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1. Introduction

1.1. Wigner matrices and local statistics

The goal of this paper is to establish a universality property for the local eigenvalue
statistics for random matrices. To simplify the presentation, we are going to focus on
Wigner Hermitian matrices, which are perhaps the most prominent model in the field.
We emphasize however that our main theorem (Theorem 15) is stated in a much more
general setting, and can be applied to various other models of random matrices (such as
random real symmetric matrices, for example).

Definition 1. (Wigner matrices) Let n be a large number. A Wigner Hermitian
matrix (of size n) is defined as a random Hermitian n×n matrix Mn with upper triangu-
lar complex entries ζij :=ξij +τij

√
−1, 16i<j6n, and diagonal real entries ξii, 16i6n,

where
• for 16i<j6n, ξij and τij are independent identically distrubuted (iid) copies of

a real random variable ξ with mean zero and variance 1
2 ;

• for 16i6n, ξii are iid copies of a real random variable ξ̃ with mean zero and
variance 1;

• ξ and ξ̃ have exponential decay, i.e., there exist constants C and C ′ such that
P(|ξ|>tC)6exp(−t) and P(|ξ̃|>tC)6exp(−t) for all t>C ′.

We refer to ξ and ξ̃ as the atom distributions of Mn, and to ξij and τij as the atom
variables. We refer to the matrix Wn :=Mn/

√
n as the coarse-scale normalized Wigner

Hermitian matrix, and to An :=Mn
√
n as the fine-scale normalized Wigner Hermitian

matrix.

Example 2. An important special case of a Wigner Hermitian matrix is the Gaussian
unitary ensemble (GUE), in which ξ and ξ̃ are Gaussian random variables with mean
zero and variance 1

2 and 1, respectively. The coarse-scale normalization Wn is convenient
for placing all the eigenvalues in a bounded interval, while the fine-scale normalization
An is convenient for keeping the spacing between adjacent eigenvalues to be roughly of
unit size.
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Given an n×n Hermitian matrix A, we denote its n eigenvalues by

λ1(A) 6 ...6λn(A),

and write λ(A):=(λ1(A), ..., λn(A)). We also let u1(A), ..., un(A)∈Cn be an orthonor-
mal basis of eigenvectors of A with Aui(A)=λi(A)ui(A); these eigenvectors ui(A) are
only determined up to a complex phase even when the eigenvalues are simple, but this
ambiguity will not cause a difficulty in our results, as we will only be interested in the
magnitude |ui(A)∗X| of various inner products ui(A)∗X of ui(A) with other vectors X.

The study of the eigenvalues λi(Wn) of (normalized) Wigner Hermitian matrices has
been one of the major topics of study in random matrix theory. The properties of these
eigenvalues are not only interesting in their own right, but also have been playing essential
roles in many other areas of mathematics, such as mathematical physics, probability,
combinatorics, and the theory of computing.

It will be convenient to introduce the following notation for frequent events depend-
ing on n, in increasing order of likelihood:

Definition 3. (Frequent events) Let E be an event depending on n.
• E holds asymptotically almost surely if(1) P(E)=1−o(1).
• E holds with high probability if P(E)>1−O(n−c) for some constant c>0.
• E holds with overwhelming probability if P(E)>1−OC(n−C) for every constant

C>0 (or equivalently, if P(E)>1−exp(−ω(log n))).
• E holds almost surely if P(E)=1.

Remark 4. Note from the union bound that the intersection of O(nO(1)) many events
with uniformly overwhelming probability, still has overwhelming probability. Unfortu-
nately, the same is not true for events which are merely of high probability, which will
cause some technical difficulties in our arguments.

A cornerstone of this theory is the Wigner semi-circular law. Denote by %sc the
semi-circle density function with support on [−2, 2],

%sc(x) :=


√

4−x2

2π
, if |x|6 2,

0, if |x|> 2.
(1)

(1) See §1.7 for our conventions on asymptotic notation.
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Theorem 5. (Semi-circular law) Let Mn be a Wigner Hermitian matrix. Then, for
any real number x,

lim
n!∞

1
n
|{1 6 i6n :λi(Wn) 6x}|=

∫ x

−2

%sc(y) dy,

in the sense of probability (and also in the almost sure sense, if the Mn’s are all minors of
the same infinite Wigner Hermitian matrix ), where we use |I| to denote the cardinality
of a finite set I.

Remark 6. Wigner [47] proved this theorem for special ensembles. The general ver-
sion above is due to Pastur [36] (see [1] and [2] for detailed discussions). The semi-circular
law in fact holds under substantially more general hypotheses than those given in Defini-
tion 1, but we will not discuss this matter further here. One consequence of Theorem 5
is that we expect most of the eigenvalues of Wn to lie in the interval (−2+ε, 2+ε) for
ε>0 small; we shall thus informally refer to this region as the bulk of the spectrum.

Several stronger versions of Theorem 5 are known. For instance, it is known (see
e.g. [3] and [4]) that asymptotically almost surely, one has

λj(Wn) = t
( j
n

)
+O(n−δ) (2)

for all 16j6n and some absolute constant δ>0, where −26t(a)62 is defined by

a=:
∫ t(a)

−2

%sc(x) dx. (3)

In particular we have
sup

16i6n
|λi(Mn)|=2

√
n (1+o(1)) (4)

asymptotically almost surely (see [4] for further discussion).
Theorem 5 addressed the global behavior of the eigenvalues. The local properties

are much harder and their studies require much more sophisticated tools. Most of the
precise theorems have been obtained for the GUE, defined in Example 2. In the next
few paragraphs, we mention some of the most famous results concerning this model.

1.2. Distribution of the spacings (gaps) of the eigenvalues of GUE

In this section Mn is understood to have the GUE distribution.
For a vector x=(x1, ..., xn), with x1<x2 ...<xn, define the normalized gap distribu-

tion Sn(s;x) by the formula

Sn(s;x) :=
1
n
|{1 6 i6n :xi+1−xi 6 s}|.
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For the GUE ensemble it is known [34] that

lim
n!∞

ESn(s, λ(An))=
∫ s

0

p(σ) dσ, (5)

where An :=Mn
√
n is the fine-scale normalization of Mn, and p(σ) is the Gaudin distri-

bution, given by the formula

p(s) :=
d2

ds2
det(I−K)L2(0,s),

where K is the integral operator on L2((0, s)) with the Dyson sine kernel

K(x, y) :=
sinπ(x−y)
π(x−y)

. (6)

In fact a stronger result is known in the bulk of the spectrum. Let ln be any sequence
of numbers tending to infinity such that ln/n tends to zero. Define

S̃n(s;x, u) :=
1
ln

∣∣∣∣{1 6 i6n :xi+1−xi 6
s

%sc(u)
and |xi−nu|6

ln
%sc(u)

}∣∣∣∣. (7)

It is proven in [15] that for any fixed −2<u<2, we have

lim
n!∞

ES̃n(s;λ(An), u) =
∫ s

0

p(σ) dσ. (8)

The eigenvalue gap distribution has received much attention in the mathematics
community, partially due to the fascinating (numerical) coincidence with the gap distri-
bution of the zeros of the zeta functions. For more discussions, we refer to [13], [14], [29]
and the references therein.

1.3. k-point correlation for GUE

Given a fine-scale normalized Wigner Hermitian matrix An, we can define the sym-
metrized distribution function %

(n)
n : Rn!R+ to be the symmetric function on n vari-

ables such that the distribution of the eigenvalues λ(An) is given by the restriction of
n!%(n)

n (x1, ..., xn) dx1 ... dxn to the region {x16...6xn}. For any 16k6n, the k-point
correlation function %

(k)
n : Rk!R+ is defined as the marginal integral of %(n)

n :

%(k)
n (x1, ..., xk) :=

n!
(n−k)!

∫
Rn−k

%(n)
n (x) dxk+1 ... dxn.

In the GUE case, one has an explicit formula for %(n)
n , obtained by Ginibre [23]:

%(n)
n (x) :=

n−n/2

Z
(2)
n

∏
16i<j6n

|xi−xj |2 exp
(
−x

2
1+...+x2

n

2n

)
, (9)
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where Z(2)
n >0 is a normalizing constant, known as the partition function. From this

formula, one can compute %
(k)
n explicitly. Indeed, it was established by Gaudin and

Mehta [35] that

%(k)
n (x1, ..., xk) =det(Kn(xi, xj))16i,j6k, (10)

where the kernel Kn(x, y) is given by the formula

Kn(x, y) :=
1√
2n

exp
(
−x

2+y2

4n

) n−1∑
j=0

hj

(
x√
2n

)
hj

(
y√
2n

)
,

and h0, ..., hn−1 are the first n Hermite polynomials, normalized to be orthonormal with
respect to exp(−x2) dx. From this and the asymptotics of Hermite polynomials, it was
shown by Dyson [16] that

lim
n!∞

1
%sc(u)k

%(k)
n

(
nu+

t1
%sc(u)

, ..., nu+
tk

%sc(u)

)
=det(K(ti, tj))16i,j6k, (11)

for any fixed −2<u<2 and real numbers t1, ..., tk, where the Dyson sine kernel K was
defined in (6).

1.4. The universality conjecture and previous results

It has been conjectured, since the 1960s, by Wigner, Dyson, Mehta and many others,
that the local statistics (such as the above limiting distributions) are universal, in the
sense that they hold not only for the GUE, but for any other Wigner random matrix also.
This conjecture was motivated by similar phenomena in physics, such as the same laws of
thermodynamics, which should emerge no matter what the details of atomic interaction.

The universality conjecture is one of the central questions in the theory of random
matrices. In many cases, it is stated for a specific local statistics (such as the gap
distribution or the k-point correlation, see [34, p. 9] for example). These problems have
been discussed in numerous books and surveys (see [13], [14] and [34]).

Despite conjecture’s long and distinguished history and the overwhelming supporting
numerical evidence, rigorous results on this problem for general Wigner random matrices
have only begun to emerge recently. At the edge of the spectrum, Soshnikov [41] proved
the universality of the joint distribution of the largest k eigenvalues (for any fixed k),
under the extra assumption that the atom distribution is symmetric.
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Theorem 7. ([41]) Let k be a fixed integer and Mn be a Wigner Hermitian matrix,
whose atom distribution is symmetric. Set Wn :=Mn

√
n. Then the joint distribution of

the k-dimensional random vector

((λn(Wn)−2)n2/3, ..., (λn−k(Wn)−2)n2/3)

has a weak limit as n!∞, which coincides with that in the GUE case. The result also
holds for the smallest eigenvalues λ1, ..., λk.

Note that this significantly strengthens (4) in the symmetric case. (For the non-
symmetric case, see [39] and [40] for some recent results).

Returning to the bulk of the spectrum, Johansson [28] proved (11) and (8) for
random Hermitian matrices whose entries are Gauss divisible. (See also the paper [5]
by Ben Arous and Péché, where they discussed the removal of a technical condition
in [28].) More precisely, Johansson considered the model Mn=(1−t)1/2M1

n+t1/2M2
n,

where 0<t61 is fixed (i.e. independent of n), M1
n is a Wigner Hermitian matrix and

M2
n is a GUE matrix independent of M1

n. We will refer to such matrices as Johansson
matrices.

Theorem 8. ([28]) Formulae (11) (in the weak sense) and (8) (and hence (5)) hold
for Johansson matrices, as n!∞. By “weak sense”, we mean that

lim
n!∞

1
%sc(u)k

∫
Rk

f(t1, ..., tk)%(k)
n

(
nu+

t1
%sc(u)

, ..., nu+
tk

%sc(u)

)
dt1 ... dtk

=
∫

Rk

f(t1, ..., tk) det(K(ti, tj))16i,j6k dt1 ... dtk

(12)

for any test function f∈Cc(Rk).

The property of being Gauss divisible can be viewed as a strong regularity assump-
tion on the atom distribution. Very recently, Erdős, Schlein, Ramirez and Yau [17], [19]
have relaxed this regularity assumption significantly. In particular in [17] an analogue of
Theorem 8 (with k=2 for the correlation and ln polynomial in n for the gap distribution)
is proven assuming that the atom distribution is of the form

ν dx=exp(−V (x)) exp(−x2) dx,

where V (x)∈C6,
∑6

i=1 |V j(x)|6C(1+x2)k and ν(x)6C ′ exp(−δx2) for some fixed k, δ,
C and C ′. It was remarked in [17] that the last (exponential decay) assumption can be
weakened somewhat.

Finally, let us mention that in a different direction, universality was established by
Deift, Kriecherbauer, McLaughlin, Venakides and Zhou [15], Pastur and Shcherbina [37],
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and Bleher and Its [6] for a different model of random matrices, where the joint distri-
bution of the eigenvalues is given explicitly by the formula

%(n)
n (x1, ..., xn) := cn

∏
16i<j6n

|xi−xj |2 exp(−V (x)), (13)

where V is a general function and cn>0 is a normalization factor. The case V =x2

corresponds to (9). For a general V , the entries of the matrix are correlated, and so this
model differs from the Wigner model. (See [32] for some recent developments concerning
these models, which are studied using the machinery of orthogonal polynomials.)

One of the main difficulties in establishing universality for general matrix ensem-
bles lies in the fact that most of the results obtained in the GUE case (and the case in
Johansson’s theorem and those in [6], [15] and [37]) came from heavy use of the explicit
joint distribution of the eigenvalues such as (9) and (13). The desired limiting distri-
butions were proven using estimates on integrals with respect to these measures. Very
powerful tools have been developed to handle this task (see [13] and [34] for example),
but they cannot be applied for general Wigner matrices where an explicit measure is not
available.

Nevertheless, some methods have been developed which do not require the explicit
joint distribution. For instance, Soshnikov’s result [41] was obtained using the (com-
binatorial) trace method rather than from an explicit formula from the distribution,
although it is well understood that this method, while efficient for the studying of the
edge, is of much less use in the study of the spacing distribution in the bulk of the
spectrum. The recent argument in [19] also avoid explicit formulae, relying instead on
an analysis of the Dyson Brownian motion, which describes the stochastic dynamics of
the spectrum of Johansson matrices Mn=(1−t)1/2M1

n+t1/2M2
n in the t variable. (On

the other hand, the argument in [17] uses explicit formulae for the joint distribution.)
However, it appears that their method still requires a high degree of regularity on the
atom distribution, whereas here we shall be interested in methods that do not require
any regularity hypotheses at all (and in particular will be applicable to discrete atom
distributions(2)).

1.5. Universality theorems

In this paper, we introduce a new method to study the local statistics. This method
is based on the Lindeberg strategy [33] of replacing non-Gaussian random variables

(2) Subsequently to the release of this paper, we have realized that the two methods can in fact be
combined to address the gap distribution problem and the k-point correlation problem even for discrete
distributions without requiring moment conditions; see [18] for details.
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with Gaussian ones. (For more modern discussions about Lindeberg’s method, see [8]
and [38].) Using this method, we are able to prove universality for general Wigner ma-
trices under very mild assumptions. For instance, we have the following result.

Theorem 9. (Universality of gap) The limiting gap distribution (5) holds for Wigner
Hermitian matrices whose atom distribution ξ has support on at least three points. The
stronger version (8) holds for Wigner Hermitian matrices whose atom distribution ξ has
support on at least three points and is such that the third moment Eξ3 vanishes.

Remark 10. Our method also enables us to prove the universality of the variance
and higher moments. Thus, the whole distribution of Sn(s, λ) is universal, not only its
expectation. See Remark 31.

Theorem 11. (Universality of correlation) The k-point correlation (11) (in the weak
sense) holds for Wigner Hermitian matrices whose atom distribution ξ has support on
at least three points and is such that the third moment Eξ3 vanishes.

These theorems (and several others, see §1.6) are consequences of our more general
main theorem below (Theorem 15). Roughly speaking, Theorem 15 states that the local
statistics of the eigenvalues of a random matrix is determined by the first four moments
of the atom distributions.

Theorem 15 applies in a very general setting. We will consider random Hermitian
matrix Mn with entries ξij obeying the following condition.

Definition 12. (Condition C0) A random Hermitian matrix An=(ζij)16i,j6n is said
to obey condition C0 if

• the variables ζij are independent (but not necessarily identically distributed) for
16i6j6n, and have mean zero and variance 1;

• (uniform exponential decay) there exist constants C,C ′>0 such that

P(|ζij |> tC) 6 exp(−t) (14)

for all t>C ′ and 16i, j6n.

Clearly, all Wigner Hermitian matrices obey condition C0. However, the class of
matrices obeying condition C0 is much richer. For instance the Gaussian orthogonal
ensemble (GOE), in which ζij≡N(0, 1) independently for all i<j and ζii≡N(0, 2), is also
essentially of this form,(3) and so are all Wigner real symmetric matrices (the definition
of which is given at the end of this section).

(3) Note that for GOE a diagonal entry has variance 2 rather than 1. We thank Sean O’Rourke
for pointing out this issue. On the other hand, Theorem 15 still holds if we change the variances of the
diagonal entries, see Remark 16.
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Definition 13. (Moment matching) We say that two complex random variables ζ
and ζ ′ match to order k if

ERe(ζ)mIm(ζ)l =ERe(ζ ′)mIm(ζ ′)l

for all m, l>0 such that m+l6k.

Example 14. Given two random matrices An=(ζij)16i,j6n and A′n=(ζ ′ij)16i,j6n

obeying condition C0, ζij and ζ ′ij automatically match to order 1. If they are both
Wigner Hermitian matrices, then they automatically match to order 2. If furthermore
they are also symmetric (i.e. An has the same distribution as −An, and similarly for A′n
and −A′n), then ζij and ζ ′ij automatically match to order 3.

The following is our main result.

Theorem 15. (Four moment theorem) There is a small positive constant c0 such
that for every 0<ε<1 and k>1 the following holds. Let

Mn =(ζij)16i,j6n and M ′
n =(ζ ′ij)16i,j6n

be two random matrices satisfying C0. Assume furthermore that ζij and ζ ′ij , 16i<j6n,
match to order 4, and that ζii and ζ ′ii, 16i6n, match to order 2. Set An :=Mn

√
n and

A′n :=M ′
n

√
n, and let G: Rk!R be a smooth function obeying the derivative bounds

|∇jG(x)|6nc0 (15)

for all 06j65 and x∈Rk. Then, for any εn6i1<...<ik6(1−ε)n and for n sufficiently
large depending on ε and k (and the constants C and C ′ in Definition 12), we have

|EG(λi1(An), ..., λik
(An))−EG(λi1(A

′
n), ..., λik

(A′n))|6n−c0 . (16)

If ζij and ζ ′ij only match to order 3 rather than 4, then there is a positive constant C
independent of c0 such that the conclusion (16) still holds provided that one strengthens
(15) to

|∇jG(x)|6n−Cjc0

for all 06j65 and x∈Rk.

