS ], so φ"ιS , and then
φ=ιP by Proposition A.9 (b). That is, φ is the identity element of AutT (P ), and thus
Ker(µ)=1. Now let f∈NL and let ψ∈f be the maximal element. Then ψ restricts to
a T -automorphism φ of P by Corollary A.11, so µ is surjective, and hence an isomor-
phism. Since Z(P )=Ker(%P )=CAutT (P ), we conclude that CL(P )=Z(P ), and hence L
is a centric linking system in the sense of Definition 2.9.

Let φ:P!Q be a morphism in T (and not necessarily a T -isomorphism). Let Q0

be the image of P under the homomorphism %(φ). Then, by Lemma A.5 (b), there is a
well-defined restriction φ0=φ|P,Q0 of φ to a T -isomorphism P!Q0.

Lemma A.14. There is a functor η: T !Cat(L,∆) such that η is the identity map
on the set of objects, and such that

ηP,Q:MorT (P,Q)−!MorCat(L,∆)(P,Q)
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is the mapping φ 7!(f, P,Q), where f is the ≡-class of the T -isomorphism φ0:P!Q0,
and where Q0 is the image of P under %(φ).

Proof. Let φ:P!Q and ψ:Q!R be composable morphisms in T , let Q0 be the
image of P under %(φ), and let R1 be the image of Q0 under %(ψ). The restrictions
φ0φ|P0,Q0 and ψ1=ψ|Q0,R1 are then composable T -isomorphisms. Set θ=φ0�ψ1. Then
the product [φ0][ψ1] of ≡-classes is defined in L, and is equal to [θ], by Lemma A.7 (b).
Set f=[φ0] and g=[ψ1]. Thus [θ]=fg, so (f, P,Q)�(g,Q,R)=(fg,Q,R) in Cat(L,∆).
This shows that η is a functor.

Lemma A.15. There is a functor ξ: Cat(L,∆)!T such that ξ is the identity map
on the set of objects, and such that

ξP,Q:MorCat(L,∆)(P,Q)−!MorT (P,Q)

is the mapping (f, P,Q) 7!φ|P,P f �ιP f ,Q, where φ is the maximal element in the ≡-class f .
Moreover, ξ is invertible, and its inverse is η.

Proof. Let (f, P,Q) and (g,Q,R) be composable morphisms in Cat(L,∆), and let
φ∈f and ψ∈g be maximal. Then the composition ξ(f, P,Q)�ξ(g,Q,R) is defined in T ,
as the following calculation shows:

ξ(f, P,Q)�ξ(g,Q,R) = (φ|P,P f �ιP f ,Q)�(ψ|Q,Qg �ιQg,R)

=φ|P,P f �ψ|P f ,P fg �ιP fg,Qg �ιQg,R (∗)

=φ|P,P f �ψ|P f ,P fg �ιP fg,R.

Set θ0=φ|P,P f �ψ|P f ,P fg . Then fg=[θ0], by the definition of the product in L. Let θ be
the maximal element of fg. Then θ0=θ|P,P fg , and (∗) then yields

ξ(f, P,Q)�ξ(g,Q,R) = θ|P,P fg �ιP fg,R = ξ(fg, P,R).

Thus, ξ is a functor.
Set P ′=P f . By Corollary A.11, there exists γ∈f such that γ=φ|P,P ′ . The functor

%: T !F sends MorT (P, P ′) to HomF (P, P ′), so P f is the image of P under %(γ). Then
also P f is the image of P under %(φ), since %(γ) is a restriction of the homomorphism
%(φ) by Definition A.1 (C). We now note that

η(ξ(f, P,Q))= η(φ|P,P f �ιP f ,Q).

By the definition of η, η(ξ(f, P,Q)) is then (f ′, P,Q), where f ′ is the ≡-class of the T -
isomorphism φ|P,P f . That is, f ′=f , and the composition ξ followed by η is the identity
functor on Cat(L,∆).
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In the other order: consider ξ(η(θ)), where θ:A!B is an arbitrary T -morphism.
Let B0 be the image of A under %(θ). Then η(θ)=(h,A,B), where h=[θ0] and where
θ0:A!B0 is the restriction θ|A,B0 . Applying ξ to (h,A,B) yields the T -morphism θ′,
where

θ′ = θ∗|A,B0 �ιB0,B ,

and where θ∗ is the maximal element in the ≡-class h. Maximality of θ∗ yields θ0"θ∗,
and then θ∗|A,B0 =θ0. Now Lemma A.5 (b) yields θ′=θ, and thus η followed by ξ is the
identity morphism on T , completing the proof.

We are now able to prove Theorem A, and to thereby translate the main theorem
into the language of [7] and [16].

