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On the boundary behavior of solutions to a class of
elliptic partial differential equations

By KJjELL-OVE WIDMAN

1. The object of this paper is to investigate the behavior at the boundary of
solutions to the uniformly elliptic, semi-linear equation

a”(X)uii(X) = F(X’ U, Uy uij)y (11)
where a¥/ are continuous or Holder continuous and F satisfies

LBOX)) | «(0(X)) «d(X))

;] + o(0(X)) |2l

Here §(X) denotes the distance from X to the boundary, and §(tf) and «(t) are func-
tions which in most of the cases considered tend to zero with a prescribed speed,
as £\0.

In particular our results are valid for the linear equation

atu;+ b tou=f

if b, ¢, and f satisfy corresponding inequalities.

An important feature of this class of equations is that, in a certain sense, it is
invariant under mappings between Liapunov regions, and this makes it possible
to get results e.g. about harmonic functions in Liapunov regions which have been
obtained earlier by different methods. For these results see Keldy$ and Lavrent’ev
[13], and Widman [27]. It may be noted that all the results of [27] are contained
in this paper.

Section 2 and 3 contain basic assumptions and definitions, and some lemmata
of various types, respectively.

Section 4 contains theorems assuring the finiteness of weighted integrals of deriva-
tives of solutions, given some information about the integrability of the solution
itself. These theorems are formulated for quite general regions. Specializing to the
case of a half space, some other estimates of derivatives and integrals of derivatives
are given. Finally we prove two theorems on solutions in cones, at least one of
which is previously known for the case of harmonic functions. As a corollary we
get a generalization of a theorem by Wallin.

In Section 5 we give the generalization to solutions of (1.1) of the theorem that
a positive harmonic function in the unit dise belongs to the Hardy class H.
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K.-0. WIDMAN, Boundary behavior of solutions

Section 6 contains results on the boundary behavior of Green potentials, one of
which is needed in the sequel.

Section 7 contains theorems on the existence and type of assumption of boundary
values of solutions of (1.1). Apart from the case of harmonie functions results in
this direction have earlier been obtained by X.ojasiewicz [16] and implicitely by
Serrin [19].

Section 8 finally gives a necessary and sufficient condition for the existence of
boundary values to a solution of (1.1). In the case of harmonic functions, this theorem
can be found in [22].

Acknowledgement. Professor Lennart Carleson suggested the topic of this paper,
and I wish to acknowledge my deep gratitude to him for his support and kind
interest in my work.

2. We place ourselves in R", the points of which are denoted by X, Y, ..., X =
(@1, .., @) etC., |X—Y|2=371(z;—y,)% Points of R" ™" will often be denoted by
X', Y, and often X’ will be the orthogonal projection of X on R"'. In general
our methods will be applicable in R" for »>2, but since there are often special
methods from the theory of generalized analytic functions available in the plane,
see e.g. Vekua [24], and since some minor complications arise from the logaritmic
singularity of the fundamental solution of the Laplacian in this case, we will con-

. centrate on R" with »>3. Integrals over n-dimensional regions will be denoted by
[J(-)dX, over n-1-dimensional surfaces by [(-)dS, dS being the surface element.
J(+)dX can be interpreted as [(-)cosy,dS, where cosy, is the scalar product of
the sth unit vector and the normalized outer normal of the surface.

By a Liapunov surface we mean a closed, bounded #-1-dimensional surface S
satisfying the following conditions:

1° At every point of S there exists a uniquely defined tangent (hyper-)plane, and

thus also a normal.

2° There exist two constants C>0 and y, 0<y <1, such that if § is the angle

between two normals, and r is the distance between their foot points, then
the inequality 6 <C-#7 holds.

3° There is a constant ¢ >0 such that if %, is a sphere with radius ¢ and center

X €S8, a line parallel to the normal at X, meets S at most once inside X,.

For the properties of Liapunov surfaces in R?, see Gunther [10]. It is easy to see
that the simple facts about Liapunov surfaces in R” that we need can be derived
in the same way as in [10]. A Liapunov region is a region the boundary of which is
a Liapunov surface.

