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This is a continuation of our previous paper [21], where we introduced and analyzed
lower (‘Ricci’) curvature bounds Curv�K for metric measure spaces (M, d,m). The
definition used there is based on convexity properties of the relative entropy Ent( · |m)
regarded as a function on P2(M, d), the L2-Wasserstein space of probability measures
on the metric space (M, d). For Riemannian manifolds, Curv(M, d,m)�K if and only if
RicM (ξ, ξ)�K|ξ|2 for all ξ∈TM .

This notion of lower curvature bound is a dimension independent (or, in a certain
sense, ‘infinite-dimensional’) concept. In order to obtain more precise estimates, one has
to reinforce the curvature bound Curv�K to a curvature-dimension condition CD(K, N)
involving two parameters K and N playing in some generalized sense the roles of a lower
bound for the Ricci curvature and an upper bound for the dimension, respectively.

The main topic of the present paper is the curvature-dimension condition CD(K, N)
for metric measure spaces (M, d,m). In some sense, it will be the geometric counterpart
to the curvature-dimension condition for Markov operators and Dirichlet forms by Bakry
and Émery [2].

We will also study a weak variant of the latter, namely the measure contraction
property MCP(K, N). It is a slight modification of a property introduced in [18] and in
a similar form in [12].

As in [21], our definition of the curvature-dimension condition is based on a kind of
convexity property for suitable functionals on the L2-Wasserstein space P2(M, d). The
previous curvature condition Curv�K is included as the limit case CD(K,∞). For finite
N the basic object now is the Rényi entropy functional

SN (�m |m) =−
∫

�1−1/N dm,
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replacing the relative (‘Shannon’) entropy

Ent(�m |m) =
∫

� log � dm = lim
N!∞

N(1+SN (�m |m)).

For Riemannian manifolds, the curvature-dimension condition CD(K, N) will be
satisfied if and only if dim(M)�N and RicM (ξ, ξ)�K|ξ|2 for all ξ∈TM .

Under minimal regularity assumptions, condition CD(K, N) will imply property
MCP(K, N); the latter will be strictly weaker. Roughly spoken, CD(K, N) is a con-
dition on the optimal transport between any pair of (absolutely continuous) probability
measures on M , whereas MCP(K, N) is a condition on the optimal transport between
Dirac masses and the uniform distribution on M .

One of the fundamental results is that the curvature-dimension condition as well as
the measure contraction property are stable under measured Gromov–Hausdorff conver-
gence or, more generally, under convergence with respect to the distance D. The latter
was introduced in [21] as a complete separable metric on the family of (isomorphism
classes of) normalized metric measure spaces. Moreover, we deduce that for each triple
(K, N,L)∈R3, the family of normalized metric measure spaces (M, d,m) which have di-
ameter �L and which satisfy condition CD(K, N) (or alternatively property MCP(K, N))
is compact.

Furthermore, we present various geometric consequences of the curvature-dimension
condition (or alternatively of the measure contraction property). The most prominent
among them being the Bishop–Gromov theorem on the volume growth of concentric balls
and the Bonnet–Myers theorem on the diameter of metric measure spaces with positive
lower curvature bounds. In both cases, we obtain the sharp estimates known from the
Riemannian case.

Of particular interest are the analytic consequences of property MCP(K, N). It
allows one to construct a canonical Dirichlet form and a canonical Laplace operator on
L2(M,m), it implies a local Poincaré inequality, a scale invariant Harnack inequality, and
Gaussian estimates for heat kernel, and it yields Hölder continuity of harmonic functions.

The curvature-dimension condition can be interpreted as a control on the distortion
of infinitesimal volume elements under transport along geodesics. Let us briefly try to
explain this.

The curvature-dimension condition CD(0, N)—which, besides condition CD(K,∞),
is the easiest to formulate—simply states that for all N ′�N the functional SN ′( · |m) is
convex on the L2-Wasserstein space P2(M, d). In the Riemannian case, it was already
observed in [19] that the latter characterizes manifolds with dimension �N and Ricci
curvature �0. This is basically due to the fact that the Jacobian determinant Jt=det dFt
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of any ‘transport’ map Ft := exp(−t∇ϕ):M!M satisfies

∂2

∂t2
J

1/N
t (x) � 0 (0.1)

if and only if M has dimension �N and Ricci curvature �0. Essentially equivalent to
(0.1) is the Brunn–Minkowski inequality:

m(At)1/N ′ � (1−t)m(A0)1/N ′
+tm(A1)1/N ′

(0.2)

for any N ′�N , any t∈[0, 1] and any pair of sets A0, A1⊂M , where At denotes the set of
points γt on geodesics with endpoints γ0∈A0 and γ1∈A1.

The curvature-dimension condition CD(K, N) for general K and N is more involved.
As a first step, the inequality (0.1) can be replaced by

∂2

∂t2
J

1/N
t (x) �−K

N
J

1/N
t (x) d2(x, F1(x)) (0.3)

(see [19, Corollary 3.4]). A more refined analysis yields

J
1/N
t (x) � τ

(1−t)
K,N (d(x, F1(x)))J1/N

0 (x)+τ
(t)
K,N (d(x, F1(x)))J1/N

1 (x) (0.4)

for t∈[0, 1] and x∈M , where

τ
(t)
K,N (θ) = t1/N

(
sin ( tθ)
sin ( θ)

)1−1/N

with =
√

K/(N−1) (and with appropriate interpretation if K�0). The curvature-
dimension condition CD(K, N) to be discussed in the sequel can be regarded as a robust
version of (0.4).

Assume for simplicity that for (m⊗m)-a.e. (x, y)∈M2 there exists a unique geodesic
t �!γt(x, y) depending in a measurable way on the endpoints x and y. Then CD(K, N)
states that that for any pair of absolutely continuous probability measures �0m and �1m

on M there exists an optimal coupling q such that

�t(γt(x, y)) � [τ (1−t)
K,N (d(x, y)) �

−1/N
0 (x)+τ

(t)
K,N (d(x, y)) �

−1/N
1 (y)]−N (0.5)

for all t∈[0, 1] and q-a.e. (x, y)∈M2, where �t is the density of the push-forward of q under
the map (x, y) �!γt(x, y). Roughly spoken, MCP(K, N) is the particular case where �0m

is degenerated to a Dirac mass. This amounts to say that for every x∈M and t∈[0, 1]
the ‘contracted measure’ mt,x := γt(x, · )∗ m satisfies

t

(
sin( d(x, y))

sin( d(x, y)/t)

)N−1

mt,x(dy) �m(dy).
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In the general case, the assumption of a measurable choice of a unique geodesic is replaced
by the assumption of a measurable choice of a measure on the geodesics.

Independently of [19] and [21], the particular cases CD(K,∞) and CD(0, N) of the
curvature-dimension condition—essentially defined in the same form—were also discussed
in a recent paper [13] by John Lott and Cédric Villani.

In the first section of this paper, we introduce the curvature-dimension condition
and we deduce some of the basic properties.

In the second section, we derive various geometric consequences of the curvature-
dimension condition like the Brunn–Minkowski inequality, the Bishop–Gromov volume
growth estimate, and the Bonnet–Myers theorem.

The topic of Section 3 is the stability of the curvature-dimension condition under
convergence. Moreover, compactness of families of normalized metric measure spaces
with suitable bounds on the diameter, the dimension and the curvature is deduced.

In Section 4 we study the curvature-dimension condition under the additional as-
sumption that the underlying space is non-branching.

In Section 5 we introduce and study the measure contraction property, including its
geometric consequences, and its stability under convergence.

Section 6 is devoted to the analytic consequences of the measure contraction prop-
erty, in particular, the construction of Sobolev spaces and Dirichlet forms as well as the
derivation of a scale invariant local Poincaré inequality.

Throughout this paper, we freely use definitions and results from our previous paper
[21]. Theorem x.y and equation (a.b) of that paper will be quoted as Theorem I.x.y or
(I.a.b), respectively.

1. The curvature-dimension condition

A metric measure space will always be a triple (M, d,m), where (M, d) is a complete
separable metric space and m is a locally finite measure (i.e. m(Br(x))<∞ for all x∈
M and all sufficiently small r>0) on M equipped with its Borel σ-algebra. To avoid
pathologies, we exclude the case m(M)=0.

G(M) will denote the space of geodesics γ: [0, 1]!M , equipped with the topology of
uniform convergence. Here and in the sequel, by definition, each geodesic is minimizing
and parametrized proportional to arclength. A point z will be called t-intermediate point
of points x and y if d(x, z)=td(x, y) and d(z, y)=(1−t)d(x, y).

P2(M, d) denotes the L2-Wasserstein space of probability measures on M and dW

the corresponding L2-Wasserstein distance. The subspace of m-absolutely continuous
measures is denoted by P2(M, d,m).
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X denotes the family of all isomorphism classes of metric measure spaces and X1

the subfamily of isomorphism classes of normalized metric measure spaces (M, d,m) with
finite variances (i.e. m(M)=1 and

∫
M

d2(o, y) dm(y)<∞). On X1 we have introduced
the distance D, see [21, Section 3].

Given a metric measure space (M, d,m) and a number N∈R, N�1, we define the
Rényi entropy functional

SN ( · |m):P2(M, d)−!R

with respect to m by

SN (ν |m) := −
∫

�−1/N dν,

where � denotes the density of the absolutely continuous part νc in the Lebesgue de-
composition ν=νc+νs=�m+νs of ν∈P2(M, d). Note that in the borderline case N=1
this reads S1(ν |m):= −m(supp[νc]). Instead of SN , mostly in the literature the func-
tional S̃N := N+N SN is considered. The latter shares various properties with the rel-
ative Shannon entropy Ent( · |m). For instance, if m is a probability measure, then
S̃N ( · |m)�0 on P2(M, d) and S̃N (ν |m)=0 if and only if ν=m. For the purpose of this
paper, the functional SN from above is more convenient. We recall two important facts
from the proof of Lemma I.4.1.

Lemma 1.1. Assume that m(M) is finite.
(i) Then for each N>1 the Rényi entropy functional SN ( · |m) is lower semicontin-

uous and satisfies −m(M)1/N �SN ( · |m)�0 on P2(M, d).
(ii) For each ν∈P2(M, d),

Ent(ν |m) = lim
N!∞

N(1+SN (ν |m)).

Given two numbers K, N∈R, with N�1, we put, for (t, θ)∈[0, 1]×R+,

τ
(t)
K,N (θ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, if Kθ2 � (N−1)π2,

t1/N

(
sin
(
tθ
√

K/(N−1)
)

sin
(
θ
√

K/(N−1)
) )1−1/N

, if 0<Kθ2 < (N−1)π2,

t, if Kθ2 = 0 or
if Kθ2 < 0 and N = 1,

t1/N

(
sinh
(
tθ
√−K/(N−1)

)
sinh
(
θ
√−K/(N−1)

) )1−1/N

, if Kθ2 < 0 and N > 1.

That is, τ
(t)
K,N (θ):= t1/Nσ

(t)
K,N−1(θ)

1−1/N , where

σ
(t)
K,N (θ) :=

sin
(
tθ
√

K/N
)

sin
(
θ
√

K/N
)
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if 0<Kθ2<Nπ2 and with appropriate interpretation otherwise. Moreover, we put

ς
(t)
K,N (θ) := τ

(t)
K,N (θ)N .

Straightforward calculations yield that for fixed t∈ ]0, 1[ and θ∈ ]0,∞[ the function
(K, N) �!τ

(t)
K,N (θ) is continuous, non-decreasing in K and non-increasing in N . More-

over, we have the following result.

Lemma 1.2. For all K, K ′∈R, all N,N ′∈ ]0,∞[, all t∈ [0, 1] and all θ∈R+,

σ
(t)
K,N (θ)N · σ(t)

K′,N ′(θ)N ′ �σ
(t)
K+K′,N+N ′(θ)N+N ′

and, if N�1,
τ

(t)
K,N (θ)N · σ(t)

K′,N ′(θ)N ′ � τ
(t)
K+K′,N+N ′(θ)N+N ′

.

Proof. We derive the first inequality; the rest easily follows. For each fixed t∈ ]0, 1[
the function

f : K �−! log
sin
(
t
√

K
)

sin
(√

K
)

(with canonical interpretation for non-positive K) is convex on ]−∞, π2[. Hence, for all
K, K ′∈R, all N,N ′>0 and all θ∈R under consideration

N

N+N ′ f
(

K

N
θ2

)
+

N ′

N+N ′ f
(

K ′

N ′ θ
2

)
� f

(
K+K ′

N+N ′ θ
2

)
.

In other words,(
sin
(
tθ
√

K/N
)

sin
(
θ
√

K/N
) )N( sin

(
tθ
√

K ′/N ′ )
sin
(
θ
√

K ′/N ′ )
)N ′

�
(

sin
(
tθ
√

(K+K ′)/(N+N ′)
)

sin
(
θ
√

(K+K ′)/(N+N ′)
) )N+N ′

.

In particular τ
(t)
K,N (θ)�σ

(t)
K,N (θ), provided N>1, since τN

K,N =σ1
0,1σ

N−1
K,N−1.

