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1. Introduction

Let G be a simple and simply-connected complex algebraic group, PCG a parabolic
subgroup and 7" a maximal torus. This paper studies the relationship between the
quantum cohomology QH*(G/P) of the flag variety of G and the homology H.(Grg) of
the affine Grassmannian Grg of G. We show that QH*(G/P) is a quotient of H.(Grg)
after localization and describe the map explicitly on the level of Schubert classes. As a
consequence, all three-point genus-zero Gromov—Witten invariants of G/P are identified
with homology Schubert structure constants of H.(Grg), establishing the equivalence of
the quantum and homology affine Schubert calculi. This is an unpublished result stated
by Dale Peterson in 1997 [29]. Peterson’s statement and our proof extends to the T-
equivariant setting, though Peterson was not using the definition of equivariant quantum
cohomology in use today.

Quantum Schubert calculus has been studied heavily and we will not attempt to
survey the literature. The combinatorial study of the equivariant quantum cohomology
rings QHT (G/P) is however more recent (see [27]). Schubert calculus on the affine
Grassmannian was first studied by Kostant and Kumar [17] as a special case of their
general study of the topology of Kac—Moody flag varieties. That the nilHecke ring of
Kostant and Kumar could be used to study both the homology and cohomology of the
affine Grassmannian was first realized by Peterson, who should be considered the father
of affine Schubert calculus. Peterson’s work on affine Schubert calculus is related to his
theory of geometric models for QH*(G/P), most of which has remained unpublished for

a decade; see however [16] and [31] for statements of some of Peterson’s results. Recently,
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interest in affine Schubert calculus was rekindled from a different direction: Shimozono
conjectured and later Lam [19] proved that the k-Schur functions of Lapointe, Lascoux
and Morse [22], arising in the study of Macdonald polynomials, represented homology
Schubert classes of the affine Grassmannian when G=SL(n).

The observation that QH*(G/P) and H,.(Grg) are related, is already apparent
in the literature. Ginzburg [12] described the cohomology H*(Grg) as the enveloping
algebra of the Lie algebra of a unipotent group. The same unipotent group occurs in
Kostant’s [16] description of QH*(G/B) as a ring of rational functions. More recently,
Bezrukavnikov, Finkelberg and Mirkovié [2] described the equivariant K-homology of
Grg and discovered a relation with the Toda lattice. Earlier the relation of the Toda
lattice with QH*(G/B) had been established by Kim [15]. One can already deduce
from [2] and [15] that some localizations of H,(Grg) and QH*(G/B) are isomorphic.(!)
However, such a statement is insufficient for the enumerative applications to Schubert
calculus. On the other hand, even knowing the coincidence of Gromov—Witten invariants
with affine homology Schubert structure constants, the fact that the identification arises
from a ring homomorphism is still unexpected; for example, the theorems of [6] and [34]
which compare structure constants in quantum and ordinary cohomology, are not of this
form. However we note that Lapointe and Morse [24] defined a ring homomorphism from
the linear span of k-Schur functions to the quantum cohomology of the Grassmannian,
which via [19] may be interpreted as sending Schubert classes in the homology of the
affine Grassmannian of SLy;1 to quantum Schubert classes.

The paper is naturally separated into the two cases P=B and P#B. For P=B, our
proof is purely algebraic and combinatorial, and does not appeal to geometry as in (what
we believe is) Peterson’s original intended argument, though much of the combinatorics
we develop may well have been known to Peterson. At the core of the our argument is
the relationship between the quantum Bruhat graph, first studied by Brenti, Fomin and
Postnikov [5] and the Bruhat order on the superregular elements of the affine Weyl group,
which we study here. Roughly speaking, an element x of the affine Weyl group Wt is
superregular if it has a large translation component. As a byproduct, we show that the
tilted Bruhat orders in [5] are all (dual to) induced suborders of the affine Bruhat order,
recovering also the shellability and Eulerianness of tilted Bruhat order.

The algebraic part of our proof relies on known properties of the ring QH*(G/B), in
particular the fact that it is associative and commutative. Apart from these general prop-
erties, we need only one more formula for QH*(G/B): the equivariant quantum Chevalley
formula originally stated by Peterson [29], and recently proved by Mihalcea [27]. On the
side of H,(Grg), our computations rely on a homomorphism j: Hr (Grg)— Za,, (5) CAgt,

(1) Finkelberg (private communication) has calculated these localizations in the context of [2].
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where Ayf is the affine nilHecke ring of Kostant and Kumar [17] and Z,_,(S) (called the
Peterson subalgebra in [19]) is the centralizer of S=HT (pt). The map j is again due to
Peterson. Proofs of its main properties can be found in [19].

Our results allow us to give formulae for the affine Schubert classes as elements
of the Peterson subalgebra. These formulae involve generating functions over paths in
the affine Bruhat order, or equivalently in the quantum Bruhat graph. In particular, our
formulae are related to the quantum Schubert polynomials of [9] and [25]. Each quantum
Schubert polynomial gives a formula for infinitely many affine Schubert classes.

For the case P#B we study the Coxeter combinatorics of the affinization of the
Weyl group of the Levi factor of P. We use this combinatorics to compare the quantum
equivariant Chevalley formulae for QHT (G/B) and QHT (G /P), using the comparison
formula of Woodward [34] to refine the Chevalley formula of [10] and [27]. Some of the
intermediate results we use are stated by Peterson in [29].

We use the affine homology Chevalley formula given in [21] to deduce a formula in
QH*(G/P) for multiplication by the quantum Schubert class ¢ labeled by the reflec-
tion r¢ in the highest root. We show that in the case of the Grassmannian, the ring
homomorphism of Lapointe and Morse [24] differs from Peterson’s map by the strange
duality of QH*(G/P) due to Chaput, Manivel and Perrin [7].

In the current work we use the maximal torus 7" in G; yet the affine Grassmannian
affords the additional C*-action given by loop rotation. In future work we intend to
study the Schubert calculus of the affine Grassmannian with respect to this extra C*-
equivariance and to pursue K-theoretic analogues of Peterson’s theory.

Both the quantum cohomology QH*(G/B) and homology H.(Grg) possess addi-
tional structures which would be interesting to compare: for example, QH*(G/B) has
mirror-symmetric constructions and H,(Grg) is a Hopf algebra with an action of the nil-
Hecke ring. The naturality of our main theorem with respect to Schubert classes suggests
that the appearance of the Toda lattice in [2] and [15] is somehow related to Schubert

calculus.

2. The equivariant quantum cohomology ring QHT (G/B)
2.1. Notation

Let G be a simple and simply-connected complex algebraic group, BCG be a Borel sub-
group and T'C B be a maximal torus. Let {a;:¢€1}Ch* be a basis of simple roots and let
{a) :i€I}€h be a basis of simple coroots, where b is a Cartan subalgebra of the Lie alge-
bra of G. Denote by Q=&D,.; Za; Ch* and Q¥ =P, ; Za;' the root and coroot lattices.

Let P=@,; Zw; Ch* and PV =P, ; Zw; Ch be the weight and coweight lattices, where



52 T. LAM AND M. SHIMOZONO

{w;:iel} and {w; :i€I} are the fundamental weights and coweights, which are the dual
bases to {:i€I} and {a;:i€} with respect to the natural pairing (-, -):hxh*—C.

Let W denote the Weyl group; it is generated by the simple reflections {r;:i€l}. W
acts on h* and § by

rp=p—(ay, may for peb”,
rid=A—(\, a;)a; for Aeh.

These actions stabilize the lattices QC PCh* and QY C PV Ch, respectively. The pairing
(-,-) is W-invariant: for all weW, peh* and A€h, we have

Let R=W -{a;:i€I}Ch* be the root system of G. Then R=R*U(—R"), where

R =RNEP Zo0s
iel
is the set of positive roots. For each a€R there are ueW and i€l such that a=uay.
Define the associated coroot oY €Q" of a by a¥=u«) and the associated reflection of «
by ro=ur;u~'€W; they are independent of the choice of v and i. Let ¢: W —Z denote
the length function of W. For v,weW we write w<w if {(w)=¢(v)—1 and there is a root
a€R such that v=wr,. The Bruhat order < is the partial order on W with covering

relation <.

2.2. Quantum equivariant Chevalley formula

Let S=HT(pt) be the symmetric algebra of the weight lattice P. Let Z[q|=Z[q;:i€]]
be a polynomial ring for the sequence of indeterminates ¢;. For A=), ; a;ay €Q",
with a; €Zx0, we set gx=]],c; ¢i" €Zlq]. The (small) equivariant quantum cohomology
QHT(G/B) is isomorphic to HT (G/B)®z7Z]q] as a free Z[g]-module, with the equivari-
ant quantum Schubert classes {c¥ €QHT (G/B):weW} as basis. It is equipped with a
quantum multiplication denoted *: QH(G/B)xQHT(G/B)—QHT (G/B). This mul-
tiplication is associative and commutative.

When we set ¢;=0 in QHT(G/B), we obtain the usual equivariant cohomology
HT(G/B). When we apply the evaluation ¢g: S—7Z at 0 to QH” (G/B), we obtain the
usual quantum cohomology QH*(G/B). We refer the reader to [27] for more details.
As shown in [27], the quantum equivariant Chevalley formula completely determines
the multiplication in QHT(G/B). It was first stated by Peterson [29] and proved by
Mihalcea [27]. Define the element 0=, ; wi=4% >, p+ @EP.
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THEOREM 2.1. (Quantum equivariant Chevalley formula) Let i€l and weW . Then
we have in QHT (G/B),

oo = (w; —w-wi)aw—FZ(aV, wiyore —|—Z<o¢v, Wi)Gav o,
(03 (03

where the first summation is over a€ R™ such that wry,>w and the second summation
is over a«€R" such that {(wry)=f(w)+1—{aV,2p).

Our notation here differs slightly from Mihalcea’s: the indexing of Schubert bases
has been changed via w—wow, and we have made a different choice of positive roots for
T. However, our indexing agrees with the ones in [9], [10] and [17].

Theorem 2.1 can be extended by linearity to give a formula for the multiplication
by the quantum equivariant class [\|€QH” (G/B) of a line bundle with weight A. The-
orem 2.1 then corresponds to the case A=w;. Let us denote by CZ)”;\GS the equivariant

Gromov—Witten invariants given by

v u __ w,A w
o'xo" = E Culo O
weWw

in QHT(G/B). The non-equivariant Gromov-Witten invariants have an explicit enu-

merative interpretation which we will not describe here.

2.3. Quantum Bruhat graph

The quantum Bruhat graph D(W) of [5] is the directed graph with vertices given by the
elements of the Weyl group W, with a directed edge from w to v=wr, for weW and
a€R" if either £(v)=L(w)+1 or L(v)=L(w)+1—(aV,20).

Given ueW, the tilted Bruhat order D, (W) of [5] is the graded partial order on W
with the relation w~,v if and only if there is a shortest path in D(W) from u to v which
passes through w. Note that Djq(WW) is the usual Bruhat order. We refer the reader to
[5, §6] for further details.