The boundary of any set D will be denoted by 8D, and D is the closed hull of D.
0(X) is the distance from X to ¢D. R% will as usual be the set {X|z,>0}. C*(Q),
C™Q) denote the space of infinitely, and m times, continuously differentiable

functions in (3, respectively, and C7(Q) will be the space of Holder continuous (with

exponent y) funetions in Q.
The assumptions on the equation will be
(i) a¥ and F are measurable functions of their arguments.

(ii) @' are defined in Q and there exists a constant >0, the ellipticity constant,
such that

) 1
}‘|§|2<“”(X)5i51<1|5|2
for all X €Q and all vectors & =(&,, &,, ..., &,)=+0.
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(iii) @' —a’. We also assume det(a”’) =1, which is no further restriction.

(iv) |a(X)—a(Y)| <K-af| X—Y]), X€2Q, YEQ.

(iv) la¥(X)—a(Y)| <K (| X—Y]), X, YEQ.

%) X,y up, u,)| < [HX)] +07HX) - a(8(X)) | ws| +0-2X)- a((X)) | ]
+a(0(X))|uyy|-

(vi) [/(X)| <K-67%(X)-B(6(X)).

We shall work with three types of equations:
(A): where we assume (i)—(vi) with «(t) satisfying lim «(t) =0 and f(t) bounded,;
{=>+0

(B): (i)—(vi) with «(t)=t*, «>0, B(t) nondecreasing and satisfying [ (B(¢)/t)dt < oo;
(C): where we assume the same as in (B) and in addition (iv)’ and that F is inde-
pendent of u,.
When we say that u is a solution of (1.1 A) we mean that » is a solution of the equa-
tion (1.1), about which we assume the conditions A, etc.

With a solution of (1.1) in a general region , we mean a function « belonging
to C2((2), and satisfying (1.1) almost everywhere. When we work with solutions in
R, or parts thereof, we can allow a weaker concept of solution; % is a solution of
(1.1) in R% if u has distributional derivatives of order <2 which are locally bounded
functions, and satisfies (1.1) almost everywhere. In some of the theorems it is even
sufficient to assume the second derivatives to be in L? locally, for some p >=. Although
we shall not stress this point, we note that it is well known, see e.g. [8], that in
both these cases the first derivatives of u are continuous functions which are locally
absolutely continuous on all straight lines parallel to one of the coordinate axis
except those issuing from a set of n-1-dimensional Lebesgue measure zero on the
orthogonal hyperplane.

In the case of (1.1B and C) we will often have occasion to rewrite the equation
in regular regions . To that effect we use Lemma 3.9 to extend the functions
a"(X) on 09, into Q in such a way that the new functions " satisfy

aieCe(Q), a"eC¥Q), a’=a' on dQ,
|grad a¥(X)| <K-6*"Y(X).

The Holder constant and K will not depend on Q, which is seen from Lemma 3.9.
A solution «(X) of (1.1) will then also be a solution of the equation

' X)uy(X) = F(X, u, w;, wyy) +[37(X) —a(X)]uy.

H?, 1<p< oo, will be the class of solutions # of (1.1) in R%, satisfying

sup f |u(@y, 2, ..., Tyey, #,) |[PAX <00, p<oo
O<zy <l J X' |<e

and esssup |u(X)| <oco, p=oo
1Xl<e

respectively, for every o =0.
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K.-0. WIDMAN, Boundary behavior of solutions
When X'€ R™! and h >0 we shall denote by V,(X’) the truncated cone
{Y|yazr 205 (gi—=)% 0<yu <1},

and when X,€0Q V,(X,) will be a cone congruent to V,(0), with axis along the
inner normal to 9Q at X,, the normal always assumed to exist in case we use this
notation, and with the convention that we truncate the cone more, if necessary,
in order that V,(X,) lie inside Q. If F < R"! we define

Wiu(F)= U V,(X').
X'eF

With some obvicus exeeptions, subindices denote differentiation.