Definition 1.3. Given two numbers K, N∈R with N�1 we say that a metric measure
space (M, d,m) satisfies the curvature-dimension condition CD(K, N) if and only if for
each pair ν0, ν1∈P2(M, d,m) there exist an optimal coupling q of ν0=�0m and ν1=�1m,
and a geodesic Γ: [0, 1]!P2(M, d,m) connecting ν0 and ν1, with

SN ′(Γ(t) |m) �−
∫

M×M

[
τ

(1−t)
K,N ′ (d(x0, x1))�

−1/N ′

0 (x0)

+τ
(t)
K,N ′(d(x0, x1))�

−1/N ′

1 (x1)
]
dq(x0, x1)

(1.1)

for all t∈[0, 1] and all N ′�N .
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The definition of the curvature-dimension condition immediately implies its invari-
ance under standard transformations of metric measure spaces. (Cf. Propositions I.4.12,
I.4.13 and I.4.15 as well as the proofs of these results.)

Proposition 1.4. Let (M, d,m) be a metric measure spaces which satisfies the
CD(K, N) condition for some pair of real numbers K, N . Then the following proper-
ties hold.

(i) Isomorphism: Each metric measure space (M ′, d′,m′) which is isomorphic to
(M, d,m) satisfies the CD(K, N) condition.

(ii) Scaled spaces: For each α, β>0 the metric measure space (M,αd, βm) satisfies
the CD(α−2K, N) condition.

(iii) Subsets: For each convex subset M ′ of M the metric measure space (M ′, d,m)
satisfies the same CD(K, N) condition.

Remark 1.5. In order for the curvature-dimension condition to be invariant under
isomorphisms we require (1.1) to hold only for ν0, ν1∈P2(M, d,m) and not for all ν0, ν1∈
P2(M, d). For instance, consider M=Rn equipped with the Euclidean distance d and let
m be the (n−1)-dimensional Lebesgue measure on M0 := {0}×Rn−1. Then (M, d,m)
satisfies the condition CD(0, n−1). However, choose ν0=1A m for some set A⊂M0, with
m(A)=1, and ν1=δz for some point z=(z1, ..., zn) with z1 �=0. Then for each midpoint
Γ1/2 of them

0 =Sn−1(Γ1/2 |m) � 1
2Sn−1(ν0 |m)+ 1

2Sn−1(ν1 |m) =− 1
2 .

Proposition 1.6. (i) If (M, d,m) satisfies the curvature-dimension condition
CD(K, N) then it also satisfies the curvature-dimension conditions CD(K ′, N ′) for all
K ′�K and N ′�N .

Conversely, if (M, d,m) is compact with diameter �L and satisfies the curvature-
dimension conditions CD(Kn, Nn) for a sequence of pairs (Kn, Nn) with

lim
n!∞(Kn, Nn) = (K, N)

and KL2<(N−1)π2 then it also satisfies the curvature-dimension conditions CD(K, N).
(ii) If (M, d,m) has finite mass and satisfies the curvature-dimension condition

CD(K, N) for some K and N then it has curvature �K in the sense of Definition I.4.5.
Therefore, the condition Curv(M, d,m)�K may be interpreted as the curvature-

dimension condition CD(K,∞) for (M, d,m).
(iii) A metric measure space (M, d,m) satisfies the curvature-dimension condition

CD(0, N) for some N�1 if and only if the Rényi entropy functionals SN ′( · |m) for
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N ′�N are weakly convex on P2(M, d,m) in the following sense: for each pair ν0, ν1∈
P2(M, d,m) there exists a geodesic Γ: [0, 1]!P2(M, d,m) connecting ν0 and ν1, with

SN ′(Γ(t) |m) � (1−t)SN ′(ν0 |m)+tSN ′(ν1 |m) (1.2)

for all t∈[0, 1] and N ′�N .

Proof. (i) The first assertion is obvious. The second one will follow from Theorem 3.1
below.

(ii) Let ν0, ν1∈P2(M,d,M) be given with Ent(ν0 |m)<∞ and Ent(ν1 |m)<∞. By
assumption, (M, d,m) satisfies the curvature-dimension condition CD(K, N) for some K

and N . Hence, there exist an optimal coupling q of ν0 and ν1, and a geodesic Γ: [0, 1]!
P2(M, d,m) connecting ν0 and ν1, with (1.1) for all t∈[0, 1] and all N ′�N .

The assumption m(M)<∞ implies that Ent(Γt |m)=limN ′!∞ N ′(1+SN ′(Γt |m))
for all t∈[0, 1]. Hence,

Ent(Γt |m)−(1−t)Ent(Γ0 |m)−tEnt(Γ1 |m)

= lim
N ′!∞

N ′(SN ′(Γt |m)−(1−t)SN ′(Γ0 |m)−tSN ′(Γ1 |m))

� lim
N ′!∞

∫ [
N ′[(1−t)−τ

(1−t)
K,N ′ (d(x0, x1))]�

−1/N ′

0 (x0)

+N ′[t−τ
(t)
K,N ′(d(x0, x1))]�

−1/N ′

1 (x1)
]
dq(x0, x1)

� lim
N ′!∞

∫ [
N ′[(1−t)−τ

(1−t)
K,N ′ (d(x0, x1))]

+N ′[t−τ
(t)
K,N ′(d(x0, x1))]

]
dq(x0, x1)

=− t(1−t)
2

K

∫
d2(x0, x1) dq(x0, x1)

=− t(1−t)
2

Kd2
W (ν0, ν1).

(iii) This is obvious.

Proposition 1.6 (iii) gives an elementary characterization of the condition CD(0, N)
through convexity of the Rényi entropy functionals SN ′ for N ′�N . A generalization of
this characterization to K �=0 will be discussed in Section 4. Moreover, we will present
various modifications of the curvature-dimension condition which formally are more re-
strictive.

Of course, the most important case to be studied is the case of Riemannian manifolds.
Let us mention here the basic result. We postpone its proof to the end of the section.
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Theorem 1.7. Let M be a complete Riemannian manifold with Riemannian dis-
tance d and Riemannian volume m and let numbers K, N∈R with N�1 be given.

(i) The metric measure space (M, d,m) satisfies the curvature-dimension condition
CD(K, N) if and only if the Riemannian manifold M has Ricci curvature �K and di-
mension �N .

(ii) Moreover, in this case for every measurable function V : M!R the weighted
space (M, d, V m) satisfies the curvature-dimension condition CD(K+K ′, N+N ′) pro-
vided

Hess V 1/N ′ �−K ′

N ′ V
1/N ′

for some numbers K ′∈R and N ′>0, in the sense that

V (γt)1/N ′ �σ
(1−t)
K′,N ′(d(γ0, γ1)) V (γ0)1/N ′

+σ
(t)
K′,N ′(d(γ0, γ1)) V (γ1)1/N ′

(1.3)

for each geodesic γ: [0, 1]!M and each t∈[0, 1].

Let us have a closer look on these results if M is a subset of the real line equipped
with the usual distance d and the 1-dimensional Lebesgue measure m.

Example 1.8. (i) For each pair of real numbers K>0, N>1 the space ([0, L], d, V m)
with L:=π

√
(N−1)/K and

V (x) = sin
(√

K

N−1
x

)N−1

satisfies the curvature-dimension condition CD(K, N).
(ii) For each pair of real numbers K�0, N>1 the space (R+, d, V m) with

V (x) = sinh
(√ −K

N−1
x

)N−1

,

if K<0, and V (x)=xN−1, if K=0, satisfies the curvature-dimension condition CD(K, N).
(iii) For each pair of real numbers K<0, N>1 the space (R, d, V m) with

V (x) = cosh
(√ −K

N−1
x

)N−1

satisfies the curvature-dimension condition CD(K, N).

Note that for N!∞ the weight V from example (iii) above converges to the weight

V (x) = exp
(−K

2
x2

)
from Example I.4.10 (ii). Also note that according to [3], the Examples (i)–(iii) equipped
with natural weighted Laplacians are also the prototypes for the Bakry–Émery curvature-
dimension condition.
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Proof of Theorem 1.7. (a) Let M be a complete Riemannian manifold with Ricci
curvature �K and dimension n�N and assume that we are given two absolutely con-
tinuous probability measures ν0=�0m and ν1=�1m in P2(M, d,m). Without restriction,
we may assume that both are compactly supported. (Otherwise, we have to choose
compact exhaustions of M×M and to consider the restriction of the coupling to these
compact sets). According to Remark I.2.12 (iii), there exists a weakly differentiable func-
tion ϕ: M!R such that the push-forward measures

Γt = (Ft)∗ν0

with
Ft(x) = expx(−t∇ϕ(x))

for t∈[0, 1] define the unique geodesic t �!Γt in P2(M, d) connecting ν0 and ν1. Again
each Γt is compactly supported and absolutely continuous, say Γt=�tm.

Following [6] we may choose ϕ in such a way that it is (d2/2)-concave(1) and such
that for ν0-a.e. x∈M the Hessian of ϕ at x exists and the Jacobian dFt(x) is non-singular
for all t∈[0, 1].

(b) For each x and t as above, consider the matrix of Jacobi fields

At(x) := dFt(x):TxM −!TFt(x)M

along the geodesic F (x). (More precisely, At(x)v is a Jacobi field along F (x) for each
v∈TxM .) It is the unique solution of the Jacobi equation

∇t∇tAt(x)+R(At(x), Ḟt(x))Ḟt(x) = 0

with initial conditions A0=Id and ∇tAt

∣∣
{t=0}=−Hess ϕ. Here R is the curvature ten-

sor and ∇t denotes covariant derivative along the geodesics F (x) (cf. [4, (3.4)]). By
assumption, the matrix At(x) is non-degenerate for all x and t under consideration.
Hence, the Jacobi equation immediately implies that the self-adjoint matrix valued map
Ut := ∇tAt A−1

t solves the Riccati type equation

∇tUt+U2
t +R( · , Ḟt)Ḟt = 0 (1.4)

and thus
tr(∇tUt)+tr(U2

t )+Ric(Ḟt, Ḟt) = 0. (1.5)

(1) This notion of concavity is defined in terms of some generalized Legendre transform. It is
completely different from the notion of ‘convexity/concavity along geodesics’ used at all other instances
in this paper.
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Now consider yt := log Jt=log detAt. Then trUt=tr(∇tAt A−1
t )=(d/dt)(log detAt)=ẏt

(cf. [4, Proposition 2.8]). Hence, tr(∇tUt)=(d/dt)tr(Ut)=ÿt. By means of the standard
estimate tr(U2

t )�(1/n)(trUt)2 for the trace of the square of a self-adjoint matrix, we
obtain from (1.5),

ÿt �− 1
n

ẏ2
t −Ric(Ḟt, Ḟt). (1.6)

Using our estimates for the dimension and the Ricci curvature of M we get

ÿt �− 1
N

ẏ2
t −Kθ2

with θ(x):= |Ḟt(x)|=d(x, F1(x)) or equivalently

d2

dt2
J

1/N
t �−Kθ2

N
J

1/N
t . (1.7)

Integrating (1.7) for fixed x along the geodesic t �!Ft(x) yields

J
1/N
t �σ

(1−t)
K,N (θ)J1/N

0 +σ
(t)
K,N (θ)J1/N

1 . (1.8)

This is close to the estimate (1.12) which we aim for. In the case n=1 we are already
done.

(c) In order to improve upon (1.8) in the case n�2, we will separately study the
deformation of the volume element in directions parallel and orthogonal to the transport
direction. To be precise, fix x as above and let e1

t , ..., e
n
t be an orthonormal basis of

TFt(x)M with e1
t =Ḟt(x)/|Ḟt(x)| for all t∈[0, 1[. Put uij(t)=〈ei

t,Ute
j
t 〉, λt=1+

∫ t

0
u11(s)ds

and Lt=exp(λt). Then (1.4) implies

− d

dt
u11(t) =

n∑
j=1

u2
1j(t) �u2

11(t). (1.9)

That is, −λ̈t�λ̇2
t or, equivalently, L̈t�0, which in integrated form reads

Lt � (1−t)L0+tL1 (1.10)

for all t∈[0, 1]. Now put αt=yt−λt, At=exp(αt)=Jt/Lt and Vt=(uij(t))i,j=2,...,n. Then
(1.4) together with (1.9) imply

−α̈t−Kθ2 �−ÿt−Ric(Ḟt, Ḟt)+λ̈t = tr(U2
t )+λ̈t =

n∑
i,j=1

u2
ij(t)−

n∑
j=1

u2
1j(t)

�
n∑

i,j=2

u2
ij(t) = tr(V2

t ) � 1
n−1

(trVt)2 =
1

n−1
α̇2

t � 1
N−1

α̇2
t .
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Hence,
d2

dt2
(A1/(N−1)

t ) �− Kθ2

N−1
A

1/(N−1)
t

and thus

A
1/(N−1)
t �σK,N−1((1−t), θ)A1/(N−1)

0 +σK,N−1(t, θ)A
1/(N−1)
1 . (1.11)

Finally, (1.11) and (1.10) together with Hölder’s inequality yield

J
1/N
t =

(
LtAt

)1/N

� ((1−t)L0+tL1)1/N (σ(1−t)
K,N−1(θ)A

1/(N−1)
0 +σ

(t)
K,N−1(θ)A

1/(N−1)
1 )(N−1)/N

� ((1−t)L0)1/N (σ(1−t)
K,N−1(θ)A

1/(N−1)
0 )(N−1)/N

+(tL1)1/N (σ(t)
K,N−1(θ)A

1/(N−1)
1 )(N−1)/N

= τ
(1−t)
K,N (θ)J1/N

0 +τ
(t)
K,N (θ)J1/N

t .