Ezample 2.2. Let W be the Weyl group of type C3, which we realize using the
weight lattice P=72 with a;=(1, —1)=ay, a2=(0,2), oy =(0, 1) and the sum of positive
roots 20=4a1+3as=(4,2)€Z2 Note that rirer;=r, for a=ri(as) and aV=ri(ay)=
ay +ay=(1,0). We have (a",20)—1=(1,0)-(4,2)=4—1=3.
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On the left is D(W) and on the right, D, (W) for u=rirary:
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3. Affine Weyl group

Let Wa=W xQV denote the affine Weyl group corresponding to W. For A€QV, its
image in W,y is denoted by ty. We have t,. =wtyw ™! for all weW and Ae@QV. As a
Coxeter group Wy is generated by simple reflections {r;:¢€ I,¢}, where Ly=I1{0}. We
denote by Qar=,c;  ZaiChly and QY= Zoy Char the affine root and coroot
lattices, respectively, where b, is the Cartan subalgebra of the affine Lie algebra g.¢
associated with the Lie algebra g of G. Restriction yields a natural map Q.¢— @Q denoted
[ 3; its kernel is spanned by the null root d=ag+6, where #€ R is the highest root.
In particular we have Q.:=Q®ZJ. Abusing notation we sometimes write o both for an
element of Q¢ and its image @ in Q.

The level-zero action of Wyt on P®ZS is given by
wty-(p+nd) =w-p+(n— (A, w)d (3.1)
for weW, AeQV, pe P and neZ. This action stabilizes Qar. War acts on QY by
ri A=A A—(\, ;) (3.2)

for all i€ L,y and A€ QY. Here (-, -): QY X Qar—Z is computed from the affine Cartan
matrix, whose (4, j) entry is (o), o).

The affine root system R,; is made of the non-zero elements of the form f=a+nd,
where a€ RU{0} and ne€Z. The set of positive affine roots R consists of the elements
a+nd€R,; such that either n>0 or both a€R* and n=0. Let R$=Wus-{cy:i€ s}
be the set of real roots of g,r; it consists of the elements € R,¢ such that 3#£0. The
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associated coroot of B€R is defined by 8Y=ua) €QY;, where u€W,¢ and i€l,; are
such that S=ua;; BV is independent of the choice of u and i. The associated reflection
is defined by m:uriuﬂEWaf.

For B=a-+nd€ R, with respect to Wor=W x Q" one has

af)
rg =Talnav (3.3)
and, in particular,
ro="rpt_gv.
For xeW,¢, define
Inv(z)={B€Ry:2-BE€—Ry};

the elements of Inv(z) are called inversions of z. It is well-known that ¢(z)=|Inv(z)| for
all zeWys. The following standard formula gives the length of x=wt,. It is obtained by
calculating the number of values of n€Z, for each fixed a€ R* such that a+ndelnv(z).

LEMMA 3.1. Let x=wtx€Wys. Then

fa)= 3 Ix(w-a<0)+(a)l,

acRt
where x(P)=1 if P is true and x(P)=0 otherwise.

We call el antidominant if (X, «;)<0 for each i€l, and denote by C~2 the set of
antidominant elements of QY. The following lemma is an immediate consequence of

Lemma 3.1.
LEMMA 3.2. Let AeQY and weW be such that w-A€Q. Then {(ty)=(w-\, —20).

Let W_; denote the set of Grassmannian elements in Wy¢, which by definition are

those that are of minimum length in their coset in W,¢/W. They are characterized below.

LEMMA 3.3. Let weW and AeQV. Then wtyeW if and only if )\6@ and w
is A-minimal, that is, for every i€l, if (A a;)=0 then wa;>0 (equivalently, w is of
minimum length in its coset in W/Wy, where Wy is the stabilizer of X). In this case

U(wty)=L(tx) —L(w).

Proof. We have wtyeW if and only if wty-c;>0 for each i€l. By (3.1) this holds
if and only if for each i€ either (), a;)<0 or (A, a;)=0 and w-a; € R". This is exactly
the stated condition. To calculate ¢(wty) in this case one observes that for each a€ R*
we have y(w-a<0)+ (), «)<0, so, by Lemma 3.1, £(t))—£¢(wty) is equal to the number

of inversions of w. O
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We say that A€QV is regular if the stabilizer W), is trivial.

LEMMA 3.4. For /\E@ regular,
C(uty.n) =L0(tx) —L(uw)+£(w).
Proof. We have ut,,.=uwtyw™'. By Lemma 3.3, uwt\€W,_; and
Luwty) =L(t)) —L(uw).

But f(uwtyw ™) =f(uwty)+L(w™) and £(w™1)=~(w), so the claim follows. O
The following result can be found in [5, Lemma 4.3] and [25, Lemma 3.2].

LEMMA 3.5. For any positive root a€ R, we have £(ry)<{aV,20)—1. In the case

of a simply laced root system, equality always holds.

4. Affine Bruhat order and quantum Bruhat graph

In this section we study the part of the Bruhat order on the affine Weyl group for elements

with large translation part, and relate this to the quantum Bruhat graph.

4.1. Superregular affine Bruhat order

Definition 4.1. For M €Z~( we call an element Ae QY M -regular if |(\, )| =M for
every a€ R*. We say that x=wt) €W, is M-regular if X is. We fix once and for all a
sufficiently large M €Z~( (for our purposes M =2|W|+2 is sufficient), and say that an
element we W, is superregular if it is M -regular for this M, and write W for the set

of superregular elements.

For k€Z~, we say that @ €Wy is k-superreqular if €W and for all y€ W, such
that y<x and £(y)>{(x)—F, it follows that ye W .

In the rest of the paper we will say that a property, or a result, holds for “sufficiently
superregular” elements, if there is a k€Z~ such that the property, or the result, holds
for all k-superregular elements. In other words, x is sufficiently superregular if all nearby
elements below x in Bruhat order are at least superregular. We will in general not specify
the constant k explicitly but the computation of k£ will in every case be trivial. Given

ssreg

k, we write W_; ° for the set of k-superregular elements which we refer to as the set of

sufficiently superregular elements. Thus the notation Wi depends on context.
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Definition 4.2. We say that x=wt, €Wy is in the v-chamber if A is regular an-
tidominant. We will say that x and 2’ are in the same chamber if they are both in the

v-chamber for some veW.

Remark 4.3. In the usual alcove realization of the affine Weyl group and chamber
realization of the finite Weyl group, our definition that x is in the v-chamber (when A
is sufficiently antidominant) is equivalent to saying that the image of the fundamental

1

alcove under !, is in the image of the fundamental chamber under v. Since z— 2! is

a Bruhat automorphism, our abuse of language is not a serious issue.

PROPOSITION 4.4. Let /\E@ be antidominant and superregular and let x=wt,).
Then y=2xryat+ns <z if and only if one of the following conditions holds:
i) L(wv)=L(wory)—1 and n={\, @), giving Yy=wryatyx;
i) L(wv)=Lwvry)+{a’,20) =1 and n=(\, a)+1 giving y=wryaty(rt+av);
iil) £(v)=L(vry)+1 and n=0, giving y=wryater, r;

A~ o~/

iv) L(v)=L(vre)—(a,20)+1 and n=—1, giving y=wryalyr, (r+av)-

Proof. Suppose y=xryq4ns<x. For n€Z, let f(n):=L(ty(r{nav)). By Lemma 3.1,
we have f(n)=)5cp+ [(A+na, v~1.3)| which is a convex function of n, being the sum
of convex functions of n: for each § the summand is a function of the form n—|a+bn|

for a,beZ. By superregularity of A\, we have

f(n)=f(0)—n{a”,20) (4.1)

for sufficiently small values of n. Also we have

F(=X a)) =Ll(tor,2) = f(0)

and thus, by superregularity,
F(=(X a)—n) = f(0)—n{a’, 20)

for sufficiently small values of n. By convexity we conclude that if n is not close to either
0 or —(\, @) then f(n) is not close to f(0). Now write
Y =wWlyAaTvatnvav = w’rvozt'u()\Jr(nf()\,a))aV) .

Since [£(wryats(r+(n—(r,a))av)) —Lto(rt(n—(ra))av)) | <|W| by superregularity and con-

i\

vexity we may thus assume that either (a) A+(n—(\ «a))a is antidominant, or (b)

A—naY is antidominant. In case (a), using Lemma 3.4,
U(y) = L(woratas(n—(napavv ")
:—((wvra)—i-f(v_l)—|—€(t>\)+(n—<)\,a))(av,2@)
=0(x) +L(wv) —L(wory)+(n—(\, a)){a", 20).
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Using Lemma 3.5, we deduce that n=(\, a) or n=(X, a)+1, giving cases (i) and (ii) of

the lemma. Similarly, in case (b), we obtain cases (iii) and (iv) of the lemma. O

Fix a sufficiently superregular antidominant element )\6@. Let G denote the graph
obtained from the restriction of the Hasse diagram of the Bruhat order on Wy to the
superregular elements x€ Wt such that <t,, for some weW. We will further direct
the edges of G downwards (in the direction of smaller length), so that the |IW| vertices
x=t, are the source vertices. By Lemma 4.4, the edges of G either stay within the
same chamber (cases (i) and (ii)) or go between different chambers (cases (iii) and (iv)).
We call the first kind of edge (or cover) near and denote such a cover by y<¢,z and call
the second kind far, denoting them by y<yx. By definition, the graph obtained from G
by keeping only the near edges is a union of the connected components G§ which contain
ton, for veWw.

The following combinatorial result makes the relationship between the quantum

Bruhat graph and the superregular affine Bruhat order explicit.

COROLLARY 4.5. Let )\6@ be sufficiently superregular. Each edge wt,) —wryatox
(or wtv)\—>wrwtv()\+QV)) in GY is canonically associated with the edge wv—wvry in
D(W). Thus, each sufficiently short path P in D(W) from v to w induces a unique path
Q in GY, which goes from t,x to wv~'t,,, where u equals X\ plus the sum of o over all

edges in Q which are of type (ii) (as in Proposition 4.4).

Proof. The result follows from comparing the definition of the quantum Bruhat

graph with cases (i) and (ii) of Proposition 4.4. O

We use the phrase “sufficiently short” in Corollary 4.5 since a very long path P in

D(W) will give rise to a path Q which leaves G, that is, uses non-superregular elements.

Remark 4.6. (1) In all cases of Proposition 4.4, the positive affine root for the
reflection 7,445 is given by —va—nd.

(2) Every superregular element has a unique factorization wtyv~! where v,weW
and X is antidominant superregular. In passing to a Bruhat cocover of wtyv™!, X either
stays the same or is replaced by A+a"; in the “near” case w is replaced by wr, with
associated quantum Bruhat edge w—wr,, while in the “far” case v is replaced by vre,

with associated quantum Bruhat edge vr, —v.

Given a (sufficiently short) path P€D(W) beginning at weW, we denote by zp€
Wt the endpoint of the path in G associated with P via Corollary 4.5. The following

lemma is a translation of [30, Lemma 1] into our language.