The summation convention is used freely. We shall also use the convention that
when the summation convention does not apply, u; and u;; are vectors in E” and
R™, i.e. u; is the gradient vector, and |u;| and [u“| are the respective Euclidean
norms.

K will denote a generic constant which constantly changes its value. If doubtful,
we shall try to indicate the important variables on which K does or does not depend.

3. Lemmata

Lemma 3.1. Let D be any bounded, open region in R", and let {8} be the set of spheres
S=8(X, 6(X)/4) with center X and radius 6(X)/4, 6(X) being the distance from X to
0D. Then there exists a denumerable sequence of spheres {S,}°, 8,=8(X,, 6(X,}/4)
with the property that US =D and such that every point of D is inside at most K(n)
of the spheres {8,}°, 8,=8(X,, 36(X,)/4). K(n) depends only on n.

Remark. From the proof follows a crude upper bound of K(n): K(n)<(343/3)".

Proof. It is sufficient to consider connected regions D. We use the following
lemma of Aronszajn and Smith [1], p. 162: It is possible to find a sequence 8, such
that US,=Q and such that the spheres S, S(X 1 0(X,)/16) are pairwise dls]omt

Now let X, be any point of D. A sphere S, contalmng X, has radius <44(X,).
This implies that the corresponding S, lies in a sphere With center X, and radius
495(X,)/12, i.e. all the S, of this type cover a region of volume < Swp (49/ 12)"- o™ Xo)
On the other hand, S, may not have radius <3d( 0)/7 if it is to contam X, ie.
the corresponding S, has radius > §(X,)/28. Since the S, are pairwise disjoint we get

5 A5

if K is the number of spheres S, containing X,. Hence K <(343/3)".
The following two lemmata are essentially contained in Stein [22].

Lemma 3.2. Assume | is measurable, locally bounded in R7. and such that

[], o lnax <o
Wi(E)

for some measurable set £ < R*1. Then
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H A7 |f]X < oo
Vi(X")

for all k>0 and almost all X'€E.

Lemma 3.3. Assume [ is measurable, locally bounded in R and such that

” |/]dX < oo
Vi(X")

for X’ belonging to some bounded measurable set E < R, and where b may vary
with X'. Then to every ¢>0 and every k>0 there is a closed set F < E, mes(E—F)<e

such that
J‘f xﬁ”1|f|dX< oo,
Wi(F)

The proof of Lemma 3.3 uses the following Egorov like theorem by Calderdn,
which we shall use several times. See Lemma 1 in [22].

Lemma 3.4, Let f(X) be locally bounded and measurable in R". Suppose we are
given @ bounded, measurable set B < R with the following property. Whenever Xo€ B,
HX) is bounded as X ranges in some cone V,(Xg). (The bound and h may depend on
Xo.) For any ¢>0 there exists a closed subset F, F < E such that

(1) mes(E—F)<eg,

(2) if k15 fized, {(X) is uniformly bounded in W, (F).

It is also clear that if we assume that >0 as 2, >0 in V,(X;) for every X € E,
with the same method of proof we can find an F such that mes(E — F)<e¢ and f
tends to zero uniformly in W, (F) when z, 0.

Lemma 3.5. Let L=a'0?[0x,0%; be a differential operator with constant coefficients
satisfying |&|2A<a'§,E,<1/A|E|2 for all (£, &, ..., £,)=0, and let det(a'’)=1. If
G(X,Y) is the Green function of L in R", then G satisfies the following inequalities:

GX,Y)<K-|X-Y|P, (i)
G(X,Y)<K- % (ii)
|G(X, Y)| <K |X—-T|', (iii)
|6 (X D<K 5 (iv)
DIy "

where K depends on n and ) only.

Proof. Let A be the matrix (2”) and define B by B:-B=A. By the coordinate
transformation X'=XB-!, L is transformed into the Laplace operator A, i.e.