That is, the Jacobian determinant Jt(x):= det dFt(x) satisfies

Jt(x)1/N � τ
(1−t)
K,N (d(x, F1(x))J0(x)1/N +τ

(t)
K,N (d(x, F1(x))J1(x)1/N. (1.12)

This estimate is—from the technical point of view—the main result in [6] (Lemma 6.1
and Corollary 2.2). (To be precise, it is stated there only for the case N=n; however,
the extension to the general case N�n is straightforward.) For the convenience of the
reader, we have presented here an alternative, essential self-contained derivation, follow-
ing similar calculations in [19].

(d) The change of variable formula for Ft yields that �t(Ft)Jt=�0 a.e. Thus together
with (1.12) and (1.3) we obtain

SN+N ′(Γt |V m) =−
∫ (�t

V

)− 1
N+N′

�t dm

=−
∫

J
1

N+N′
t V (Ft)

1
N+N′ �

1− 1
N+N′

0 dm

�−
∫

(τ (1−t)
K,N (d)J1/N

0 +τ
(t)
K,N (d)J1/N

1 )
N

N+N′

×(σ(1−t)
K′,N ′(d)V (F0)1/N ′

+σ
(t)
K′,N ′(d)V (F1)1/N ′

)
N′

N+N′ �
1− 1

N+N′
0 dm

�−
∫ (

τ
(1−t)
K,N (d)

N
N+N′ σ

(1−t)
K′,N ′(d)

N′
N+N′ J

1
N+N′
0 V (F0)

1
N+N′

+τ
(t)
K,N (d)

N
N+N′ σ

(t)
K′,N ′(d)

N′
N+N′ J

1
N+N′
1 V (F1)

1
N+N′
)
�
1− 1

N+N′
0 dm
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(∗)
� −
∫ (

τ
(1−t)
K+K′,N+N ′(d)(J0 V (F0))

1
N+N′

+τ
(t)
K+K′,N+N ′(d)(J1 V (F1))

1
N+N′
)
�
1− 1

N+N′
0 dm

=−
∫ (

(τ (1−t)
K+K′,N+N ′(d)

(�0

V

)− 1
N+N′

+τ
(t)
K+K′,N+N ′(d)

(�1

V

)− 1
N+N′
)

dq

which proves the claim. Here (∗) is due to Lemma 1.2. For the final equality we have
used the fact that the unique optimal coupling of ν0 and ν1 is given by dq(x0, x1)=
δF1(x0)(dx1) dν(x0). To simplify the above formulae, we always have dropped the ar-
guments x0 and x1. To be more specific, d denotes d(x0, F1(x0)) if we integrate with
respect to dm(x0), and it denotes d(x0, x1) if we integrate with respect to dq(x0, x1).

(e) Necessity: Assume that (M, d,m) satisfies the curvature-dimension condition
CD(K, N) for some pair of real numbers K, N with N�1. Then, by Corollary 2.5, we
have N� Hausdorff dimension of M . In the Riemannian case, the latter coincides with
the dimension.

In order to prove that K� Ricci curvature of M , let us first investigate the case
n�2. Assume the contrary: Ricz(ξ, ξ)�(K−δ)|ξ|2 for some δ>0, some point z∈M and
some ξ∈Tz(M). Consider the sets A0=Bε(expz(−rξ)) and A1=Bε(expz(+rξ)). Then
for sufficiently small ε�r�1, Riemannian calculation yields

m(A1/2) �
(

1+
K−δ

2
r2+O(r4)

)
m(A0)+m(A1)

2

(cf. [19, Theorem 5.2]), whereas Proposition 2.1 gives

m(A1/2) �
(

1+
K

2
r2+O(r4)

)
m(A0)+m(A1)

2
.

Hence, Ric�K.
Now let us investigate the case n=1. Here the Ricci curvature always vanishes. On

the other hand, n=1 implies N=1 (according to Corollary 2.5) and thus necessarily K�0
(according to Corollary 2.6, the generalized Bonnet–Myers theorem). Hence, also in this
case Ric�K.

2. Geometric consequences of the curvature-dimension condition

Compared with our defining property (1.1), the following version of the Brunn–Minkowski
inequality will be a very weak statement. However, it will still be strong enough to imply
all the geometric consequences which we formulate in the sequel.
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Proposition 2.1. (Generalized Brunn–Minkowski inequality) Assume that the met-
ric measure space (M, d,m) satisfies the curvature-dimension condition CD(K, N) for
some real numbers K, N∈R, with N�1. Then for all measurable sets A0, A1⊂M with
m(A0)m(A1)>0, all t∈[0, 1] and all N ′�N ,

m(At)1/N ′ � τ
(1−t)
K,N ′ (Θ)m(A0)1/N ′

+τ
(t)
K,N ′(Θ)m(A1)1/N ′

, (2.1)

where At denotes the set of points which divide geodesics starting in A0 and ending in A1

with ratio t:(1−t) and where Θ denotes the minimal/maximal length of such geodesics,
that is,

At := {y ∈M : there is (x0, x1)∈A0×A1 such that

d(y, x0) = td(x0, x1) and d(y, x1) = (1−t)d(x0, x1)}

and

Θ :=
{

infx0∈A0,x1∈A1 d(x0, x1), if K � 0,

supx0∈A0,x1∈A1
d(x0, x1), if K < 0.

In particular, if K�0 then

m(At)1/N ′ � (1−t)m(A0)1/N ′
+tm(A1)1/N ′

. (2.2)

Proof. Let us first assume that 0<m(A0)m(A1)<∞. Applying the curvature-
dimension condition CD(K, N) to νi := (1/m(Ai))1Ai

m for i=0, 1 yields∫
At

�t(y)1−1/N ′
dm(y) � τ

(1−t)
K,N ′ (Θ)m(A0)1/N ′

+τ
(t)
K,N ′(Θ)m(A1)1/N ′

, (2.3)

where �t denotes the density of some geodesic Γt connecting ν0 and ν1. (Here without
restriction we assume N ′ �=1.) Now by Jensen’s inequality the left-hand side of (2.3)
is dominated by m(At)1/N ′

. This proves the claim, provided m(A0)m(A1)<∞. The
general case follows by approximation of Ai by sets of finite volume.

Remark 2.2. The assumption m(A0)m(A1)>0 cannot be dropped. For instance, let
M=R2 and let m be the 1-dimensional Lebesgue measure on A0 := {0}×R and choose
A1={1}×R.

Now let us fix a point x0∈supp[m] and study the growth of the volume of concentric
balls

v(r) := m(Br(x0))

as well as the growth of the volume of the corresponding spheres

s(r) := lim sup
δ!0

1
δ
m(Br+δ(x0)\Br(x0)).
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Theorem 2.3. (Generalized Bishop–Gromov volume growth inequality) Assume
that the metric measure space (M, d,m) satisfies the curvature-dimension condition
CD(K, N) for some real numbers K, N∈R, N�1. Then each bounded set M ′⊂M has
finite volume. Moreover, either m is supported by one point or all points and all spheres
have mass 0.

More precisely, if N>1 then for each fixed x0∈supp[m] and all 0<r<R�
π
√

(N−1)/(K∨0),

s(r)
s(R)

�
(

sin
(
r
√

K/(N−1)
)

sin
(
R
√

K/(N−1)
)
)N−1

(2.4)

and

v(r)
v(R)

�
∫ r

0
sin
(
t
√

K/(N−1)
)N−1

dt∫ R

0
sin
(
t
√

K/(N−1)
)N−1

dt
(2.5)

with s( · ) and v( · ) defined as above and with the usual interpretation of the right-hand
sides if K�0. In particular, if K=0 then

s(r)
s(R)

�
( r

R

)N−1

and
v(r)
v(R)

�
( r

R

)N
.

The latter also holds if N=1 and K�0.

For each K and each integer N>1 the simply connected spaces of dimension N

and constant curvature K/(N−1) provide examples where these volume growth esti-
mates are sharp. But also for arbitrary real numbers N>1 these estimates are sharp as
demonstrated by Example 1.8 (i) and (ii) where equality is attained.

Proof. Let us fix a point x0∈supp[m] and assume first that m({x0})=0. Let numbers
r and R with 0<r<R be given and put t=r/R. Choose numbers ε>0 and δ>0. We
will apply the generalized Brunn–Minkowski inequality from above to A0 := Bε(x0) and
A1 := BR+δR(x0)\BR(x0). One easily verifies that

At ⊂Br+δr+εr/R(x0)\Br−εr/R(x0)

and R−ε�Θ�R+δR+ε. Hence, Proposition 2.1 implies that

m(Br+δr+εr/R(x0)\Br−εr/R(x0))1/N � τ
(1−r/R)
K,N (R∓δR∓ε)m(Bε(x0))1/N

+τ
(r/R)
K,N (R∓δR∓ε)m(BR+δR(x0)\BR(x0))1/N ,
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where ∓ has to be chosen to coincide with the sign of K. In the limit ε!0, this yields

m(B(1+δ)r(x0)\Br(x0))1/N � τ
(r/R)
K,N ((1∓δ)R)m(B(1+δ)R(x0)\BR(x0))1/N

or, in other words,

v((1+δ)r)−v(r) � τ
(r/R)
K,N ((1∓δ)R)N [v((1+δ)R)−v(R)]. (2.6)

For r small enough, the left-hand side will be finite, since by assumption m is locally
finite, and thus v(R) will be finite for all R∈R+ and it will coincide with v(R∗) for all
R�R∗ := π

√
(N−1)/(K∨0). Moreover, by construction, v will be right continuous and

non-decreasing with at most countably many discontinuities. In particular, there will
be arbitrarily small r>0 and δ>0 such that v is continuous on the interval [r, (1+δ)r[ .
Hence, by (2.6), v will be continuous on R+. Therefore, m(∂Br(x0))=0 for all r>0 and
in turn m({x})=0 for all x �=x0.

Inequality (2.6) can be restated as

1
δr

[v((1+δ)r)−v(r)] � 1
δR

[v((1+δ)R)−v(R)]

(
sin
(
(1∓δ)r

√
K/(N−1)

)
sin
(
(1∓δ)R

√
K/(N−1)

)
)N−1

(2.7)

with the usual interpretation if K�0. In the limit δ!0, this yields the first claim (2.4).
Furthermore, given r and δ by successive subdivision of the interval [r, (1+δ)r], one

can construct a sequence (rn)n∈N of points in [r, (1+δ)r] with

0 � 1
2−nδr

[v((1+2−nδ)r)−v(r)] � 1
δr

[v((1+δ)r)−v(r)] =:C.

Together with (2.7) this implies that v is locally Lipschitz continuous on R+. Therefore,
in particular, it is weakly differentiable a.e. on R+, and it coincides with the integral of its
weak derivative s. We thus may apply [4, Lemma 3.1] according to which the inequality
(2.4) implies the integrated version (2.5).

It only remains to treat the case m({x0})>0. If there were a point x1∈supp[m]\{x0}
then we could apply the previous arguments (now with x1 in the place of x0) and deduce
that m({x})=0 for all x �=x1, which would lead to the contradiction m({x0})=0. Hence,
m({x0})>0 implies supp[m]={x0}. All the estimates of the theorem are trivially true in
this case.

Corollary 2.4. (Doubling) For each metric measure space (M, d,m) which satis-
fies the curvature-dimension condition CD(K, N) for some real numbers K, N∈R, N�1,
the doubling property holds on each bounded subset M ′⊂supp[m]. In particular, each
bounded closed subset M ′⊂supp[m] is compact.
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If K�0 or N=1 the doubling constant is �2N. Otherwise, it can be estimated in
terms of K, N, and the diameter L of M ′ as follows

C � 2N cosh
(

L

√
−K

N−1

)N−1

.

Proof. Assume N>1 and put =
√

((−K)∨0)/(N−1). Then (2.5) immediately
yields the doubling property

m(B2r(x))
m(Br(x))

�
2
∫ r

0
sinh( 2t)N−1 dt∫ r

0
sinh( t)N−1 dt

� 2N cosh( r)N−1.

The doubling property, however, always implies compactness of the support; see e.g. the
proof of Theorem I.3.16.

Corollary 2.5. (Hausdorff dimension) For each metric measure space (M, d,m)
satisfying the curvature-dimension condition CD(K, N) for some real numbers K, N∈R,
N�1, the support of m has Hausdorff dimension �N.

Proof. We will prove that for each N ′>N the N ′-dimensional Hausdorff measure
of M vanishes. Without restriction we may assume that M is bounded and that it has
full support. For each ε>0 we can estimate the ε-approximate N ′-dimensional Hausdorff
measure of M as follows:

Hε
N ′(M) := cN ′ inf

{ ∞∑
j=1

(
1
2

diam Sj

)N ′

:
∞⋃

j=1

Sj = M and diamSj � ε

}

� cN ′εN ′
inf
{

k∈N :
k⋃

j=1

Bε(xj) =M

}
.

According to the doubling property as derived in Corollary 2.4, the minimal number k in
the last term can be estimated by k�CεN (cf. also the proof of Theorem I.4.9). Hence,

HN ′(M) := lim
ε!0

Hε
N ′(M) = 0

for each N ′>N .

Corollary 2.6. (Generalized Bonnet–Myers theorem) For every metric measure
space (M, d,m) which satisfies the curvature-dimension condition CD(K, N) for some
real numbers K>0 and N�1 the support of m is compact and has diameter

L�π

√
N−1

K
.