LEMMA 4.7. Let P and P’ be two paths in D(W) from w to v of shortest length.
Then rp=xp:.
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THEOREM 4.8. Fach tilted Bruhat order D, (W) is dual to the induced order on a

convex subset of affine Bruhat order.

Proof. Let z(u,w)€W,s be the vertex of GY (with X sufficiently superregular) sat-
isfying x(u, w)=xzp for a shortest path P from v to w in D(W). By Lemma 4.7, z(u, w)
does not depend on the choice of P. By Proposition 4.4, the partial order D, (W) is
canonically isomorphic via the map w+—z(u,w) to the dual of the affine Bruhat order
restricted to {z(u, w) € Wyr:we W}, if in addition we restrict to covering relations present
within {z(u, w) EWap:weW}.

Let z(u,v)>xz(u,v"). It suffices to prove that every saturated Bruhat chain between
the two stays within the u-chamber. Suppose otherwise. There is a saturated Bruhat
chain from z(u,v) to x(u,v’), which by assumption does not stay in the u-chamber.
Attaching this to a chain from z(u, ) to x(u,v) which stays in the u-chamber, and only
considering the “near” covers we obtain a path from w to v' in D(W). This path has
fewer than £(x(u,u))—£(x(u,v")) steps and so is shorter than the shortest path from wu

to v/, a contradiction. O

Example 4.9. Let R be of type C3. We use the notation of Example 2.2. We
have (rire)*=id and 6=(2,0)=r(a2)=as+2a;, with associated coroot 6Y=r(ay)=
ay +ay=(1,0). Moreover, ro=rgl_gv so that t_gv=r1r271170.

Let A=(-3,—1)=—3a) —4ay €Q". It is regular antidominant. We use v=rirar;.
We shall realize the dual of D, (W) (see Example 2.2) inside the affine Weyl group via
the map u—x.

u x () x!
a | rirery t(3,—1) 14 t(—3,1)
b | rorirory rot(3,—1) 13 t—3,1)T2
c id rot(3,—1) 13 t(—2,1)T1T2T1
d T rarol(3,—1) 12 | t_g1)r1irariTe
e 1 T170t(3,~1) 12 t(—2,1)r1T2
f| rre r17r2r0t(3,-1) 11 | t_g,yrerire
g T2T1 rar1Tol(3,-1) 11 L2171
h | rorire | rarirerat(z,—1) | 10 t(—2,1)r2T1

One may derive the element of W on the right of the translation element in column z~!

by computing vu~!. The expression for z is written so that one can see the sequence of
walls crossed in the alcove picture for 27! (see Remark 4.3). The fundamental alcove is
colored gray (in Figure 1). The solid dots indicate the lattice of translations.
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Figure 1.

If one continues to walk towards the fundamental alcove while staying in the same Weyl
chamber for W, then this walk (up to the Bruhat automorphism z+sx~!) projects to a
walk which continues around the quantum Bruhat graph D(W).

4.2. Shellability and Eulerianness of tilted Bruhat orders

Theorem 4.8 explains some combinatorial and topological properties of tilted Bruhat
orders discovered in [5]; we refer the reader to [5] for definitions not given here. A graded
poset P is Eulerian if for any x<y€P such that the interval [z,y] is finite we have
p(x, y)=(—1)raek@)—rank(@) "where 1 denotes the Mébius function of P (in [5] P is also
required to have a maximum and minimum element). A labeling of the Hasse diagram
of a poset P by some totally ordered set is called an EL-labeling if for any x <y € P there
is a unique label-(strictly)increasing saturated chain from x to y; and furthermore, this
label-increasing chain is lexicographically minimal amongst saturated chains from z to
y. If P has an EL-labeling then we say that P is EL-shellable.

Verma [33] has shown that every Bruhat order of a Coxeter group is Eulerian. Dyer
[8, Proposition 4.3] showed the stronger result that every Bruhat order (and also its
dual) is EL-shellable. Since these properties are preserved under taking convex subsets,

Theorem 4.8 implies the following result [5, Corollary 6.5].
COROLLARY 4.10. Tilted Bruhat orders are Eulerian and EL-shellable.

Corllary 4.10 has the following topological consequence: any interval in tilted Bruhat
order is the face poset of a shellable regular CW sphere. Since Theorem 4.8 relied on
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Lemma 4.7 which uses results proved in [5], we have not quite given an independent proof
of Corollary 4.10. However, our results do give the potent explanation that shellability
and Eulerianness of tilted Bruhat orders is a special case of that of Bruhat orders of

Coxeter groups.

5. Affine Bruhat operators
For X CWyy let S[X]=ED, . x Sz be the free left S-module with basis X.

Definition 5.1. For each peP, the near equivariant affine Bruhat operator is the
left S-module homomorphism B#: S[W3 ] — S[W 1] defined by

B'x)=(p—wo-p)z+ > > (oY, m)aruains, (5.1)

aERT TTya4ns<nT

where z=wt, €W,

Fix a superregular antidominant element )\Eé. We call an element o of QHT (G/B)
A-small if all powers g, which occur in o satisfy the property that p+AX is superregular
antidominant. For each w€W, define the left S-module homomorphism O from the
A-small elements of QHT (G/B) to S[G.] by

0 (quo") = vw ™ My (g = vt (Bw ™).

The equivariant affine Bruhat operator is related to the equivariant quantum Cheval-

ley formula via the following result.

PROPOSITION 5.2. Let A€Q be superreqular, e P, c€QHT(G/B) be such that
ox[p]€QHT(G/B) is A-small and weW . Then

O;, (0% [u]) = B (©7,(0))
whenever O (o) is in the domain of B*.

Proof. By linearity, it suffices to prove the statement for c=q,0,. We have
O (g0 %)) = O (q,, ((u v-p)o +Z V.o vra+z aVO'UTO‘>>
= (/L—’UM)U’LU w()\+1/) +Z 5 /L VrqW w()\Jru)
+Z 7/1' Vrqw tw()\+u+av)

= B”(vw_ tw()\+y)).

We have used Theorem 2.1 and Proposition 4.4, together with the calculation vrow=!=

vw ™ ry. The summations in the equations are as in Theorem 2.1. O
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PROPOSITION 5.3. Let p,veP. Then the operators B* and BY commute as opera-
tors on S[W3i"°®] (whenever they are defined).

Proof. Any element x=wt,\€W:* is in the image of ©). The result follows im-
mediately from Proposition 5.2, since by the commutativity of QHT(G/B) one has
o-[u]-V]=0-[v]-[p]. O

Definition 5.4. Let z=wt,y. The far equivariant affine Bruhat operator is the left
S-module homomorphism C*: S[W"°®]— S[W ] defined by

CH(x)=(p—v-p)z+ Z Z (@Y, ) aryasns- (5.2)

a€ERT TTyatns <fT

The operators C* and B* are related by the following formula when acting on the
special element ) v twa-

LEMMA 5.5. Let )\GQV be a sufficiently superreqular antidominant coweight and let

ph, 2, .., Wk €EP be a sequence of integral weights. Then

cr (B“k BB N tw,\> =B ...B“ZB“I-<B“~ 3 tu,,\>. (5.3)

weW weWw

Proof. A term of B+ .. BrBr “ty is indexed by a multipath (a path allowed to

stay at a vertex for multiple steps)
P={w=w® s uw® 5uw® 5 5wk}

in D(W), where for each i€[1, k], we have (i) w® =w(=1 or (i) w» =w=Yr_ . Bach
such path P contributes a term apxzp, where ap=][],; a; with a;=pD —w® .1 in case
(i) and a;=((a™)V, u) in case (ii). The left-hand side of (5.3) can thus be given as the
sum over pairs (P, Q), where P is a multipath from w to v in D(W) of length k, and Q is
a multipath from v to w of length 1. If .Tp:?}w_ltw” then (P, Q) contributes ap oxp 0,
where $7D7Q:Uu_1tup/ with p/=p or p/=p+a" for some a€ R*. The coefficient ap g is
equal to apag, where ag=p—w-p if u=w and ag={(a", u) if u=wr,.
To obtain (5.3) we send the pair (P, Q) to the multipath

P ={u—w=w®—>uw® 5w® 5 Sk

and we observe that zpr=zp ¢ and apr=ap, g, where P’ is weighted according to the se-
quence o, uM, ..., u®) . Note that in the case that u=wr, the first step of P’ corresponds

to a cover Tr(yr,)atns <T, Where =ty A- O
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COROLLARY 5.6. Let X be sufficiently superreqular antidominant. Then the value of
any composition of operators of the form B or C* for p€P acting on Z=Y_  _y twa,

is unchanged whenever any operator C* is replaced by the operator B*.

Proof. We have
crprt  B.z=pr* _ BYBr.z=Br'B"  BMZ,

by Lemma 5.5 and Proposition 5.3. This suffices. O

6. Homology of affine Grassmannian
6.1. Affine nilHecke ring

Let A,¢ denote the affine nilHecke ring of Kostant and Kumar. Our conventions here
differ slightly from those in [17] but agree with those in [19], and we refer to the latter
for a discussion of the differences. We use the action of Wyt on P induced by the action
(3.1), under which translation elements act trivially, or equivalently, 7o acts by rg. Aguf
is the ring with a 1 given by generators {A;:i€ ;s }U{A\: A€ P} and the relations

A= (ri N A+ (N o)1 for Ae P,

A;A; =0,
AZAJA, :A]A7Aj if TiTiTq oo =T5T5T5 <y
—_— — —_——
m m m m

where the “scalars” A€ P commute with other scalars. Let weWys and let w=r;, ...7;
be a reduced decomposition of w. Then A,:=A; ... A; is a well-defined element of
Aug, where Ajg=1. Auf is a free left S-module (and a free right S-module) with basis
{Ay,:wEWye}. Note that we have

Agy, 1 L(z)+L(y) = Uzy),
0, otherwise.

Az Ay = {

We have the following commutation relation which can be established by induction; see
[17].

LEMMA 6.1. For x€W,s and AEP,
A= (2N A+ > (BY, N Agr,

o+
BERLS
Tra<T
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6.2. Equivariant homology of affine Grassmannian

The affine Grassmannian Grg associated with G is the ind-scheme(?) G(K)/G(0O), where
K=C((t)) denotes the ring of formal Laurent series and O=C][[t]] is the ring of for-
mal power series. The space Grg is weakly homotopy equivalent to the space QK of
based loops into the maximal compact subgroup K CG [11], [28] and thus the homology
H,(Grg) and the equivariant homology Hr(Grg) inherit a ring structure induced by the
pointwise product of loops into the group K [32, Chapter 5].

The ring Hr(Grg) is a free S=Hr(pt)-module with basis given by the T-equivariant
Schubert classes {&;:x€W}. The affine nilHecke ring A,¢ acts on Hp(Grg) by

Eyo, i L(yz) =L(y)+L(z) and yz € W,

. (6.1)
0, otherwise,

Ay'é-z - {

and SCA,¢ acts via the usual S-module structure of Hy(Grg).