The proof of this theorem begins in §3.3. As mentioned earlier, Theorem 15 asserts
(roughly speaking) that the fine spacing statistics of a random Hermitian matrix in the
bulk of the spectrum are only sensitive to the first four moments of the entries. It may
be possible to reduce the number of matching moments in this theorem, but this seems
to require a refinement of the method; see §3.2 for further discussion.
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Remark 16. Theorem 15 still holds if we assume that the diagonal entries ζii and ζ ′ii
have the same mean and variance, for all 16i6n, but these means and variances can be
different at different i. The proof is essentially the same. In our analysis, we consider the
random vector formed by non-diagonal entries of a row, and it is important that these
entries have mean zero and the same variance, but the mean and variance of the diagonal
entries never play a role. Details will appear elsewhere.

Remark 17. In a subsequent paper [46], we show that the condition

εn6 i1< ...< ik 6 (1−ε)n

can be omitted. In other words, Theorem 15 also holds for eigenvalues at the edge of the
spectrum.

Applying Theorem 15 to the special case when M ′
n is GUE, we obtain the following.

Corollary 18. Let Mn be a Wigner Hermitian matrix whose atom distribution ξ

satisfies Eξ3=0 and Eξ4= 3
4 , and let M ′

n be a random matrix sampled from GUE. Then,
with G, An and A′n as in the previous theorem, and n sufficiently large, one has

|EG(λi1(An), ..., λik
(An))−EG(λi1(A

′
n), ..., λik

(A′n))|6n−c0 . (17)

In the proof of Theorem 15, the following lower tail estimate on the consecutive
spacings plays an important role. This theorem is of independent interest, and will also
help in applications of Theorem 15.

Theorem 19. (Lower tail estimates) Let 0<ε<1 be a constant, and let Mn be a
random matrix obeying condition C0. Set An :=Mn

√
n. Then, for every c0>0, and for

n sufficiently large depending on ε, c0 and the constants C and C ′ in Definition 12, and
for each εn6i6(1−ε)n, one has λi+1(An)−λi(An)>n−c0 with high probability. In fact,
one has

P(λi+1(An)−λi(An) 6n−c0) 6n−c1

for some c1>0 depending on c0 (and independent of ε).

The proof of this theorem begins in §3.5.

1.6. Applications

By using Theorems 15 and 19 in combination with existing results in the literature for
GUE (or other special random matrix ensembles), one can establish universal asymptotic
statistics for a wide range of random matrices. For instance, consider the ith eigenvalue
λi(Mn) of a Wigner Hermitian matrix. In the GUE case, Gustavsson [26], based on [11]
and [42], proved that λi has Gaussian fluctuation:
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Theorem 20. (Gaussian fluctuation for GUE [26]) Let i=i(n) be such that i/n!c,
as n!∞, for some 0<c<1. Let Mn be drawn from the GUE. Set An :=Mn

√
n. Then√

4−t(i/n)2

2
λi(An)−t(i/n)n√

log n
!N(0, 1)

in the sense of distributions, where t( ·) is defined in (3). More informally, we have

λi(Mn)≈ t
( i
n

)√
n+N

(
0,

2 log n
(4−t(i/n)2)n

)
.

As an application of our main results, we have the following.

Corollary 21. (Universality of Gaussian fluctuation) The conclusion of Theo-
rem 20 also holds for any other Wigner Hermitian matrix Mn whose atom distribution
ξ satisfies Eξ3=0 and Eξ4= 3

4 .

Proof. Let Mn be a Wigner Hermitian matrix, and let M ′
n be drawn from GUE. Let

i, c and t be as in Theorem 20, and let c0 be as in Theorem 19. In view of Theorem 20,
it suffices to show that

P(λi(A′n)∈ I−)−n−c0 6P(λi(An)∈ I) 6P(λi(A′n)∈ I+)+n−c0 (18)

for all intervals I=[a, b], and n sufficiently large depending on i and the constants C
and C ′ in Definition 1, where

I+ := [a−n−c0/10, b+n−c0/10] and I− := [a+n−c0/10, b−n−c0/10].

We will just prove the second inequality in (18), as the first is very similar. We
define a smooth bump function G: R!R+ equal to 1 on I− and vanishing outside I+.
Then we have

P(λi(An)∈ I) 6EG(λi(An))

and
EG(λi(A′n))6P(λi(A′n)∈ I).

On the other hand, one can choose G to obey (15). Thus, by Corollary 18, we have

|EG(λi(An))−EG(λi(A′n))|6n−c0 ,

and the second inequality in (18) follows by the triangle inequality. The first inequality
is similarly proven using a smooth function which is 1 on I− and vanishes outside I.
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Remark 22. The same argument lets one establish the universality of the asymp-
totic joint distribution law for any k eigenvalues λi1(Mn), ..., λik

(Mn) in the bulk of the
spectrum of a Wigner Hermitian matrix for any fixed k (the GUE case is treated in [26]).
In particular, we have the generalization

P(λij (A
′
n)∈ Ij,− for all 1 6 j6 k)+Ok(n−c0)

6P(λij
(An)∈ Ij for all 1 6 j6 k)

6P(λij
(A′n)∈ Ij,+ for all 1 6 j6 k)+Ok(n−c0)

(19)

for all i1, ..., ik between εn and (1−ε)n for some fixed ε>0, and all intervals I1, ..., Ik,
assuming n is sufficiently large depending on ε and k, and Ij,−⊂Ij⊂Ij,+ are defined as
in the proof of Corollary 21. The details are left as an exercise to the interested reader.

Another quantity of interest is the least singular value

σn(Mn) := inf
16i6n

|λi(Mn)|

of a Wigner Hermitian matrix. In the GUE case, we have the following asymptotic
distribution.

Theorem 23. (Distribution of least singular value of GUE [1, Theorem 3.1.2], [27])
For any fixed t>0, and Mn drawn from GUE, one has

P
(
σn(Mn) 6

t

2
√
n

)
! exp

(∫ t

0

f(x)
x

dx

)
as n!∞, where f : R!R is the solution of the differential equation

(tf ′′)2+4(tf ′−f)(tf ′−f+(f ′)2) = 0

with the asymptotics

f(t) =− t

π
− t2

π2
− t3

π3
+O(t4) as t! 0.

Using our theorems, we can extend this result to more general ensembles:

Corollary 24. (Universality of the distribution of the least singular value) The
conclusions of Theorem 23 also hold for any other Wigner Hermitian matrix Mn whose
atom distribution ξ satisfies Eξ3=0 and Eξ4= 3

4 .
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Proof. Let Mn be a Wigner Hermitian matrix, and let M ′
n be drawn from GUE.

Let NI be the number of eigenvalues of W ′
n in an interval I. It is well known (see [1,

Chapter 4]) that

NI =
∫

I

%sc(x) dx+O(log n) (20)

asymptotically almost surely (cf. (2) and Theorem 20). Applying this fact to the two
intervals I=[−∞,±t/2

√
n ], we conclude that

P
(
λn/2±(log n)2(M ′

n)∈
(
− t

2
√
n
,

t

2
√
n

))
= o(1)

for either choice of sign ±. Using (18) (or (19)) (and modifying t slightly), we conclude
that the same statement is true for Mn. In particular, we have

P
(
σn(Mn)>

t

2
√
n

)
=

n/2+(log n)2∑
i=n/2−(log n)2

P
(
λi(Mn)<− t

2
√
n

and λi+1(Mn)>
t

2
√
n

)
+o(1),

and similarly for M ′
n. Using (19), we see that

P
(
λi(Mn)<− t

2
√
n

and λi(Mn)>− t

2
√
n

)
6P

(
λi(M ′

n)<− t

2
√
n

+n−c0/10 and λi+1(M ′
n)>

t

2
√
n
−n−c0/10

)
+O(n−c0)

and

P
(
λi(Mn)<− t

2
√
n

and λi(Mn)>− t

2
√
n

)
>P

(
λi(M ′

n)<− t

2
√
n
−n−c0/10 and λi+1(M ′

n)>
t

2
√
n

+n−c0/10

)
−O(n−c0)

for some c>0. Putting this together, we conclude that

P
(
σn(M ′

n)>
t

2
√
n
−n−c0/10

)
+o(1)6P

(
σn(Mn)>

t

2
√
n

)
6P

(
σn(M ′

n)>
t

2
√
n

+n−c0/10

)
+o(1),

and the claim follows.

Remark 25. A similar universality result for the least singular value of non-Hermitian
matrices was recently established by the authors in [45]. Our arguments in [45] also used
the Lindeberg strategy, but were rather different in many other respects (in particular,
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they proceeded by analyzing random submatrices of the inverse matrixM−1
n ). One conse-

quence of Corollary 24 is that Mn is asymptotically almost surely invertible. For discrete
random matrices, this is already a non-trivial fact, first proven in [9]. If Theorem 23
can be extended to the Johansson matrices considered in [28], then the arguments below
would allow one to remove the fourth moment hypothesis in Corollary 24 (assuming that
ξ is supported on at least three points).

Remark 26. The above corollary still holds under the weaker assumption that the
first three moments of ξ match those of the Gaussian variable; in other words, we can
omit the last assumption that Eξ4= 3

4 . Details will appear elsewhere.

Remark 27. By combining this result with (4), one also obtains a universal distribu-
tion for the condition number σ1(Mn)/σn(Mn) of Wigner Hermitian matrices (note that
the non-independent nature of σ1(Mn) and σn(Mn) is not relevant, because (4) gives
enough concentration of σ1(Mn) that it can effectively be replaced with 2

√
n). We omit

the details.

Now we are going to prove the first part of Theorem 9. Note that in contrast to
previous applications, we are making no assumptions on the third and fourth moments
of the atom distribution ξ. The extra observation here is that we do not always need to
compare Mn with GUE. It is sufficient to compare it with any model where the desired
statistics have been computed. In this case, we are going to compareMn with a Johansson
matrix. The definition of Johansson matrices provides more degrees of freedom via the
parameters t and M1

n, and we can use this to remove the condition of the third and fourth
moments.

Lemma 28. (Truncated moment matching problem) Let ξ be a real random variable
with mean zero, variance 1, third moment Eξ3=α3 and fourth moment Eξ4=α4<∞.
Then α4−α2

3−1>0, with equality if and only if ξ is supported on exactly two points.
Conversely, if α4−α2

3−1>0, then there exists a real random variable with the specified
moments.

Proof. For any real numbers a and b, we have

0 6E(ξ2+aξ+b)2 =α4+2aα3+a2+2b+b2.

Setting b:=−1 and a:=−α3, we obtain the inequality α4−α2
3−1>0. Equality only occurs

when E(ξ2−α3ξ−1)2=0, which by the quadratic formula implies that ξ is supported on
at most two points.

Now we show that every pair (α3, α4) with α4−α2
3−1>0 arises as the moments of a

random variable with mean zero and variance 1. The set of all such moments is clearly
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convex, so it suffices to check the case when α4−α2
3−1=0. But if one considers the

random variable ξ which equals tan θ with probability cos2 θ and − cot θ with probability
sin2 θ for some − 1

2π<θ<
1
2π, one easily computes that ξ has mean zero, variance 1,

third moment −2 cot 2θ and fourth moment 4 csc 2θ−3, and the claim follows from the
trigonometric identity csc2 2θ=cot2 2θ+1.

Remark 29. The more general truncated moment problem (i.e. the truncated version
of the classical Hamburger moment sequence problem, see [12] and [30]) was solved by
Curto and Fialkow [12].

Corollary 30. (Matching lemma) Let ξ be a real random variable with mean zero
and variance 1, which is supported on at least three points. Then ξ matches to order 4
with (1−t)1/2ξ′+t1/2ξG for some 0<t<1 and some independent ξ′ and ξG of mean zero
and variance 1, where ξG≡N(0, 1) is Gaussian.

Proof. The formal characteristic function

E exp(sξ) :=
∞∑

j=0

sj

j!
Eξj

has the expansion
1+ 1

2s
2+ 1

6α3s
3+ 1

24α4s
4+O(s5).

By Lemma 28, we have that α4−α2
3−1>0. Observe that ξ will match to order 4 with

(1−t)1/2ξ′+t1/2ξG if and only if one has the identity

1+ 1
2s

2+ 1
6α3s

3+ 1
24α4s

4

=
(
1+ 1

2 (1−t)s2+ 1
6 (1−t)3/2α′3s

3+ 1
24 (1−t)2α′4s4

)(
1+ 1

2 ts
2+ 1

8 ts
4
)
+O(s5),

where α′3 and α′4 are the moments of ξ′. Formally dividing out by 1+ 1
2 ts

2+ 1
8 ts

4, one
can thus solve for α′3 and α′4 in terms of α3 and α4. Observe that, as t!0, α′3 and α′4
must converge to α3 and α4, respectively. Thus, for t sufficiently small, we will have
α′4−(α′3)

2−1>0. The claim now follows from Lemma 28.

Proof of the first part of Theorem 9. Let Mn be as in this theorem and consider (5).
By Corollary 30, we can find a Johansson matrix M ′

n which matches Mn to order 4. By
Theorem 8, (5) already holds for M ′

n. Thus it will suffice to show that

ES̃n(s;λ(An))=ES̃n(s;λ(A′n))+o(1).

By (7) and linearity of expectation, it suffices to show that

P(λi+1(An)−λi(An) 6 s) =P(λi+1(A′n)−λi(A′n) 6 s)+o(1)
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uniformly for all εn6i6(1−ε)n, for each fixed ε>0. But this follows by a modification of
the argument used to prove (18) (or (19)), using a function G(x, y) of two variables which
is a smooth approximant to the indicator function of the half-space {(x, y):y−x6s} (and
using Theorem 19 to errors caused by shifting s); we omit the details. The second part
of the theorem will be treated together with Theorem 11.

Remark 31. By considering

P(λi+1(An)−λi(An) 6 s and λj+1(An)−λj(An) 6 s),

we can prove the universality of the variance of Sn(s, λ). The same applies for higher
moments.

The proof of Theorem 11 is a little more complicated. We first need a strengthening
of (2) which may be of independent interest.

Theorem 32. (Convergence to the semi-circular law) Let Mn be a Wigner Hermit-
ian matrix whose atom distribution ξ has vanishing third moment. Then, for any fixed
c>0 and ε>0, and any εn6j6(1−ε)n, one has

λj(Wn) = t
( j
n

)
+O(n−1+c)

asymptotically almost surely, where t( ·) was defined in (3).

Proof. It suffices to show that

λj(Wn)∈
[
t
( j
n

)
−n−1+c, t

( j
n

)
+n−1+c

]
asymptotically almost surely. Let M ′

n be drawn from GUE, and thus the off-diagonal
entries of Mn and M ′

n match to order 3. From (20) we have

λj(W ′
n)∈

[
t
( j
n

)
−n

−1+c

2
, t
( j
n

)
+
n−1+c

2

]
asymptotically almost surely. The claim now follows from the last part of Theorem 15,
letting G=G(λj) be a smooth cutoff function equal to 1 on[

t
( j
n

)
n−n

c

2
, t
( j
n

)
n+

nc

2

]
and vanishing outside [

t
( j
n

)
n−nc, t

( j
n

)
n+nc

]
.
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Proof of Theorem 11. Fix k and u, and let Mn be as in Theorem 11. By Corol-
lary 30, we can find a Johansson matrix M ′

n whose entries match Mn to order 4. By
Theorem 8 (and a slight rescaling), it suffices to show that the quantity∫

Rk

f(t1, ..., tk)%(k)
n (nu+t1, ..., nu+tk) dt1 ... dtk (21)

only changes by o(1) when the matrix Mn is replaced by M ′
n, for any fixed test function f .

By an approximation argument, we can take f to be smooth.
We can rewrite the expression (21) as∑

16i1,...,ik6n

Ef(λi1(An)−nu, ..., λik
(An)−nu). (22)

Applying Theorem 15, we already have

Ef(λi1(An)−nu, ..., λik
(An)−nu) =Ef(λi1(A

′
n)−nu, ..., λik

(A′n)−nu)+O(n−c0)

for each individual i1, ..., ik and some absolute constant c0>0. At the same time, by
Theorem 32, we see that asymptotically almost surely, the only i1, ..., ik which contribute
to (22) lie within O(nc) of t−1(u)n, where c>0 can be made arbitrarily small. The claim
then follows from the triangle inequality (choosing c small enough compared to c0).

Proof of the second part of Theorem 9. This proof is similar to the one above. We
already know that P(λi+1−λi6s) is basically the same in the two models (Mn and M ′

n).
Theorem 32 now shows that after fixing a small neighborhood of u, the interval of indices
i that involve fluctuates by at most nc, where c can be made arbitrarily small.

Remark 33. In fact, in the above applications, we only need Theorem 32 to hold for
Johansson matrices. Thus, in order to remove the third moment assumption, it suffices
to have this theorem for Johansson matrices (without the third moment assumption).
We believe that this is within the power of the determinant process method, but do not
pursue this direction here.

As another application, we can prove the following asymptotic for the determinant
(and more generally, the characteristic polynomial) of a Wigner Hermitian matrix. The
detailed proof is deferred to Appendix A.

Theorem 34. (Asymptotic for determinant) Let Mn be a Wigner Hermitian matrix
whose atom distribution ξ has vanishing third moment and is supported on at least three
points. Then there is a constant c>0 such that

P
(∣∣log |detMn|−log

√
n!
∣∣>n1−c

)
= o(1).



random matrices: universality of local eigenvalue statistics 145

More generally, for any fixed complex number z, one has

P
(∣∣∣∣log |det(Mn−zI

√
n)|−n log n

2
−n

∫ 2

−2

log |y−z|%sc(y) dy
∣∣∣∣>n1−c

)
= o(1),

where the decay rate of o(1) is allowed to depend on z.

Remark 35. A similar result was established for iid random matrices in [44] (see
also [10] for a refinement), based on controlling the distance from a random vector to a
subspace. That method relied heavily on the joint independence of all entries and does
not seem to extend easily to the Hermitian case. We also remark that a universality result
for correlations of the characteristic polynomial has recently been established in [24].

Let us now go beyond the model of Wigner Hermitian matrices. As already men-
tioned, our main theorem also applies for real symmetric matrices. In the next para-
graphs, we formulate a few results that one can obtain in this direction.

Definition 36. (Wigner symmetric matrices) Let n be a large number. A Wigner
symmetric matrix (of size n) is a random symmetric matrix Mn=(ξij)16i,j6n where for
16i<j6n, ξij are iid copies of a real random variable ξ with mean zero, variance 1, and
exponential decay (as in Definition 1), while for 16i6n, ξii are iid copies of a real random
variable ξ′ with mean zero, variance 2 and exponential decay. We set Wn :=Mn/

√
n and

An :=Mn
√
n as before.