In particular, if K>0 and N=1 then supp[m] consists of one point.
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Proof. Let x0, x1∈supp[m] and ε>0 be given with d(x0, x1)�π
√

(N−1)/K+4ε and
0<m(Bε(xi))<∞. Put Ai=Bε(xi) for i=0, 1. Then A1/2⊂BR(x0) for some finite
R. Hence, Proposition 2.1 with Θ>π

√
(N−1)/K implies m(A1/2)=∞, whereas Theo-

rem 2.3 implies m(BR(x0))<∞. This contradiction shows that d(x0, x1)�π
√

(N−1)/K

for all x0, x1∈supp[m]. Finite diameter, however, implies compactness of supp[m] ac-
cording to Corollary 2.4.

3. Stability under convergence

Theorem 3.1. Let ((Mn, dn,mn))n∈N be a sequence of normalized metric measure
spaces, where for each n∈N the space (Mn, dn,mn) satisfies the curvature-dimension
condition CD(Kn, Nn) and has diameter �Ln. Assume that, as n!∞,

(Mn, dn,mn) D−−! (M, d,m)

and (Kn, Nn, Ln)!(K, N,L) for some (K, N,L)∈R3 satisfying KL2<(N−1)π2. Then
the space (M, d,m) satisfies the curvature-dimension condition CD(K, N) and has diam-
eter �L.

The stability of the curvature-dimension condition under D-convergence immedi-
ately implies its stability under measured Gromov–Hausdorff (mGH) convergence (see
Lemma I.3.18).

Corollary 3.2. For each triple (K, N,L)∈R3 with KL2<(N−1)π2 the family
X1(K, N,L) of isomorphism classes of normalized metric measure spaces which satisfy
the curvature-dimension condition CD(K, N) and which have diameter �L is D-compact.

For each triple as above, the family X̃1(K, N,L) of isomorphism classes of nor-
malized compact metric measure spaces with full support which satisfy the curvature-
dimension condition CD(K, N) and which have diameter �L is mGH-compact. On each
such family, the D-topology and the mGH-topology coincide.

Proof. Let the numbers K, N and L be as given above. The volume growth estimate
(2.5) implies that each element in X1(K, N,L) satisfies the doubling property with some
uniform doubling constant C=C(K, N,L). According to Theorem I.3.16, the family of
all (M, d,m) with doubling constant �C and diameter �L is compact. Hence, it suffices
to prove that X1(K, N,L) is closed under D-convergence. This is the content of the
previous theorem.

Given t∈[0, 1], K∈R and N�1 we introduce for the sequel the abbreviation

T
(t)
K,N (q |m) =−

∫ [
τ

(1−t)
K,N (d(x0, x1))�0(x0)−1/N +τ

(t)
K,N (d(x0, x1))�1(x1)−1/N

]
dq(x0, x1)
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whenever q is a coupling of ν0=�0m and ν1=�1m.

Lemma 3.3. Let K, N∈R with N>1. For each sequence q(k) of optimal couplings
with the same marginals ν0 and ν1 which converge to some coupling q(∞),

lim sup
k!∞

T
(t)
K,N (q(k) |m) �T

(t)
K,N (q(∞) |m).

Proof. Let q(k), for k∈N, and q(∞) be as above. We will prove that

lim inf
k!∞

∫
τ

(1−t)
K,N (d(x0, x1))�0(x0)−1/N dq(k)(x0, x1)

�
∫

τ
(1−t)
K,N (d(x0, x1))�0(x0)−1/N dq(∞)(x0, x1).

(3.1)

Together with an analogous assertion with �1 in the place of �0 (and t in the place of
1−t) this will prove the claim.

For k∈N∪{∞} and C∈R+∪{∞} put

v
(k)
C (x0) =

∫
[τ (1−t)

K,N (d(x0, x1))∧C ] Q(k)(x0, dx1),

where Q(k)(x0, dx1) denotes the disintegration of dq(k)(x0, x1) with respect to dν(x0).
Now fix C∈R+. Since Cb(M) is dense in L1(M,ν0) and since 0�v

(k)
C ( · )�C, for each

ε>0 there exists a function ψ∈Cb(M) such that∫
v
(k)
C |[�−1/N

0 ∧C ]−ψ| dν0 � ε (3.2)

for all k∈N∪{∞}. The weak convergence q(k)!q(∞) on M×M implies that there exists
a k(ε)∈N such that for each k�k(ε),∫

v
(∞)
C ψ dν0 �

∫
v
(k)
C ψ dν0+ε. (3.3)

Summing up (3.2) and (3.3) we obtain∫
v
(∞)
C [�−1/N

0 ∧C ] dν0 �
∫

v
(∞)
C ψ dν0+ε �

∫
v
(k)
C ψ dν0+2ε

�
∫

v
(k)
C [�−1/N

0 ∧C ] dν0+3ε �
∫

v(k)
∞ �

−1/N
0 dν0+3ε.

That is, for each C∈R+,∫
v
(∞)
C [�−1/N

0 ∧C ] dν0 � lim inf
k!∞

∫
v(k)
∞ �

−1/N
0 dν0.

Finally, as C!∞ monotone convergence yields∫
v(∞)
∞ �

−1/N
0 dν0 � lim inf

k!∞

∫
v(k)
∞ �

−1/N
0 dν0.

This is precisely our claim (3.1).
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Proof of Theorem 3.1. (i) Let ((Mn, dn,mn))n∈N be a sequence of normalized met-
ric measure spaces as above, each of them satisfying a curvature-dimension condition
CD(Kn, Nn) and having diameter �Ln. Moreover, assume that (Mn, dn,mn)!(M, d,m)
as n!∞. Then obviously also (M, d,m) has diameter �L. Without restriction, we may
assume that Nn>1 and that there exists a triple (K0, N0, L0) with K0L

2
0<(N0−1)π2 and

Kn�K0, Ln�L0 and Nn�N0 for all n∈N. In order to verify the curvature-dimension
condition CD(K, N) let two arbitrary measures ν0=�0m and ν1=�1m in P2(M, d,m)
and a number ε>0 be given.

(ii) Fix an arbitrary optimal coupling q̃ of them and put

Er := {(x0, x1)∈M2 : �0(x0) <r, �1(x1) <r}, αr := q̃(Er) and q̃(r)( · ) :=
1
αr

q̃( · ∩Er)

for r∈R+. The latter has marginals

ν̃
(r)
0 ( · ) := q̃(r)( · ×M) and ν̃

(r)
1 ( · ) := q̃(r)(M× · )

with bounded densities. Moreover, for sufficiently large r=r(ε),

dW (ν0, ν̃
(r)
0 ) � ε and dW (ν1, ν̃

(r)
1 ) � ε. (3.4)

(iii) Since the densities of ν̃
(r)
0 and ν̃

(r)
1 are bounded, there exists a number R∈R

such that

sup
i=0,1

Ent(ν̃(r)
i

∣∣m)+
supn∈N |Kn|

8
d2

W (ν̃(r)
0 , ν̃

(r)
1 ) �R. (3.5)

Choose n=n(ε)∈N and a coupling d̂ of the metrics d and dn with

1
2
d̂W (mn,m) �D((Mn, dn,mn), (M, d,m)) � min

{
exp
(
−2+4L2

0R

ε2

)
,

ε

4C

}
(3.6)

for some constant C to be specified later. Following the proofs of Lemma I.4.19 and
Theorem I.4.20, fix a coupling p of m and mn which is optimal with respect to d̂ and let
P and P ′ be disintegrations of p with respect to m and mn, respectively. Recall that P ′

defines a canonical map P ′:P2(M, d,m)!P2(Mn, dn,mn). Put

νi,n := P ′(ν̃(r)
i ) = �i,nmn

with �i,n(y)=
∫

�̃
(r)
i (x)P ′(y, dx) for i=0, 1. Then (3.5) and (3.6) imply, by Lemma I.4.19,

that

d̂W (ν̃(r)
0 , ν0,n) � ε and d̂W (ν̃(r)

1 , ν1,n) � ε. (3.7)
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(iv) Due to the curvature-dimension condition on (Mn, dn,mn), there exist an op-
timal coupling qn of ν0,n and ν1,n, and a geodesic Γt,n connecting them and satisfying

SN ′(Γt,n |mn) �T
(t)
K′,N ′(qn |mn) (3.8)

for all N ′�Nn, K ′�Kn and t∈[0, 1]. Put

Γε
t = P (Γt,n)

with n=n(ε) as above and P :P2(Mn, dn,mn)!P2(M, d,m) as in Lemma I.4.19. Then
essentially with the same arguments as in the proof of Lemma I.4.19 (now Jensen’s
inequality applied to the convex function r �!−r1−1/N ),

SN ′(Γε
t |m) �SN ′(Γt,n |mn) (3.9)

for all N ′ and t under consideration. Moreover, we know that the curvature-dimension
condition CD(Kn, Nn) implies the curvature bound Curv(Mn, dn,mn)�Kn (cf. Proposi-
tion 1.6 (ii)) which in turn implies

Ent(Γε
t |m) � Ent(Γt,n |mn) �R.

This (together with (3.6)) allows us to apply again Lemma I.4.19 to deduce finally

d̂W (Γε
t , Γt,n) � ε. (3.10)

(v) For fixed N ′, K ′ and t put

v0(y0) =
∫

Mn

τ
(1−t)
K′,N ′(dn(y0, y1)) Qn(y0, dy1)

and
v1(y1) =

∫
Mn

τ
(t)
K′,N ′(dn(y0, y1)) Q′

n(y1, dy0),

where Qn and Q′
n are disintegrations of qn with respect to ν0,n and ν1,n, respectively.

Then

−T
(t)
K′,N ′(qn |mn) =

1∑
i=0

∫
Mn

�i,n(y)1−1/N ′
vi(y) dmn(y)

=
1∑

i=0

∫
Mn

[∫
M

�̃
(r)
i (x) P ′(y, dx)

]1−1/N

vi(y) dmn(y)

�
1∑

i=0

∫
Mn

∫
M

�̃
(r)
i (x)1−1/NP ′(y, dx)vi(y) dmn(y)

=
1∑

i=0

∫
M

�̃
(r)
i (x)1−1/N

[∫
Mn

vi(y) P (x, dy)
]

dm(x).
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Moreover,∫
Mn

v0(y0) P (x0, dy0) =
∫

Mn

∫
Mn

τ
(1−t)
K′,N ′(dn(y0, y1))Qn(y0, dy1) P (x0, dy0)

�
∫

Mn

∫
Mn

∫
M

[τ (1−t)
K′,N ′(d(x0, x1))−C(dn(y0, y1)−d(x0, x1))]

× �̃
(r)
1 (x1)

�1,n(y1)
P ′(y1, dx1) Qn(y0, dy1) P (x0, dy0)

�
∫

Mn

∫
Mn

∫
M

[τ (1−t)
K′,N ′(d(x0, x1))−C(d̂(x0, y0)+d̂(x1, y1))]

× �̃
(r)
1 (x1)

�1,n(y1)
P ′(y1, dx1) Qn(y0, dy1) P (x0, dy0),

where C denotes the maximum of (∂/∂θ)τ (s)
K′,N ′(θ) for s∈[0, 1], N ′�N0, K ′�K0 and

θ�L0. Analogously,∫
Mn

v1(y1) P (x1, dy1) �
∫

Mn

∫
Mn

∫
M

[τ (t)
K′,N ′(d(x0, x1))−C(d̂(x0, y0)+d̂(x1, y1))]

× �̃
(r)
0 (x0)

�0,n(y0)
P ′(y0, dx0) Q′

n(y1, dy0) P (x1, dy1).

Define a coupling q̄r (not necessarily optimal) of ν̃
(r)
0 and ν̃

(r)
1 by

dq̄r(x0, x1) =
∫

Mn×Mn

�̃
(r)
0 (x0)�̃

(r)
1 (x1)

�0,n(y0)�1,n(y1)
P ′(y1, dx1) P ′(y0, dx0) dqn(y0, y1)

=
∫

Mn×Mn

�̃
(r)
0 (x0)�̃

(r)
1 (x1)

�1,n(y1)
P ′(y1, dx1) Qn(y0, dy1) P (x0, dy0) m(dx0)

and a coupling qε of ν0 and ν1 by

qε( · ) := αr q̄
r+q̃( · ∩(M2\Er))

for r=r(ε). Then the above estimates yield

T
(t)
K′,N ′(qn |mn) �T

(t)
K′,N ′(q̄r |m)+C

∫
M

[�̃(r)
0 (x)1−1/N ′

+�̃
(r)
1 (x)1−1/N ′

]d̂(x, y) dp(x, y)

�T
(t)
K′,N ′(q̄r |m)+2C d̂W (m,mn) �T

(t)
K′,N ′(q̄r |m)+ε,

due to our choice of n. Moreover,

lim
ε!0

∣∣T (t)
K′,N ′(qε |m)−T

(t)
K′,N ′(q̄r(ε) |m)

∣∣= 0. (3.11)
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(vi) Summarizing, we have for each ε>0 a probability measure qε on M2 and a
family of probability measures Γε

t , t∈[0, 1], on M satisfying

SN ′(Γε
t |m) �SN ′(Γt,n |mn) � T

(t)
K′,N ′(qn |mn) �T

(t)
K′,N ′(q̄r(ε) |m)+ε. (3.12)

Compactness of M implies that there exists a sequence (ε(k))k∈N converging to 0 such
that the measures qε(k) converge to some q and for each rational t∈[0, 1] the measures
Γε(k)

t converge to some Γt. The measure q has marginals ν0 and ν1. By (3.10), (3.7) and
(3.4), it is even an optimal coupling of them.