We now describe Peterson’s model for Hy(Grg) [29]. We refer the reader to [19] for
more details.

Let Zy,,(S)CA,s denote the centralizer of S in A,¢, called the Peterson subalgebra
in [19]. Let JCA,s denote the left ideal

J= Z Aawa-

weW\{id}

The following two theorems are due to Peterson [29]. We refer the reader to [19,

Lemma 3.3 and Theorem 4.4] for a proof of Theorem 6.2.

THEOREM 6.2. There is an S-algebra isomorphism j: Hr(Grg)— Zy,, (S) such that

.7(51) =A;modJ and ](g)g’zgg’

for £, €Hr(Grg). The element j(&;) is determined by the following properties:

(1) j(gx)EZA(S);

Define j¥€S by
je) =3 juA,.
y

The elements j¥€.S are polynomials of degree ¢(y)—¥¢(x) in the simple roots {a;:i€I}.

(?) See [18] for the construction of Kac-Moody homogeneous spaces as ind-schemes; this includes
the affine Grassmannian as a special case.
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THEOREM 6.3. For x,z€W_; we have
5162 = Z]ggym
y

where the summation is over yeWas such that yze W and (yz)=L(y)+£(2).

Proof. By Theorem 6.2, we have

](éx)fz :§x§m (6'2)

where the action is as in (6.1). The statement then follows from the observation that in
a length-additive product yz¢ W, if z¢W_,. O

7. Generating elements of the Peterson subalgebra

We now describe a method for producing elements of the Peterson subalgebra. Define
the left S-module isomorphism Y: S[Wa¢]— A,¢ by

T( > awac): > arA,

€Wyt x€Wag
for a,€S.

Definition 7.1. Let x=wt,). For ue€ P, the twisted equivariant affine Bruhat opera-
tors are the left S-module homomorphisms B, C*: S[W"8] = S[WI€] defined by

Eu(z) = (vilﬂfw,u)$+ Z Z (va¥, )Tyt ns

aERT TTyatns<n®

and

Cra) =@ p—pwa— 3 3 (oa, mariasns

aERT TTya+ns <fT

LEMMA 7.2. Let feS[W: " ®]. Then Y(f)€Za,,(S) if and only if for each peP we

have
BH(f)=CH(f).

Proof. Let f=>_ cy. a,x for a,€S. Then, by Lemma 6.1, Y(f)€Zs,,(5) if and
only if for all pe P we have

0= Z az(App—pAy) = Z aw((xU_U)Aw+ Z <ﬂv’:U’>A$7'B>'
TEWar TEWar BERST

rrg<z
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Fix e W™ with z=wt, for w,veW and )\6@. We have

5M($>_§H(m) = (’LU,U,—,M)Q?— Z Z <UaV7M>$Tva+n5

aERT Tryatns<n®

- Z Z (va¥, YT yans

aERT Tryatns <fx
=(zp—pr+ Y (BY,mars,
BERIST
Tr3<T
using Proposition 4.4, Remark 4.6 (1) and the fact that zp=wp (since translation ele-
ments act trivially on P).
The lemma follows from the left S-linearity of CH and BH. O

THEOREM 7.3. Let A be a sufficiently superreqular antidominant coweight and let

ph, p?, .., WP €P be a sequence of integral weights. Then the element

T(B“k BB N tw,\)

weW
lies in the Peterson subalgebra Za (S).

Proof. By Lemma 7.2, it suffices to check that

F=B" B BNty
weW
satisfies B*(f)=C*(f). The coefficient of z=wt, in B*(f) (resp. C*(f)) is equal to

the coefficient of 2 in BY #(f) (resp. C*" *(f)). Thus, it suffices to show that for all
w€EP we have B*(f)=C*#(f). But this holds by Corollary 5.6. O

8. Formulae for affine Schubert classes

For weW | let us say that a polynomial

Sy= Z Qi oo in AN (i .o yig) Wiy Wiy .- Wiy, € S[q] @z Z[w; 21 € 1],
1,02, ik
where a;, . i, €5 and (i1, ..., 1x) €D, Zsow) is an equivariant quantum Schubert poly-
nomial if its image in QH” (G / B) (obtained by replacing w; with [w;]) equals the quantum
Schubert class . There are many choices for such a polynomial.
Let us write b(X; ut, p2, ..., u¥)€Zy,,(S) for the element described by Theorem 7.3.
The following formula writes affine Schubert classes in terms of quantum Schubert classes.
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THEOREM 8.1. Let 6,,€S[q|®zZ[w;:i€I] as above be an equivariant quantum Schu-
bert polynomial representing the class c¥ €QHT (G/B) and let )\Eé be sufficiently su-

perregular. Then

G )= D iy i DAFA, ey i1); Wiy Wiy oy Wiy ). (8.1)

01,82,k

Proof. Let a denote the expression on the right-hand side of (8.1). By Theorem 7.3,
a€Zy,,(S). By Theorem 6.2, it suffices to show that a contains a unique Grassmannian
term A, with coefficient 1. Let i=(i1,...,x). We have

(Zaletk ... B¥u Z tu}()\+)\(z )

weWw
:T<Z a; B¥ ... B¥ (t)\+>\(i)+ > tw(z\+>\(i)))>'
i weW\{id}

By Lemma 3.3 and the fact that X is sufficiently superregular, it is clear that Grassman-
nian terms cannot come from any term with w=id. By Proposition 5.2 (applied with

w=id and 0=a;qy(;)), we have

T(Z a; B ... B¥1ty, z)> (Z a; B¥ ...B“’ﬁ@fg(q,\(i)))

< (Z aigx (i) * [wi, | * [wik])>

:T(@id(a )
= Awt,\a

where we have used our assumption that &,, represents the class o®. O

Remark 8.2. (1) In Theorem 8.1, Corollaries 8.3 and 8.4 and Proposition 8.6, it is
possible to use the operators C* instead of B* to obtain similar results.

(2) Theorem 8.1 can be evaluated at 0 via ¢g: S—Z to give a formula for ¢o(j(we, )
in terms of non-equivariant quantum Schubert polynomials. The elements ¢o(j(Ewt,))
lie inside what is called the affine Fomin—Stanley subalgebra in [19], and are related to
the theory of affine Stanley symmetric functions. See [9] and [25] for different discussions

on how to produce (non-equivariant) quantum Schubert polynomials.

Let us call

a= Z az Ay € Ays

rEWar

sufficiently superregular if a, =0 for all x€ W\ Wi .
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COROLLARY 8.3. The elements b(\;u', u?,...,u*) span (over S) the set of suffi-
ciently superreqular elements of Za_,(S).

Proof. Let a:ZIestsreg a; A, be a sufficiently superregular element in Zy_(S). It
follows from Theorem 6.2 that a:X:gcewsfmgm/‘ﬁf a.j(&z). By Theorem 8.1, j(&,;) lies in
the span of the elements b(\; ut, 12, ..., u*). O

COROLLARY 8.4. Let u€P be an integral weight and Y (f)€Za,,(S) for a sufficiently
superregular f. Then Y(B*(f))€Za,(S).

Proof. This follows immediately from Corollary 8.3 and Theorem 7.3. O
The following Proposition is contained in [19, Proposition 4.5].
PROPOSITION 8.5. Let A€Q. Then J€)=2ewa At

The superregular case of Proposition 8.5 follows from Theorem 8.1. The general case
can be obtained by a direct calculation, similar to (but simpler than) Proposition 4.4.

PROPOSITION 8.6. Let A\ be sufficiently superregular antidominant. Then

) =t =1 (5% Y tun)

weW

= Z < —ww;) Ay, + Z @, wWi)Aryotur+ Z o wz>Arth+av))

weW a€ERt a€ERT

where w; denotes the i-th fundamental weight, and the two inner summations are as in
Theorem 2.1.

Proof. This follows immediately from Theorem 8.1 and the fact that " =[w;] in
QHT(G/B). O

9. Borel case

PROPOSITION 9.1. Let 2€W; and A€Q. Then

fmftx = ga:tA .

Proof. By Lemma 3.4, £(z)+£(ty)=~((xty). The proposition follows immediately
from Proposition 8.5 and Theorem 6.3. O
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In particular, {&, :)\Eé} is a multiplicatively closed set that contains no zero divi-
sors. So it makes sense to consider HtT(Grg):HT(Gr(;)[Et_l:tE@}. Let us also define
QH!'(G/B)=QH"(G/B)[q; '+icl] and for oV =), ; a0y €QY we let qov:=[T;c; ¢

Let ¢: HY(Grg)—QHY (G/B) be the S-module homomorphism defined by

—1
g’wtxgt“ — q>\f,u0w~

This map is well defined by Proposition 9.1 and is clearly an S-module isomorphism.

The following main result of this article was stated by Peterson [29].
THEOREM 9.2. The map ¢: H}.(Grg)—QH, (G/B) is an S-algebra isomorphism.

Proof. 1t is enough to show that H%(Grg) satisfies the ¢-preimage of the quantum
equivariant Chevalley formula (Theorem 2.1), as this completely determines QH” (G/B)
(see [27]). By Proposition 9.1, it is enough to calculate the product &.,;, §wt, in Hp(Grg)
for superregular A, ,ue@. One does so using equation (6.1), Proposition 8.6 and Theo-
rems 6.2 and 6.3. For each term A in the

product gmkgmu since

in j(r;t\) one obtains a term &,

Twatwx t)\-%—p

(rwatwr) (wt,) = wraw_lwt,\w_lwtu =wWratryp

is a length-additive product and wrytx4, €W by Lemma 3.3. The analogous statement
holds for terms of the form ryaty(rz+av), thus ensuring that the product &4, §wt, con-
ririav s Where L(wrq)=L(w)—2(a", g)+1. Furthermore, for
v#w, (Tyatur)(wt,) is never a length-additive product since £(ty,—1,x4,,) <<E(tx)+£(t,).
Similarly, (Tyaty(r+av))(wt,) is never a length-additive product. Similar computations

tains terms of the form &+

hold for the equivariant terms (w; —ww;) A, , in j(r;tx). Thus

fritxgwt,l, = (wi*wwi)gwhﬂt“” Z <av,wi>€w7"atx+u+ Z <av7wi>£wrat“+>\+ava
aERT a€ERT
where the two summations are exactly as in Theorem 2.1. Applying ¢ gives exactly
Theorem 2.1 with both sides multiplied by gx. O

The following corollary writes the equivariant Gromov—Witten invariants of G/B in

terms of Schubert structure constants of Hr(Grg).

COROLLARY 9.3. Let w,v,u€W and let A\€QV. Then the equivariant three-point
Gromov—Witten invariant c&i‘] equals the coefficient of &, in the product £,&, € Hr(Grg),
where x=wt,, y=vt,, z=ut, €W and A=p—n—s.