Example 37. The Gaussian orthogonal ensemble (GOE) is the Wigner symmetric
matrix in which the off-diagonal atom distribution ξ is the Gaussian N(0, 1), and the
diagonal atom distribution ξ′ is N(0, 2).

As remarked earlier, while the Wigner symmetric matrices do not, strictly speaking,
obey Condition C0, due to the diagonal variance being 2 instead of 1, it is not hard to
verify that all the results in this paper continue to hold after changing the diagonal vari-
ance to 2. As a consequence, we can easily deduce the following analogue of Theorems 9
and 11.

Theorem 38. (Universality for random symmetric matrices) The limiting gap dis-
tribution and k-correlation function of Wigner symmetric real matrices with atom vari-
able σ satisfying Eσ3=0 and Eσ4=3 are the same as those for GOE. (The explicit
formulae for the limiting gap distribution and k-correlation function for GOE can be
found in [1] and [34]. The limit of the k-correlation function is again in the weak sense.)

The proof of Theorem 38 is similar to that of Theorems 9 and 11 and is omitted.
The reason that we need to match the moments to order 4 here (compared to lower
orders in Theorems 9 and 11) is that there is currently no analogue of Theorem 8 for the
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GOE. Once such a result becomes available, the order automatically reduces to those in
Theorems 9 and 11, respectively.

Finally let us mention that our results can be refined and extended in several direc-
tions. For instance, we can handle Hermitian matrices whose upper triangular entries
are still independent, but having a non-trivial covariance matrix (the real and imaginary
parts need not be independent). The diagonal entries can have mean different from zero
(which, in the case when the off-diagonal entries are Gaussian, corresponds to Gaussian
matrices with external field and has been studied in [7]) and we can obtain universal-
ity results in this case as well. We can also refine our argument to prove universality
near the edge of the spectrum. These extensions and many others will be discussed in a
subsequent paper.

1.7. Notation

We consider n as an asymptotic parameter tending to infinity. We use X�Y , Y�X,
Y =Ω(X) or X=O(Y ) to denote the bound X6CY for all sufficiently large n and for
some constant C. Notation like X�kY , or X=Ok(Y ), means that the hidden constant
C depend on another constant k. X=o(Y ), or Y =ω(X), means that X/Y!0 as n!∞;
the rate of decay here will be allowed to depend on other parameters. The eigenvalues
are always ordered increasingly.

We view vectors x∈Cn as column vectors. The Euclidean norm of a vector x∈Cn is
defined as ‖x‖:=(x∗x)1/2. The Frobenius norm ‖A‖F of a matrix is defined as

‖A‖F =trace(AA∗)1/2.

Note that this bounds the operator norm

‖A‖op := sup{‖Ax‖ : ‖x‖=1}

of the same matrix. We will also use the following simple inequalities without further
comment:

‖AB‖F 6 ‖A‖F ‖B‖op and ‖B‖op 6 ‖B‖F ,

and hence

‖AB‖F 6 ‖A‖F ‖B‖F .
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2. Preliminaries: Tools from linear algebra and probability

2.1. Tools from linear algebra

It is useful to keep in mind the (Courant–Fisher) minimax characterization of the eigen-
values

λi(A) =min
V

max
u∈V

u∗Au

of a Hermitian n×n matrix A, where V ranges over the i-dimensional subspaces of Cn,
and u ranges over unit vectors in V .

From this, one easily obtain Weyl’s inequality :

λi(A)−‖B‖op 6λi(A+B) 6λi(A)+‖B‖op. (23)

Another consequence of the minimax formula is the Cauchy interlacing inequality :

λi(An−1) 6λi(An) 6λi+1(An−1) (24)

for all 16i<n, where An is an n×n Hermitian matrix and An−1 is the top (n−1)×(n−1)
minor. In a similar spirit, one has

λi(A) 6λi(A+B) 6λi+1(A)

for all 16i<n, whenever A and B are n×n Hermitian matrices with B being positive
semi-definite and of rank 1. If B is instead negative semi-definite, one has

λi(A) 6λi+1(A+B) 6λi+1(A).

In either event, we conclude the following.

Lemma 39. Let A and B be Hermitian matrices of the same size, with B of rank 1.
Then, for any interval I,

|NI(A+B)−NI(A)|6 1,

where NI(M) is the number of eigenvalues of M in I.

One also has the following more precise version of the Cauchy interlacing inequality.

Lemma 40. (Interlacing identity) Let An be an n×n Hermitian matrix, let An−1 be
the top (n−1)×(n−1) minor, let ann be the bottom right component, and let X∈Cn−1

be the rightmost column with the bottom entry ann removed. Suppose that X is not
orthogonal to any of the unit eigenvectors uj(An−1) of An−1. Then we have

n−1∑
j=1

|uj(An−1)∗X|2

λj(An−1)−λi(An)
= ann−λi(An) (25)

for every 16i6n.
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Proof. By diagonalizing An−1 (noting that this does not affect either side of (25)),
we may assume that An−1=diag(λ1(An−1), ..., λn−1(An−1)) and that uj(An−1)=ej for
j=1, ..., n−1. One then easily verifies that the characteristic polynomial det(An−λI) of
An is equal to (

(ann−λ)−
n−1∑
j=1

|uj(An−1)∗X|2

λj(An−1)−λ

) n−1∏
j=1

(λj(An−1)−λ),

when λ is distinct from λ1(An−1), ..., λn−1(An−1). Since uj(An−1)∗X is non-zero by
hypothesis, we see that this polynomial does not vanish at any of the λj(An−1). Substi-
tuting λi(An) for λ, we obtain (25).

The following lemma will be useful to control the coordinates of eigenvectors.

Lemma 41. ([21]) Let

An =
(
a X∗

X An−1

)
and

(
x

v

)
be, respectively, an n×n Hermitian matrix, for some a∈R and X∈Cn−1, and a unit
eigenvector of An with eigenvalue λi(An), where x∈C and v∈Cn−1. Suppose that none
of the eigenvalues of An−1 is equal to λi(An). Then

|x|2 =
(

1+
n−1∑
j=1

|uj(An−1)∗X|2

(λj(An−1)−λi(An))2

)−1

,

where uj(An−1) is a unit eigenvector corresponding to the eigenvalue λj(An−1).

Proof. By subtracting λi(A)I from A, we may assume that λi(A)=0. The eigenvec-
tor equation then gives

xX+An−1v=0,

and thus
v=−xA−1

n−1X.

Since ‖v′‖2+|x|2=1, we conclude that

|x|2(1+‖A−1
n−1X‖2) = 1.

As

‖A−1
n−1X‖2 =

n−1∑
j=1

|uj(An−1)∗X|2

λj(An−1)2
,

the claim follows.
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The Stieltjes transform sn(z) of a Hermitian matrix W is defined for complex z by
the formula

sn(z) :=
1
n

n∑
i=1

1
λi(W )−z

.

It has the following alternative representation (see e.g. [2, Chapter 11]).

Lemma 42. Let W=(ζij)16i,j6n be a Hermitian matrix and let z be a complex
number which is not in the spectrum of W . Then we have

sn(z) =
1
n

n∑
k=1

1
ζkk−z−a∗k(Wk−zI)−1ak

,

where Wk is the (n−1)×(n−1) matrix with the k-th row and column removed, and
ak∈Cn−1 is the k-th column of W with the k-th entry removed.

Proof. By Schur’s complement,

1
ζkk−z−a∗k(Wk−zI)−1ak

is the kth diagonal entry of (W−zI)−1. Taking traces, one obtains the claim.

2.2. Tools from probability

We will make frequent use of the following lemma, whose proof is presented in Appen-
dix B. This lemma is a generalization of a result in [44].

Lemma 43. (Distance between a random vector and a subspace) Let

X =(ξ1, ..., ξn)∈Cn

be a random vector whose entries are independent with mean zero, variance 1, and are
bounded in magnitude by K almost surely for some K>10(E|ξ|4+1). Let H be a subspace
of dimension d and πH be the orthogonal projection onto H. Then

P
(∣∣‖πH(X)‖−

√
d
∣∣> t

)
6 10 exp

(
− t2

10K2

)
.

In particular, one has
‖πH(X)‖=

√
d+O(K log n)

with overwhelming probability.
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Another useful tool is the following theorem, which is a corollary of a more general
theorem proven in Appendix D.

Theorem 44. (Tail bounds for complex random walks) Let 16N6n be integers,
and let A=(aij)16i6N,16j6n be an N×n complex matrix, whose N rows are orthonormal
in Cn, obeying the incompressibility condition

sup
16i6N

16j6n

|aij |6σ (26)

for some σ>0. Let ζ1, ..., ζn be independent complex random variables with mean zero,
variance E|ζi|2 equal to 1, and obeying E|ζi|36C for some C>1. For each 16i6N , let
Si be the complex random variable

Si :=
n∑

j=1

aijζj ,

and let ~S be the CN -valued random variable with coefficients S1, ..., SN .
• (Upper tail bound on Si) For t>1, we have

P(|Si|> t)� exp(−ct2)+Cσ

for some absolute constant c>0.
• (Lower tail bound on ~S) For any t6

√
N , one has

P(|~S|6 t)�O

(
t√
N

)bN/4c

+CN4t−3σ.

3. Overview of the argument

We now give a high-level proof of our main results, Theorems 15 and 19, contingent on
several technical propositions that we prove in later sections.

3.1. Preliminary truncation

In the hypotheses of Theorems 15 and 19, it is assumed that one has the uniform expo-
nential decay property (14) on the coefficients ζij in the random matrix Mn. From this
and the union bound, we thus see that

sup
16i,j6n

|ζij |6 (log n)C+1
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with overwhelming probability. Since events of probability less than, say, O(n−100) are
negligible for the conclusion of either Theorem 15 or 19, we may thus apply a standard
truncation argument (see e.g. [2]) and redefine the atom variables ζij on the events where
their magnitude exceeds (log n)C+1, so that one in fact has

sup
16i,j6n

|ζij |6 (log n)C+1 (27)

almost surely. (This modification may affect the first, second, third and fourth moments
of the real and imaginary parts of the ζij by a very small factor (e.g. O(n−10)), but
one can easily compensate for this by further adjustment of the ζij , using the Weyl
inequalities (23) if necessary; we omit the details.) Thus we will henceforth assume that
(27) holds when proving both Theorems 15 and 19.

Remark 45. If one only assumed some finite number of moment conditions on ζij ,
rather than the exponential condition (14), then one could only truncate the |ζij | to be
of size n1/C0 for some constant C0 rather than polylogarithmic in n. While several of
our arguments extend to this setting, there is a key induction on n argument in §3.5
that seems to require |ζij | to be of size no(1) or better, which is the main reason why our
results are restricted to random variables of exponential decay. However, this appears to
be a largely technical restriction, and it seems very plausible that the results of this paper
can be extended to atom distributions that are only assumed to have a finite number of
moments bounded.

For technical reasons, it is also convenient to make the qualitative assumption that
the ζij have an (absolutely) continuous distribution in the complex plane, rather than
a discrete one. This is so that pathological events such as eigenvalue collision will only
occur with probability zero and can thus be ignored (though one of course still must deal
with the event that two eigenvalues have an extremely small but non-zero separation).
None of our bounds will depend on any quantitative measure of how continuous the ζij
are, so one can recover the discrete case from the continuous one by a standard limiting
argument (approximating a discrete distribution by a smooth one while holding n fixed,
and using the Weyl inequalities (23) to justify the limiting process); we omit the details.

3.2. Proof strategy for Theorem 15

For sake of exposition let us restrict attention to the case k=1. Thus we wish to show that
the expectation EG(λi(An)) of the random variable G(λi(An)) only changes by O(n−c0)
if one replaces An with another random matrix A′n with moments matching up to fourth
order off the diagonal (and up to second order on the diagonal). To further simplify the
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exposition, let us suppose that the coefficients ζpq of An (or A′n) are real-valued rather
than complex-valued.

At present, A′n differs from An in all n2 components. But suppose we make a much
milder change to An, namely replacing a single entry ζpq

√
n of An with its counterpart

ζ ′pq

√
n for some 16p6q6n. If p 6=q, one also needs to replace the companion entry

ζqp
√
n=ζ̄pq

√
n with ζ ′qp

√
n=ζ̄ ′pq

√
n, to maintain the Hermitian property. This creates

another random matrix Ãn which differs from An in at most two entries. Note that Ãn

continues to obey Condition C0, and has matching moments with either An or A′n up
to fourth order off the diagonal, and up to second order on the diagonal.

Suppose that one could show that EG(λi(An)) differed from EG(λi(Ãn)) by at most
n−2−c0 , when p 6=q, and by at most n−1−c0 , when p=q. Then, by applying this swapping
procedure once for each pair 16p6q6n and using the triangle inequality, one would
obtain the desired bound |EG(λi(An))−EG(λi(A′n))|=O(n−c0).

Now let us see why we would expect EG(λi(An)) to differ from EG(λi(Ãn)) by such
a small amount. For sake of concreteness let us restrict attention to the off-diagonal
case p 6=q, where we have four matching moments; the diagonal case p=q is similar but
one only assumes two matching moments, which is ultimately responsible for the n−1−c0

error rather than n−2−c0 .

Let us freeze (or condition on) all the entries of An except for the (p, q) and (q, p)
entries. For any complex number z, let A(z) denote the matrix which equals An except
at the (p, q) and (q, p) entries, where it equals z and z̄, respectively. (Actually, with our
hypotheses, we only need to consider real-valued z.) Thus it would suffice to show that

EF (ζpq

√
n ) =EF (ζ ′pq

√
n )+O(n−2−c0) (28)

for all (or at least most) choices of the frozen entries of An, where F (z):=G(λi(A(z))).
Note from (27) that we only care about values of z of size O(n1/2+o(1)).

Suppose we could show the derivative estimates

dl

dzl
F (z) =O(n−l+O(c0)+o(1)) (29)

for l=1, ..., 5. (If z were complex-valued rather than real-valued, we would need to
differentiate with respect to the real and imaginary parts of z separately, as F is not
holomorphic, but let us ignore this technicality for now.) Then, by Taylor’s theorem
with remainder, we would have

F (z) =F (0)+F ′(0)z+...+
1
4!
F (4)(0)z4+O(n−5+O(c0)+o(1)|z|5),
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and so in particular (using (27))

F (ζpq

√
n ) =F (0)+F ′(0)ζpq

√
n+...+

1
4!
F (4)(0)ζ4

pq(
√
n )4+O(n−5/2+O(c0)+o(1))

and similarly for F (ζ ′pq

√
n ). Since n−5/2+O(c0)+o(1)=O(n−2−c0) for n large enough and

c0 small enough, we thus obtain the claim (28) due to the hypothesis that the first
four moments of ζpq and ζ ′pq match. (Note how this argument barely fails if only three
moments are assumed to match, though it is possible that some refinement of this ar-
gument might still succeed by exploiting further cancellations in the fourth-order term
F (4)(0)ζ4

pq(
√
n )4/4!.)

Now we discuss why one would expect an estimate such as (29) to be plausible. For
simplicity, we first focus attention on the easiest case l=1. Thus we now wish to show
that F ′(z)=O(n−1+O(c0)+o(1)). By (15) and the chain rule, it suffices to show that

d

dz
λi(A(z))=O(n−1+O(c0)+o(1)).

A crude application of the Weyl bound (23) gives

d

dz
λi(A(z))=O(1),

which is not good enough for what we want (although in the actual proof, we will take
advantage of a variant of this crude bound to round z off to the nearest multiple of n−100,
which is useful for technical reasons relating to the union bound). But we can do better
by recalling the Hadamard first variation formula:

d

dz
λi(A(z))=ui(A(z))∗A′(z)ui(A(z)),

where we recall that ui(A(z)) is the ith eigenvector of A(z), normalized to be of unit
magnitude. By construction, A′(z)=epe

∗
q +eqe

∗
p, where e1, ..., en are the basis vectors

of Cn. So to obtain the claim, one needs to show that the coefficients of ui(A(z)) have
size O(n−1/2+o(1)). This type of delocalization result for eigenvalues has recently been
established (with overwhelming probability) by Erdős, Schlein and Yau in [20], [21], [22]
for Wigner Hermitian matrices, assuming some quantitative control on the continuous
distribution of the ζpq. (A similar, but weaker, argument was used in [45] with respect
to non-Hermitian random matrices; see [45, §4 and Appendix F].) With some extra care
and a new tool (Lemma 43), we are able to extend their arguments to cover the current
more general setting (see Proposition 62 and Corollary 63), with a slightly simpler proof.
Also, z ranges over uncountably many possibilities, so one cannot apply the union bound
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to each instance of z separately; instead, one must perform the rounding trick mentioned
earlier.

Now suppose we wish to establish the l=2 version of (29). Again applying the chain
rule, we would now seek to establish the bound

d2

dz2
λi(A(z))=O(n−2+O(c0)+o(1)). (30)

For this, we apply the Hadamard second variation formula

d2

dz2
λi(A(z))=−2ui(A(z))∗A′(z)(A(z)−λi(A(z))I)−1πui(A(z))⊥A

′(z)ui(A(z)),

where πui(A(z))⊥ is the orthogonal projection onto the orthogonal complement ui(A(z))⊥

of ui(A(z)), and (A(z)−λi(A(z))I)−1 is the inverse of A(z)−λi(A(z)) on that orthogonal
complement. (This formula is valid as long as the eigenvalues λj(A(z)) are simple, which
is almost surely the case due to the hypothesis of continuous distribution.) One can
expand out the right-hand side in terms of the other (unit-normalized) eigenvectors
uj(A(z)), j 6=i, as

d2

dz2
λi(A(z))=−2

∑
j 6=i

|uj(A(z))∗A′(z)ui(A(z))|2

λj(A(z))−λi(A(z))
.

By using Erdős–Schlein–Yau type estimates, one expects |uj(A(z))∗A′(z)ui(A(z))| to be
of size about O(n−1+o(1)), while from Theorem 19 we expect |λj(z)−λi(z)| to be bounded
below by n−c0 with high probability, and so the claim (30) is plausible (one still needs to
sum over j, of course, but one expects λj(z)−λi(z) to grow roughly linearly in j and so
this should only contribute a logarithmic factor O(log n)=O(no(1)) at worst). So we see
for the first time how Theorem 19 is going to be an essential component in the proof of
Theorem 15. Similar considerations also apply to the third, fourth and fifth derivatives
of λi(A(z)), though as one might imagine the formulae become more complicated.