489



K.-0. WIDMAN, Boundary behavior of solutions

F (X', Y')=G(X'B, Y’'B) is the Green function of A in some region, the boundary
of which is a hyperplane.

The corresponding inequalities for &, i.e. where 2, and y, are replaced by §(X)
and (Y) respectively, are either well known or easy to derive, since we know G’
explicitly. Here K depends on » only. Now (i)—(v) follow easily, since the dilation
of distance is bounded above and below with 1/4 and 4.

Lemma 3.6. Let L be the differential operator of Lemma 3.5, and let G(X, Y) be
the Green function of L for the sphere | X | <g. Then

|G(X, ¥)| <K-|X— Y|, @
|grad G(X, Y)| <K-|X - Y|, (ii)

for | X|, | Y| <o, and
% grady G(X, Y)’éK'g", (i)

2
l g grad; H(X,Y)|<K-p ", (iv)

010y,
for | Y| <g/2, | X| =0, where K depends on A and n only.

Proof. The inequalities are evidently true for p =1 (cf. the proof of Lemma 3.5),
and the general case follows with a homothety.

Lemma 3.7. Let D be an open bounded region, and let Xy and Xg be arbitrary points
wn D and D respectively. Put 1=06(X,)/4 and let p>1. Then the following inequalities
hold for any solution of (1.1) in D.

f f (X)) |w,|PdX < (i)
Sl K f f {up -+ 52(X) | F|o+ |* )X,
f f (X |uyPaX < | T (i)
1 X~ Xol<l
»
U 1u|pdx<1<-zn—w[“ |u|dX]
|X— Xol<t 1X-Xol<8l
sk [[ sl pp e, i)
| X—X,|<38!
where h* =[a*(X) —a(X5)|u,; and where K does not depend on u, X, or Xg.
Proof. We rewrite the equation (1.1):
a'(Xg)wy; = F +h*.
According to a well-known formula, almost everywhere
w,u(¥) = f 9% (X, V) u(X)dSy+ f f G(X, V) {F +h*}dX = of + 8,
1X-Xol<e Vx 1%~ Xol<e
(3.7.4)
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where 21 <p <3l, G is the Green function of L =a'(X3)0*/ox,0x; in | X| <p and 8/ov
denotes the corresponding co-normal derivative. We observe that the formula is
valid because u and u, are absolutely continuous on almost every line parallel to
one of the coordinate axis, and thus partial integration is allowed. Now using
Lemma 3.6,

D
a”1(17)l [K 0o f |u|dSX] <K~l1‘p‘"f lufpds
1X - Xol=0e 1X - Xol=¢

from which follows

J'ﬁy_xnlél

On the other hand, also by Lemma 3.5

14
orf

o (Y)

b
6”(Y)dY<K—l~f |u?ds.

| X~ Xol=¢

8_05
Yy

D
ff Gy X, Y)Y [F+ 1" dX’
1X - Xol<e

p-1
<K- Uf |X—y|v~ndx] [U |Y—Xl”‘“’+"‘”|F+h*|”dX]
[ X~ X, <81 1 X— X, <31

or Jf
1Y~ Xol<l

Adding, integrating with respect to o from 2! to 3! and dividihg by I, we get

f f ()| u )T
1Y - Xol<l

<K- U |u|vdX+K-z2v” (|7 + [1*}dX
BINEPD.&5 AF<:1) | X—X,|<81

which is equivalent to (i).
To prove (ii) we use the same method as above to get

Yy
fﬁY—XoISZ ( )3

o*q
0Y5OY

81}2

ayk( )

"(Y)AY <K- z%H |F+ 1 X,
X~ Xol<3l

%8
Y 3y m

(Y)

o
dY<K-l-f |ufpds.