Now we can write all the coefficients j¥ in terms of three-point genus-zero Gromov—

Witten invariants of G/B, and conversely.
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THEOREM 9.4. Let x=wt\€W; and y=ut, € Wy, where we assume that ve@V is
superreqular. Let veW be the unique element such that viluéé. Then

-1
Y uv,w T rv—A
.]x _Cw,v ’

where ¢y =0 if » is not a non-negative sum of simple coroots. Conversely, suppose

that f,g,h€W and n€Q" are given. Then

—1
ChJ? :jhg tg(n+x)
f.9 fta

for sufficiently superregular antidominant )\6@.

Proof. Let z=vt, €W, where p is chosen to be superregular. By Theorem 6.3,
we know that j¥ is the coefficient of gyzzgwt“_lw in §&., as long as yz€W_; and
L(yz)=L(y)+£(z). Using Lemmata 3.3 and 3.4, we check that the latter two conditions
are immediate with our assumptions. Applying the map i of Theorem 9.2, we see
that j¥ is equal to the coefficient of g,-1,,,0"" in q,yx0“0”. To obtain the second
statement from the first, it suffices to note that n+\ is superregular antidominant if

/\E@ is sufficiently superregular. O

Remark 9.5. Theorem 9.4 only writes j¥, for superregular yeWys, in terms of
Gromov—Witten invariants of G/B. To obtain the rest of the j-coefficients, one can
use Proposition 8.5 and the observation that for any y€W,s there is a length-additive
product yt,, (with pe@") which is superregular.

Mihalcea [26] has shown that equivariant Gromov—Witten invariants are polynomials
in simple roots with non-negative coefficients (in fact Mihalcea uses negative simple
roots). As a consequence, we obtain a positivity result for the j-coefficients, and hence

for all affine homology structure constants of Hp(Grg).

COROLLARY 9.6. All equivariant homology Schubert structure constants of Hr(Grg)
are non-negative polynomials in the simple roots. For each x€W_; and ye€W,s, the poly-

nomial j¥ €S is a non-negative polynomial in the simple roots.

It would be interesting to obtain a direct proof of Corollary 9.6 which does not

appeal to quantum cohomology, even for the non-equivariant (¢(z)=~£(y)) case.

10. Parabolic case

Let PCG be a standard parabolic subgroup. Following Peterson, up to localization we
show that QHT(G/P) is a quotient of Hy(Grg).
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10.1. Extended affine Weyl group

For references on the (extended) affine Weyl group see [4] and [14]. Recall that W acts
on the coweight lattice PV. Therefore we may define the extended affine Weyl group
W%WIXPV; as before, the element in w corresponding to A€ PV is denoted by ty. The
group W acts on the affine root lattice Qar by the same formula as (3.1) with Ae PV.
There is an induced action of W on Q=Qar/Z6.

W is not a Coxeter group. However it still permutes R}

¢, so for x€W we can

define its inversion set Inv(z) and length ¢(z) in the same way as for z€W,¢. The set
Woz{TEW:E(T):O} of elements of W of length zero forms a subgroup of W, since it is
the stabilizer of the set R.

Let 0=ap+0=> ;.
equivalently, if there is an automorphism of the affine Dynkin diagram taking the node ¢
to the Kac-0 node. Denote by I°C I, the set of special nodes. The nodes in I\ {0} are

also called cominuscule. The abelian group X=PV/QV consists of the elements w; +Q"

a;a; be the null root. A node i€ I is called special if a;=1, or

for ieI®, where wy =0.

There is an isomorphism Y20 which can be described as follows. Let i€I®.
Addition by the element —w +QY €X defines a permutation of the elements of P¥/QV,
or equivalently a permutation of the set I°. This permutation extends uniquely to an
automorphism 7; of the affine Dynkin diagram and satisfies 7;(¢)=0. It acts on Qa¢
by Ti(aj)=au,y for all jel,s. It follows that 7;(6)=d so that 7 €WO. The above
isomorphism is given by —w 4+ Q"+ 7;. Note that 7y is the identity in w.

Define v; €W to be the shortest element such that v;w; =wow; and let wy=0 so that
vo=1. Then

T =ity (10.1)

Moreover, W#={v;:i€I°} forms a subgroup of W and the map WO ws given by 7;—v;

is an isomorphism.

10.2. Affinization of Wp

Let LpCG be the Levi factor of the parabolic subgroup PCG. Say that Lp has Dynkin
node set Ip, root system Rp, root lattice Qp, coroot lattice Q}, coweight lattice Py

and Weyl group Wp. Let W denote the set of minimal length coset representatives in
W/Wp. Define

(Wp)at =Wpx Q¥ ={wty € War:w€Wp and A€ Q}}. (10.2)

Lp has affine root lattice (Qp)ar=QpDZ0CQas, affine Weyl group (Wp).s and
extended affine Weyl group Wp=Wpx Py.
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Let Ip:|_|k I,,, be the partition of the node set of Ip according to the connected

m=1
components of the subgraph of the Dynkin diagram of G induced by the subset of nodes
Ip. Write R,,,, @, and P, for the irreducible root subsystem, coroot lattice and coweight

lattice, respectively. Then we have an isomorphism of abelian groups

Xp

1%

k
II = (10.3)
m=1

where Xp=PY /QY and X,,=P), /Q...

Let (I;)ar=1,,U{0,,}; the zero nodes for various m are distinct. Write

(Qm)af = Qm@Z(S C (QP)af C Qaf'

Let ap,, =0—0,,€(Qm)at, where 0,, €R; is the highest root. Then (Q,)as has basis
{a;:i€(In)at} Tm acts on (Qm)at, inducing a permutation of (I,,). defined by 7(c;)=
() for i€ (I, )as. Note that ZoC(Qu)ar CQat is fixed under the action of %,,.

10.3. (WFP)¢

Let

(Rp)i ={B€R);:BeRp},
(WH)ap={x €W 23>0 for all € (Rp);}.

Remark 10.1. Suppose that P#G, or equivalently, #¢ Rp. Then ro€(W )¢, since

o has the lone inversion ag=30—0¢(Rp);.

LEMMA 10.2. wty€(WF) if and only if, for every a€ R},

0 ) 0
pap={, ez
-1, if wa<O.

Proof. For any €Wyt and a€R*, if a+ndelnv(x) for some n€Zx then a€lnv(x).
Similarly, if —a+ndé€Inv(z) for some n€Z~( then 6 —a€Inv(z). Therefore wty (W),
if and only if, for every a€ R}, a¢Inv(wty) and d—a¢Inv(wty). The lemma follows

straightforwardly from these conditions. O
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LEMMA 10.3. Let wty€(WP)ue, Rp be an irreducible root system, (X, a;)#0 for
some jE€Ip and w=wiws, where w1 EWF and wo€Wp. Then
(1) the node j is cominuscule in Ip;
(2) for aeR},
-1, if a; occurs in «,

<>‘a a> = { .
0, otherwise.

(3) wgzvf, where ijEWp is denoted as v; in §10.1, with respect to the cominuscule

node j€Ip, with all notions relative to the root system Rp.

Proof. We shall use Lemma 10.2 repeatedly without further mention. We have
(A, aj)=—1. Suppose that a; occurs in a€Rp, that is, a=)_,; a;a; with a;>0 and
all a;>0. Then

A\ a)= Z a;i{\, o) < —a;+ Z a; (A, o) < —a; < —1.
iclp i€Ip\{j}
Therefore (A, a;)=0 for all i€Ip\{j} and aj=1. (1) and (2) follow. For (3) we have
Inv(w)NRj=Inv(wy). But Inv(w;) must consist of the set of roots of R}, in which «;

occurs. This is precisely Inv(vf). Hence wgzvf. O

LEMMA 10.4. Suppose that wtyx€ (W) and w=wywa €W, where wi €W and
wa€Wp. Then way has the following form. Let J={j€lp:(\, a;)=—1}. Then |JNI,,|<1
for all m. If it is non-empty, call this element j,; it is cominuscule in I,,. If it is empty,
write fum=0m € (I )as. Then

Proof. This follows from Lemma 10.3. O
LEMMA 10.5. Let a€R; be a real root. Then ro€(Wp)at if and only if a€Rp.
Proof. This follows from (3.3). O

LEMMA 10.6. ([29]) For every weWys there is a unique factorization w=wywsy for
w1 €(WP)ar and wo€(Wp)at.

Proof. For existence we may assume that wa <0 for some a€ R}, such that a€Rp.
Then wr, <w and, by Lemma 10.5, we have r, €(Wp)a¢. By induction, wr,=x12 with
21€(WP)ar and 296 (Wp)ar. Then w=x1(227,), as desired.

For uniqueness, suppose w=wwy=w}w}) with wy, w} €(WT).s and wa, whe(Wp)as.
Then wyws(wh) P =wi € (WF)as. Let v=wq(wh) t€(Wp)as. If v£1 then there is some
BE R}, such that 3€ Rp and v3<0. But vB€Rp. Since wi €(WF),¢, we have wiv-8<0,
contradicting the assumption that w;v=w}€(W?),s. Uniqueness follows. O
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Define 7p: Was— (WF),at by wrsw; in the notation of Lemma 10.6.

LEMMA 10.7. Let ¢¥p: Q¥ — Py be the linear map defined by
vp(N) =Y (A ajwy.
S
Let
wP()‘)+Q¥ — (7“};/1 +Q¥7 ey 7“};; +Q>¢/)

under the isomorphism (10.3) and define

k
op(N)=—1p(N) =D w) €Qp.
m=1
Then
TP (tA) = Vtxyop(n)s

where v= H meWp.

mlJm

Proof. Since ¢p(X)€Q}, by definition wp(tx)=mp(tr1pp(r)). We have

k
vA+6p(N) = (A+op(N) = D (W), —vjrw) ) €Qp.

m=1

Therefore,

TP (trtorn) =TP(Eurtor (V) = TPV 16, ()0 ) = TP (Va1 sp(n))-

It suffices to show that vtyye,(x)€(WF)ar. To this end, let a+nde(Rp));. We have
a€ R, for some 1<p<k. Then

Vtrtop(n) (@4Nnd) =va+ (n—i— Z wy >)(5 = Ujl-;’oz+(n+<w;/p,a>)5.
m=1

If j,=0, then we have v =1, w =0 and vtA+¢P(>\) (a+nd)=a+ndeR};. If j,#0, then

we have <wjp, a)=1 and vt,\+¢P(,\)(a+n5) v Pa+(n+1)d€ Ry, as desired. O

af?
LEMMA 10.8. Suppose that /\6@ is antidominant. Then ¢p(\) is a non-negative

sum of positive coroots {c) :i€Ip}.

Proof. We may assume that P is irreducible. If )\6@ then u=—vyYp(N\)€PY is a
dominant coweight. But it is well known (see [13, §13]) that u—w, is a sum of positive

coroots for some cominuscule node i€ 5. O
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Ezample 10.9. We compute some examples of wp(ty) using Lemma 10.7, working
within the subsystem Rp.

(1) In type Az let Ip={2,3}=I; and A=—ay. Rp is an irreducible subsystem
of type As. We have ¢p(—ay)=wy € P¥ and wy=—wy+(ay+ay). Therefore j;=3,
v3=7a73, pp(—y)=—ay —ay and Tp(t_ay)=rar3t_oy _ay—ay =T2r3t_gv, where 6" is
the coroot associated with the highest root 6.