There is however a technical difficulty that arises, namely that the lower bound

|λj(A(z))−λi(A(z))|>n−c0

holds with high probability, but not with overwhelming probability (see Definition 3
for definitions). Indeed, given that eigenvalue collision is a codimension-2 event for
real symmetric matrices and codimension-3 for Hermitian ones, one expects the failure
probability to be about n−2c0 in the real case and n−3c0 in the complex case (this heuristic
is also supported by the gap statistics for GOE and GUE). As one needs to take the union
bound over many values of z (about n100 or so), this presents a significant problem.
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However, this difficulty can be avoided by going back to the start of the argument and
replacing the quantity G(λi(z)) with a “regularized” variant which vanishes whenever
λi(z) gets too close to another eigenvalue. To do this, it is convenient to introduce the
quantity

Qi(A(z)) :=
∑
j 6=i

1
|λj(A(z))−λi(A(z))|2

= ‖(A(z)−λi(z)I)−1‖2F ;

this quantity is normally of size O(1), but becomes large precisely when the gap be-
tween λi(A(z)) and other eigenvalues becomes small. The strategy is then to replace
G(λi(A(z))) by a truncated variant G(λi(A(z)), Qi(A(z))) which is supported on the re-
gion where Qi is not too large (e.g. of size at most nc0), and apply the swapping strategy
to the latter quantity instead. (For this, one needs control on derivatives of Qi(A(z))
as well as on λi(A(z)), but it turns out that such bounds are available; this smoothness
of Qi is one reason why we work with Qi in the first place, rather than more obvious
alternatives such as infj 6=i |λj(A(z))−λi(A(z))|.) Finally, to remove the truncation at
the beginning and end of the iterated swapping process, one appeals to Theorem 19.
Notice that this result is now only used twice, rather than O(n2) or O(n100) times, and
so the total error probability remains acceptably bounded.

One way to interpret this truncation trick is that while the “bad event” that Qi

is large has reasonably large probability (of order about n−c0), which makes the union
bound ineffective, the Qi does not change too violently when swapping one or more of
the entries of the random matrix, and so one is essentially faced with the same bad event
throughout the O(n2) different swaps (or throughout the O(n100) or so different values
of z). Thus the union bound is actually far from the truth in this case.

3.3. High-level proof of Theorem 15

We now begin the rigorous proof of Theorem 15, breaking it down into simpler proposi-
tions which will be proven in subsequent sections.

The heart of the argument consists of two key propositions. The first proposition
asserts that one can swap a single coefficient (or more precisely, two coefficients) of a
(deterministic) matrix A, as long as A obeys a certain “good configuration condition”.

Proposition 46. (Replacement given a good configuration) There exists a positive
constant C1 such that the following holds. Let k>1 and ε1>0, and assume that n is
sufficiently large depending on these parameters. Let 16i1<...<ik6n. For a complex
parameter z, let A(z) be a (deterministic) family of n×n Hermitian matrices of the
form

A(z) =A(0)+zepe
∗
q +z̄eqe

∗
p,
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where ep and eq are unit vectors. We assume that for every 16j6k and every z,
with |z|6n1/2+ε1 , whose real and imaginary parts are multiples of n−C1 , the following
properties are satisfied :

• (Eigenvalue separation) For any 16i6n with |i−ij |>nε1 , we have

|λi(A(z))−λij (A(z))|>n−ε1 |i−ij |. (31)

• (Delocalization at ij) If Pij (A(z)) is the orthogonal projection onto the eigenspace
associated with λij (A(z)), then

‖Pij (A(z))ep‖, ‖Pij (A(z))eq‖6n−1/2+ε1 . (32)

• For every α>0,

‖Pij ,α(A(z))ep‖, ‖Pij ,α(A(z))eq‖6 2α/2n−1/2+ε1 , (33)

whenever Pij ,α is the orthogonal projection onto the eigenspaces corresponding to eigen-
values λi(A(z)) with 2α6|i−ij |<2α+1.

We say that A(0), ep, eq is a good configuration for i1, ..., ik if the above properties
hold. Assuming this good configuration, then we have

EF (ζ) =EF (ζ ′)+O(n−(r+1)/2+O(ε1)), (34)

where
F (z) :=G(λi1(A(z)), ..., λik

(A(z)), Qi1(A(z)), ..., Qik
(A(z))),

with
G=G(λi1 , ..., λik

, Qi1 , ..., Qik
)

being a smooth function from Rk×Rk
+!R that is supported on the region

Qi1 , ..., Qik
6nε1

and obeys the derivative bounds
|∇jG|6nε1

for all 06j65, and ζ and ζ ′ are random variables with |ζ|, |ζ ′|6n1/2+ε1 almost surely,
which match to order r for some r=2, 3, 4.

If G obeys the improved derivative bounds

|∇jG|6n−Cjε1

for 06j65 and some sufficiently large absolute constant C, then we can strengthen
n−(r+1)/2+O(ε1) in (34) to n−(r+1)/2−ε1 .
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Remark 47. The need to restrict z to multiples of n−C1 , as opposed to all complex
z in the disk of radius n1/2+ε1 , is so that we can verify the hypotheses in the next
proposition using the union bound (as long as the events involved hold with overwhelming
probability). For C1 large enough, we will be able to use rounding methods to pass from
the discrete setting of multiples of n−C1 to the continuous setting of arbitrary complex
numbers in the disk without difficulty.

We prove this proposition in §4. To use this result, we of course need to have the
good configuration property holding often. This leads to the second key proposition.

Proposition 48. (Good configurations occur very frequently) Let ε, ε1>0 and
C,C1, k>1. Let εn6i1<...<ik6(1−ε)n, let 16p, q6n, let e1, ..., en be the standard
basis of Cn and let A(0)=(ζij)16i,j6n be a random Hermitian matrix with independent
upper-triangular entries and |ζij |6n1/2(log n)C for all 16i, j6n, with ζpq=ζqp=0, but
with ζij having mean zero and variance 1 for all other i and j, and also being dis-
tributed continuously in the complex plane. Then A(0), ep, eq obey the good configuration
condition in Theorem 46 for i1, ..., ik and with the indicated values of ε1 and C1 with
overwhelming probability.

We will prove this proposition in §5.
Given these two propositions (and Theorem 19) we can now prove Theorem 15. As

discussed at the beginning of the section, we may assume that the ζij are continuously
distributed in the complex plane and obey the bound (27).

Let 0<ε<1 and k>1, and assume that c0 is sufficiently small and C1 sufficiently
large. Let Mn, M ′

n, ζij , ζ ′ij , An, A′n, G, i1, ..., ik be as in Theorem 15.
We first need the following lemma.

Lemma 49. For each 16j6k, one has Qij (An)6nc0 with high probability.

Proof. For brevity, we omit the variable An. Fix j, and suppose that Qij>n
c0 .

Then ∑
i 6=ij

1
|λi−λij

|2
>nc0 ,

and so, by the pigeonhole principle, there exists an integer 06m�log n such that

∑
2m6|i−ij |<2m+1

1
|λi−λij |2

� 2−m/2nc0 ,

which implies that

|λij+2m−λij |� 23m/4n−c0/2 or |λij−2m−λij
|� 23m/4n−c0/2.
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It thus suffices to show that

P(|λij+2m−λij |� 23m/4n−c0/2) 6n−c1

uniformly in m (and similarly for λij−2m), since the log n loss caused by the number of
m’s can easily be absorbed into the right-hand side.

Fix m. Suppose that |λij+2m−λij
|�23m/4n−c0/2; then expressing the left-hand side

as
∑2m−1

k=0 (λij+k+1−λij+k) and using Markov’s inequality, we see that

λij+k+1−λij+k �n−c0/2

for �2m values of k, and thus

P(|λij+2m−λij
|� 23m/4n−c0/2)�E

1
2m

2m−1∑
k=0

I(λij+k+1−λij+k �n−c0/2),

and hence, by linearity of expectation,

P(|λij+2m−λij
|� 23m/4n−c0/2)� 1

2m

2m−1∑
k=0

P(λij+k+1−λij+k �n−c0/2).

The claim now follows from Theorem 19. (There is a slight issue when 2m∼n, so that
the index ij +k may leave the bulk; but then one works with, say, λij+2m−1−λij instead
of λij+2m−λij

).

Remark 50. One can also use Theorem 60 below to control all terms in the sum
with |i−ij |�(log n)C′

for some C ′, leading to a simpler proof of Lemma 49.

Of course, Lemma 49 also applies with An replaced by A′n.
Let G̃: Rk×Rk

+!R be the function

G̃(λi1 , ..., λik
, Qi1 , ..., Qik

) :=G(λi1 , ..., λik
)

k∏
j=1

η(Qij ),

where η(x) is a smooth cutoff function vanishing outside the region x6nc0 which equals 1
for x6 1

2n
c0 . From (15) and the chain rule, we see that

|∇jG̃|�nc0

for j=0, ..., 5. Also, from Lemma 49, we have

|EG(λi1(An), ..., λik
(An))−EG̃(λi1(An), ..., λik

(An), Qi1(An), ..., Qik
(An))|�n−c
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for some c>0, and similarly with An replaced by A′n. Thus (by choosing c0 small enough)
to prove (16) it will suffice to show that the quantity

EG̃(λi1(An), ..., λik
(An), Qi1(An), ..., Qik

(An)) (35)

only changes by at most 1
2n

−c0 when one replaces An by A′n.
As discussed in §3.2, it will suffice to show that the quantity (35) changes by at most

1
4n

−2−c0 when one swaps the ζpq entry with 16p<q6n to ζ ′pq (and ζqp with ζ ′qp), and
changes by at most 1

4n
−1−c0 when one swaps a diagonal entry ζpp with ζ ′pp. But these

claims follow from Propositions 48 and 46. (The last part of Proposition 46 is used in
the case when one only has three moments matching rather than four.)

The proof of Theorem 15 is now complete (contingent on Theorem 19 and Proposi-
tions 46 and 48).

3.4. Proof strategy for Theorem 19

We now informally discuss the proof of Theorem 19.
The machinery of Erdős, Schlein and Yau [20], [21], [22], which is useful in particular

for controlling the Stieltjes transform of Wigner matrices, will allow us to obtain good
lower bounds on the spectral gap λi(An)−λi−1(An) in the bulk, as soon as k�(log n)C′

for a sufficiently large C ′; see Theorem 60 for a precise statement. The difficulty here
is that k is exactly 1. To overcome this difficulty, we will try to amplify the value of k
by looking at the top left (n−1)×(n−1) minor An−1 of An, and observing the following
“backwards gap propagation” phenomenon:

If λi(An)−λi−k(An) is very small, then λi(An−1)−λi−k−1(An−1) will also be small
with reasonably high probability.

If one accepts this phenomenon, then, by iterating it about (log n)C′
times, one can

enlarge the spacing k to be of the size large enough so that an Erdős–Schlein–Yau type
bound can be invoked to obtain a contradiction. (There will be a technical difficulty
caused by the fact that the failure probability of this phenomenon, when suitably quan-
tified, can be as large as 1/(log n)O(1), and thus apparently precluding the ability to get
a polynomially strong bound on the failure rate, but we will address this issue later.)

Note that the converse of this statement follows from the Cauchy interlacing prop-
erty (24). To explain why this phenomenon is plausible, observe from (24) that if
λi(An)−λi−k(An) is small, then λi(An)−λi−k−1(An−1) is also small. On the other
hand, from Lemma 40 one has the identity

n−1∑
j=1

|uj(An−1)∗X|2

λj(An−1)−λi(An)
= ζnn

√
n−λi(An), (36)
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where X is the rightmost column of An (with the bottom entry ζnn
√
n removed).

One expects |uj(An−1)∗X|2 to have size about n on average (cf. Lemma 43). In
particular, if λi(An)−λi−k(An−1) is small (e.g. of size O(n−c)), then the j=i−1 term
is expected to give a large negative contribution (of size �n1+c) to the left-hand side
of the identity (36). At the same time, the right-hand side is much smaller, of size
O(n) or so on average; so we expect to have the large negative contribution mentioned
earlier to be counterbalanced by a large positive contribution from some other index.
The index which is most likely to supply such a large positive contribution is j=i, and
so one expects λi(An−1)−λi(An) to be small (also of size O(n−c), in fact). A similar
argument also leads one to expect λi−k(An)−λi−k−1(An) to be small, and the claimed
phenomenon then follows from the triangle inequality.

In order to make the above strategy rigorous, there are a number of technical diffi-
culties. The first is that the counterbalancing term mentioned above need not come from
j=i, but could instead come from another value of j, or perhaps a “block” of several
j put together, and so one may have to replace the gap λi(An−1)−λi−k−1(An−1) by a
more general type of gap. A second problem is that the gap λi(An−1)−λi−k−1(An−1)
is going to be somewhat larger than the gap λi(An)−λi−k(An), and one is going to be
iterating this gap growth about (log n)O(1) times. In order to be able to contradict The-
orem 60 at the end of the argument, the net gap growth should only be at most O(nc)
for some small c>0. So one needs a reasonable control on the ratio between the gap for
An−1 and the gap for An; in particular, if one can keep the former gap to be at most
(1+1/k)O((log n)0.9) times the latter gap, then the net growth in the gap telescopes to
((log n)O(1))O((log n)0.9), which is indeed less than O(nc) and thus acceptable. To address
these issues, we fix a base value n0 of n, and for any 16i−l<i6n6n0, we define the
regularized gap

gi,l,n := inf
16i−6i−l<i6i+6n

λi+(An)−λi−(An)
min{i+−i−, (log n0)C1}(log n0)0.9 , (37)

where C1>1 is a large constant (depending on C) to be chosen later. (We need to
cap i+−i− off at (log n0)C1 to prevent the large values of i+−i− from overwhelming the
infimum, which is not what we want.)

We will shortly establish a rigorous result that asserts, roughly speaking, that if the
gap gi,l,n+1 is small, then the gap gi,l+1,n is also likely to be small, and thus giving a
precise version of the phenomenon mentioned earlier.

There is one final obstacle, which has to do with the failure probability when gi,l,n+1

is small but gi,l+1,n is large. If this event could be avoided with overwhelming proba-
bility (or even a high probability), then one would be done by the union bound (note
that we only need to take the union over O((log n)O(1)) different events). While many
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of the events that could lead to failure can indeed be avoided with high probability,
there is one type of event which does cause a serious problem, namely that the inner
products uj(An−1)∗X for i−6j6i+ could be unexpectedly small. Talagrand’s inequal-
ity (Lemma 43) can be used to control this event effectively when i+−i− is large, but
when i+−i− is small the probability of failure can be as high as 1/(log n)c for some c>0.
However, one can observe that such high failure rates only occur when gi,l+1,n is only
slightly larger than gi,l,n+1. Indeed, one can show that the probability that gi,l,n+1 is
much higher than gi,l+1,n, say of size 2mgi,l,n+1 or more, is only

O

(
2−m/2

(log n)c

)
(for reasonable values ofm), and in fact (due to Talagrand’s inequality) the constant c can
be increased to be much larger when l is large. This is still not quite enough for a union
bound to give a total failure probability of O(n−c), but one can exploit the martingale-
type structure of the problem (or more precisely, the fact that the column X remains
random, with independent entries, even after conditioning out all of the block An−1) to
multiply the various bad failure probabilities together to end up with the final bound
of O(n−c).

3.5. High-level proof of Theorem 19

We now prove Theorem 19. Fix ε and c0. We write i0 and n0 for i and n, respectively.
Thus

εn0 6 i0 6 (1−ε)n0

and the task is to show that |λi0(An0)−λi0(An0−1)|>n−c0
0 with high probability. We

may of course assume that n0 is large compared to all other parameters. We may also
assume the bound (27), and that the distribution of the An is continuous, so that events
such as repeated eigenvalues occur with probability zero and can thus be neglected.

Let C1 be a large constant to be chosen later. For any l and n with 16i−l<i6n6n0,
we define the normalized gap gi,l,n by (37). It will suffice to show that

gi0,1,n0 6n−c0 (38)

with high probability. As before, let u1(An), ..., un(An) be an orthonormal eigenbasis
of An associated with the eigenvalues λ1(An), ..., λn(An). We also let Xn∈Cn be the
rightmost column of An+1 with the bottom coordinate ζn+1,n+1

√
n removed.

The first main tool for this is the following (deterministic) lemma, proven in §6.
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Lemma 51. (Backwards propagation of gap) Let 1
2n06n<n0 and l6 1

10εn be such
that

gi0,l,n+1 6 δ (39)

for some 0<δ61 (which can depend on n), and such that

gi0,l+1,n > 2mgi0,l,n+1 (40)

for some m>0 with
2m 6 δ−1/2. (41)

Then, one of the following statements hold :
(i) (Macroscopic spectral concentration) There exist i+ and i−, 16i−<i+6n+1,

with i+−i−>(log n)C1/2, such that

|λi+(An+1)−λi−(An+1)|6 δ1/4 exp((log n)0.95)(i+−i−).

(ii) (Small inner products) There are i+ and i−, 1
2εn6i−6i0−l<i06i+6

(
1− 1

2ε
)
n,

with i+−i−6(log n)C1/2, such that∑
i−6j<i+

|uj(An)∗Xn|2 6
n(i+−i−)

2m/2(log n)0.01
. (42)

(iii) (Large coefficient) We have

|ζn+1,n+1|>n0.4.

(iv) (Large eigenvalue) For some 16i6n+1, one has

|λi(An+1)|>
n exp(−(log n)0.95)

δ1/2
.

(v) (Large inner product in bulk) There exists 1
10εn6i6

(
1− 1

10ε
)
n such that

|ui(An)∗Xn|2 >
n exp(−(log n)0.96)

δ1/2
.

(vi) (Large row) We have

‖Xn‖2 >
n2 exp(−(log n)0.96)

δ1/2
.

(vii) (Large inner product near i0) There exists 1
10εn6i6

(
1− 1

10ε
)
n, satisfying

|i−i0|6(log n)C1 , such that

|ui(An)∗Xn|2 > 2m/2n(log n)0.8.
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Remark 52. In the applications, δ will be a small negative power of n. The main bad
event here is (ii) (and to a lesser extent (vii)); the other events will have a polynomially
small probability of occurrence in practice (as a function of n) and so can be easily
discarded. The events (ii) and (vii) are more difficult to discard, since their probability
is not polynomially small in n, if m is small. On the other hand, these probabilities
decay exponentially in m, and furthermore are independent in a martingale sense, and
this will be enough for us to obtain a proper control. The exact numerical values of the
exponents such as 0.9, 0.95, 0.8, etc. are not particularly important, though of course
they need to lie between 0 and 1.

The second key proposition bounds the probability that each of the bad events
(i)–(vii) occur, proven in §7.

Proposition 53. (Bad events are rare) Suppose that 1
2n06n<n0 and l6 1

10εn, and
set δ :=n−�0 for some sufficiently small fixed �>0. Then, the following facts hold :

(a) The events (i), (iii), (iv), (v) and (vi) in Lemma 51 all fail with high probability.
(b) There is a constant C ′ such that all the coefficients of the eigenvectors uj(An)

for 1
2εn6j6

(
1− 1

2ε
)
n are of magnitude at most n−1/2(log n)C′

with overwhelming prob-
ability. Conditioning An to be a matrix with this property, the events (ii) and (vii) occur
with a conditional probability of at most 2−�m+n−�.