For each n∈N the family Γt,n, t∈[0, 1], is a geodesic in P2(Mn, dn,mn) connecting
ν0,n and ν1,n. As n!∞ the latter converge to ν0 and ν1, respectively. Together with
(3.10) this implies that

dW (Γs, Γt) � |s−t|dW (ν0, ν1)

for all rational s, t∈[0, 1]. Hence, the family (Γt)t extends to a geodesic connecting ν0

and ν1. Moreover, (3.12) and (3.11) together with lower semicontinuity of SN ′( · |m)
(Lemma 1.1) and upper semicontinuity of T

(t)
K′,N ′( · |m) (Lemma 3.3) imply

SN ′(Γt |m) � lim inf
k!∞

SN ′(Γε(k)
t |m) � lim inf

k!∞
T

(t)
K′,N ′(qε(k) |m) �T

(t)
K′,N ′(q |m) (3.13)

for all t∈[0, 1], all N ′>N=limn!∞ Nn and all K ′<K=limn!∞ Kn. By continuity of SN ′

and T
(t)
K′,N ′ in (K ′, N ′), the inequality SN ′(Γt |m)�T

(t)
K′,N ′(q |m) also holds for (K ′, N ′)=

(K, N). This proves the theorem.

4. Non-branching spaces

Several aspects of optimal mass transportation become much simpler if the underlying
space is non-branching in the sense of Definition I.2.8. In this section, we will study the
curvature-dimension condition for non-branching spaces.

Lemma 4.1. Assume that (M, d,m) is non-branching and satisfies CD(K, N) for
some pair (K, N). Then for every x∈supp[m] and m-a.e. y∈M (with exceptional set
depending on x) there exists a unique geodesic between x and y.

Moreover, there exists a measurable map γ: M2!G(M) such that for m⊗m-a.e.
(x, y)∈M2 the curve t �!γt(x, y) is the unique geodesic connecting x and y.

Proof. Fix x0∈M , t∈ ]0, 1[ and some closed set A1⊂M . Let An
t for n∈N denote

the set of all t-intermediate points z=γt(x, y) between points x∈B1/n(x0) and y∈A1.
Assume without restriction that m(B1/n(x0))m(A1)>0. By Proposition 2.1,

m(An
t ) � inf

x∈B1/n(x0)

y∈A1

ς
(t)
K,N (d(x, y))m(A1)
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for each n and thus (as n!∞)

m(At) � inf
y∈A1

ς
(t)
K,N (d(x, y))m(A1)

with At :=
⋂

n∈N An
t .

Each point z∈At lies on some geodesic starting in x0 and ending somewhere in A1.
Indeed, for each n the point z will be a t-intermediate point of some xn∈B1/n(x0) and
some yn∈A1. By local compactness of M and closedness of A1 there exists a point
y0∈A1 such that (after passing to a suitable subsequence) yn!y0, and thus z will also
be a t-intermediate point of x0 and y0.

Now choose A1=BR(x0) for some large R. Decomposing A1 into a disjoint union⋃
i Ai

1, with Ai
1=A1∩(Bεi(x0)\B̄ε(i−1)(x0)), and applying the previous estimate to each

of the Ai
1 yields (as ε!0)

m(At) �
∫

A1

ς
(t)
K,N (d(x0, y)) m(dy),

where At denotes the set of t-intermediate points between x0 and some y∈A1. Non-
branching of M therefore will imply that for each z∈At the geodesic from x0 to z is
unique.

We have ς
(t)
K,N (d(x0, y))!1 as t!1 for all y∈M with Kd2(x0, y)<(N−1)π2 and

ς
(t)
K,N (d(x0, y))=∞ for all other y∈M . Hence, m(A1\

⋃
t<1 At)=0 and thus for m-a.e.

z∈A1 there exists a unique geodesic connecting x0 and z. Finally, for R!∞ this yields
the claim concerning uniqueness of geodesics.

For the claim concerning the measurable choice of geodesics (or intermediate points),
fix a number t∈ ]0, 1[ and assume for simplicity that m(M)=1. For each k∈N let M=⋃

i Mi,k be a (finite or countable) covering of M by measurable sets Mi,k with diameter
�1/k and λi,k := m(Mi,k)>0. Let pi,k be a probability measure on M3 with the following
properties: the projection (π1)∗pi,k onto the first component is the probability measure
(1/λi,k)1Mi,k

m; the projection on the third component is m; the joint distribution of the
first and third components is an optimal coupling of them; and conditioned under the
first and third components, the second component is a t-intermediate point of them.

Hence, for each k the probability measure pk :=
∑

i λi,kpi,k on M3 has the following
properties: the projection on the first component is m; the projection on the third
component is m; and conditioned under the first and third components, the second
component is a t-intermediate point of them.

Now by compactness there exists an accumulation point p of the pk, k∈N. It has
the following properties: the joint projection on the first and third components is m⊗m;
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and conditioned under the first and third components, the second component is a t-
intermediate point of them. That is, p(A×M×C)=m(A)×m(C) for all measurable
A,C⊂M ; moreover, for p-a.e. (x, z, y)∈M3 the point z is a t-intermediate point of x

and y. Disintegration of measures yields a Markov kernel P from M2 to M such that

dp(x, z, y) =P (x, y; dz)m(dx)m(dy).

According to the uniqueness of t-intermediate points

P (x, y; dz) = δγt(x,y)(dz)

for m2-a.e. (x, y). This finally proves the measurability of γt, since by definition P is
measurable in (x, y).

Proposition 4.2. Given numbers K∈R and N�1, and a compact non-branching
metric measure space (M, d,m). Then the following are equivalent :

(i) (M, d,m) satisfies the curvature-dimension condition CD(K, N).
(ii) For each pair ν0, ν1∈P2(M, d,m) there exist a geodesic Γ: [0, 1]!P2(M, d,m)

connecting ν0 and ν1, and an optimal coupling q such that for all t∈[0, 1] and all N ′�N ,

SN ′(Γ(t) |m) � τ
(1−t)
K,N ′ (Θ)SN ′(ν0 |m)+τ

(t)
K,N ′(Θ)SN ′(ν1 |m), (4.1)

where

Θ :=
{

q-essinfx0,x1d(x0, x1), if K � 0,
q-esssupx0,x1

d(x0, x1), if K < 0,

denotes the minimal (if K�0) or maximal (if K<0) transportation distance.
(iii) For each pair of points z0, z1∈M there exists an ε>0 such that for each pair

ν0, ν1∈P2(M, d,m), with supp[ν0]⊂Bε(z0) and supp[ν1]⊂Bε(z1), there exist an optimal
coupling q and a geodesic Γ: [0, 1]!P2(M, d,m) connecting them and satisfying (1.1).

(iv) For each pair ν0, ν1∈P2(M, d,m) and each optimal coupling q of them

�t(γt(x0, x1)) � [τ (1−t)
K,N (d(x0, x1)) �

−1/N
0 (x0)+τ

(t)
K,N (d(x0, x1)) �

−1/N
1 (x1)]−N (4.2)

for all t∈[0, 1], and q-a.e. (x0, x1)∈M2. Here �t is the density of the push-forward of q

under the map (x0, x1) �!γt(x0, x1). It is determined by∫
M

u(y)�t(y) dm(y) =
∫

M×M

u(γt(x0, x1)) dq(x0, x1)

for all bounded measurable u: M!R.
(v) For each pair ν0, ν1∈P2(M, d,m) and each optimal coupling q of them there

exists a geodesic Γ: [0, 1]!P2(M, d,m) connecting ν0 and ν1, and satisfying (1.1) for all
t∈[0, 1] and all N ′�N .
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Proof. The implications (i)⇒ (iii), (iv)⇒ (i) and (v)⇒ (i) are trivial.
(i)⇒ (ii) This is immediate consequence of the fact that τ

(t)
K,N ′(d(x0, x1))�τ

(t)
K,N ′(Θ)

for all t∈[0, 1] and all x0, x1 with Kd(x0, x1)�KΘ. (Actually, this implication does not
require that M is compact and non-branching.)

(iii)⇒ (i) By compactness of M , there exist finitely many disjoint sets L1, ..., Ln

which cover M such that for each pair i, j∈{1, ..., n} and each pair ν0, ν1∈P2(M, d,m),
with supp[ν0]⊂L̄i and supp[ν1]⊂L̄j , there exist an optimal coupling q and a geodesic
Γ: [0, 1]!P2(M, d,m) connecting them and satisfying (1.1).

Now let arbitrary ν0 and ν1∈P2(M, d,m) be given. Fix an arbitrary optimal coupling
q̃ of them, and define probability measures νij

0 and νij
1 for i, j=1, ..., n by

νij
0 (A) :=

1
αij

q̃((A∩Li)×Lj) and νij
1 (A) :=

1
αij

q̃(Li×(A∩Lj)), (4.3)

provided αij := q̃(Li×Lj) �=0. Then supp[νij
0 ]⊂L̄i and supp[νij

1 ]⊂L̄j . Therefore, for each
pair (i, j)∈{1, ..., n}2 the assumption can be applied to the probability measures νij

0

and νij
1 . It yields the existence of an optimal coupling qij of them and of a geodesic Γij

connecting them with the property

SN ′(Γij
t |m) �−

∫
M×M

[
τ

(1−t)
K,N ′ (d(x0, x1)) �ij

0 (x0)−1/N ′

+τ
(t)
K,N ′(d(x0, x1)) �ij

1 (x1)−1/N ′]
dqij(x0, x1)

(4.4)

for all t∈[0, 1] and all N ′�N . Define

q :=
n∑

i,j=1

αijq
ij and Γt :=

n∑
i,j=1

αijΓ
ij
t . (4.5)

Then q is an optimal coupling of ν0 and ν1 and Γ is a geodesic connecting them. Moreover,
since the νij

0 ⊗νij
1 for different choices of (i, j)∈{1, ..., n}2 are mutually singular and since

M is non-branching, also the Γij
t for different choices of (i, j)∈{1, ..., n}2 are mutually

singular; Lemma I.2.11(iii) (for each fixed t∈[0, 1]). Hence,

SN ′(Γt |m) =
∑
i,j

α
1−1/N ′

ij SN ′(Γij
t |m)

and one simply may sum both sides of inequality (4.4), multiplied by α
1−1/N ′

ij , to obtain
the claim.

(ii)⇒ (i) Let numbers K and N , and a compact non-branching space (M, d,m)
with the property (4.1) be given. Moreover, let two measures ν0=�0m and ν1=�1m∈
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P2(M, d,m) be given and choose an arbitrary optimal coupling q̃ of them. For each ε>0
choose a finite covering (Li)i=1,...,n of M by sets Li of diameter �ε/2. Define numbers
αij and probability measures νij

0 and νij
1 for i, j=1, ..., n as in the previous proof. Then

by assumption there exist an optimal coupling qij of them and a geodesic Γij connecting
them with the property

SN ′(Γij
t |m) �−

∫
M×M

[
τ

(1−t)
K,N ′ (d(x0, x1)∓ε) �ij

0 (x0)−1/N ′

+τ
(t)
K,N ′(d(x0, x1)∓ε) �ij

1 (x1)−1/N ′]
dqij(x0, x1)

(4.6)

for all t∈[0, 1] and all N ′�N and with ∓ depending on the sign of K. Then, for each
ε>0 as before, q(ε) :=

∑n
i,j=1 αijq

ij defines an optimal coupling of ν0 and ν1, and Γ(ε)
t :=∑n

i,j=1 αijΓ
ij
t defines a geodesic connecting ν0 and ν1. Compactness of M implies that

there exists a sequence (ε(k))k∈N converging to 0 such that q(ε(k)) converge to some q

and such that the geodesics Γ(ε(k)) converge to some geodesic Γ in P2(M, d,m). Hence,
for each fixed ε′>0 and all t and N ′>1 under consideration

SN ′(Γt |m) � lim inf
k!∞

SN ′(Γ(ε(k))
t |m)

�− lim sup
k!∞

∫
M×M

[
τ

(1−t)
K,N ′ (d(x0, x1)∓ε′) �

(ε(k))
0 (x0)−1/N ′

+τ
(t)
K,N ′(d(x0, x1)∓ε′) �

(ε(k))
1 (x1)−1/N ′]

dq(ε(k))(x0, x1)

�−
∫

M×M

[
τ

(1−t)
K,N ′ (d(x0, x1)∓ε′) �0(x0)−1/N ′

+τ
(t)
K,N ′(d(x0, x1)∓ε′) �1(x1)−1/N ′]

dq(x0, x1),

where the proof of the last inequality is similar to the proof of Lemma 3.3. Finally, by
monotone convergence, the claim follows as ε′!0.

(i)⇒ (iv) Assume that the condition CD(K, N) holds and that M is compact and
non-branching. Let measures ν0 and ν1 be given as well as an optimal coupling q̃ of
them.