Doing this in another way, we have —ay =—7ry1360", so that t_,v=rorst_gvrars.
Removing the right factor r3ro €(Wp)as, we obtain rorst_gv.

(2) In type As, let Ip={1,3} and A=—ay. Then Ip=I;Ul5, where [;={1} and
I,={3}, with Ry and R» both of type A;. We have ¢p(—ay)=wy +wy €Py. We also
have wy=—w) +ay and v1=r; in Ry, and wy =—wy +ay and vg=r3 in Ry. Therefore
pp(N)=—af —ay and 7p(t_ay)=r173t_ay —ay—ay =173l _gv.

In another way, we have t_,y=rir3t_gvrsry, and removing the right factor
7371 € (Wp)at, we have ri73t_pv as desired.

(3) In type C5 with ag being the long root, let Ip={2,3}=1I; so that Rp is an
irreducible subsystem of type Cs. Let A=—caY. Then ¢p(—a))=wy. But in Rp we have
wy =ay +ay. In particular j; =0 and 7p(t_ay)=t_ay—ay—ay =t—ov-

In another way, we have —ay =—60"+r10V. Therefore we get
Loy =t_gvritovr1 =TeToT170T9T1 =T (12321)010(12321)1 = T1232010232-
Because ror3ro € (Wp),¢, we can remove this right factor. r1232010 has inversion
0—2a9—a3=ap+2a1 =11 (Ozo),

S0 T"101=7"6—2as—a3 and 712320107101 ="123210=%_gv, as desired.

(4) In type Bs with a3 being the short root, let Ip={2,3}=1;, so that Rp is irre-
ducible of type Bs. Let A=—ay. We have ¢p(—ay)=wy and wy=—wy +2ay +ay.
Therefore j1=2, vi=rorsra, ¢p(A\)=—2ay—ay and Tp(t_ay)=T2r3r2t _ay —2ay —ay =
ToT3Tot_gv.

In another way, —a) =—rar3r20Y, so t_ay =Tarsral_gvrarara. Removing the right

factor rorgro € (Wp)ag, we obtain rorsrat_gv, as desired.

PROPOSITION 10.10. ([29]) Let zeWye, BER]; and XeQV.

(1) mp(W)CWEPC(WP) e C(Wap)T, where (War)P is the set of minimum length
coset representatives for Waf/ Wp.

(2) mp(Wee) Wy

(3) mp(z)<z.

(4) wp(zty)=mp(z)mp(ts).
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Proof. (1) follows from the definitions. (3) follows from the proof of Lemma 10.6.

We first check (4) for z€W. Note that mp(2)=21, where z=2; 2y is such that z, e WF
and z0€Wp. We have zty=21t,,.222. Since z0€Wp we have A—25-A\€QY. It follows
that wp(zty)=mp(21tx). But mp(ty) stabilizes (Rp)/; by the proof of Lemma 10.7,
and z; €W7F has no inversions in (Rp)s. Therefore 21mp(ta)€(W?T),.¢, which finishes
the proof of (4) for z€W. Using this we may reduce the proof of (4) for z€ Wy, to
the case that z=ty for some X'€QY. Since mp(ty) stabilizes (Rp)};, it follows that
7p(ta)mp(ty)€(WT),.t. Therefore it is enough to show that mp(ta 1 x) and wp(tx )mp(ty)
differ by a right multiple of ¢, for some pe@y,. By Lemma 10.7, there exist v/, v € Wp
such that 7p(tx)=v"txyg,v) and Tp(txa) =0"txjatep(v+2). We have

wp(ta)mp(ty) :U/t)\/+¢P()\/)’Ut)\+¢P()\) :U/Utv(/\/+¢p()\’))+)\+¢p()\)~

But the map QY —Wp given by A—v, where veWp is such that 7p(tx)=vtripp(n),
is a group homomorphism, that is, v"=v'v. Moreover, X'+¢p(\') and its image under
vEWp, differ by an element of Q). Therefore (4) follows.

For (2), let z=wtyeW, A€Q. Then Tp(ta)=Vtrtpp(n) and mp(z)=mp(w)mp(tr).
To show that mp(z)€W,;, we check that mp(z)-;>0 for each icI. We will repeatedly
use the following criterion: ut,-a;>0 if and only if either (u,a;)<0 or (u,o;)=0 and
a;¢Inv(u). In particular we need to establish one of these conditions for u=mp(w)v and
p=A+¢p(A).

Suppose first that i€Ip. Then, by Lemma 10.2, (A\+¢p(A), ;) is —1 or 0 and in
the case of 0 we have a; ¢Inv(v) and thus a; ¢Inv(mp(w)v). In either case we are done.

Otherwise suppose that i¢Ip and that the Dynkin node ¢ is not connected to any
node in Ip. Then (A +¢p(A), a;)=(\, @;) and a; €Inv(w) if and only if o; €Elnv(mp(w)).
Since z-a; >0, we conclude that 7p(z)-a; >0.

Finally suppose that i¢Ip and that the set J of nodes in Ip connected to 4, is non-
empty. By Lemma 10.8, (A+¢p(N), ;) <(A, ;). We are immediately done if (A, «;) <0
or (A, a;)=0 and (¢pp(N), a;)<0. Suppose otherwise, so that ¢p(A) does not involve any
roots a; where j€.J.

We know by Lemma 10.2 that (A+¢p(X), a;) is —1 or 0. Suppose (A+¢p(A), a;)=0
for some je€J. Then, since ¢p(A) does not involve ¢, we have (A, a;;)=0=(pp(N), ;).
Let P' be such that Ip=Ip\{j}. We may assume inductively that 7p/ (z)eW . We
claim that 7p/ (x)=7p(x). As (Wp:)at C(Wp)at, it suffices to show that wp: (z)€(WF),s.
We first note that by our assumptions ¢p(\)=¢p:(A) (using the fact that a cominuscule
node in a component of Ip is still cominuscule in Ip/). Let mp:(2)=utri14,(n). Since
(A+op(N),a;)=0 and mp/(x) €W, we have u-a;>0. We can thus deduce, using Lem-
mata 10.2 and 10.3, that 7wp/(z)€(WT),¢.
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Thus we may assume for our chosen i€lp (with (A, a;)=0) that all jeJ satisfy
(A+¢p(N),aj)=—1. Note that these j all lie in different connected components of Ip
(and thus |J|€{1,2,3}). We need to show that 7p(w)v-ca;>0. We may assume that Ip
is exactly the union of the connected components Ip, CIp containing each j€.J, so that
v:HjeJ vj, where v; € Wp, are the elements described in Lemma 10.3. For each parabolic
subgroup Wo CW, write wq € Wy for its longest element. Then by definition v;=wp,wpr,
where Pj=P;\{j}. Also factorize mp(w) as u'u, where u lies in the parabolic subgroup
W'CW corresponding to the nodes {i}UIp and v’ is of minimal length in W/W'. Tt
suffices to show that uv-a;>0. We calculate that

uv-o; =1u H Wp, WP = UWP Q.
jeJ
But u€(W’)¥ so that uwp is a length-additive factorization, since u€(W’)¥ and wp€
(W) p=Wp. We know that wp-ay <0 for k€Ip. If uwp-a; <0 as well, then we must have
uwp=wy, the longest element in W’. But w factorizes uniquely (and length-additively) as
o’ (uu'), where v’ €Wp. If u=wjwp then uu”-a; <0, which in turn means that w-«; <0,

contradicting the assumption that z=wt)eW . O

10.4. Ideals of Hr(Grg)

PropoOsITION 10.11. ([29]) For a€R};, the S-submodule

zeW ¢
z-a<0

of Hy(Grg) is an ideal of Hr(Grg).

Proof. By (6.2), it suffices to show that K(«) has a left A s-action. By (6.1), it
suffices to show that if xeW_, rjz>z and za<0, then r;za<0. Suppose not, that
is, r;za>0. Then za=—q; and 0>—a=z"ta;. But 2 1<z !r; so that z7'a; >0, a

contradiction. O

Thus

Jp= Y K@= > = S

a€(Rp)f; 2EW L \(WF)at

is an ideal of Hr(Grg).
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10.5. Parabolic quantum parameters

LEMMA 10.12. Let Ae@. Then A;-&xpt,)=0 mod Jp for each i€l.

Proof. By (6.1), A;i-&rp(¢,)=0 unless £(r;mp(ty))=L(mp(tx))+1 and rimp(ty) €W
By Lemma 10.7, wp(ty)=vt, for some vEWp and veqQ.

Suppose that i¢Ip. Then ¢(r;v)=£(v)+1 and, by Lemma 3.3, ¢(r;vt,)=£(vt,)—1,
80 Ai*&rp(t)=0.

Suppose that i€Ip. Then r;v€Wp. By Lemma 10.4, we have r;vt, & (WT),¢ and
&np(tx)=0 mod Jp. O

Note that we exclude ¢=0 in Lemma 10.12. The following result generalizes Propo-

sition 9.1.

PROPOSITION 10.13. Let €W N(WF).¢ and AeQ. Then zmp(ty) EWGN(WE)u

and we have

fmf‘n'p(t,\) =§mp(m) mod Jp.

Proof. By Lemma 10.12, J-£,,,)=0 mod Jp, where J:Zwew\{id} AyA, as in
Theorem 6.2. By Theorem 6.2, we thus have

ﬁxgﬂp(tx) :Axfﬂp(tk) HlOd Jp.

It suffices thus to show that the product z7p(ty) is length-additive. As zeW_N(W7F )y,
using Proposition 10.10 we may write r=wnp(t,) for weW¥ and 1/6@. We have

Hwrp(ty)) = —L(w)+L(mp(t,))
for every ue@ such that wt, €W, so it suffices to show that

Ump(tugn)) = Ump(tr) +E(mp(ty))

for v, AE@. By Lemma 10.7, we may assume that v and A are chosen so that 7p(t,)=
vty and wp(ty)=vaty. By Lemma 10.4, £(vy)=—(\,20p), where 2QP:ZQGR;; o, and
similarly for v,. Thus, by Lemma 3.3, £(vxty)=—(\,2(0—0p)), and similarly for v and
v+ A

The last statement follows immediately from Proposition 10.10, since

Wp(xt)\):x’lrp(t)\). O
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10.6. Quantum parabolic Chevalley formula

The equivariant quantum cohomology QHT(G/P) is the free S[g;:i€I\Ip]-module
spanned by the equivariant quantum Schubert classes {o%:weWF}. For

A=Y wal €QY/Q,

i€I\Ip

with a; €Z, we let q)‘:HiEI\IP ¢ The quantum multiplication of QHT (G /P) is denoted
again by .

Recall that for weW, if we write w=w;ws, with w1 €WF and ws € Wp, then wy =
wp(w). Recall also that QszzaeR}t a. Let np: Q¥ —QY/QY, be the natural projection.