(c) Furthermore, there is a constant C2 (depending on C ′, � and C1) such that if
l>C2 and An is conditioned as in (b), then (ii) and (vii) in fact occur with a conditional
probability of at most 2−�m(log n)−2C1 +n−�.

Let us assume these two propositions for now and conclude the proof of Theorem 19.
We may assume that c0 is small. Set � := 1

10c0. For each n0−(log n0)2C1 6n6n0,
let En be the event that one of the eigenvectors uj(An) for 1

2εn6j6
(
1− 1

2ε
)
n has a

coefficient of magnitude more than n−1/2(log n)C′
, and let E0 be the event that at least

one of the exceptional events (i), (iii)–(vi), or En hold for some n−(log n0)2C1 6n6n0.
Then, by Proposition 53 and the union bound, we have

P(E0) 6n
−�/2
0 . (43)

It thus suffices to show that the event

gi0,1,n0 6n−10� and Ec
0

is avoided with high probability.
To bound this, the first step is to increase the parameter l from 1 to C2, in order to

use Proposition 53 (c). Set 2m :=n�/C2
0 . From Proposition 53 (b), we see that the event
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that En fails, but (ii) or (vii) hold for n=n0−1, l=1 and some i− and i+, occurs with
probability O(2−�m+n−�0 ). Applying Lemma 51 (noting that n−10�

0 6δ), we conclude
that

P(gi0,1,n0 6n−10�
0 and Ec

0) 6P(gi0,2,n0−1 6 2mn−10�
0 and Ec

0)+O(2−�m+n−�0 ).

We can iterate this process C2 times and conclude that

P(gi0,1,n0 6n−10�
0 and Ec

0) 6P(gi0,C2+1,n0−C2 6 2C2mn−10�
0 and Ec

0)

+O(C22−�m+C2n
−�
0 );

substituting in the definition of m, we conclude that

P(gi0,1,n0 6n−10�
0 and Ec

0) 6P(gi0,C2+1,n0−C2 6n−9�
0 and Ec

0)+n
−�2/2C2
0 .

So it will suffice to show that

P(gi0,C2+1,n0−C2 6n−9�
0 and Ec

0) 6n
−�2/2C2
0 .

By Markov’s inequality, it suffices to show that

EZ−�/2
n0−C2

I(Ec
0) 6n�

2

0 , (44)

where, for each n0−(log n0)C1 6n6n0−C2, Zn is the random variable

Zn :=max{min{gi0,n0−n+1,n, δ}, n−9�
0 }.

Indeed, we have

P(gi0,C2+1,n0−C2 6n−9�
0 and Ec

0) 6P(Zn0−C2 =n−9�
0 and Ec

0)

6n
−9�2/2
0 EZ−�/2

n0−C2
I(Ec

0),

whence the claim.
We now establish a recursive inequality for EZ−�/2

n I(Ec
0). Let n be such that

n0−(log n0)C1 6n<n0−C2. Suppose we condition An so that En fails. Then, for any
m>0, we see from Proposition 53 (c) that (ii) or (vii) hold for l=n0−n and some i−
and i+, with (conditional) probability at most O(2−�m(log n)−2C1 +n−�). Applying
Lemma 51, we conclude that

P(gi0,n0−n,n+1 6 δ and gi0,n0−n+1,n > 2mgi0,n0−n,n+1 and Ec
0 |An)

� 2−�m(log n)−2C1 +n−�.
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Note that this inequality is also vacuously true if An is such that En holds, since the
event Ec

0 is then empty.
Observe that, if Zn>2mZn+1 for some m>0, then

gi0,n0−n,n+1 6 δ and gi0,n0−n+1,n > 2mgi0,n0−n,n+1.

Thus
P(Zn> 2mZn+1 and Ec

0 |An)� 2−�m(log n)−2C1 +n−�,

or equivalently

P(Z−�/2
n+1 > 2m�/2Z−�/2

n and Ec
0 |An)� 2−�m(log n)−2C1 +n−�.

Since we are conditioning on An, Zn is deterministic. Also, from the definition of Zn,
this event is vacuous for 2m>n8�, and thus we can simplify the above bound as

P(Z−�/2
n+1 > 2m�/2Z−�/2

n and Ec
0 |An) 6 3·2−�m(log n)−2C1 .

Now we multiply this by 2m�/2 and sum over m>0 to obtain

E(Z−�/2
n+1 I(Ec

0) |An) 6Z−�/2
n (1+(log n)−(2C1−1)).

Undoing the conditioning on An, we conclude that

EZ−�/2
n+1 I(Ec

0) 6 (1+(log n)−(2C1−1))EZ−�/2
n .

Applying (43) (and the trivial bound Z−�/2
n 6n9�2/2), we have

EZ−�/2
n+1 I(Ec

0) 6 (1+(log n)−(2C1−1))EZ−�/2
n I(Ec

0)+n
−�/4.

Iterating this, we conclude that

EZ−�/2
n0−C2

I(Ec
0) 6 2EZ−�/2

n0−b(log n0)C1cI(E
c
0)+n

−�/8
0 . (45)

On the other hand, if Ec
0 holds, then by (i) we have∣∣λn0−b(log n0)

C1c
i+

−λn0−b(log n0)
C1c

i−

∣∣<n−�0 exp((log n)0.95)(i+−i−)

whenever 16i−6i−(log n0)C1/2<i6i+6n. From this we have

gi0,b(log n0)C1c+1,n0−b(log n0)C1c 6n
−�/2
0 ,

and hence
Zn0−b(log n0)C1c =n−�0 .

Inserting this into (45), we obtain (44) as required.
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4. Good configurations have stable spectra

The purpose of this section is to prove Proposition 46. The first stage is to obtain
some equations for the derivatives of eigenvalues of Hermitian matrices with respect to
perturbations.

4.1. Spectral dynamics of Hermitian matrices

Suppose that λi(A) is a simple eigenvalue, which means that λi(A) 6=λj(A) for all j 6=i;
note that almost all Hermitian matrices have simple eigenvalues. We then define Pi(A) to
be the orthogonal projection onto the 1-dimensional eigenspace corresponding to λi(A).
Thus, if ui(A) is a unit eigenvector for the eigenvalue λi(A), then Pi(A)=ui(A)ui(A)∗. We
also define the resolvent Ri(A) to be the unique Hermitian matrix inverting A−λi(A)I
on the range of I−Pi(A), and vanishing on the range of Pi(A). If u1(A), ..., un(A) form
an orthonormal eigenbasis associated with λ1(A), ..., λn(A), then we can write Ri(A)
explicitly as

Ri(A) =
∑
j 6=i

1
λj−λi

uj(A)uj(A)∗.

It is clear that

Ri(A−λiI) = I−Pi. (46)

We also need the quantity

Qi(A) := ‖Ri(A)‖2F =
∑
j 6=i

1
|λj−λi|2

.

By (23), each eigenvalue function A 7!λi(A) for 16i6n is continuous. However, we
will need a quantitative control on the derivatives of this function. The first observation
is that λi (as well as Pi, Ri and Qi) depends smoothly on A whenever that eigenvalue is
simple (even if other eigenvalues have multiplicity).

Lemma 54. Let 16i6n and let A0 be a Hermitian matrix which has a simple eigen-
value at λi(A0). Then λi, Pi, Ri and Qi are smooth for A in a neighborhood of A0.

Proof. By the Weyl inequality (23), λi(A0) stays away from the other λj(A0) by a
bounded distance for all A0 in a neighborhood of A0. In particular, the characteristic
polynomial det(A−λI) has a simple zero at λi(A) for all such A. Since this polynomial
also depends smoothly on A, the smoothness of λi now follows. As A−λi(A)I depends
smoothly on A, has a single zero eigenvalue, and has all other eigenvalues bounded away
from zero, we see that the 1-dimensional kernel ker(A−λi(A)I) also depends smoothly
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on A near A0. Since Pi is the orthogonal projection onto this kernel, the smoothness of
Pi now follows.

As A−λi(A)I depends smoothly on A, and has eigenvalues bounded away from zero
on the range of 1−Pi (which is also smoothly dependent on A), we see that Ri (and
hence Qi) also depends smoothly on A.

Now we turn to more quantitative estimates on the smoothness of λi, Pi, Ri and Qi

for fixed 16i6n. For our applications to Proposition 46, we consider matrices A=A(z)
which are parameterized smoothly (though not holomorphically, of course) by some com-
plex parameter z in a domain Ω⊂C. We assume that λi(A(z)) is simple for all z∈Ω,
which, by the above lemma, implies that λi :=λi(A(z)), Pi :=Pi(A(z)), Ri :=Ri(A(z))
and Qi :=Qi(A(z)) all depend smoothly on z in Ω.

It will be convenient to introduce some more notation, to deal with the technical
fact that z is complex rather than real. For any smooth function f(z) (which may be
scalar, vector, or matrix-valued), we use

∇mf(z) :=
(

∂mf

∂Re(z)l∂Im(z)m−l

)m
l=0

to denote the mth gradient with respect to the real and imaginary parts of z. (Thus,
∇mf is an (m+1)-tuple, each of whose components is of the same type as f ; for instance,
if f is matrix-valued, so are all the components of ∇mf .) If f is matrix-valued, we define
‖∇mf‖F to be the `2 norm of the Frobenius norms of the various components of ∇mf ,
and similarly for other norms.

We observe the Leibniz rule

∇k(fg) =
k∑

m=0

(∇mf)∗(∇k−mg) = f(∇kg)+(∇kf)g+
k−1∑
m=1

(∇mf)∗(∇k−mg), (47)

where the (k+1)-tuple (∇mf)∗(∇k−mg) is defined as

( min{l,m}∑
l′=max{0,l+m−k}

(
l

l′

)(
k−l
m−l′

)
∂k−mf

∂Re(z)l′∂Im(z)m−l′
∂mg

∂Re(z)l−l′∂Im(z)k−m−l+l′

)k
l=0

.

The exact coefficients here are not important, and one can view (∇mf)∗(∇k−mg) simply
as a bilinear combination of ∇mf and ∇k−mg. Note that (47) is valid for matrix-valued
f and g as well as scalar f and g. For a tuple (A1, ..., Al) of matrices, we define

trace(A1, ..., Al) := (trace(A1), ..., trace(Al)).

We can now give the higher-order Hadamard variation formulae.
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Proposition 55. (Recursive formula for derivatives of λi, Pi and Ri) For any
integer k>1, we have

∇kλi =
k∑

m=1

trace((∇mA)∗(∇k−mPi)Pi)−
k−1∑
m=1

(∇mλi)∗trace((∇k−mPi)Pi) (48)

and

∇kPi =−Ri(∇kA)Pi−Pi(∇kA)Ri

−
k−1∑
m=1

[Ri((∇mA)−(∇mλi)I)∗(∇k−mPi)Pi

+Pi(∇k−mPi)∗((∇mA)−(∇mλi)I)Ri]

+
k−1∑
m=1

(∇mPi)∗(∇k−mPi)(I−2Pi).

(49)

Furthermore,

(∇kRi)Pi =−
k−1∑
m=0

(∇mRi)∗(∇k−mPi) (50)

and

(∇kRi)(I−Pi) =−(∇kPi)Ri−
k−1∑
m=0

(∇mRi)∗((∇k−mA)−(∇k−mλi)I)Ri, (51)

and thus

(∇kRi) =−(∇kPi)Ri−
k−1∑
m=0

(∇mRi)∗((∇k−mA)−(∇k−mλi)I)Ri

−
k−1∑
m=0

(∇mRi)∗(∇k−mPi).

(52)

Proof. Our starting point is the identities

λiPi =APi (53)

and
PiPi =Pi. (54)

We differentiate these identities k times using the Leibniz rule (47) to obtain

(∇kλi)Pi+
k−1∑
m=0

(∇mλi)∗(∇k−mPi) =
k∑

m=0

(∇mA)∗(∇k−mPi) (55)
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and

(∇kPi)Pi+Pi(∇kPi)+
k−1∑
m=1

(∇mPi)∗(∇k−mPi) = (∇kPi). (56)

Multiplying (55) by Pi and taking traces, one obtains (48) (them=0 terms cancel because
of (53), which implies that trace(A(∇mPi)Pi)=λi trace((∇mPi)Pi)).

We next compute ∇kPi using the decomposition

∇kPi =Pi(∇kPi)Pi+(I−Pi)(∇kPi)(I−Pi)+(I−Pi)(∇kPi)Pi+Pi(∇kPi)(I−Pi). (57)

Multiplying both sides of (56) by Pi (on the right) and using the identity PiPi=Pi,
we get a cancelation which implies that

Pi(∇kPi)Pi =−
k−1∑
m=1

(∇mPi)∗(∇k−mPi)Pi. (58)

Repeating the same trick with I−Pi instead of Pi, we have

(I−Pi)(∇kPi)(I−Pi) =
k−1∑
m=1

(∇mPi)∗(∇k−mPi)(I−Pi). (59)

This gives two of the four components of ∇kPi. To obtain the other components,
multiply (55) on the left by I−Pi and notice that the (I−Pi)(∇kλi)Pi term vanishes
because of (54). Rearranging the terms, we obtain

(I−Pi)(A−λi)(∇kPi) =−
k−1∑
m=1

(I−Pi)((∇mA)−(∇mλi)I)∗(∇k−mPi)−(I−Pi)(∇kA)Pi.

Applying Ri on the left and Pi on the right and using (46), we get

(I−Pi)(∇kPi)Pi =−
k−1∑
m=1

Ri((∇mA)−(∇mλi)I)∗(∇k−mPi)Pi−Ri(∇kA)Pi.

By taking adjoints, we obtain

Pi(∇kPi)(I−Pi) =−
k−1∑
m=1

Pi(∇k−mPi)∗((∇mA)−(∇mλi)I)Ri−Pi(∇kA)Ri.

These, together with (57), (58) and (59), imply (49).
We now turn to Ri. Here, we use the identities (46),

Ri(A−λiI) = I−Pi and RiPi =0.
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Differentiating the second identity k times gives (50). On the other hand, differentiating
the first identity k times gives

(∇kRi)(A−λiI) =−(∇kPi)−
k−1∑
m=0

(∇mRi)∗((∇k−mA)−(∇k−mλi)I);

multiplying on the right by Ri, we obtain (51), and then (52) follows.

We isolate the k=1 case of Proposition 55, obtaining the Hadamard variation for-
mulae:

∇λi =trace(∇APi) (60)

and

∇Pi =−Ri(∇A)Pi−Pi(∇A)Ri. (61)

4.2. Bounding the derivatives

We now use the recursive inequalities obtained in the previous section to bound the
derivatives of λi and Pi, assuming some quantitative control on the spectral gap between
λi and other eigenvalues, and on the matrix A and its derivatives. Let us begin with a
crude bound.

Lemma 56. (Crude bound) Let A=A(z) be an n×n matrix varying (real)-linearly
in z (thus ∇kA=0 for k>2), with

‖∇A‖op 6V

for some V >0. Let 16i6n. At some fixed value of z, suppose we have the spectral gap
condition

|λj(A(z))−λi(A(z))|> r (62)

for all j 6=i and some r>0 (in particular, λi(A(z)) is a simple eigenvalue). Then for all
k>1 we have (at this fixed choice of z)

|∇kλi|�k V
kr1−k, (63)

‖∇kPi‖op�k V
kr−k, (64)

‖∇kRi‖op�k V
kr−k−1, (65)

|∇kQi|�k nV
kr−k−2. (66)
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Proof. Observe that the spectral gap condition (62) ensures that

‖Ri‖op 6
1
r
. (67)

We also observe the easy inequality

|trace(BPi)|= |trace(PiB)|= |trace(PiBPi)|6 ‖B‖op (68)

for any Hermitian matrix B, which follows as Pi is a rank-1 orthogonal projection.
To prove (63) and (64), we induct on k. The case k=1 follows from (60), (61), (67)

and (68); and then, for k>1, the claim follows from the induction hypotheses and (48),
(49), (67) and (68).

To prove (65), we also induct on k. The case k=0 follows from (67). For k>1, the
claim then follows from the induction hypothesis and (52).

To prove (66), we use the product rule to bound

|∇kQi|�k

k∑
m=0

|trace((∇mRi)∗(∇k−mRi))|�k n

k∑
m=0

‖∇mRi‖op‖∇k−mRi‖op,

and the claim follows from (65).

This crude bound is insufficient for our applications, and we will need to supplement
it with one that strengthens the spectral condition, and also assumes a “delocalization”
property for the projections Pα and Pβ relative to the perturbation Ȧ.

Lemma 57. (Better bound) Let A=A(z) be an n×n matrix varying real-linearly
in z. Let 16i6n. At some fixed value of z, suppose that λi=λi(A(z)) is a simple
eigenvalue, and that we have a partition

I =Pi+
∑
α∈J

Pα,

where J is a finite index set (not containing i) and Pα are orthogonal projections onto
invariant subspaces for A (i.e. onto spans of eigenvectors not corresponding to λi). Sup-
pose that, on the range of each Pα, the eigenvalues of A−λi have magnitude at least rα
for some rα>0; equivalently, we have

‖RiPα‖op 6
1
rα
. (69)

Suppose also that we have the delocalization bounds

‖PαȦPβ‖F 6 vcαcβ (70)
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for all α, β∈J , some v>0 and some cα>1 satisfying the strong spectral gap condition

∑
α∈J

c2α
rα

6L (71)

for some L>0. Then at this fixed choice of z, and for all α, β∈J , we have

|∇kλi|�k L
k−1vk, (72)

‖Pi(∇kPi)Pi‖F �k L
kvk, (73)

‖Pα(∇kPi)Pi‖F = ‖Pi(∇kPi)Pα‖F �k
cα
rα
Lk−1vk, (74)

‖Pα(∇kPi)Pβ‖F �k
cαcβ
rαrβ

Lk−2vk (75)

for all k>1, and

‖Pi(∇kRi)Pi‖F �k L
k+1vk, (76)

‖Pα(∇kRi)Pi‖F = ‖Pi(∇kRi)Pα‖F �k
cα
rα
Lkvk, (77)

‖Pα(∇kRi)Pβ‖F �k
cαcβ
rαrβ

Lk−1vk (78)

for all k>0.

We remark that we can unify the bounds (73)–(75) and (76)–(78) by allowing α and
β to vary in J∪{i} rather than J , and adopting the conventions that ri :=1/L and ci :=1.

Proof. Note that the projections Pi and the Pα are idempotent, and all annihilate
each other and commute with A and Ri. We will use these facts throughout this proof
without further comment.