1X—Xo]=¢

Now (X,Y)=K(X,¥)+ L(X, ),

where K is a Calderén-Zygmund type kernel [6] and L(X, Y) satisfies [L(X, Y )<
K-l for | Y —X,| <I. We use the well-known Calderén-Zygmund theory from [6]

to conclude that

2.0 2,

g (Y):U 76X, ¥)[F+h"]dX
YOl m 12X~ Xol<e OY5O0Ynm

exists almost everywhere and that
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ffw p ALY

821)2

OYyCYpm

<U |F+h*|ﬂdX+K-rn<p~l>+"w-l>-H |F + h*PdX.
1 X - Xo|l<81

| X - Yol<3t

(Y). dy

After multiplication by 1%, adding, integrating with respect to g, and dividing by
I, (ii) follows.
Finally, still by Lemma 3.8 (ii) and (iv)

|u(Y)|<K-g“"f |u|ds+KH X — F]E" | F + 5*]dX
| X—Xo|l=0 1 X~ Xo|<31

and after integration with respect to g between 27 and 31

|u(Y)|<K-z-"U |u|dx+KU X = Y] |+ 5] dX.
1 X~ Xo|<8L 1X—Xo|<3

By Hoélder’s and Minkowski’s inequalities

Jf lw(Y)PdY
1X - Xol<!

r
<K~ln-"p[ﬁ |u|dX] +K” 8%(X)|F + 1*[PdX
| X — Xo}<381 | X— X,o|<38l

which proves (iii).

Lemma 3.8. Assume fELYR™. Then for every i,i=1, ..., n—1, and every y>0

[[ ta=trtircnlax

1§ finite for almost every t € R,

Proof. Obvious by Fubini’s theorem.

We need the following modification of the Whitney extension theorem.! We
temporarily change the notation and put a=(x,, &y, ..., &,) «; non-negative integers,
|a| :“l+“2+ +‘xn7

ol
Do =17 = i f P
Lemma 3.9. Let 4 be ¢ compact set in R* and let f€C' in R". Assume also
[f2X)—f(Y)| <o(|X-T]), |a| =1
where w(t) is a non-decreasing funclion, lim w(f)=0, satisfying w(2t)<2-w(t.)
Then there exists a funciion ®(X ) with the folit_))?;:gng properiies
1 At this point the author has profited from a discussion with Dr. L. I. Hedberg.
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1° O(X)ec™, X¢4,

20 O(X)ECHRY),

3 O9(X)=[9X), X€A |a|<I

£ |09X)| <K-6YX)0d(X), |a|=1+1, |X]|<e,

5 |O9X)-0Y)|<K-o(|X-Y|), |«|=1 |X]| |¥|<e

where 3(X) denotes the distance to A4 and K depends on n, g, I and w only.

Proof. We follow the presentation of Whitney’s extension theorem in Hérmander
[12]. By Lemma 3 of that paper there is a sequence of functions ¢, €C§° with support

in the complement of 4 with the following properties.
9(X)=0, Z;p;=1, X¢A
A compact set in €4 intersects only a finite number of the support of g,.

2Z;|gP(X)| SCL(67%(X) +1), where O, is independent of 4.

®
(i)
(i)

There is a constant € independent of § and 4 such that the diameter of the

support of ¢; is <C times the distance to 4.

(iv)

If X* is a point of 4 satisfying §(X)=|X —X*| and X' is any fixed point in the

support of ¢;, we define @ by

(X)) = g%(X)fz(X, Xy =f(X, X*) +thpj(X){f,(X, X)X, X%}, X¢A,

= f(X)7 4 e )4:
where f,(X, Y) is the Taylor expansion of order ! at ¥;
HX) = (X, Y)+R(X, Y).

Our assumptions about f imply
|X - Y[~

B(X,Y)|<

o|X-T|), |al<l

Taking |a|=1+1 we have
Q)(oz)( Z Z(p<ﬂ){f(ﬂ) X X}) — (n)(X7X*)}

ﬁ+n=
>

te

II

2 ¢p{B"(X, X') - B{"(X, X")}

which implies, using that | X —X’| <(C+1)§(X) if X is in the support of ¢,
[@@@)[< 2 3 [¢f] K -8 71(X) - (d(X)
B:m j .