Choose a ∩-stable generator {Mn}n∈N of the Borel σ-field of M with m(∂Mn)=0 for
all n. For each n∈N consider the disjoint covering of M by the 2n sets L1=M1∩...∩Mn,
L2=M1∩...∩Mn−1∩�Mn, ..., L2n =�M1∩...∩�Mn. For each fixed n, define probability
measures νij

0 and νij
1 as in (4.3) (proof of the implication (iii)⇒ (i)) and choose optimal

couplings qij of them with∫
M×M

[τ (1−t)
K,N ′ (d(x0, x1))�

ij
0 (x0)−1/N ′

+τ
(t)
K,N ′(d(x0, x1))�

ij
1 (x1)−1/N ′

] dqij(x0, x1)

�
∫

M

�ij
t (γt(x0, x1))−1/N ′

dqij(x0, x1). (4.7)
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Define, as in (4.5),

q(n) :=
2n∑

i,j=1

αijq
ij . (4.8)

Then, by construction, for all i, j�n,∫
Mi×Mj

[τ (1−t)
K,N ′ (d(x0, x1))�

(n)
0 (x0)−1/N ′

+τ
(t)
K,N ′(d(x0, x1))�

(n)
1 (x1)−1/N ′

] dq(n)(x0, x1)

�
∫

Mi×Mj

�
(n)
t (γt(x0, x1))−1/N ′

dq(n)(x0, x1). (4.9)

Compactness of M implies that—at least along a suitable subsequence—the q(n)

converge to an optimal coupling q of ν0 and ν1. Since m(∂Mi)=0 for all i, we obtain for
all i, j∈N,

q(Mi×Mj) = lim
n!∞ q(n)(Mi×Mj) = q̃(Mi×Mj).

Hence, q=q̃. Moreover, we may apply (modifications of) Lemma 1.1 and Lemma 3.3 to
pass to the limit in (4.9) and to obtain∫

Mi×Mj

[τ (1−t)
K,N ′ (d(x0, x1))�0(x0)−1/N ′

+τ
(t)
K,N ′(d(x0, x1))�1(x1)−1/N ′

] dq(x0, x1)

�
∫

Mi×Mj

�t(γt(x0, x1))−1/N ′
dq(x0, x1). (4.10)

Since this holds for all i and j, it finally implies

τ
(1−t)
K,N ′ (d(x0, x1))�0(x0)−1/N ′

+τ
(t)
K,N ′(d(x0, x1))�1(x1)−1/N ′ � �t(γt(x0, x1))−1/N ′

for q-a.e. (x0, x1)∈M2. With the particular choice N ′=N this is (iv).
(iv)⇒(v) We will prove that estimate (4.2) for a given N implies the corresponding

estimate for any N ′�N . Indeed, by Hölder’s inequality and Lemma 1.2,

�
−1/N ′
t (γt(x0, x1)) � [τ (1−t)

K,N (d(x0, x1)) �
−1/N
0 (x0)+τ

(t)
K,N (d(x0, x1)) �

−1/N
1 (x1)]N/N ′

� τ
(1−t)
K,N (d(x0, x1))N/N ′

(1−t)1−N/N ′
�
−1/N ′

0 (x0)

+τ
(t)
K,N (d(x0, x1))N/N ′

t1−N/N ′
�
−1/N ′

1 (x1)

� τ
(1−t)
K,N ′ (d(x0, x1)) �

−1/N ′

0 (x0)+τ
(t)
K,N ′(d(x0, x1)) �

−1/N ′

1 (x1).

Finally, integrating this estimate with respect to the given optimal coupling q yields
estimate (1.1).
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5. The measure contraction property

Recall from Section 1 that

ς
(t)
K,N (θ) = t

(
sin
(
tθ
√

K/(N−1)
)

sin
(
θ
√

K/(N−1)
)
)N−1

if 0<Kθ2<(N−1)π2 and with appropriate interpretations otherwise.

Definition 5.1. Given two numbers K, N∈R, with N�1, we say that a metric mea-
sure space (M, d,m) satisfies the measure contraction property MCP(K, N) if and only
if for each 0<t<1 there exists a Markov kernel Pt from M2 to M such that for m2-a.e.
(x, y) and for Pt(x, y; · )-a.e. z the point z is a t-intermediate point of x and y, and such
that for m-a.e. x∈M and for every measurable B⊂M ,∫

M

ς
(t)
K,N (d(x, y))Pt(x, y; B) dm(y) �m(B), (5.1)

∫
M

ς
(1−t)
K,N (d(x, y))Pt(y, x; B) dm(y) �m(B). (5.2)

Lemma 5.2. A metric measure space (M, d,m) satisfies the measure contraction
property MCP(K, N) if and only if for each 0<t<1 there exists a measure pt on M3

such that for pt-a.e. (x, z, y) the point z is a t-intermediate point of x and y, and such
that for all measurable sets A,B, C⊂M ,

pt(A×M×C) =m(A)m(C), (5.3)∫
A×B×M

ς
(t)
K,N (d(x, y)) dpt(x, z, y) �m(A)m(B), (5.4)∫

M×B×C

ς
(1−t)
K,N (d(x, y)) dpt(x, z, y) �m(B)m(C). (5.5)

Proof. Given the Markov kernel Pt define a measure pt as follows:

dpt(x, z, y) =Pt(x, y; dz)m(dx)m(dy).

Vice versa, given the measure pt define the Markov kernel Pt with the above properties
by means of disintegration of measures.

In the case K=0 the previous conditions simply read as

pt(A×M×C) �m(A)m(C),

tNpt(A×B×M) �m(A)m(B),

(1−t)Npt(M×B×C) �m(B)m(C).

For alternative formulations of conditions (5.1) and (5.2) see Remark 5.11 below.
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Remark 5.3. Most of the results of Section 2 also remain true with condition
MCP(K, N) in the place of condition CD(K, N). In particular, this is the case for

Theorem 2.3 (Generalized Bishop–Gromov volume growth inequality);
Corollary 2.4 (Doubling);
Corollary 2.5 (Hausdorff dimension);
Corollary 2.6 (Generalized Bonnet–Myers theorem).

The proofs are essentially the same. Actually, for all these geometric consequences,
property (5.2) is not required (i.e. the so-called one-sided MCP suffices; see Remark 5.11).

Under minimal regularity assumptions on (M, d,m), condition CD(K, N) implies
MCP(K, N). These regularity assumptions are either that M is non-branching or that
geodesics in M are unique (at least for m2-a.e. pair of endpoints). Indeed, the latter
assumption will follow from the former (Lemma 4.1).

Theorem 5.4. Assume that there exists a measurable map γ: M2!G(M) such that
for m⊗m-a.e. (x, y)∈supp[m]2 the curve γ (x, y) is the unique geodesic connecting x

and y. Then condition CD(K, N) implies property MCP(K, N).

Proof. Let γ: M2!G(M) be as above and define for each t∈[0, 1] a Markov kernel
Pt from M2 to M by

Pt(x, y; B) := 1B(γt(x, y))

and for each pair t, x a measure mt,x=
∫

Pt(x, y; · )m(dy) on M by

mt,x(B) :=
∫

M

1B(γt(x, y)) m(dy).

For each x∈M let Mx denote the set of all y∈M for which there exists a unique geodesic
connecting x and y and let M0 be the set of x such that m(M \Mx)=0. By assumption
m(M \M0)=0.

Now assume CD(K, N). Fix a point x0∈M0 and a closed subset B⊂M . Then,
by inner regularity of m, there exist closed sets Mk⊂Mx0 , with m(M \Mk)�1/k. Put
An

0 := B1/n(x0) and Ak
1 := γt(x0, · )−1(B)∩Mk. Moreover, let An,k

t denote the set of all
γt(x, y), with x∈An

0 and y∈Ak
1 . Then for each k,⋂

n∈N

An,k
t ⊂B. (5.6)

Indeed, assume that z∈⋂n∈N An,k
t , i.e. there exist xn∈B1/n(x0) and yn∈Ak

1 with z=
γt(xn, yn) for all n. Then by definition of Ak

1 there exist wn∈B with wn=γt(x0, yn)
for all n. Now, by local compactness of M (cf. Corollary 2.4) and by closedness of Mk

and B, there exist y0∈Mk and w0∈B such that (after passing to suitable subsequences)
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yn!y0 and wn!w0 as n!∞. Moreover, we have xn!x0. Hence, z as well as w0 will
be t-intermediate points of x0 and y0. By uniqueness of intermediate points, z=w0 and
thus z∈B.

Apply our version of the Brunn–Minkowski inequality (Proposition 2.1) to the sets
An

0 and Ak
1 . It yields

m(An,k
t ) � inf

x∈An
0

y∈Ak
1

ς
(t)
K,N (d(x, y))m(Ak

1)

for all k, n∈N. This, together with (5.6), implies, as n!∞, that

m(B) � inf
y∈Ak

1

ς
(t)
K,N (d(x0, y))m(Ak

1)

for all k, which in turn implies, as k!∞, that

m(B) � inf
y∈γt(x0,· )−1(B)

ς
(t)
K,N (d(x0, y))m(γt(x0, · )−1(B)) = inf

z∈B
ς
(t)
K,N

(
d(x0, z)

t

)
mt,x0(B).

Decomposing B into a disjoint union
⋃

i Bi with Bi=B∩(Bεi(x0)\Bε(i−1)(x0)), and
applying the previous estimate to each of the Bi finally yields (as ε!0)

m(B) �
∫

B

ς
(t)
K,N

(
d(x0, z)

t

)
mt,x0(dz)

or equivalently

m(B) �
∫

M

ς
(t)
K,N (d(x0, y))Pt(x0, y; B) m(dy).

Finally, by inner regularity, these estimates carry over from all closed sets B to all
measurable sets B⊂M .

The assumptions of the previous theorem are in particular satisfied in the Riemann-
ian case. The proof of the ‘only if’ part of the assertion follows the argumentation in the
proof of Theorem 1.7.

Corollary 5.5. (Riemannian spaces) Let M be a complete Riemannian manifold
with Riemannian distance d and Riemannian volume m, and let numbers K, N∈R with
N�1 be given.

(i) If the Riemannian manifold M has Ricci curvature �K and dimension �N

then the metric measure space (M, d,m) satisfies property MCP(K, N).
Moreover, in this case for every measurable function V : M!R the weighted space

(M, d, V m) satisfies property MCP(K+K ′, N+N ′) provided

Hess V 1/N ′ �−K ′

N ′ V
1/N ′
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for some numbers K ′∈R and N ′>0, in the sense of (1.3).
(ii) Conversely, if (M, d,m) satisfies MCP(K, N) then M has dimension �N .
If (M, d,m) satisfies property MCP(K, n), where n denotes the dimension of M ,

then M has Ricci curvature �K.

In general, property MCP(K, N) for a Riemannian manifold will not imply that M

has Ricci curvature �K. This can be seen from the following observation.

Remark 5.6. (2) For each N>1 there exists a constant cN >0 such that each compact
Riemannian manifold M with Ricci curvature �0, dimension �N−1 and diameter �L

satisfies property MCP(K, N) for each positive K�cN/L2.

Proof. According to part (i) of the previous theorem, the space (M, d,m) satisfies
property MCP(0, N−1). It therefore suffices to prove that

tN−1 � ς
(t)
K,N (θ)

for all t∈[0, 1] and θ∈[0, L]. Now, for sufficiently small cN∈ ]0, 1] and all Kθ2�cN , the
right-hand side can be estimated from above by tN (1+(1−t2)Kθ2/2). But obviously

tN−1 � tN
(

1+(1−t2)
Kθ2

2

)
for all Kθ2�1.

Theorem 5.7. (Alexandrov spaces) Let M be a complete locally compact geodesic
space with curvature � in the sense of Alexandrov and with finite Hausdorff dimension
n for some numbers ∈R and n∈N. Let m be the n-dimensional Hausdorff measure
on M . Then the metric measure space (M, d,m) satisfies property MCP((n−1) , n).

Proof. [11, Proposition 6.1, Lemma 6.1 and Theorem 6.1].

Remark 5.8. Let (M, d,m) be a metric measure space which satisfies property
MCP(K, N) for some pair of real numbers K, N . Then the following properties hold:

(i) Isomorphism: Each metric measure space (M ′, d′,m′) which is isomorphic to
(M, d,m) satisfies property MCP(K, N).

(ii) Scaled spaces: For each α, β>0 the metric measure space (M,αd, βm) satisfies
property MCP(α−2K, N).

(iii) Subsets: For each convex subset M ′ of M the metric measure space (M ′, d,m)
satisfies property MCP(K, N).

(iv) Hierarchy: (M, d,m) satisfies conditions MCP(K ′, N ′) for all K ′�K, N ′�N .

(2) As observed by S. Ohta, this remark (applied e.g. to small convex subsets of RN−1) proves that
MCP(K, N) is strictly weaker than CD(K, N). It also proves that MCP(K, N) is not a local property.
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Theorem 5.9. (Stability under convergence) Let ((Mn, dn,mn))n∈N be a sequence
of normalized metric measure spaces, where for each n∈N the space (Mn, dn,mn) satis-
fies property MCP(Kn, Nn) and has diameter �Ln. Assume that as n!∞,

(Mn, dn,mn) D−−! (M, d,m)

and (Kn, Nn, Ln)!(K, N,L) for some triple (K, N,L)∈R3. Then the space (M, d,m)
satisfies property MCP(K, N) and has diameter �L.