To prove (72)–(75), we again induct on k. When k=1, the claim (72) follows from
(60), (68) and (70), while (73)–(75) follow from (61) and (70). (For (75) we in fact obtain
that the left-hand side is zero.)

Now suppose inductively that k>1, and that the claims have already been proven
for all smaller values of k.

We first prove (72). From (48) and the linear nature of A, we have

|∇kλi|�k |trace((∇A)∗(∇k−1Pi)Pi)|+
k−1∑
m=1

|∇mλi| |trace((∇k−mPi)Pi)|.

From (68) and the inductive hypothesis (73), we have

|trace((∇k−mPi)Pi)|�k L
k−mvk−m
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for any 16m6k−1, and thus, by the inductive hypothesis (72), we see that

k−1∑
m=1

|∇mλi| |trace((∇k−mPi)Pi)|�k L
k−1vk.

Next, by splitting (∇A)∗(∇k−1Pi)Pi as∑
α∈J∪{i}

(∇A)∗Pα(∇k−1Pi)Pi

and using (68), we have

|trace((∇A)∗(∇k−1Pi)Pi)|�k

∑
α∈J∪{i}

‖Pi(∇A)Pα‖F ‖Pα(∇k−1Pi)Pi‖F .

Using (70) and the inductive hypotheses (73) and (74), we thus have

|trace((∇A)∗(∇k−1Pi)Pi)|�k vL
k−1vk−1+

∑
α∈J

vcα
cα
rα
Lk−2vk−1.

Applying (71), we conclude (72) as desired.
We now prove (73). From (49) (or (58)) we have

‖Pi(∇kPi)Pi‖F �k

k−1∑
m=1

‖Pi(∇mPi)∗(∇k−mPi)Pi‖F .

We can split

‖Pi(∇mPi)∗(∇k−mPi)Pi‖F �k

∑
α∈J∪{i}

‖Pi(∇mPi)Pα‖F ‖Pα(∇k−mPi)Pi‖F .

Applying the inductive hypotheses (73) and (74), we conclude that

‖Pi(∇kPi)Pi‖F �k

k−1∑
m=1

LmvmLk−mvk−m+
∑
α∈J

cα
rα
Lm−1vm cα

rα
Lk−m−1vk−m;

bounding one of the 1/rα factors crudely by L and then summing using (71), we obtain
(73) as desired.

Now we prove (75). From (49) (or (59)), we have

‖Pα(∇kPi)Pβ‖F �k

k−1∑
m=1

‖Pα(∇mPi)∗(∇k−mPi)Pβ‖F

�k

k−1∑
m=1

∑
γ∈J∪{i}

‖Pα(∇mPi)Pγ‖F ‖Pγ(∇k−mPi)Pβ‖F .
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Using the inductive hypotheses (74) and (75), we obtain

‖Pα(∇kPi)Pβ‖F �k

k−1∑
m=1

1
rα
Lm−1vm 1

rβ
Lk−m−1vk−m

+
∑
γ∈J

cαcγ
rαrγ

Lm−2vm cγcβ
rγrβ

Lk−m−2vk−m.

Bounding one of the 1/rγ factors crudely by L and applying (71), we obtain (75) as
desired.

Finally, we prove (74). Since Pα(∇kPi)Pi has the same Frobenius norm as its adjoint
Pi(∇kPi)Pα, it suffices to bound ‖Pα(∇kPi)Pi‖F . From (49), we have

‖Pα(∇kPi)Pi‖F �k ‖RiPα(∇A)∗(∇k−1Pi)Pi‖F +
k−1∑
m=1

|∇mλi| ‖RiPα(∇k−mPi)Pi‖F ,

and hence, by (69),

‖Pα(∇kPi)Pi‖F �k
1
rα
‖Pα(∇A)(∇k−1Pi)Pi‖F +

1
rα

k−1∑
m=1

|∇mλi| ‖Pα(∇k−mPi)Pi‖F .

From the inductive hypotheses (72) and (74), and crudely bounding 1/rα by L, we have

1
rα

k−1∑
m=1

|∇mλi| ‖Pα(∇k−mPi)Pi‖F �k
cα
rα
Lk−1vk.

Moreover, by splitting

‖Pα(∇A)∗(∇k−1Pi)Pi‖F 6
∑

β∈J∪{i}

‖Pα(∇A)Pβ‖F ‖Pβ(∇k−1Pi)Pi‖F ,

and using (70) and the inductive hypothesis (74), we have

1
rα
‖Pα(∇A)∗(∇k−1Pi)Pi‖F �k

1
rα

(
vcαL

k−1vk−1+
∑
β∈J

vcαcβ
cβ
rβ
Lk−2vk−1

)
.

Applying (71), we obtain (74) as required.
Having proven (72)–(75) for all k>1, we now prove (76)–(78) by induction. The

claim is easily verified for k=0 (note that the left-hand sides of (76) and (77) in fact
vanish, as does the left-hand side of (78), unless α=β), so suppose that k>1 and that
(76)–(78) have been proven for smaller values of k.
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We first prove (76). From (50) we have

‖Pi(∇kRi)Pi‖F �k

k−1∑
m=0

‖Pi(∇mRi)∗(∇k−mPi)Pi‖F

�k

k−1∑
m=0

∑
α∈J∪{i}

‖Pi(∇mRi)Pα‖F ‖Pα(∇k−mPi)Pi‖F .

Applying (73), (74) and the induction hypotheses (76) and (77), we conclude that

‖Pi(∇kRi)Pi‖F �k

k−1∑
m=0

Lm+1vmLk−mvk−m+
∑
α∈J

cα
rα
Lmvm cα

rα
Lk−m−1vk−m;

crudely bounding one of the 1/rα factors by L and using (71), we obtain the claim.
Similarly, to prove (77), we apply (50) as before to obtain

‖Pα(∇kRi)Pi‖F �k

k−1∑
m=0

‖Pα(∇mRi)∗(∇k−mPi)Pi‖F

�k

k−1∑
m=0

∑
β∈J∪{i}

‖Pα(∇mRi)Pβ‖F ‖Pβ(∇k−mPi)Pi‖F ;

applying (73), (74) and the induction hypotheses (77) and (78), we conclude that

‖Pα(∇kRi)Pi‖F �k

k−1∑
m=0

cα
rα
LmvmLk−mvk−m+

∑
β∈J

cαcβ
rαrβ

Lm−1vm cβ
rβ
Lk−m−1vk−m.

Again, bounding one of the 1/rβ factors by L and using (71), we obtain the claim.
Finally, we prove (78). From (51), we have

‖Pα(∇kRi)Pβ‖F �k ‖Pα(∇kPi)RiPβ‖F +‖Pα(∇k−1Ri)∗(∇A)RiPβ‖F

+
k−1∑
m=0

|∇k−mλi| ‖Pα(∇mRi)RiPβ‖F .

As RiPβ=PβRiPβ has a norm of at most 1/rβ , we conclude that

‖Pα(∇kRi)Pβ‖F �k
1
rβ
‖Pα(∇kPi)Pβ‖F +

1
rβ
‖Pα(∇k−1Ri)∗(∇A)Pβ‖F

+
1
rβ

k−1∑
m=0

|∇k−mλi| ‖Pα(∇mRi)Pβ‖F .
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From (72), the crude bound 1/rβ6L and the induction hypothesis (78), we have

1
rβ

k−1∑
m=0

|∇k−mλi| ‖Pα(∇mRi)Pβ‖F �k
cαcβ
rαrβ

Lk−1vk.

From (75) and 1/rβ6L, we similarly have

1
rβ
‖Pα(∇kPi)Pβ‖F �k

cαcβ
rαrβ

Lk−1vk.

Finally, splitting

‖Pα(∇k−1Ri)∗(∇A)Pβ‖F 6
∑

γ∈J∪{i}

‖Pα(∇k−1Ri)Pγ‖F ‖Pγ(∇A)Pβ‖F

and using the induction hypotheses (77) and (78), and (70), we obtain

‖Pα(∇k−1Ri)∗(∇A)Pβ‖F �k
cα
rα
Lk−1vk−1vcβ+

∑
γ∈J

cαcγ
rαrγ

Lk−2vk−1vcγcβ ,

and thus, by (71),

‖Pα(∇k−1Ri)∗(∇A)Pβ‖F �k
cαcβ
rα

Lk−1vk.

Putting all this together, we obtain (78) as claimed.

We extract a special case of the above lemma, in which the perturbation only affects
a single entry (and its transpose).

Corollary 58. (Better bound, special case) Let A=A(z) be an n×n matrix de-
pending on a complex parameter z of the form

A(z) =A(0)+ze∗peq+z̄e∗qep

for some vectors ep and eq. Fix an index 16i6n. At some fixed value of z, suppose
that λi=λi(A(z)) is a simple eigenvalue, and that we have a partition

I =Pi+
∑
α∈J

Pα,

where J is a finite index set and Pα are orthogonal projections onto invariant subspaces
for A (i.e. onto spans of eigenvectors not corresponding to λi). Suppose that on the
range of each Pα, the eigenvalues of A−λi have magnitude at least rα for some rα>0.
Suppose also that we have the incompressibility bounds

‖Pαep‖, ‖Pαeq‖6wd1/2
α
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for all α∈J∪{i} and some w>0 and dα>1. Then, at this value of z, and for all k>1,
we have

|∇kλi|�k

(∑
α∈J

dα

rα

)k−1

w2k (79)

and

|∇kQi|�k

(∑
α∈J

dα

rα

)k+2

w2k (80)

for all k>0.

Proof. A short computation shows that the hypotheses of Lemma 57 are obeyed
with v replaced by O(w2), cα set equal to d1/2

α , and L equal to O
(∑

α∈J dα/rα
)
. From

(72), we then conclude (79). As for (80), we see from the product rule that

|∇kQi|�k

k∑
m=0

|trace((∇mRi)(∇k−mR∗
i ))|

which we can split further, using the Cauchy–Schwarz inequality, as

|∇kQi|�k

k∑
m=0

∑
α,β∈J∪{i}

‖Pα(∇mRi)Pβ‖F ‖Pα(∇k−mRi)Pβ‖F .

Applying (76), (77) and (78), we conclude that

|∇kQi|�k L
k+2vk+

∑
α∈J

c2α
r2α
Lkvk+

∑
α,β∈J

c2αc
2
β

r2αr
2
β

Lk−2vk.

Bounding one of the factors of 1/rα in the first sum by L, and 1/rαrβ in the second sum
by L2, and using (71) and the choices for v and L, we obtain the claim.

4.3. Conclusion of the argument

We can now prove Proposition 46. Fix k>1, r=2, 3, 4 and ε1>0, and suppose that C1

is sufficiently large. We assume that A(0), ep, eq, i1, ..., ik, G, F , ζ and ζ ′ are as in the
proposition.

We may of course assume that F (z0) 6=0 for at least one z0 with |z0|6n1/2+ε1 , since
the claim is vacuous otherwise.

Suppose we can show that

∇mF (z) =O(n−m+O(ε1)) (81)
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for all |z|6n1/2+ε1 and 06m65. Then, by Taylor expansion, one has

F (ζ) =P (ζ, ζ̄)+O(n−(r+1)/2+O(ε1)),

where P is a polynomial of degree at most r whose coefficients are of size at most nO(ε1).
Taking expectations for both F (ζ) and F (ζ ′), we obtain the claim (34) when ζ and ζ ′

match to order r. A similar argument gives the improved version of (34) at the end of
Proposition 46 if one can improve the right-hand side of (81) to O(n−m−C′mε1) for some
sufficiently large absolute constant C ′.

It remains to show (81). By up to five applications of the chain rule, the above
claims follow from the following lemma.

Lemma 59. Suppose that F (z0) 6=0 for at least one z0 with |z0|6n1/2+ε1 . Then

|∇kλij (z)|�k n
5ε1kn−k and |∇kQij (z)|�k n

5ε1(k+2)n−k

for all z with |z|6n1/2+ε1 and all 16j6k610.

Proof. Fix j. Since F (z0) 6=0, we have

Qij (A(z0))6nε1 . (82)

For a technical reason having to do with a subsequent iteration argument, we will
replace (82) with the slightly weaker bound

Qij
(A(z0))6 2nε1 . (83)

By the definition of Qi, we have, as a consequence, that

|λi′(A(z0))−λij (A(z0))|�n−ε1/2 (84)

for all i′ 6=ij .
By the Weyl inequalities (23), we thus have

|λi′(A(z))−λij
(A(z))|�n−ε1/2

whenever |z−z0|�n−1−2ε1 . From Lemma 56, we conclude that

|∇mλij (A(z))|�m nε1(m+1)/2 (85)

and
|∇mQij (A(z))|�m nε1(m+2)/2n (86)
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for all m>1, whenever |z−z0|�n−1−2ε1 . In particular, from (83) and the fundamental
theorem of calculus, we have

Qij (A(z))�nε1 (87)

for all such z.
Note that, by setting C1 sufficiently large, we can find z such that |z−z0|�n−1−2ε1

and |z|6n1/2+ε1 , and such that the real and imaginary parts of z are integer multiples of
n−C1 . Then (32) and (33) hold for this value of z. Applying Corollary 58, we conclude
that

|∇kλij
(z)|�k n

2ε1kn−k

( log n∑
α=0

2α

rα

)k−1

and

|∇kQij (z)|�k n
2ε1kn−k

( log n∑
α=0

2α

rα

)k+2

for all k>1, where rα is the minimal value of |λi−λij | for |i−ij |>2α. Note that

log n∑
α=0

2α

rα
�
∑
i 6=ij

1
|λi−λij |

.

At the same time, from (87) we have∑
i 6=ij

1
|λi−λij

|2
�nε1 .

From the Cauchy–Schwarz inequality, this implies that∑
i 6=ij

|i−ij |6nε1

1
|λi−λij |

�nε1 ,

while from (31) we have (with room to spare)∑
i 6=ij

|i−ij |>nε1

1
|λi−λij |

�n3ε1 ,

and thus
log n∑
α=0

2α

rα
�n3ε1 .

Hence
|∇kλij (z)|�k n

5ε1kn−k and |∇kQij (z)|�k n
5ε1(k+2)n−k
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for all k>1. Combining this with (85) and (86), we conclude that

|∇kλij (z)|�k n
5ε1kn−k

and
|∇kQij

(z)|�k n
5ε1(k+2)n−k (88)

for all z with |z−z0|�n−1+ε1 and all 06k610.
This establishes the lemma in a ball B(z0, n−1−2ε1) of radius n−1−2ε1 centered at z0.

To extend the result to the remainder of the region {z :|z|6n1/2+ε1}, we observe from
(88) that Qij varies by at most O(n−1.9) (say) on this ball (instead of 1.9 we can write
any constant less than 2, given that ε1 is sufficiently small). Because of the gap be-
tween (82) and (83), we now see that (83) continues to hold for all other points z1 in
B(z0, n−1−2ε1) with |z1|6n1/2+ε1 . Repeating the above arguments with z0 replaced by
z1, and continuing this process, we can eventually cover the entire ball {z :|z|6n1/2+ε1}
by these estimates. The key point here is that at every point of the process (83) holds,
since the length of the process is only n3/2+3ε1 , while in each step the value of Qij changes
by at most O(n−1.99).

The proof of Proposition 46 is now complete.

5. Good configurations occur frequently

The purpose of this section is to prove Proposition 48. The arguments here are largely
based on those in [20], [21] and [22].

5.1. Reduction to a concentration bound for the empirical spectral
distribution

We will first reduce matters to the following concentration estimate for the empirical
spectral distribution (ESD).

Theorem 60. (Concentration for ESD) For any ε, δ>0, any random Hermitian
matrix Mn=(ζij)16i,j6n whose upper-triangular entries are independent with mean zero
and variance 1, such that |ζij |6K almost surely for all i and j and some 16K6n1/2−ε,
and for any interval I in [−2+ε, 2−ε] of width |I|>K2(log n)20/n, the number of eigen-
values NI of Wn :=Mn/

√
n in I obeys the concentration estimate∣∣∣∣NI−n

∫
I

%sc(x) dx
∣∣∣∣6 δn|I|

with overwhelming probability.
In particular, NI =Θε(n|I|) with overwhelming probability.
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Remark 61. Similar results were established in [20], [21] and [22] assuming stronger
regularity hypotheses on the ζij . The proof of this result follows their approach, but also
uses Lemma 43 and a few other ideas which make the current more general setting pos-
sible. In our applications we will take K=(log n)O(1), though Theorem 60 also has non-
trivial content for larger values of K. The loss of K2(log n)20 can certainly be improved,
though for our applications any bound which is polylogarithmic for K=(log n)O(1) will
suffice.

Let us assume Theorem 60 for the moment. We can then conclude a useful bound
on eigenvectors (which will also be applied to prove Theorem 19).

Proposition 62. (Delocalization of eigenvectors) Let ε, Mn, Wn, ζij and K be as
in Theorem 60. Then for any 16i6n with λi(Wn)∈[−2+ε, 2−ε], if ui(Wn) denotes
a unit eigenvector corresponding to λi(Wn), then with overwhelming probability each
coordinate of ui(Mn) is Oε(K2(log n)20/n1/2).

Proof. By symmetry and the union bound, it suffices to establish this for the first
coordinate of ui(Wn). By Lemma 41, it suffices to establish a lower bound

n−1∑
j=1

|uj(Wn−1)∗X/
√
n |2

(λj(Wn−1)−λi(Wn))2
�ε

n

K2(log n)20

with overwhelming probability, where Wn−1 is the bottom right (n−1)×(n−1) minor
of Wn and X∈Cn−1 has entries ζi1 for i=2, ..., n. But by Theorem 60, we can (with
overwhelming probability) find a set J⊂{1, ..., n−1} with |J |�εK

2(log n)20 such that
|λj(Wn−1)−λi(Wn)|�εK

2(log n)20/n for all n∈J . Thus it will suffice to show that

∑
j∈J

|uj(Wn−1)∗X|2�ε |J |

with overwhelming probability. The left-hand side can be written as ‖πHX‖2, where
H is the span of all the eigenvectors associated with J . The claim now follows from
Lemma 43.

We also have the following minor variant.

Corollary 63. The conclusions of Theorem 60 and Proposition 62 continue to
hold if one replaces a single diagonal entry ζpp of Mn by a deterministic real number
x=O(K), or if one replaces a single off-diagonal entry ζpq of Mn by a deterministic
complex number z=O(K) (and also replaces ζqp by z̄).
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Proof. After the indicated replacement, the new matrix M ′
n differs from the original

matrix by a Hermitian matrix of rank at most 2. The modification of Theorem 60 then
follows from Theorem 60 and Lemma 39. The modification of Proposition 62 then follows
by repeating the proof. (One of the coefficients of X might now be deterministic rather
than random, but it is easy to see that this does not significantly impact Lemma 43.)