<Kﬂz i I8 p(8) < K - 67HX) - w0(8(X))

and 4° is proved.
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To prove 5°, first assume that | X — ¥ | <36(X). Then using 4°, for |«| =,
|O(X) —0P(Y)| < |X Y| -sup|DP(Z)| <K (| X - T]),
where the supremum is taken over those Z and f for which |Z-X|<}4(X) and
|B| = || +1=1+1 respectively. On the other hand, if §(X)<2|X—Y| we have
§(¥)<4|X—T| and
|@P(X) - fOX™)| <X, X*) — (X
+ 2 2 leP| | RP(X, X))~ RP(X, X*)|< K- 0(0(X) <Ko X~ T|).
B j

Similarly,
|(Y) - [(T*)| <K -0(8(Y)) <K (| X—T|).

Since by assumption
|f(X*) (7| <o(| X* - T*]) <K -o(| X - T]),

the lemma follows with the triangle inequality.
Remark. Tf 4 is the boundary of a convex set €, say, and f is defined and has

the properties required in theorem in Q only, we can extend f from 4 to Q by using
only those ¢; which have support in Q.

4. In this section we shall be concerned with the connections between the solu-
tion and its derivatives.

Theorem 4.1. If u(X) is a solution of (1.1 4) in an open bounded region D which
has the property that

ff 1 X)dX < oo forall y>0,
D

then, if p>1, y>0, the finiteness of the first of the following integrals implies the
fintteness of the two others.

f f & (X) |u(X)[PdX, (4.1.1)
f f 871X |uy X)X, (4.1.2)
f ( 627~ 14(X) |uyy(X)PAX . (4.1.3)

Remark 1. One important type of permissible regions are those whose boundary
admits a local representation satisfying a Lipschitz condition, i.e. to every point
X,€8D there is a sphere X such that the part of 0D which js inside X may be
represented as &, =¢(&,, ..., £,_;), where the coordinate system (&, ..., §,) has X, as
origin and @ satisfies a Lipschitz condition of order one.
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Remark 2. If D satisfies the condition of Remark 1, then the finiteness of any
one of the integrals (4.1.1-3) implies the finiteness of the two others. This is a con-
sequence of the representation of « (and u;) as an indefinite integral and the following

inequality of Hardy;
i
[0

1
| @
0

which is valid for p>1 and s> -1, see [11], Theorem 330.

? P p 1
dx < (m) fo & 7| f(z) [Pd,

Proof. Consider the region D, defined by
D, = {X[§(X)>t},

where §(X) is the boundary distance function of .D while §, will be that of D,.
We shall first prove that there exists a sequence {f,}7, ¢,—0, such that

” 87 Y urdX < K < oo.
Dti

Suppose there is no such sequence. Then the function

/()= f f 6 |updx
Dy

tends to infinity as ¢ 0. It is then easy to see that there is a function &/(t) ~0 such

that
fsl—mdt<w
o i

while f Mdt= .
0

In fact, if a,=infg(t) where the infimum is taken over (2-*-1, 2-7) we can always
find a convergent positive series X b, with the property that T a,b,=oco, since
a,—>co. Then define &(t) =b, for 2-v-1 <t <27,

Now we get

oo = f a0gl) 5, f f |ulrdX J "Peall) gyogy
0 i D 0 t

<”D|u]ﬂUw 8—1(Q|6(X)—tly”ldt] dX<leu[”6"'l(X)dX< oo,

o

an obvious contradiction.