THEOREM 10.14. (Quantum equivariant parabolic Chevalley formula [27]) Let i€
I\Ip and weW?T. Then we have, in QHT (G/P),

opxop=(w; —w-wi)ag—FZ(av, wi)yop® —|—Z<o¢v, wi>qnp(av)a’rp(w”),
(03 (03

where the first summation is over a€ R*\ R}, such that wrq>w and wro €W, and the

second summation is over a«€RT\ R} such that {(mp(wry))=L(w)+1—(a",2(0—0p)).

Mihalcea [27] showed that the quantum equivariant parabolic Chevalley formula
completely determines the multiplication in QH” (G/P).

We will use a special case of the Peterson—Woodward comparison formula to clarify
the second summation in Theorem 10.14. For u,v,weW?T and A\eQV/QY, let d}ﬁ’v)"P

denote the coefficient of gxo'3 in o0, calculated in QH*(G/P). We use d¥-" instead
w,\, P

u,v

of ¢ since Woodward’s result is stated only for the non-equivariant coefficients.

THEOREM 10.15. ([34, Lemma 1 and Theorem 2])

(1) For every A\peQ"/Q} there exists a unique Ap€Q" such that np(Ag)=Ap and
(Ap,a)e{0,—1} for all aeR}. Moreover, if (Ap,a;)<0 for ieI\Ip, then (Ag,;)<0
for all iel.

(2) For every x,y,2€ WP we have

Ap,P /A
gyt =
where wp is the longest element in Wp and P'CP is the standard parabolic subgroup of
P such that Ip={icIp:(\p,;)=0}.

Remark 10.16. In [34], Theorem 10.15 is stated instead in terms of the coefficients

(x,y, wozwp)xp :d;’y)‘B’P. Since wp=id, our formulation is recovered.
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Remark 10.17. In Theorem 10.15, Agp and P’ may be computed explicitly. Given
ApeQRY/QY, let A€Q" be defined by

A= Z <)\p,wi>a;/.

i€I\Ip

It clearly satisfies np(X\)=Ap. Let mp(tx)=vtr4¢,(n) be as in Lemma 10.7. Then Ap=
/\+¢P()\), Ip/:Ip\{jmilgmgk and ]m7é0m} and V=wpwpr.

LEMMA 10.18. The second summation in Theorem 10.14 is over a€ R*\ R}, such
that

(1) €(rp(wra))=t(w)+1—(a”,2(e—0pr)),

(2) l(wry)=L(w)—{aV,20)+1.

Proof. Using the notation of Theorems 10.14 and 10.15, set z=r;, y=w, z=7p(wry)
and Ap=np(a"). Then the coefficient of an(a\/)O—;P(wra) in op*0p is 0 unless the
coefficient of gy, o™ P (WTe)WPWr in gTi ko is non-zero.

By the claim within [10, Lemma 4.1], we know that mp(ro)#mp(rg) for any a#s
both in R*\R}. Since 7p(wrq)wpwp Wp=wr,Wp, we conclude that the coefficient of
o’ (wra) ip op 0} is non-zero only if 0% occurs in 6" *c". By Theorem 2.1 and the
last statement of Theorem 10.15, the latter holds only if £(wry,)=~((w)—{a",20)+1. O

Remark 10.19. Presumably Lemma 10.18 can be deduced from Theorem 10.14
purely Coxeter-theoretically; that is, without the additional input provided by Theo-
rem 10.15.

10.7. Parabolic Peterson theorem

LEMMA 10.20. The map wp(t,)—np(v) is a bijection onto QY /Q%.

Proof. By definition, wp(t,)=mp(ty4,) if ©€Q}. Thus the map is well defined and
clearly a surjection. By Proposition 10.10, it thus suffices to show that if np(r)=0 then
7p(t,)=id. But np(r)=0 means that v€QY, so t,€(Wp)ar and 7p(t,)=id. O

THEOREM 10.21. There is an S-algebra isomorphism

Up: (Hr(Gre)/Jp)E, ) ) A €Ql— QHT(G/P)[g; i € T\Ip),

pr(tk)f;;(tu) — qu(/\—y)J%,

for veW? and /\,1/6@.
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Proof. Using Lemma 10.20, the map Up is easily seen to be an isomorphism of
S-modules. Since the quantum parabolic Chevalley formula determines the ring struc-
ture of QHT(G/P), it suffices to prove that the Wp-preimage of this relation holds in
Hr(Grg)/Jp. By Proposition 10.13, it suffices to check the product &, (¢,)&rmp (s, for
a choice of v, AeQ for each i€I\Ip and veWF. Taking a large power of 7p(ty) and
using Proposition 10.10, we may choose v and A such that 7wp(t,)=t, and 7p(tx)=tx.
By Theorem 9.2, this reduces to checking that the preimage (in the Borel case) of the
quantum equivariant Chevalley formula in Hr(Grg) gives rise to that of the quantum
equivariant parabolic Chevalley formula after quotienting out by the ideal Jp C Hy(Grg).

The equivariant term and the non-quantum terms trivially agree, so we check the
quantum terms. For we W7’ define

Ap={a € R"\R}) :b(wry) =l(w)—{a”,20)+1 and
Ump(wry))=L0(w)+1—{a",20—20p)}
and
By ={a€ R\Rh:l(wry) =l(w)—{a”,20)+1 and mp(wrats) =wraty}.

Note that A,, indexes quantum terms in the parabolic quantum Chevalley formula by
Lemma 10.18, and B,, indexes quantum terms in the preimage of the quantum Borel
Chevalley formula in Hy(Grg) which do not vanish modulo Jp.

By Lemma 3.5, the condition ¢(wr,)=F¢(w)—(a",20)+1 implies that

U wry) =L(w)—L(rq) and £(ry)={(a",20)—1.

The equation £(wry)=£(w)—£(r,) in turn implies that ro, €W, since we W, Thus
(¥, B)<0 for BER}. Let z=wro=ya’, with y=7p(wry)EW? and 2/ eWp.
Let a€A,, that is, {(y)=0(w)+1—(a",20—20p). Thus,

g(;z;)fé(y) = 7<av729P> = Z <ava/8>'

BERY

Let us estimate £(z')=|Inv(2)|. Since zr,=weW?’, we must have 2/3>0 for SER}

satisfying r,3=0. Hence
Uz)—L(y) =L(a) = |Inv(z")| < {BE Rp: (", B) <O} < —(a”, 20p).

Thus we must have —1< (", 5)<0 for all e R}, and Inv(2')={B€R}:(a",[)=—1}.
Using Lemma 10.4, we conclude that 2't,v =7p(tY)€(W?T),;. This in turn gives

Wrotev =Tlov = y(l'/tav ) =Tp (wra)ﬂ-P (tOzV )7
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showing that a€ B,,.

For the reverse inclusion B, C A,,, from
Tp(Wrate) =wrate =mp(wry)mp(ts)

one deduces that a't,=7p(t,) satisfies the conditions of Lemma 10.4. In particular
(a¥,20p)y=—L(z"). This shows that B,, CA,.
Finally we note that a term g,vo™"™ (for weB,,) in the quantum Borel Chevalley

1

formula gives rise to the class &, & € H.(Grg) (where &y, ::gwmgt;l for appro-

priate ) which in turn gives rise to the class qnp(av)a;’)(w") in QHT(G/P). O

For w,v,ueW¥ and AeQ"/Q}, let ¢ denote the coefficient of gr\o's in o * 0},
calculated in QHT (G/P).

COROLLARY 10.22. Let w,v,ucW¥ and N\eQV/Q}. Pick 1,3, WEQ such that
z=wrp(ty), y=vrp(t,) and z=urp(t,)EW N(WF)as, where A=np(u—n-+3). Then

w,\, P
u,v

the equivariant three-point Gromov—Witten invariant c is equal to the coefficient of

& in the product £,¢,€ Hr(Grg).
Note that in Corollary 10.22 the element z is completely determined by x, y and A.

Remark 10.23. It would be interesting to compare Corollary 10.22 with the work of
Buch, Kresch and Tamvakis [6], who exhibit the Gromov—Witten invariants of (classical,

orthogonal and Lagrangian) Grassmannians as classical Schubert structure constants.

11. Application to quantum cohomology

For this section we will work in non-equivariant quantum cohomology QH*(G/P) and

homology H,(Grg).

11.1. Highest root
We apply known formulae in H,(Grg) to obtain new formulae in QH*(G/P). Let

_ Y
K= E a; oy

1€ s
be the canonical central element for the affine Lie algebra associated with the Lie algebra
of G. Tt satisfies ay =1 and 0¥ =)",_; a;a;, where 6" is the coroot associated with the
highest root 6. Let jo denote the composition of j: HI (Grg)— Zat(S) with the evaluation
¢ at 0: ¢(X,, awdw) =", ¢o(aw)Aw, where ¢o: S—Z evaluates a polynomial at 0.
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PRrROPOSITION 11.1. ([21]) We have
Jolérg) =D ay As.
i€ LL¢
Thus, in H,(Grg), for x€W; we have
§roba = Z aygmm

1€1a¢
rTiT>T
rix€W
Suppose P#G. By Remark 10.1, ro=rgt_gv €(W7T),;.

PROPOSITION 11.2. Let we WF. We have

mp(re) , w _ mp(row) vV _riw
Op *O0p =qnp (8 —w—10V)0p +qnp(6v) g a; 0p
i€l
riw<w

where the first term is present if and only if w-a=0 for some a€ R*\R}.
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Proof. Let z=wt)y €W _;N(WF),¢, where we assume as in the proof of Theorem 10.21
that wp(ty)=tx. By Lemma 10.3, we have (\, a;)=0 for i€Ip. Using Lemma 10.7, we
may assume in addition that (A, a;)#0 for i€I\Ip. Thus, by Lemma 3.3, we have
L(riz)=L(x)+1 and rjz €W if and only if £(r;w)=~¢(w)—1 (which automatically implies

that W e WP)

Now let us consider roz=rowt,. By our assumptions, ty-a=a for a€ R}, and since

the only inversion of r is ag=0—6, we deduce that rozc (W), if and only if wa#6

for a€ Rp. If rozr € (WT),¢ then
roxr — Tgt,(vat)\ = (Tgw)t,w—19v+)\ = Wp(rgw)’frp(t,w—lgv)ﬂ'p(t)\),

by Proposition 10.10.

Also note that, in the above situation,
Lroz)=L(x)+1 <= roz>=z
<— z-(nd—a)=56—0 for some nd—a € R;

= wa=0 for some a € R"\ R}.

Finally, we observe that in the above situation we automatically have roz €W, since

zeW.
Using Proposition 11.1, Theorem 10.21 and these observations we get, in QH*(G/P),
G005 " R )E = D 4 o) OB 0 gm0y 77,
il
r;w<w

where the last term is present if and only if w-a=#6 for some a€ R*\ R},. Dividing both

sides by ¢, (x—¢v) and using ay =1, we obtain the required statement.