Now we can prove Proposition 48. Let ε, ε1, C, C1, k, i1, ..., ik, p, q and A(0)
be as in that proposition. By the union bound, we may fix 16j6k, and also fix the
|z|6n1/2+ε1 whose real and imaginary parts are multiples of n−C1 . By the union bound
again and Corollary 63 (withK=(log n)C), the eigenvalue separation condition (31) holds
with overwhelming probability for every 16i6n with |i−j|>nε1 , as does (32) (note that
‖Pij (A(z))ep‖ is the magnitude of the pth coordinate of a unit eigenvector uij (A(z))
of A(z)). A similar argument using Pythagoras’ theorem gives (33) with overwhelming
probability, unless the eigenvalues λi(A(z)) contributing to (33) are not contained in the
bulk region [(−2+ε′)n, (2−ε′)n] for some ε′>0 independent of n. However, it is known
(see [25]; one can also deduce this fact from Theorem 60) that λi(A(z)) will fall in this
bulk region with overwhelming probability whenever 1

2εn6i6
(
1− 1

2ε
)
n, if ε′ is small

enough depending on ε. Thus, with overwhelming probability, a contribution outside
the bulk region can only occur if 2α�εn, in which case the claim follows by estimating
‖Pij ,α(A(z))ep‖ crudely by ‖ep‖=1, and similarly for ‖Pij ,α(A(z))eq‖. This concludes
the proof of Proposition 48 assuming Theorem 60.

5.2. Spectral concentration

It remains to prove Theorem 60.
Following [20], [21] and [22], we consider the Stieltjes transform

sn(z) :=
1
n

n∑
i=1

1
λi(Wn)−z

of Wn, together with its semi-circular counterpart

s(z) :=
∫ 2

−2

1
x−z

%sc(x) dx

(which will be computed explicitly in (107)). We will primarily be interested in the
imaginary part

Im(sn(x+η
√
−1 ))=

1
n

n∑
i=1

η

η2+(λi(Wn)−x)2
> 0 (89)

of the Stieltjes transform in the upper half-plane η>0.
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It is well known that the convergence of the empirical spectral distribution of Wn to
%sc(x) is closely tied to the convergence of sn to s (see [2], for example). In particular,
we have the following precise connection (cf. [21, Corollary 4.2]), whose proof is deferred
to Appendix C.

Lemma 64. (Control of Stieltjes transform implies control on ESD) Let

1
10

> η>
1
n
,

and L, ε, δ>0. Suppose that one has the bound

|sn(z)−s(z)|6 δ, (90)

with (uniformly) overwhelming probability for all z with |Re(z)|6L and Im(z)>η. Then
for any interval I in [−L+ε, L−ε] with

|I|>max
{

2η,
η

δ
log

1
δ

}
,

one has ∣∣∣∣NI−n
∫

I

%sc(x) dx
∣∣∣∣�ε δn|I|

with overwhelming probability.

In view of this lemma, it suffices to show that for each complex number z with
Re(z)62− 1

2ε and Im(z)>η :=K2(log n)19/n, one has

|sn(z)−s(z)|6 o(1)

with (uniformly) overwhelming probability.
Fix z as above. From (107), s(z) is the unique solution to the equation

s(z)+
1

s(z)+z
=0, (91)

with Im(s(z))>0. The strategy is then to obtain a similar equation for sn(z) (note that
one automatically has Im(sn(z))>0).

By Lemma 42, we may write

sn(z) =
1
n

n∑
k=1

1
ζkk/

√
n−z−Yk

, (92)

where
Yk := a∗k(Wn,k−zI)−1ak,
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Wn,k is the matrix Wn with the kth row and column removed, and ak is the kth row of
Wn with the kth element removed.

The entries of ak are independent of each other and of Wn,k, and have mean zero
and variance 1/n. By linearity of expectation we thus have, on conditioning on Wn,k,

E(Yk |Wn,k) =
1
n

trace(Wn,k−zI)−1 =
(

1− 1
n

)
sn,k(z),

where

sn,k(z) :=
1

n−1

n−1∑
i=1

1
λi(Wn,k)−z

is the Stieltjes transform of Wn,k. From the Cauchy interlacing law (24), we have

sn(z)−
(

1− 1
n

)
sn,k(z) =O

(
1
n

∫
R

1
|x−z|2

dx

)
=O

(
1
nη

)
,

and thus

E(Yk |Wn,k) = sn(z)+O
(

1
K2(log n)19

)
. (93)

We now claim that a similar estimate holds for Yk itself.

Proposition 65. (Concentration of Yk) For each 16k6n, one has

Yk = sn(z)+O
(

1
log n

)
with overwhelming probability.

Assume this proposition for the moment. By hypothesis, ζkk/
√
n6K/

√
n6n−ε

almost surely. Inserting these bounds into (92), we see that

sn(z)+
1
n

n∑
k=1

1
sn(z)+z+o(1)

= 0

with overwhelming probability (compare with (91)). This implies that with overwhelming
probability either sn(z)=s(z)+o(1) or that sn(z)=−z+o(1). On the other hand, as
Im(sn(z)) is necessarily positive, the second possibility can only occur when Im(z)=o(1).
A continuity argument (as in [20]) then shows that the second possibility cannot occur
at all (note that s(z) stays a fixed distance away from −z for z in a compact set) and
the claim follows.
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5.3. A preliminary concentration bound

It remains to prove Proposition 65. We begin with a preliminary bound (cf. [22, Theo-
rem 5.1]).

Proposition 66. For all I⊂R with |I|>K2(log n)2/n, one has

NI �n|I|

with overwhelming probability.

The proof, which follows the arguments from [22], but using Lemma 43 to simplify
things somewhat, is presented in Appendix C.

Now we prove Proposition 65. Fix k, and write z=x+η
√
−1. From (93), it suffices

to show that

Yk−E(Yk |Wn,k) =O

(
1

log n

)
with overwhelming probability. Decomposing Yk as in (114), it thus suffices to show that

n−1∑
j=1

Rj

λj(Wn,k)−(x+η
√
−1 )

=O

(
1

log n

)
(94)

with overwhelming probability, where Rj :=|uj(Wn,k)∗ak|2−1/n.
Let 16i−<i+6n, then

i+∑
j=i−

Rj = ‖PHak‖2−
dim(H)

n
,

where H is the space spanned by the uj(Wn,k)∗ for i−6j6i+. From Lemma 43 and the
union bound, we conclude that with overwhelming probability∣∣∣∣ i+∑

j=i−

Rj

∣∣∣∣�
√
i+−i−K log n+K2(log n)2

n
. (95)

By the triangle inequality, this implies that

i+∑
j=i−

‖PHak‖2�
i+−i−
n

+

√
i+−i−K log n+K2(log n)2

n
,

and hence, by a further application of the triangle inequality,

i+∑
j=i−

|Rj |�
(i+−i−)+K2(log n)2

n
(96)
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with overwhelming probability.
Since η>K2(log n)19/n, the bound (95) (together with Proposition 66) already lets

one dispose of the contribution to (94) where |λj(Wn,k)−x|6K2(log n)10/n. For the
remaining contributions, we subdivide into O((log n)3) intervals {j :i−6j6i+} such that
in each interval

a6 |λj(Wn,k)−x|6
(

1+
1

(log n)2

)
a

for some a>K2(log n)10/n (the value of a varies from interval to interval). For each such
interval, the function

1
λj(Wn,k)−(x+η

√
−1 )

has magnitude O(1/a) and fluctuates by at most O(1/a(log n)2) as j ranges over the
interval. From (95) and (96) we conclude that∣∣∣∣ i+∑

j=i−

Rj

λj(Wn,k)−(x+η
√
−1 )

∣∣∣∣�
√
i+−i−K log n+K2(log n)2

an
+

i+−i−
an(log n)2

with overwhelming probability. By Proposition 66, we have that i+−i−�an with over-
whelming probability. Thus,∣∣∣∣ i+∑

j=i−

Rj

λj(Wn,k)−(x+η
√
−1 )

∣∣∣∣� K log n√
an

+
1

(log n)4

with overwhelming probability. Summing over the values of a (taking into account the
lower bound for a) we obtain (94) as desired.

6. Propagation of narrow spectral gaps

We now prove Lemma 51. Fix i0, l and n. Assume for contradiction that all of the
conclusions fail. We will always assume that n0 (and hence n) is sufficiently large.

By (37), we can find 16i−6i0−l<i06i+6n+1 such that

λi+(An+1)−λi−(An+1) = gi0,l,n+1 min{i+−i−, (log n0)C1}(log n0)
0.9
.

If i+−i−>(log n)C1/2, then conclusion (i) holds (for n large enough), so we may assume
that

i+−i−< (log n)C1/2. (97)

We set
L :=λi+(An+1)−λi−(An+1) = gi0,l,n+1(i+−i−)(log N)0.9

. (98)
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In particular (by (39) and (97)) we have

L6 δ exp((log n)0.91). (99)

We now study the eigenvalue equation (25) for i=i−, which we rearrange as

n∑
j=i−

|uj(An)∗Xn|2

λj(An)−λi−(An+1)
=

i−∑
j=1

|uj(An)∗Xn|2

λi−(An+1)−λj(An)
+an+1,n+1−λi−(An+1).

Observe that
n∑

j=i−

|uj(An)∗Xn|2

λj(An)−λi−(An+1)
>

1
L

∑
i−6j<i+

|uj(An)∗Xn|2.

Since conclusion (ii) fails, we have
n∑

j=i−

|uj(An)∗Xn|2

λj(An)−λi−(An+1)
>

n(i+−i−)
2m/2L(log n)0.01

.

On the other hand, since conclusions (iii) and (iv) fail, we have

|an+1,n+1−λi−(An+1)|6
n exp(−(log n)0.95)

δ1/2
6

n(i+−i−)
2m/2+1L(log n)0.01

,

due to the bounds i+−i−>1, (41) and (99). By the triangle inequality, we thus have∑
16j<i−

|uj(An)∗Xn|2

λi−(An+1)−λj(An)
>

n(i+−i−)
2m/2+1L(log n)0.01

.

Note that all the summands on the left-hand side are non-negative. By a dyadic partition
and the pigeonhole principle (using the convergence of the series 1/l2), we can thus find
k>1 such that ∑

16j<i−

2k−16i−−j<2k

|uj(An)∗Xn|2

λi−(An+1)−λj(An)
� n(i+−i−)

2m/2Lk2(log n)0.01
. (100)

In particular, 2k−1<i−.
Let us first suppose that 2k−1>(log n)C1/2. Then, by the failure of conclusion (i),

we have
λi−(An+1)−λj(An)>δ1/4 exp((log n)0.95)2k−1

for all j in the summation in (100), and thus (by (41), (99) and the trivial bounds
i+−i−>1 and k=O(log n))∑

16j<i−

2k−16i−−j<2k

|uj(An)∗Xn|2�
n(i+−i−)

2m/2Lk2 log0.01 δ
1/4 exp((log n)0.95)2k−1� n2k

δ1/2
. (101)
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On the other hand, from the failure of conclusion (v), we have

|uj(An)∗Xn|2<
n exp(−(log n)0.96)

δ1/2
(102)

for 1
10εn6j6

(
1− 1

10ε
)
n. This already contradicts (101) when the range of summation

in (101) is contained in the bulk region 1
10εn6j6

(
1− 1

10ε
)
n. The only remaining case is

when (101) approaches the edge, which only occurs when 2k�εn. But in this case we
note from Pythagoras’ theorem and the failure of conclusion (vi) that

n∑
j=1

|uj(An)∗Xn|2<
n2 exp(−(log n)0.96)

δ1/2
,

leading again to a contradiction with (101). We may therefore assume that

2k−1< (log n)C1/2,

and thus k=O(C1 log log n).
By the failure of conclusion (vii), we now have |uj(An)∗Xn|2�2m/2n(log n)0.8 for

all j in the summation in (100); we conclude that

∑
16j<i−

2k−16i−−j<2k

1
λi−(An+1)−λj(An)

� i+−i−
2mL(log n)0.82

.

If we set i−− :=i−−2k−1, we conclude that 0<i−−i−−<(log n)C1/2 and

λi−(An+1)−λi−−(An) 6 2m i−−i−−
i+−i−

L(log n)0.83.

An analogous argument, starting with i=i+ in (25) instead of i=i− and reflecting all the
indices, allows us to find i++ with 06i++−i+<(log n)C1/2 such that

λi++(An)−λi+(An+1) 6 2m i−−i++

i+−i−
L(log n)0.83.

Summing, we have

λi++(An)−λi−−(An) 6L(1+2mα(log n)0.84), (103)

where
α :=

i++−i−−
i+−i−

−1.
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Note that (1+α)(i+−i−)=i++−i−−6(logN)C1 , and so, by (37) and (40),

λi++(An)−λi−−(An)
(1+α)(log N)0.9(i+−i−)(log N)0.9 > 2mgi0,l,n+1.

Combining this with (103) and (98), we conclude that

1+2mα(log n)0.84 > 2m(1+α)(log N)0.9
,

and hence
1+α(log n)0.84 > (1+α)(log N)0.9

.

But this contradicts the elementary estimate (1+α)x>1+xα for α>0 and x>1, and
Lemma 51 follows.

7. Bad events are rare

We now prove Proposition 53. Let the notation and assumptions be as in that proposition.
We first prove (a). The truncation assumption (27) ensures that the events (iii),

(v) and (vi) from Proposition 51 are empty for n large enough. The event (i) fails with
overwhelming probability, due to Theorem 60. The event (iv) fails with overwhelming
probability because of the well-known fact that the operator norm of An is O(n) with
overwhelming probability (see e.g. [1]; there are many proofs, for instance one can start
by observing that ‖An‖op62 supx ‖Anx‖, where x ranges over a 1

2 -net of the unit ball,
and use the union bound followed by a standard concentration of measure result, such
as the Chernoff inequality). This concludes the proof of (a).

Now we prove (b) and (c) jointly. By (27) and Proposition 62, we can find C ′ such
that all the coefficients of the eigenvectors uj(An) for 1

2εn6j6
(
1− 1

2ε
)
n are of magnitude

at most n−1/2(log n)C′
with overwhelming probability.

Let us first consider (vii), in which we will be able to obtain the better upper bound
of 2−�m2−2C1n for the conditional probability of occurrence (and thus establishing (b)
and (c) simultaneously for (vii)). If 2m>(log n)C3 for some sufficiently large C3, then
the desired bound comes from (27) and Lemma 43. (In fact, the Chernoff bound would
suffice as well, and the event fails with overwhelming probability.) Now suppose instead
that 2m6(log n)O(1). We wish to show that

P(|Si|> 2m/2(log n)0.8) 6 2−�m(log n)−2C1 , (104)

where Si∈C is the random walk

Si := ζ1,n+1wi,1+...+ζn,n+1wi,n (105)
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and wi,1, ..., wi,n are the coefficients of ui(An), which by hypothesis have magnitude
O(n−1/2(log n)C′

) and square-sum to 1.
Observe that Si has mean zero and variance 1. Applying Theorem 44 and (27), we

conclude that
P(|Si|> t)� exp(−ct2)+n−1/2(log n)O(1)

for any t>1 and some absolute constant c>0, which easily yields (104) in the range
2m6(log n)O(1).

The consideration of (ii) is similar. Write the left-hand side of (42) as ‖πH(Xn)‖,
where H is the span of the uj(An) for i−6j<i+. Applying (27) and Lemma 43, we
obtain the claim when i+−i−>(log n)C3 for sufficiently large c3 (in fact (ii) now fails
with overwhelming probability), so we may assume instead that i+−i−6(log n)O(1). In
this case, the event (ii) can now be expressed as

|~S|6 (i+−i−)1/2

2m/4(log n)0.005
, (106)

where ~S∈Ci+−i− is the random vector with components Sj defined in (105).
From the orthonormality of the ui(An), we see that ~S has mean zero and has co-

variance matrix equal to the identity. Applying Theorem 44 again, we see that

P(|~S|6 t)�O

(
t

(i+−i−)1/2

)(i+−i−)/4

+n−1/2t−3(log n)O(1).

Applying this with

t :=
(i+−i−)1/2

2m/4(log n)0.005
,

and using the fact that i+−i−>l>C2 by hypothesis, one concludes that (106) occurs
with probability

�O(2m/4(log n)0.005)−C2/4+n−1/223m/4(log n)O(1),

which proves the claim as long as C2 is large and 2m6n1/100. But the case 2m>n1/100

then follows by noting that the probability of the event (106) is non-increasing in m. The
proof of Proposition 53 is now complete.

Appendix A. Concentration of determinant

In view of the standard identity∫ 2

−2

log |y|%sc(y) dy=−1
2
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(which can be verified for instance by applying contour integration to a branch cut of
(4−z2)1/2 log z around the slit [−2, 2]; see also Remark 67 below) and Stirling’s formula,
it suffices to prove the latter claim.

Fix z; we allow implied constants to depend on z. We of course have

log |det(Mn−zI
√
n )|=

n∑
j=1

log |λj(Mn)−z
√
n |= 1

2
n log n+

n∑
j=1

log |λj(Wn−z)|,

so it will suffice to show that∣∣∣∣ 1n
n∑

j=1

log |λj(Wn)−z|−
∫ 2

−2

log |y−z|%sc(y) dy
∣∣∣∣6n−c

asymptotically almost surely for some c>0. Making the change of variables y=t(x),
where t is defined in (3), it suffices to show that∣∣∣∣ 1n

n∑
j=1

log |λj(Wn)−z|−
∫ 1

0

log |t(x)−z| dx
∣∣∣∣6n−c

asymptotically almost surely for some c>0.
From Theorem 11 (with k=1), we have

inf
j
|λj(Wn)−z|>n−2

asymptotically almost surely (because the expected number of eigenvalues in the interval
[z−n−2, z+n−2] is o(1)). From this (and (4)) we conclude that

sup
j

log |λj(Wn)−z|=O(log n)

asymptotically almost surely. Thus, the contribution of all j with |t(j/n)−Re(z)|6n−ε

will be negligible for any fixed ε>0, and it suffices to show that∣∣∣∣∣ 1n ∑
16j6n

|t(j/n)−Re(z)|>n−ε

log |λj(Wn)−z|−
∫ 1

0

log |t(x)−z| dx

∣∣∣∣∣6n−c

asymptotically almost surely.
By (2), we see that with probability 1−o(1), one has λj(Wn)=t(j/n)+O(n−δ) for

all 16j6n and some absolute constant δ>0, where −26t(a)62 is defined by (3). By
Taylor expansion, we thus have asymptotically almost surely that

log |λj(Wn)−z|= log
∣∣∣∣t( jn)−z

∣∣∣∣+O(n−δ/2)
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for all 16j6n with |t(j/n)−Re(z)|>n1−ε, if ε is chosen sufficiently small depending
on δ. The claim then follows (for ε small enough) by approximating∫ 1

0

log |t(x)−z| dx

by its Riemann integral away from the possible singularity at Re(z).