Choose a covering {S,}{° of D, in the sense of Lemma 3.1. Assuming the centers
of the spheres in the covering to be {X,}?°, define X; as one of the points satisfying
Xy €oD, | X,—XJ| =5(X,). Then apply Lemma 3.7 (i) for each » with X,=X, and
X3 =X7. Since K,1,<(X)<K,l, for | X —X,| <31,, I, =6,(X,)/4, we get
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f f 51X PAX < K f f 5 |upax
1X-X,l<, | X~ X,]<31,
P K- f f 5 1H(X){ | FIP + o2(0(X)) |y P} IX.
| X - X,|<81,
Now sum over ¥ on both sides:
f f 5 ufpdX < K f f 8- |updX + K f f SV |FP 4 o2(0)|ugP}dX.  (4.1.4)
Dy Dy Dy

We have |F?|<K|u|?6-2(X)-a?(d)+K |u;|P0~7-aP(0)+ Ka?(6)|uy;|”+ |f|?, and
since K does not depend on ¢, and «(d) tends to zero with J, we can find some ¢’
which is independent of ¢, and is such that K-o?(6(X)) <% if §(X)<#'. Then if ¢ <t'/2

K- f f 51475 (8) |, PAX < & f f 57147 | PdX
Dy 2 JJointe<ty
+Kff SEFSa u P AX < - f f SP V|, PdX + K(t) =1, + I,
Din{d>t} 2 Dy

If we combine this inequality with (4.1.4) and move I, to the left hand side in the
resulting inequality, we get

f f O uyPd X <K(t’)+KU 8V Y uf? + 03 P () |y P +fP}dX,  (4.1.5)
Dg D

where K(t') depends on u, and ¢, but not on £, and K does not depend on u, ¢, or ¢'.
Now use Lemma 3.7 (ii) in the same way as above to get

j L 59147 |u, JPdX < K f fD 5 updX + K f L 51| FPP 4 a(0) | u P} AX

: : :
in which we use (4.1.5):

f L 5147 |, PAX < K(¢) + K f L 57 updX + K f fD 5317 | [P + |7} dX.

! ; :
We choose ¢” such that K-a?(6(X)) <} when §(X) <t” and get |
UD 817 |y, [PdX < K(t") + K f L 8 ufdX + K f L 814 |fledX.  (4.1.6)
: : :

If we put t=t, and let y >oco, (4.1.6) implies that (4.1.3) is finite, with Fatou’s
lemma, since it is easy to see that

f f 52147 {PaX < K < oo.
Dy

The finiteness of (4.1.2) follows from (4.1.5) and (4.1.6). The theorem is proved.
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Corollary 4.2. If u€H?, p>1, then

U 22|, [PdX < oo, 4.2.1)
Q

f fnxﬁ"’””[uﬁ|”dX< oo, (4.2.2)

for every bounded subdomain Q of Rt and every y >0.

Proof. Put D={X|¢>x,>0, |2,| <g,i=1, .., n—1}. By Lemma 3.8, for almost
every p€ R},

nzlff Nzt ol HulrdX < oo
i-1JJR%
and (4.2.1) and (4.2.2) follow from the theorem with
Q={X|g/2>x,>0, |z, <g/2,i=1, .., n—1}.
It is clear that the region used here fulfils the hypothesis of the theorem.

Theorem 4.3. Let D be a region satisfying the assumptions of Theorem 4.1. Assume
that u 1s a solution of (1.1 A) which for some y >0 satisfies

[ lulax<e. | @31
Then if vy > ny/(1 —y) and p<1+y/n we have

UDW“I%I%X <o, (4.3.2)

Hj”””‘l u,PdX < oo, (4.3.3)

”Dézpf”“luul”dx < oo, (4.3.4)

Proof. We cover D, using Lemma 3.1, the centers of the spheres being {X,}{°
as before. By Lemma 3.7 (iii) where we put X,=X, and X5 =X,, we get, since
0, is bounded above and below by [, times a positive constant,

14
H ayr1|u|vdX<K-zg'Uf 6’{‘1[u|dX]
1X-X,\<l,, X X,I<81,

1K f f 51| FJp & |1*]P} dX.
[X-X,[<8ly
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Here p'=y,—1~py+p+n—np=>0 by the assumptions. Now sum over » and use
the elementary inequality X|a,|? < (Z|a,|)? to get