O
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In the case that P is a maximal parabolic corresponding to a cominuscule node (as
in the following section), the formula for multiplication by 03" in QH*(G/P) was
independently discovered by Chaput, Manivel and Perrin ([7, Proposition 4.2]).

11.2. Cominuscule case

In this section we assume that P is a maximal parabolic such that I\Ip={j} where j is
a cominuscule Dynkin node.

The map W —=W given by w—w* =wowwy, is an involutive isomorphism that sends
simple reflections to simple reflections: r;+— (r;)*=r;« for some ¢*€1. The map i+—>i* is an
automorphism of the finite Dynkin diagram. There is an associated automorphism of @
given by a—a*:=—wpa which satisfies (a;)*=q;» for i€l. For weW and a€(Q) we have
(wa)*=w*a*. There is a similar involution on PV that stabilizes QV, thereby defining
an involutive automorphism of X=P"/QV. Since —wow,’ =w;. and w) =wow,” mod Q",
the induced automorphism of PY/QY is given by negation: w;+Q"+——w;+QV.

The finite Dynkin automorphism I — I given by i+—i*, may be extended to an auto-
morphism of the affine Dynkin diagram by letting 0*=0. This induces an automorphism

of W, again denoted w—w*.

PROPOSITION 11.3. Define 9: W¥ =Wt by 9(y)=7;(y)*. Then, for every yeW?¥,
I(y)€(WE)atNWy and {&():yeWTY} is an S[E :/\E@]—basz's of

7mp(tx)

(Hr(Gra)/Jp); ko) i A€ Ql.

P
Moreover, if 9(y)=wty, then wp(w)=np(wly).

Proof. Note that i+ 7;(i)* =7 (¢*) is an involutive affine Dynkin automorphism that
stabilizes In¢\ {0, j} and exchanges 0 and j. It follows that a— 7;(a)*=7;- (a*) stabilizes
R},.. This map also permutes the affine simple roots and hence stabilizes R

Let yeWP. Then y-a;>0 for all i€;\{0,5}. Consequently 9¥(y)-a;>0 for all
1€1,¢\{0,4}. Since yeW, ¥(y) is in the subgroup of Wys generated by r; for i€ L\ {j},
so that ¥(y)-a;>0. Therefore ¥(y)cW ;.

For all a€ R}, we have
I(y)-a=(1j(y)a”)" = (1;(ym;-(a")))".

We have 7;-(a*)€Rp, so that f=y-7;«(a*)eR". Since jel is cominuscule, a; has
multiplicity at most 1 in 8. Therefore 7;(3)* € R};, in which o occurs with multiplicity

at most 1. It follows that 7;(5)* has the form v or —+ for some yeR". Therefore
I(y)-a€R; and I(y)-(0—a)€ R}, proving that J(y)€(WF)as.
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We have worowo=woret_gvwg=retev =rotagv. Therefore, for every x €Wy, there is
a p€Q such that worwo=x"t,. Using (10.1) and wf =(w{’)~! we have

-1 P,
woT; (y)wo =woT;yT; Wo =Wy V;

-1 P_ P p_ P, P
i TYT; T UjWy = Wy t_wjvytwjvwo =wqy Ywy ty,

for some pe@V. Thus J(y)=wl ywl’t, for some AeQ". But we clearly have

mp(wy ywy ) =mp(wy'y),
giving us the last statement of the proposition.
The map y—w{’y induces an involution on WF. Since o% is an S[g, ¢ !]-basis of
QH™(G/P)[g™], we conclude by Theorem 10.21 that &y, is an S =1 AeQ]-basis

- P (tx)
of (Hr(Grg)/Jp)[E; ) 1) AEQ). O
Remark 11.4. (1) The affine Dynkin automorphism given by i+7;(¢)* embeds the
pair (I,7\{j}) into the pair (I,f, [os\{0}), thereby inducing an embedding of the corre-
sponding homogeneous spaces G/P— Grg and their Schubert varieties [18].
(2) Since it is defined using automorphisms of the affine Dynkin diagram, the map

¥ induces an isomorphism of the Bruhat order on W with that on its image.

Example 11.5. Let G=SL(7), j=4 and y=r47r5r2r3r4 €W which in one-line no-
tation (that is, the list y(1),y(2),...,y(7), viewing y as a permutation of {1,2,...,7}) is
y=(1356]247), and thus corresponds to the partition (6,5,3,1)—(4,3,2,1)=(2,2,1,0)
inside the 4 x3 rectangle. The above reduced decomposition of y is obtained by the
columnwise reading of simple reflections in the following picture of the French diagram
of the (2,2,1,0), where the cell (x1,z2) contains the value j+xz1—x2, the lower left cell
is indexed (1,1) and the cells are indexed by integer lattice points in the first quadrant

of the Cartesian plane:

4
415 .

In general, if 4 is the partition, we denote the corresponding element of W by Wy,
W(2,2,1,0) = T4T5T27374.

We have 7;(y)=rorirsrero and ¥(y)=rorerariro=wty, where w=rgrg¢rarire, which in

one-line notation is w=(6724/513), and A=—wy —wy. Then
wp(ta) =rorsrirerersty and  wp(w)=(2467|135),

which corresponds to the partition (7,6,4,2)—(4,3,2,1)=(3,3,2,1).
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11.3. Strange duality

In [7], Chaput, Manivel and Perrin study a strange duality involution on

QH*(G/P)lg,q""]-
The final statement of Proposition 11.3 suggests a relationship between strange duality
and Theorem 10.21.

THEOREM 11.6. ([7, Theorem 4.1]) Let PCG be a cominuscule parabolic subgroup
with Ip=I\{j}, and for weW? let §(w) be the number of times r; appears in some
(and thus any) reduced decomposition of w. Then there exists an algebraic number
and a function ¢: W —Z[»] such that

wp (wd w)

Voand 0B C(w)g ™o

a—rq
define an involutive ring automorphism of QH*(G/P)[q~|®zZ[].

In general, 3 can be an irrational algebraic number, but for G=SL(n), {(w)=1 for
all weW.
One may check that Example 11.5 agrees with the explicit description in [7] of

strange duality on the Grassmannian in terms of partitions and their Durfee square.

11.4. The homomorphism of Lapointe and Morse

Suppose now that G/P is the Grassmannian Gr(j, C")=SL,,/P. Lapointe and Morse
defined a map which, after various identifications, can be interpreted as a surjective ring
homomorphism H,(Grsy,, ) —QH*(Gr(j,C")). We shall explain their map in terms of
strange duality and the parabolic Peterson theorem (Theorem 10.21).

For this section let k=n—1. In [22], motivated by Macdonald theory, Lapointe,

(*) called k-Schur functions.

Lascoux and Morse defined a family of symmetric functions s
They form a basis of the ring Z[hq, ..., hi], where h; is the homogeneous symmetric
function. The k-Schur basis is indexed by k-bounded partitions, that is, partitions A
such that A\ <k.

The homomorphism of Lapointe and Morse may be described as follows.
THEOREM 11.7. ([24]) There is a surjective ring homomorphism

Zlhy, ... hyp_1] — QH*(Gr(4,C"))

such that for any (n—1)-bounded partition X\, the (n—1)-Schur function sf\"_l) maps to

0 or to a power of q times a single quantum Schubert class. Moreover,
(1) if X fits inside the (n—j)xj rectangle, then sf\n_l)b—ﬂfg”, where A is the
transpose of the partition A,

(2) if A\1>j, then s&n71)|—>0.



QUANTUM COHOMOLOGY OF G/P AND HOMOLOGY OF AFFINE GRASSMANNIAN 87

The above rules specify the map except when A consists of some number of parts of
size j followed by a partition contained in the (n—j) x j rectangle; in that case one must
use a straightening process to determine the image Schubert class explicitly; see [24].

Bott [3] gave an explicit realization of H,(Grsy, ) by the ring Z[hq, ..., hp—1]. In [19],
Lam proved that the (n—1)-Schur functions are the Schubert basis of H,(Grsr,). To
make the identification explicit, we recall a bijection [23, Proposition 47] denoted here
by Awil, from (n—1)-bounded partitions to W, where W, is the affine Weyl group
for G=SL,,. See [20] for alternative descriptions of this bijection.

Given the (n—1)-bounded partition A\, we place the value 21 — x5 mod n into the cell
(21, x2) in the diagram of X in a manner similar to the definition of w) in Example 11.5.

These entries are then used as indices for simple reflections in a reduced decompo-
sition of an element wifEWa}, reading the rows in order from the top row to the bottom

row, reading within each row from right to left.

Ezample 11.8. Let n=7 and A=(3,2). Then the filled diagram of X is given by

0

2]

and wif =rorerarirg.

THEOREM 11.9. ([19]) Under Bott’s isomorphism H,.(Grsy, )=2Z[h1, ..., hn—1], the
Schubert class o maps to the (n—1)-Schur function sg\nfl) for every (n—1)-bounded

partition .

Combining Theorem 11.7 specialized at g=1 and Theorem 11.9, one obtains the
Lapointe-Morse ring homomorphism Uy Hy (Grsy,, ) = QH* (Gr(j, C™))|g=1-
On the other hand, combining strange duality and the parabolic Peterson theorem,

we have the following result.

ProrosiTION 11.10. Let G=SL,, and PCG be a mazimal parabolic subgroup with
Ip=I\{j}. Then thereis a surjective ring homomorphism ¥: H,(Grg)—=QH*(G/P)|q=1
defined by

s { o, if x=9(y)mp(ts) for some ye WE and AeQV,

0, otherwise.

Moreover U=Wry .

Proof. ¥ is the composition of the non-equivariant specialization of the map of
Theorem 10.21 and the map of Theorem 11.6 specialized at g=1. Together with Propo-
sition 11.3, it follows that ¥ is a surjective ring homomorphism.
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To prove that W =Wy, it suffices to check agreement on algebra generators. For
o<m<n—1 let h[m]:rm_l e Tar1ro €W i3 §h[m] is the Bott generator corresponding to
the symmetric function h,, and to the (n—1)-bounded partition having a single row of

size m.

Let y€WP. Let A be the partition contained in the (n—j)xj rectangle such that

y=wy:. It is easy to check from the definitions that ¥(y)=w3l. Consequently, ¥ and

UM agree on Ey(, for yeW?P. Since WF contains the elements Clm]=Tj—m+1 - Tj—1Tj
for 0<m<j and V() =hpm) for 0Sm<j, Y=V on the generators &y, for 0<m<j.
Finally, both ¥ and W,y send &y, to zero for j+1<m<n—1. O

Ezample 11.11. Let n=7 and j=4, and choose A=(3,2,0) in the 3x4 rectangle.
Then A\'=(2,2,1,0) fits in the 4 x3 rectangle and wy: €W is given by the element y
of Example 11.5. The element ¥(y) is given by wf‘\f, which appears in the two previous

examples.

Remark 11.12. The “Pieri formula” for H,(Grgr,) was given in [20], and agrees
with the k-Pieri rule of Lapointe and Morse [23]. The image of this Pieri rule under ¥
is exactly the quantum Pieri rule of QH*(Gr(j,C")); see [1].
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