Proof. Let a sequence of normalized metric measure spaces ((Mn, dn,mn))n∈N and a
limit space (M, d,m) be given as above. Passing to a suitable subsequence we may assume
that there exist a metric measure space (M̂, d̂, m̂) and a sequence of probability measures
(m̂n)n∈N on M̂ , weakly converging to m̂, such that for each n∈N the space (Mn, dn,mn)
is isomorphic to the space (M̂, d̂, m̂n) and the space (M, d,m) is isomorphic to the
space (M̂, d̂, m̂) (see part (v) of the proof of Theorem I.3.6, or [7, Union Lemma 31

2 .12]
together with Lemma I.3.7).

Without restriction, we therefore may assume that Mn=M̂=M and dn=d̂=d for
all n as well as m̂n=mn for all n and m̂=m.

Property MCP(K, N) for (M, d,mn) implies the (‘restricted’) doubling property
(Corollary 2.4 and Remark 5.3) and thus compactness of supp[mn]. Since doubling
constant and diameter can be estimated uniformly in n, we may also assume that M is
compact (Theorem I.3.16 and Lemma I.3.15).

Property MCP(K, N) for (M, d,mn) states that for each t∈ ]0, 1[ there exists a prob-
ability measure p

(n)
t on M3 satisfying (5.3)–(5.5). The latter conditions are equivalent

to the fact that for all non-negative bounded measurable functions u on M2,∫
M3

u(x, y) dp
(n)
t (x, z, y) =

∫
M2

u(x, y) dmn(x) dmn(y), (5.7)∫
M3

u(x, z) dp
(n)
t (x, z, y) �

∫
M2

u(x, z)
ς(t)(d(x, z)/t)

dmn(x) dmn(z), (5.8)∫
M3

u(z, y) dp
(n)
t (x, z, y) �

∫
M2

u(z, y)
ς(t)(d(z, y)/(1−t))

dmn(z) dmn(y). (5.9)

Since p
(n)
t and mn are Radon measures on the compact space M , it suffices to verify

(5.7)–(5.9) for all non-negative bounded continuous functions u on M2. Note that also
the function 1/ς(t)(d(x, y)/t) is bounded and continuous on M2.

Compactness of M implies that there exists a probability measure pt on M3 such
that (after passing to an appropriate subsequence) p

(n)
t !pt weakly as n!∞. Together
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with the weak convergence of mn!m, it implies that∫
M3

u(x, y) dpt(x, z, y) =
∫

M2
u(x, y) dm(x) dm(y), (5.10)∫

M3
u(x, z) dpt(x, z, y) �

∫
M2

u(x, z)
ς(t)(d(x, z)/t)

dm(x) dm(z), (5.11)∫
M3

u(z, y) dpt(x, z, y) �
∫

M2

u(z, y)
ς(t)(d(z, y)/(1−t))

dm(z) dm(y) (5.12)

for all non-negative bounded continuous functions u on M . As mentioned before, this is
equivalent to properties (5.3)–(5.5) for pt.

Corollary 5.10. (Compactness) For each triple (K, N,L)∈R3 we have that the
family X′

1(K, N,L) of isomorphism classes of normalized metric measure spaces which
satisfy property MCP(K, N) and which have diameter �L is compact with respect to D.
The family X̃′

1(K, N,L) of isomorphism classes of normalized compact metric measure
spaces with full support which satisfy property MCP(K, N) and which have diameter �L

is mGH-compact. On each such family, the D-topology and the mGH-topology coincide.

Proof. This is analogous to the proof of Corollary 3.2.

Let us discuss some more conditions related to property MCP(K, N).

Remark 5.11. Given a metric measure space (M, d,m) the following properties are
equivalent:

(i) For each 0<t<1 there exists a Markov kernel Pt from M2 to M such that for
every x∈supp[m], for m-a.e. y and for Pt(x, y; · )-a.e. z the point z is a t-intermediate
point of x and y and such that estimate (5.1) holds for every x∈supp[m] and every
measurable subset B⊂M .

(ii) For each 0<t<1 there exists a Markov kernel Pt from M2 to M such that for
m2-a.e. (x, y) and for Pt(x, y; · )-a.e. z the point z is a t-intermediate point of x and y

and such that estimate (5.1) holds for m-a.e. x∈M and every measurable subset B⊂M .
(iii) There exists a measure Υ on G(M) such that Υ0,1=m⊗m and for each t∈[0, 1],

ς
(t)
K,N

(
d( · , · )

t

)
Υ0,t �m⊗m. (5.13)

Here Υs,t=(πs,t)∗Υ, for s, t∈[0, 1], is the push-forward of Υ under the projection

πs,t:G(M)−!M2

γ �−! (γs, γt).
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If one (hence all) of the properties (i)–(iii) holds, we say that (M, d,m) satisfies the
one-sided measure contraction property MCP1/2(K, N).

Proof. The implications (i)⇒ (ii) and (iii)⇒ (ii) are trivial.
The implication (ii)⇒ (i) follows by the weak convergence∫

Pt(xn, y; · )m(dy)−!
∫

Pt(x, y; · )m(dy)

as xn!x∈supp[m].
It remains to prove (ii)⇒ (iii). According to Remark 5.3 (and Corollary 2.4) we may

assume without restriction that M is compact. For each n∈N we define a measure p(n)

on Mn+1 by

dp(n)(x0, x1, ..., xk, ..., xn) =P1/2(x0, x2; dx1) ... P(k−1)/k(x0, xk; dxk−1) ...

×P(n−1)/n(x0, xn; dxn−1) dm(xn) dm(x0).

Passing to a suitable subsequence, by compactness, there exists a limit Υ, such that for
infinitely many n∈N,

(π0,1/n,...,(n−1)/n,1)�Υ = p(n)

as measures on Mn+1. In particular, this implies (π0,1)∗Υ=m⊗m.
Moreover, for all such n, all k=1, ..., n−1 and all measurable sets A0, Ak⊂M we

obtain (using estimate (5.1))(
ς
(k/n)
K,N

(
d( · , · )
k/n

)
(π0,k/n)∗Υ

)
(A0×Ak)

=
∫

...

∫
ς
(k/n)
K,N

(
d(x0, xk)

k/n

)
·1A0(x0)·1Ak

(xk) P1/2(x0, x2; dx1) ...

×P(k−1)/k(x0, xk; dxk−1) ... P(n−1)/n(x0, xn; dxn−1) dm(xn) dm(x0)

(5.1)

�
∫

...

∫
ς
(k/n)
K,N (d(x0, xn))·1A0(x0)·1Ak

(xk)ς((n−1)/n)
K,N (d(x0, xn))−1

×P1/2(x0, x2; dx1) ... P(n−2)/(n−1)(x0, xn−1; dxn−2) dm(xn−1) dm(x0)
(5.1)

� ...

�
∫

...

∫
1A0(x0)·1Ak

(xk) P1/2(x0, x2; dx1) ... P(k−1)/k(x0, xk; dxk−1) dm(xk) dm(x0)

= m(A0)m(Ak).

This already proves estimate (5.13) for all t=k/n as above. By weak convergence the
claim follows for all t∈[0, 1].
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Remark 5.12. Assume that the metric measure space (M, d,m) satisfies condition
MCP(K, N). Then there exists a measure Υ on G(M) such that Υ0,1=m⊗m and for all
n∈N and all k=1, ..., 2n,

ς
(2−n)
K,N (2nd( · , · ))Υ(k−1)2−n,k2−n �m⊗m. (5.14)

Proof. The measure Υ is obtained as the projective limit of measures p(n) on M2n+1

recursively defined by p(0)=m⊗m and

dp(n)(x0, x1, ..., x2n)

= P2−n(x0, x2; dx1) ... P2−n(x2n−2, x2n ; dx2n−1) dp(n−1)(x0, x2, ..., x2n).

6. Analytic consequences of the measure contraction property

Throughout this section, assume that the metric measure space (M, d,m) satisfies prop-
erty MCP(K, N) for some K, N∈R.

For p∈[1,∞[ and u∈Lp(M,m) define the p-th order energy integral by

Ep
N (u) := sup

ϕ∈Cc(M)

ϕ�1

Ep
N (u, ϕ),

where

Ep
N (u, ϕ) := lim sup

r!0

N

rN

∫∫
B∗

r (x)

∣∣∣∣u(x)−u(y)
d(x, y)

∣∣∣∣pϕ(x) dm(y) dm(x).

Moreover, define the p-th order Sobolev space by

W 1,p(M) := {u∈Lp(M,m) : Ep
N (u) <∞}.

Theorem 6.1. (i) For each p∈[1,∞[, each u∈W 1,p(M) and each ϕ∈Cc(M) the
limit

lim
r!0

N

rN

∫∫
B∗

r (x)

∣∣∣∣u(x)−u(y)
d(x, y)

∣∣∣∣pϕ(x) dm(y) dm(x)

exists and coincides with Ep
N (u, ϕ).

(ii) For each p and u as above there exists a measure µp
N (u, · ) on M (p-th order

energy measure) such that

Ep
N (u, ϕ) =

∫
M

ϕ(x) µp
N (u, dx)

for all ϕ∈Cc(M).
(iii) For each p∈[1,∞[ the energy integral u �!Ep

N (u) is lower semicontinuous on
Lp(M,m), and W 1,p(M) is a Banach space.
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The proof of the theorem follows the argumentation in [10], [18] and [11]. The key
ingredient is the following lemma which uses approximation of Ep

N by functionals slightly
different from those in the theorem. Fix a non-negative measurable function η on R with
supp[η]⊂[0, 1] and

∫
R

η(s) ds=1. (The choice η=NsN−1 ·1[0,1] covers the situation from
the theorem.) Put

Ep,r
K,N (u, ϕ) :=

1
r

∫∫ ∣∣∣∣u(x)−u(y)
d(x, y)

∣∣∣∣pη(d(x, y)
r

)
sK,N (d(x, y))1−Nϕ(x) dm(y) dm(x),

where

sK,N (Θ) :=

√
N−1

K
sin
(

Θ

√
K

N−1

)
(with the usual interpretation if K�0).

Lemma 6.2. (Subpartitioning Lemma) For all p∈[1,∞[, all u∈W 1,p(M), all ϕ∈
Cc(M), with ϕ�0, and all 0=t0<t1<t2<...<tn−1<tn=1,

Ep,r
K,N (u, ϕ) �

n∑
i=1

(ti−ti−1)Ep,(ti−ti−1)r
K,N (u, ϕr), (6.1)

where ϕr(x)=ϕ(x)+supy∈Br(x) |ϕ(x)−ϕ(y)|.

Proof. For simplicity here we restrict ourselves to the case n=2. The general case
follows analogously, see [18].

Let us fix t∈ ]0, 1[ and let Pt(x, y; dz) be the Markov kernel from M2 to M from the
definition of the measure contraction property MCP(K, N). Then

Ep,r
K,N (u, ϕ) =

1
r

∫∫ ∣∣∣∣u(x)−u(y)
d(x, y)

∣∣∣∣pη(d(x, y)
r

)
sK,N (d(x, y))1−Nϕ(x) dm(y) dm(x)

(∗)
� 1

r

∫∫∫ [
t1−p

∣∣∣∣u(x)−u(z)
d(x, y)

∣∣∣∣p+(1−t)1−p

∣∣∣∣u(z)−u(y)
d(x, y)

∣∣∣∣p ]
×Pt(x, y; dz)η

(
d(x, y)

r

)
sK,N (d(x, y))1−Nϕ(x) dm(y) dm(x)

� 1
r

∫∫∫ ∣∣∣∣u(x)−u(z)
d(x, z)

∣∣∣∣pη(d(x, z)
tr

)
t sK,N (d(x, y))1−NPt(x, y; dz) dm(y) ϕr(x) dm(x)

+
1
r

∫∫∫ ∣∣∣∣u(z)−u(y)
d(z, y)

∣∣∣∣pη( d(z, y)
(1−t)r

)
(1−t) sK,N (d(x, y))1−N

×Pt(x, y; dz) dm(x) ϕr(y) dm(y)
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(∗∗)
� 1

r

∫∫ ∣∣∣∣u(x)−u(z)
d(x, z)

∣∣∣∣pη(d(x, z)
tr

)
sK,N (d(x, z))1−N dm(z) ϕr(x) dm(x)

+
1
r

∫∫ ∣∣∣∣u(z)−u(y)
d(z, y)

∣∣∣∣pη( d(z, y)
(1−t)r

)
sK,N (d(z, y))1−N dm(z) ϕr(y) dm(y)

= tEp,tr
K,N (u, ϕr)+(1−t)Ep,(1−t)r

K,N (u, ϕr).

Here (∗) is due to the standard estimate (a+b)p�t1−pap+(1−t)1−pbp and (∗∗) is due
to our assumption (5.1).

Proof of Theorem 6.1. We only sketch the main steps. See [10], [18] and [11] for
more details.

(i) Using the estimate of the lemma, one verifies that for each p, u and ϕ as above the
limit limr!0 Ep,r

K,N (u, ϕ) exists and is independent of the choice of η and K. It therefore
coincides with Ep

N (u, ϕ).
(ii) For each p�1 and each u∈W 1,p(M) the map ϕ �!Ep

N (u, ϕ) is linear. It is repre-
sented by a measure µp

N (u, dx) (independent of K and η) which is the weak limit of the
measures �p,r

K,N (u, x) dm(x) as r!0, where

�p,r
K,N (u, x) :=

1
r

∫ ∣∣∣∣u(x)−u(y)
d(x, y)

∣∣∣∣pη(d(x, y)
r

)
sK,N (d(x, y))1−Ndm(y).