Remark 67. The logarithmic potential∫ 2

−2

log |y−z|%sc(y) dy

for the semi-circular distribution can be computed explicitly as∫ 2

−2

log |y−z|%sc(y) dy=
1
2
Re
(
z−

√
z2−4

z+
√
z2−4

)
+log

∣∣∣∣√z2−4+z
2

∣∣∣∣,
where

√
z2−4 is the branch of the square root of z2−4 with cut at [−2, 2] which is

asymptotic to z at infinity; this can be seen by integrating the formula∫ 2

−2

1
y−z

%sc(y) dy=
−z+

√
z2−4

2
(107)

for the Stieltjes formula for the semi-circular potential, which can be easily verified by
the Cauchy integral formula.

Appendix B. The distance between a random vector and a subspace

The prupose of this appendix is to prove Lemma 43. We restate this lemma for the
reader’s convenience.

Lemma 68. Let X=(ξ1, ..., ξn)∈Cn be a random vector whose entries are indepen-
dent with mean zero, variance 1, and are bounded in magnitude by K almost surely for
some K>10(E|ξ|4+1). Let H be a subspace of dimension d and πH be the orthogonal
projection onto H. Then

P
(∣∣‖πH(X)‖−

√
d
∣∣> t

)
6 10 exp

(
− t2

10K2

)
.

In particular, one has
‖πH(X)‖=

√
d+O(K log n)

with overwhelming probability.



random matrices: universality of local eigenvalue statistics 193

It is easy to show that E‖πH(X)‖2=d, so it is indeed natural to expect that with
high probability πH(X) is around

√
d.

In a previous paper [44], the authors proved Lemma 68 for the special case when ξi
are Bernoulli random variables (taking values ±1 with probability half). This proof is
a simple generalization of one in [44] (see also [45, Appendix E]). We use the following
theorem, which is a consequence of Talagrand’s inequality (see [45, Theorem E.2], [31],
or [43]).

Theorem 69. (Talagrand’s inequality) Let D be the unit disk {z∈C:|z|61}. For
every product probability µ on Dn, every convex 1-Lipschitz function F : Cn!R and
every r>0,

µ(|F−M(F )|> r) 6 4 exp
(
− r

2

16

)
,

where M(F ) denotes the median of F .

Remark 70. In fact, the result still holds for the space D1×...×Dn, where the Di’s
are complex regions with diameter 2.

An easy change of variables reveals the following generalization of this inequality: if
µ is supported on a dilate K ·Dn of the unit disk for some K>0, rather than Dn itself,
then for every r>0 we have

µ(|F−M(F )|> r) 6 4 exp
(
− r2

16K2

)
. (108)

In what follows, we assume that K>g(n), where g(n) is tending (arbitrarily slowly) to
infinity with n. The map X 7!|πH(X)| is clearly convex and 1-Lipschitz. Applying (108),
we conclude that

P
(∣∣|πH(X)|−M(|πH(X)|)

∣∣> t
)
6 4 exp

(
− t2

16K2

)
(109)

for any t>0. To conclude the proof, it suffices to show that

∣∣M(|πH(X)|)−
√
d
∣∣6 2K. (110)

Let P=(pjk)16j,k6n be the n×n orthogonal projection matrix onto H. We have
that trace(P 2)=trace(P )=

∑n
i=1 pii=d and |pii|61. Furthermore,

|πH(X)|2 =
∑

16i,j6n

pijξiξ̄j =
n∑

i=1

pii|ξi|2+
∑

16i 6=j6n

pijξiξ̄j .
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Consider the event E+ that |πH(X)|>
√
d+2K. Since this implies that

|πH(X)|2 > d+4K
√
d+4K2,

we have

P(E+) 6P
( n∑

i=1

pii|ξi|2 > d+2K
√
d

)
+P

(∣∣∣∣ ∑
16i 6=j6n

pijξiξ̄j

∣∣∣∣> 2K
√
d

)
.

Set S1 :=
∑n

i=1 pii(|ξi|2−1). Then we have, by Chebyshev’s inequality,

P
( n∑

i=1

pii|ξi|2 > d+2K
√
d

)
6P(|S1|> 2K

√
d ) 6

E(|S1|2)
4dK2

.

On the other hand, by the assumption on K,

E|S1|2 =
n∑

i=1

p2
iiE(|ξi|2−1)2 =

n∑
i=1

p2
ii(E|ξi|4−1) 6

n∑
i=1

p2
iiK = dK.

Thus,

P(|S1|> 2K
√
d ) 6

E|S1|2

4dK2
6

1
K

6
1
10
.

Similarly, set S2 :=|
∑

i 6=j pijξiξ̄j |. Then we have ES2
2 =
∑

i 6=j |pij |26d. So again, by
Chebyshev’s inequality,

P(S2 > 2K
√
d ) 6

d

4dK2
6

1
10
.

It follows that P(E+)6 1
5 , and so M(‖πH(X)‖)6

√
d+2K. To prove the lower bound,

let E− be the event that ‖πH(X)‖6
√
d−2K and notice that

P(E−) 6P(|πH(X)|2 6 d−2K
√
d ) 6P(S1 6 d−K

√
d )+P(S2 >K

√
d ).

Both terms on the right-hand side can be bounded by 1
5 by the same argument as above.

The proof is complete.

Appendix C. Controlling the spectral density by the Stieltjes transform

In this appendix we establish Lemma 64 and Proposition 66.
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Proof of Lemma 64. From (90) we see that, with overwhelming probability, one has

|sn(x+η
√
−1 )|� 1

for all −L6x6L which are multiples of n−100. From (89), one concludes that

1
n

n∑
i=1

η

η2+|λi(Wn)−x|2
� 1,

and we thus have the crude bound
NI � ηn

whenever I⊂[−L,L] is an interval of length |I|=η. Summing in I, we thus obtain the
bound

NI �|I|n (111)

with overwhelming probability whenever I⊂[−L,L] has length |I|>η. (One could also
invoke Proposition 66 for this step.)

Next, let I⊂[−L+ε, L−ε] be such that |I|>2η, and consider the function

F (y) :=n−100
∑
x∈I

n−100|x

η

π(η2+|y−x|2)
,

where the sum ranges over all x∈I that are multiples of n−100. Observe that

1
n

n∑
i=1

F (λi(Wn))=n−100 1
π

Im

( ∑
x∈I

n−100|x

sn(x+η
√
−1 )

)

and ∫
R
F (y)%sc(y) dy=n−100 1

π
Im

( ∑
x∈I

n−100|x

s(x+η
√
−1 )

)
.

With overwhelming probability, we have sn(x+η
√
−1 )=s(x+η

√
−1 )+O(δ) for all x in

the sum, by hypothesis, and hence

1
n

n∑
i=1

F (λi(Wn))=
∫

R
F (y)%sc(y) dy+O(|I|δ).

On the other hand, from Riemann integration, one sees that

F (y) =
∫

I

η

π(η2+|y−x|2)
dx+O(n−10).
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One can then establish the pointwise bounds

F (y)� 1
1+(dist(y, I)/η)

+n−10

when y /∈I and dist(y, I)6|I|,

F (y)� η|I|
dist(y, I)2

+n−10

when y /∈I and dist(y, I)>|I|, and (since η/π(η2+|y−x|2) has integral 1) in the remaining
case

F (y) = 1+O
(

1
1+dist(y, Ic)/η

)
+O(n−10).

Using these bounds, one sees that∫
R
F (y)%sc(y) dy=

∫
I

%sc(y) dy+O
(
η log

|I|
η

)
,

and a similar argument using Riemann integration and (111) (as well as the trivial bound
NJ 6n when J lies outside [−L,L]) gives

1
n

n∑
i=1

F (λi(Wn))=
1
n
NI +Oε

(
η log

|I|
η

)
.

Putting all this together, we conclude that

NI =n

∫
I

%sc(y) dy+Oε(δn|I|)+Oε

(
ηn log

|I|
η

)
.

The latter error term can be absorbed into the former, since

|I|> η

δ
log

1
δ
,

and the claim follows.

Proof of Proposition 66. By the union bound it suffices to show this for

|I|= η :=
K2(log n)2

n
.

Let x be the center of I. Then, by (89), it suffices to show that the event that

NI >Cnη (112)
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and
Im(sn(x+η

√
−1 ))>C (113)

for some large absolute constant C, fails with overwhelming probability.
Suppose that we have both (112) and (113). By (92) we have

1
n

n∑
k=1

∣∣∣∣Im( 1
ζkk/

√
n−(x+η

√
−1 )−Yk

)∣∣∣∣>C;

using the crude bound |Im(1/z)|61/|Im(z)|, we conclude that

1
n

n∑
k=1

1
|η+Im(Yk)|

>C.

At the same time, by writing Wn,k in terms of an orthonormal basis uj(Wn,k) of eigen-
functions, one sees that

Yk =
n−1∑
j=1

|uj(Wn,k)∗ak|2

λj(Wn,k)−(x+η
√
−1 )

, (114)

and hence

Im(Yk) > η

n−1∑
j=1

|uj(Wn,k)∗ak|2

η2+(λj(Wn,k)−x)2
.

On the other hand, from (112) we can find 16i−<i+6n with i+−i−>ηn such that
λi(Wn)∈I for all i−6i6i+. By the Cauchy interlacing property (24), we thus have
λi(Wn,k)∈I for i−6i<i+. We conclude that

Im(Yk)� 1
η

∑
i−6j<i+

|uj(Wn,k)∗ak|2 =
1
η
‖PHk

ak‖2,

where PHk
is the orthogonal projection onto the (i+−i−)-dimensional space Hk spanned

by the eigenvectors uj(Wn,k) for i−6j<i+. Putting all this together, we conclude that

1
n

n∑
k=1

η

η2+‖PHk
ak‖2

�C.

On the other hand, from Lemma 68 we see that ‖PHk
ak‖2=O(η) with overwhelming

probability. (One has to take the union bound over all possible choices of i− and i+, but
there are only O(n2) such choices at most, so this is not a problem.) The claim then
follows by taking C sufficiently large.
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Appendix D. A multidimensional Berry–Esseen theorem

In this section, we prove Theorem 44. We will need the following multidimensional
Berry–Esséen theorem, which is a generalisation of [45, Proposition D.2].

Theorem 71. Let N,n>1 be integers, let v1, ..., vn∈CN be vectors, let ζ1, ..., ζn be
independent complex-valued variables with mean zero, variance E|ζj |2=1 and the third
moment bound

sup
16i6n

E|ζi|3 6C (115)

for some constant C>1. Let S be the CN -valued random variable

S :=
n∑

i=1

viζi.

We identify CN with R2N in the usual manner, and define the covariance matrix M of
S to be the unique symmetric 2N×2N real matrix such that

u∗Mu :=E|Re(u∗S)|2 (116)

for all u∈CN≡R2N .
Let G be a Gaussian random variable on R2N≡CN with mean zero and with the

same covariance matrix M as S, and thus

u∗Mu=E|G·u|2 =E|Re(u∗S)|

for all u∈R2n≡Cn (where u·v=Re(v∗u) denotes the dot product on R2N ). More explic-
itly, G has the distribution function

1
(2π)n(detM)1/2

exp
(
−x

∗M−1x

2

)
dx1 ... dx2N

if M is invertible, with an analogous limiting formula when M is singular. Then, for
any ε>0 and any measurable set Ω⊂R2N≡CN , one has

P(S ∈Ω) 6P(G∈Ω∪∂εΩ)+O
(
CN3/2ε−3

n∑
j=1

|vj |3
)
, (117)

and similarly

P(S ∈Ω) >P(G∈Ω\∂εΩ)−O
(
CN3/2ε−3

n∑
j=1

|vj |3
)
, (118)

where
∂εΩ := {x∈R2N : dist∞(x, ∂Ω) 6 ε},

∂Ω is the topological boundary of Ω and dist∞ is the distance with respect to the `∞

metric on R2N .



random matrices: universality of local eigenvalue statistics 199

Remark 72. The main novelty here, compared with that in [45, Proposition D.2], is
that the random variable ζj is not assumed to be C-normalized (which means that the
real and imaginary parts of ζj have covariance matrix equal to half the identity). For
instance, some of the ζj could be purely real, or supported on some other line through
the origin, such as the imaginary axis.

Proof. We obtain the result by repeating the proof of [45, Proposition D.2] with
some proper modification. For the readers convenience, we present all details.

It suffices to prove (117), as (118) follows by replacing Ω with its complement.
Let ψ: R!R+ be a bump function supported on the unit ball {x∈R:|x|61} of total

mass
∫

R ψ=1, let Ψε,N :FR!R+ be the approximation of the identity

Ψε,R(x1, ..., xN ) :=
R∏

i=1

1
ε
ψ
(xi

ε

)
,

and let f : Rn!R+ be the convolution

f(x) =
∫

RN

Ψε,N (y)1Ω(x−y) dy, (119)

where 1Ω is the indicator function of Ω. Observe that f equals 1 on Ω\∂εΩ, vanishes
outside Ω∪∂εΩ, and is smoothly varying between 0 and 1 on ∂εΩ. Thus it will suffice to
show that

|Ef(S)−Ef(G)|�CN3/2ε−3
n∑

j=1

|vj |3.

We now use a Lindeberg replacement trick (cf. [33] and [38]). For each 16i6n, let
gi be a complex Gaussian with mean zero and with the same covariance matrix as ζi,
and thus

ERe(gi)2 =ERe(ζi)2, EIm(gi)2 =EIm(ζi)2

and
ERe(gi)Im(gi) =ERe(ζi)Im(ζi).

In particular gi has mean zero and variance 1. We construct the g1, ..., gn to be jointly
independent. Observe from (116) that the random variable

g1v1+...+gnvn ∈CN

has mean zero and covariance matrix M , and thus has the same distribution as G. Thus,
if we define the random variables

Sj := ζ1v1+...+ζjvj +gj+1vj +...+gnvn ∈CN ,
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we have the telescoping triangle inequality

|Ef(S)−Ef(G)|6
n∑

j=1

|Ef(Sj)−Ef(Sj−1)|. (120)

For each 16j6n we may write

Sj =S′j +ζjvj and Sj−1 =S′j +gjvj ,

where

S′j := ζ1v1+...+ζj−1vj−1+gj+1vj +...+gnvn.

By Taylor’s theorem with remainder, we thus have

f(Sj) =PS′j
(Re(ζj), Im(ζj))+O

(
|ζj |3 sup

x∈Rn

3∑
k=0

|(vj ·∇)k((vj

√
−1 )·∇)3−kf(x)|

)
(121)

and

f(Sj−1) =PS′j
(Re(gj), Im(gj))+O

(
|gj |3 sup

x∈Rn

3∑
k=0

|(vj ·∇)k((vj

√
−1 )·∇)3−kf(x)|

)
,

(122)
where PS′j

is some quadratic polynomial depending on S′j , and vj and vj

√
−1 are viewed

as vectors in R2N . A computation using (119) and the Leibniz rule reveals that all
third partial derivatives of f have magnitude O(ε−3), and so, by the Cauchy–Schwarz
inequality, we have

3∑
k=0

|(vj ·∇)k((vj

√
−1 )·∇)3−kf(x)|� |vj |3N3/2ε−3.

Observe that ζj and gj are independent of S′j , and have the same mean and covariance
matrix. Subtracting (121) from (122) and taking expectations using (115), we conclude
that

|Ef(Sj)−Ef(Sj−1)|�C|vj |3N3/2ε−3,

and the claim follows from (120).

Remark 73. The bounds here are not best possible, but are sufficient for our appli-
cations.

Now we are ready to prove Theorem 44.
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Proof of Theorem 44. We first prove the upper tail bound on Si. Here, the main
tool is the N=1 case of Theorem 71. The variance of Si is

E|Si|2 =
n∑

j=1

|aij |2 =1, (123)

since the rows of A have unit size. Thus, the 2×2 covariance matrix of Si is O(1). Let
Gi be a complex Gaussian with mean zero and the same covariance matrix as Si. By
Theorem 71, we have

P(|Si|> t) 6P(|G|> t−ε
√

2 )+O
(
Cε−3

N∑
i=1

n∑
j=1

|aij |3
)

for any ε>0. Selecting ε:= 1
10 , and using the fact that G has variance 1, we conclude

that

P(|Si|> t) 6 exp(−ct2)+O
(
C

N∑
i=1

n∑
j=1

|aij |3
)
,

and the claim follows from (26) and (123).
Now we prove the lower tail bound on ~S, using Theorem 71 in full generality. Observe

that for any unit vector u∈CN≡R2N , one has

E|u∗S|2 =E‖u∗A‖2 =1,

by the orthonormality of the rows of A. Thus, by (116), the operator norm of the
covariance matrix M of S has operator norm at most 1. On the other hand, we have

trace(M) =E|S|2 = ‖A‖2F =N.

Thus, the 2N eigenvalues of M range between 0 and 1 and add up to N . This implies
that at least 1

2N of them are at least 1
4 , and so one can find a

⌊
1
2N
⌋
-dimensional real

subspace V of R2N such that M is invariant on V and has all eigenvalues at least 1
4 on V .

Now let G be a Gaussian in R2N≡CN with mean zero and covariance matrix M .
By Theorem 71, we have

P(|~S|6 t) 6P(|G|6 t+ε
√

2N )+O
(
CN3/2ε−3

N∑
i=1

n∑
j=1

|aij |3
)

for any ε>0. By (26) and (123) we have

N∑
i=1

n∑
j=1

|aij |3 6Nσ.
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Setting ε:=t/
√

2N , we conclude that

P(|~S|6 t) 6P(|G|6 2t)+O(CN4t−3σ).

Let GV be the orthogonal projection of G onto V . Clearly

P(|G|6 2t) 6P(|GV |6 2t).

The Gaussian GV has mean zero and covariance matrix at least 1
4IV (i.e. all eigen-

values are at least 1
4 ). By applying a linear transformation to reduce the covariance, we

see that the quantity P(|GV |62t) is maximized when the covariance matrix is exactly
1
4IV . Thus, in any orthonormal basis of GV , the

⌊
1
2N
⌋

components of GV , g1, ..., gbN/2c,
are independent real Gaussians of variance 1

4 . If |GV |62t, then g2
1+...+g2

bN/2c64t2, and
thus (by Markov’s inequality) g2

i 68t2/N for at least
⌊

1
4N
⌋

of the indices i. The number
of choices of these indices is at most 2bN/2c, and the events g2

i 62t2/N are independent
and occur with probability O(t/

√
N ), so we conclude from the union bound that

P(|GV |6 2t) 6O(t/
√
N )bN/4c

and the claim follows.
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