Theorem A. Let F be a saturated fusion system on the finite p-group S. Then,
up to isomorphism of transporter systems, there exists a unique centric linking system
(T , ε, %) over F .

Proof. Existence is given by Corollary A.4. Now let (T , ε, %) and (T ′, ε′, %′) be cen-
tric linking systems over F in the sense of [16]. Set (L,∆, S)=(Iso(T )/≡,Ob(T ), S), and
similarly define (L′,∆′, S). Then ∆=∆′ is the set of F-centric subgroups of S. By Propo-
sition A.13 both L and L′ are F-centric linking systems in the sense of Definition 2.9,
so the main theorem yields a rigid isomorphism β:L!L′. Then Proposition A.3 yields
an isomorphism β∗: Cat(L,∆)!Cat(L′,∆) of categories. We now apply Lemmas A.14
and A.15 to obtain a sequence

T
η

// Cat(L,∆)
β∗

// Cat(L′,∆)
ξ′

// T ′

of isomorphisms. Let α: T !T ′ be the composition. It now remains to show that (in right-
hand notation) ε�α=ε′ and α�%′=%, in order to conclude that α fulfills the requirements
of Definition A.2 for an isomorphism of transporter systems.

Let δ: T∆(S)!Cat(L,∆) be the functor which is the identity map on the set ∆ of
objects, and which sends x∈NS(P,Q) to (x, P,Q). Let σ: Cat(L,∆)!F be the functor
which is the inclusion map ∆!Ob(F) on objects and which sends (f, P,Q) to cf :P!Q.
Define δ′ and σ′ with respect to Cat(L′,∆) in the analogous way. We now check that
the following diagram of categories and functors (in which “=” indicates the identity



fusion systems and localities 137

functor) commutes:

T∆(S)

ε

��

T∆(S)

δ

��

T∆(S)

δ′

��

T∆(S)

ε′

��

T
η

//

%

��

Cat(L,∆)
β∗

//

σ

��

Cat(L′,∆)
ξ′

//

σ′

��

T ′

%′

��

F F F F .

Note that, by Lemma A.15, ξ′ is the inverse of a corresponding η′, so by symmetry it
will suffice to check the two left-hand squares and the middle squares in this diagram for
commutativity. Note also that all the arrows in the diagram act trivially on objects, so
the problem is to check for commutivity when the arrows are applied to morphisms. We
shall write all mappings to the right in the following calculations.

We first consider the two middle squares. Given x∈NS(P,Q), one obtains

(xδP,Q)β∗ =(x, P,Q)β∗ =(xβ, P,Q) = (x, P,Q) =xδ′P,Q,

since β is the identity on S. Also, given a morphism (f, P,Q) in Cat(L,∆), one obtains

((f, P,Q)β∗)σ′ =(fβ, P,Q)σ′ = [cfβ :P !Q] = [cf :P !Q] = (f, P,Q)σ,

since cfβ=cf on any subgroup of Sf , again by the rigidity of β. Thus δ�β∗=δ′ and
β∗�σ′=σ.

Next, in order to show that ε�η=δ, we need to verify that (xεP,Q)η=(x, P,Q) for
x∈NS(P,Q). By definition, η maps xεP,Q to ([φ0], P,Q), where φ0 is the restriction
xεP,Px of xεP,Q. Since x∈S, the maximal element of [φ0] is xεS , and [xεS ] is (by the
convention established earlier) the element x of L. Thus ε�η=δ.

Finally, let φ:P!Q be a T -morphism and set φ0=φP,P ′ , where P ′ is the image of
P under (φ)%. Applying η�σ to φ we obtain cf :P!Q, where f=[φ0]. Then P ′=P f

by Lemma A.12. For any x∈P , Definition A.1 (C) yields φ−1
0 �xεP �φ0=x′εP ′ , where x′

is the image of x under (φ0)%. Thus, conjugation cf :P!P ′ is, by the definition of the
product Π in L, given by

x= [xεP ] 7−! [φ−1
0 �xεP �φ0] = [x′εP ′ ] =x′,

and this shows that ((φ0)η)σ=(φ0)%. But φ=φ0�ιP ′,Q, where (ιP ′,Q)η=(1, P ′, Q), and
where (1, P ′, Q)σ is the inclusion map P ′⊆Q. Functoriality of η and σ then yields that
(φ)(η�σ) is just (φ0)% followed by inclusion. Since also % sends inclusion morphisms
to inclusion maps, the result is that (φ)(η�σ)=(φ)%. This completes the proof that
the big diagram commutes, and hence that α: T !T ′ is an isomorphism of transporter
systems.
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