(iii) Now choose η(s)=(p+N)sp+N−1 ·1[0,1](s). Then the densities �p,r
K,N (u, · ) of the

approximate energy measures are given by

�p,r
K,N (u, x) =

p+N

rp+N

∫
Br(x)

|u(x)−u(y)|p
(

d(x, y)
sK,N (d(x, y))

)N−1

dm(y).

Hence, if (uk)k is a sequence in W 1,p(M) converging in Lp(M,m) to some u∈Lp then
Ep,r

K,N (uk, ϕ)!Ep,r
K,N (u, ϕ) for each r>0 and ϕ as k!∞. Now assume supk Ep

N (uk)<C.
Then for all ϕ�1, all sufficiently small r>0 and all k∈N,

Ep,r
K,N (uk, ϕ) <C.

Thus Ep
N (u)�C. Passing to a suitable subsequence finally yields

lim inf
k!∞

Ep
N (uk) � Ep

N (u).

The last statement of the preceding theorem also admits an extension to varying
state spaces. Let (Mi, di,mi) for i∈N be a family of normalized metric measure spaces
with

(Mi, di,mi)
D−−! (M, d,m)
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as i!∞. Given functions ui∈Lp(Mi,mi) and u∈Lp(M,m) we say that

ui!u in Lp

if and only if there exist a family of couplings qi of the measures mi and m, and a family
of couplings d̂i of the metrics di and d such that, as i!∞,∫

Mi×M

d̂i(x, y)2 dqi(x, y)! 0 and
∫

Mi×M

|ui(x)−u(y)|p dqi(x, y)! 0.

Theorem 6.3. Let (Mi, di,mi), i∈N, be a family of normalized compact metric
measure spaces satisfying the measure contraction property MCP(K, N) for some pair
(K, N) and converging to a metric measure space (M, d,m). For p∈[1,∞[ and i∈N, let
E i,p

N and Ep
N be the p-th order energy integral on Lp(Mi,mi) and Lp(M,m), respectively.

Then
lim inf

i!∞
E i,p

N (ui) � Ep
N (u)

for all u∈Lp(M,m) and all sequences of ui∈Lp(Mi,mi), i∈N, with

ui!u in Lp.

Proof. Let u and (ui)i∈N be given as above. Let us first consider the case where
all the ui are uniformly bounded, say |ui|�β. Put α:= lim infi!∞ E i,p

N (ui). Without
restriction, we may assume that α=limi!∞ E i,p

N (ui). (Otherwise, we pass to a suitable
subsequence.) To simplify the presentation we also assume that K=0. Since M is
compact, it suffices to choose ϕ=1. Then for all r>0 and all (sufficiently small) ε>0,

Ep,r
0,N (u, 1) =

N+p

rN+p

∫
M

∫
M

|u(x)−u(y)|p ·1{d(x,y)<r} m(dy) m(dx)

� N+p

rN+p

∫
Mi×M

∫
Mi×M

[|u(x)−ui(x′)|+|ui(x′)−ui(y′)|+|ui(y′)−u(y)|]p

×1{d(x,y)<r, d̂i(x,x′)<εr/2, d̂i(y,y′)<εr/2} dqi(y′, y) dqi(x′, x)

+2
N+p

rN+p
(2β)pqi({(x′, x)∈Mi×M : d̂i(x′, x) � εr/2})

� (1+ε)
N+p

rN+p

∫
Mi

∫
Mi

|ui(x′)−ui(y′)|p ·1{di(x′,y′)<(1+ε)r} mi(dy′) mi(dx′)

+
C(N, p, ε)

rN+p

∫
Mi×M

|ui(x′)−u(x)|p dqi(x′, x)

+2
N+p

rN+p
(2β)p 4

ε2r2
D2((Mi, di,mi), (M, d,m)).
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For fixed r and ε and sufficiently large i the second and third term on the right-hand
side are arbitrarily small. The first term can be estimated by

(1+ε)1+N+pE i,p,(1+ε)r
0,N (ui) � (1+ε)1+N+pα.

Thus Ep
N (u)�α. This proves the claim for uniformly bounded sequences of ui.

Now let an arbitrary sequence of ui be given with ui!u in Lp. For each β>0
define u

(β)
i := min(max(ui,−β), β) and similarly u(β). Then u

(β)
i !u(β) in Lp as i!∞

(for each β) and E i,p
N (u(β)

i )%E i,p
N (ui) as β!∞ (for each i).

Hence, α=lim infi!∞ E i,p
N (ui) implies that lim infi!∞ E i,p

N (u(β)
i )�α for each β. By

the first part of the proof, it therefore follows that Ep
N (u(β))�α for each β. This finally

yields Ep
N (u)�α.

Of particular interest is the case p=2. It allows one to define a Laplace operator
on L2(M,m). The definition depends on the number N from the measure contraction
property MCP(K, N). On the other hand, everything will be independent of the choice
of K.

Theorem 6.4. (i) The 2-nd order energy integral E2
N extends to a bilinear form

EN (u, v) := 1
4E2

N (u+v)− 1
4E2

N (u−v)

with domain W 1,2
N (M). This is a strongly local Dirichlet form on L2(M,m) (not neces-

sarily densely defined).
(ii) There exists a unique linear operator ∆N with domain D(∆N )⊂W 1,2

N (M)⊂
L2(M,m) such that

EN (u, v) =−
∫

(∆Nu)v dm

for all v∈W 1,2
N (M) and u∈D(∆N ).

(iii) For each compact K⊂M there exists a constant C>0 such that for all
x∈supp[m], all r with Br(x)⊂K and all u∈W 1,2

N (M),∫
B3r(x)

µN (u, dy) � C

r2

∫
Br(x)

|u(y)−ūr,x|2 dm(y).

Here µN (u, · ) denotes the energy measure of u associated with EN and

ūr,x =
1

m(Br(x))

∫
Br(x)

u dm.
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Proof. (i) and (ii) are obvious. In order to prove (iii) we follow the argumentation
in [18, Theorem 6.3 and Corollary 6.4], Assume without restriction that K=BR(x0).
Choose a continuous approximation ϕ of the indicator function 1Br(x) and choose η(s)=
(p+N)sp+N−1 ·1[0,1](s). Then ϕ2r�2·1B3r(x) and thus, by the subpartitioning lemma,

2
∫

B3r(x)

dµN (u, dy)

� 2+N

(2r)2+N

∫
Br(x)

∫
B2r(y)

|u(y)−u(z)|2
(

d(y, z)
sK,N (d(y, z))

)N−1

dm(z) dm(y)

� C

r2+N

∫
Br(x)

∫
Br(x)

|u(y)−u(z)|2 dm(z) dm(y)

=
2C

r2

m(Br(x))
rN

∫
Br(x)

|u(y)−ūr,x|2 dm(y)

� 2C

r2

m(BR(x0))
(2R)N

∫
Br(x)

|u(y)−ūr,x|2 dm(y).

Recall that according to the Bishop–Gromov volume growth inequality (2.5) the
limit

ωN (x) := lim
r!0

m(Br(x))
rN

exists for each x∈supp[m]. Moreover, it is positive and lower semicontinuous on supp[m].
Assume for the sequel that

M = supp[m] and ωN is locally bounded on M . (∗)
Note that ωN≡∞ on supp[m] as soon as (M, d,m) also satisfies the measure con-

traction property MCP(K ′, N ′) for some N ′<N (and some K ′). Hence, there exists at
most one number N for which the above assumption is fulfilled.

Define the Dirichlet form (E ,W 1,2
0 (M)) on L2(M,m) as the closure of (E , CLip

c (M)),
where

E(u, u) :=
∫

M

1
ωN (x)

µN (u, dx).

Moreover, define the Laplace operator on M as the linear operator ∆ with domain D(∆)⊂
W 1,2

0 (M)⊂L2(M,m) such that E(u, v)=− ∫ (∆u)v dm for all v∈W 1,2
0 (M) and u∈D(∆).

Example 6.5. In the case of a Riemannian manifold M as considered in Corol-
lary 5.5 (i), the operator ∆ coincides with the Laplace–Beltrami operator on L2(M,m).

Corollary 6.6. For each metric measure space satisfying property MCP(K, N) and
condition (∗):

(i) (E ,W 1,2
0 (M)) is a strongly local, regular Dirichlet form on L2(M,m), densely

defined with core CLip
c (M).
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(ii) A scale invariant Poincaré inequality (in the same form as in the previous the-
orem) holds for E.

(iii) For each u∈CLip
loc (M),

µ(u, dx) �N |∇u|2(x)m(dx), (6.2)

where |∇u|(x):= lim supy!x |u(x)−u(y)|/d(x, y) denotes the ‘length of the gradient’ of u.
Moreover, for each z∈M and u=d(z, · ) we have |∇u|( · )≡1 and

µ(u, dx) � N+2
23N+2

m(dx).

Proof. Properties (i) and (ii) are obvious due to the previous theorem. In order to
see the first assertion of (iii), note that by monotone convergence for all non-negative
continuous ϕ,∫

M

|∇u|2(x)ϕ(x) m(dx) = lim
r!0

∫
M

sup
y∈Br(x)

∣∣∣∣u(x)−u(y)
d(x, y)

∣∣∣∣2 m(Br(x))
rN

ϕ(x)
ωN (x)

m(dx)

� lim
r!0

1
rN

∫
M

∫
Br(x)

∣∣∣∣u(x)−u(y)
d(x, y)

∣∣∣∣2dm(y)
ϕ(x)

ωN (x)
m(dx)

=
1
N

∫
ϕ(x)

ωN (x)
µN (u, dx)

=
1
N

∫
ϕ(x) µ(u, dx).

For the second assertion of (iii), let z, x∈M and r>0 be given with r�d(x, z). Choose
a point ξ on a geodesic connecting x and z with d(x, ξ)=3r/4. Then |u(x)−u(y)|�r/2
for all y∈Br/4(ξ). Hence,

1
N+2

∫
ϕ(x) µ(u, dx) = lim

r!0

1
rN+2

∫
M

∫
Br(x)

|u(x)−u(y)|2 m(dy)
ϕ(x)

ωN (x)
m(dx)

� lim
r!0

1
rN+2

∫
M

m(Br/4(ξ))
(r

2

)2 ϕ(x)
ωN (x)

m(dx)

� lim
r!0

1
4rN8N

∫
M

m(B2r(ξ))
ϕ(x)

ωN (x)
m(dx)

� 1
23N+2

∫
M

ϕ(x) m(dx).

Extending fundamental work of De Giorgi, Nash, Moser, Grigor’yan, Saloff-Coste
and many others, it was shown in [17] that

(i) a doubling property for the volume of balls (as in Corollary 2.4),
(ii) a scale-invariant Poincaré inequality on balls (as in Theorem 6.4), and
(iii) a gradient estimate (as in (6.2)) for cut-off functions
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allow one to deduce a variety of regularity results in the general framework of strongly
local, regular Dirichlet forms on locally compact metric spaces, generalizing classical
regularity theory for second order elliptic operators on Euclidean or Riemannian spaces.
In particular, as an immediate consequence of Corollaries 6.6 and 2.4 we obtain the
following results:

(i) Parabolic Harnack inequality for local weak solutions of the equation(
1
2
∆− ∂

∂t

)
u = 0 on R×M ;

(ii) Hölder continuity for functions u as above and, in particular, for harmonic
functions on M ;

(iii) Feller property of the transition semigroup Tt := exp(t∆/2) on L2(M,m) (and
on C0(M));

(iv) Gaussian estimates for the heat kernel pt(x, y), i.e. for the density of the tran-
sition semigroup Tt.

We refer to [17] and [18] for detailed formulations of these properties as well as for
proofs. Instead of going into technicalities we will close here, presenting a simple nice
application.

Corollary 6.7. The measure contraction property MCP(0, 2) for (M, d,m) to-
gether with assumption (∗) for N=2 imply that the Dirichlet form (E ,W 1,2

0 (M)) is re-
current.

That is, every non-negative superharmonic function on M must be constant. Or, in
other words, the space M is ‘parabolic’.

Remark 6.8. Defining the p-th order energy integral and the Dirichlet form on
L2(M,m), we followed our previous approach in [18]. The latter provided the first con-
struction of a Dirichlet form on a metric measure space (M, d,m). Later on, Cheeger [5]
presented a remarkable alternative construction, based on the concept of upper gradi-
ents. According to Corollary 7.6 (iii) the measure contraction property also implies the
Poincaré inequality in Cheeger’s context.

There is a huge literature on Sobolev spaces over metric measure spaces, starting
with the work of Haj�lasz [8]. See [9], [1] and references therein.

Final Comments. This paper was first submitted (and distributed) in a shorter
version, containing essentially Sections 1–4. This first version has been used by various
other authors. Soon after that, it was extended to the present form. The basic concepts
and main results of the present paper have also been announced in [20].

After this paper was completed, the author learned of related work by Shin-Ichi Ohta
[15]. In the meantime, he also got knowledge of related work (in progress) by Max-Kostja
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von Renesse [16] as well as by John Lott and Cedric Villani [14].(3) The author would
like to thank all of them for exchanging preprints on early stages.

The author would like to express his gratitude to the referee and to the editors of
Acta Mathematica for their detailed and helpful comments.
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