¥4
f f 6’{“1!u|"dX<K[ f f az—1|u|dx] LK f f V(B + o luy P dX. (4.3.5)
Dy Dy Dy

If we combine (4.3.5) with the inequalities (4.1.5) and (4.1.6) from the proof of
Theorem 4.1 we get

F4
f f 6%'“1|u|de<K(t”)+K[ f f ag~1|u|dx]
Dy Dy
e f f 1L [fp + a2 0% |uf} dX.
Dy

There is a t” such that K-a”(6) <} when §<¢” which with the moving of a suitable
part of the right hand side gives rise to

[[ o= rax <xen+x[ [[ orutax]+ [[rm@ax. wae
Dy Dy Dy

There is also a sequence ¢, 0 such that

Jf 6’{;1]u|dX<K< oo
Diy

which proves (4.3.2). The rest of the theorem follows from Theorem 4.1.

Corollary 4.4. Let w€HY. Then to every y>0 there is @ p>1 such that for every
bounded subdomain Q of R"

f f - |udX < oo, (4.4.1)

Q

f f @24 |, PdX < oo, (4.4.2)
Q

f f 2147 | [PAX < oo (4.4.3)
Q

The following estimate is well known for a more restrictive class of elliptic equations,
see [18].

Theorem 4.5. Let D be a region satisfying the assumptions of Theorem 4.1. Assume
that w is @ bounded solution of (1.1B) in D. Then

|gradu(X)| <K-6-4X). (4.5.1)
Proof. Since H? > H® we have by Theorem 4.1

f fu{é”_1+”|ui| 18917 |y P} dX < oo 45.2)
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Making obvious estimates in the representation formula (3.7.4) of Lemma 3.7 we get

ou K

|5 K [ XY @] + g 4.

Choose p>n/x>n, use Holder’s inequality and apply (4.5.2)
K 2+(-p) a-n) e

<y K| [ X 7|t

’ o(Y) ) IX—YK%é(Y)l |

1p
X U-J‘Dazp—lw{luijlp+5—p|u1|p}dX] <6(£Y)+K'6“‘2“1‘”/1’7("/1’)“(1’)<K'6'1(Y)

ou
— (Y
axk( )

if p is small enough.

Remark. Whether [u;| =0(6-2) is also true remains an open question. We will
not need this result in the sequel, however.

Theorem 4.6. Let u be a solution of (1.1B) belonging to H?, p=>1. Then

f [s(91s 2o vs Y1, ) [PAY < K(0) - 9"
1Y’[<e

Proof. By formula (3.7.4)

ou
0%y,

()< k-4t

|u|dS+Kff | X = Y| {|F[+af |uy| } dX.
1X-Y|=y,/2 1X-Y|<y,/2

If p>1 choose y >0 and use Hélder’s inequality:

D
ou (Y)’ <Kyf |u|vds+K-yg—l—vH X — Y[
0%, [X—¥|=y,/2 1X-¥I<y,/2

< {| P[P+ 52 |uylP} dX
or f A
1Y’ |<e

by Corollary 4.2 if the double integral is taken e.g. over | X| <2, x,>0.

Ifp=1,
au ’ 1— ’
Yu| 2 (VYA <K -yt 4y |u|dSx
1vi<e |0% 1¥|<e |X-Y|=vy,2

+K-y,,f dy'ﬁ X — Y[ |f]ax
[Y|<e 1X-YI<yy/2

+K~y,,f dY'ff IX—Y[l‘"{x2‘2|u|+xi‘,"1|ui|+x2‘,]ui,|}dX
1¥’|<e 1X-YI<yy,/2

»
o ffav <+ [[ar i pp+aplupy <k <o
k
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<K+f o0, — gl | 2= Hat] % |as] 2 | AX
1/q’ ,
<K +K[y:-1 f f |1og|xn—yn||a'dx] [ f (o [P+ B P
Wy 12)<2y<@BYy/D)
1/p*
ey} ax |
<Ry [[ el X <K < oo
1X|<2¢

by Corollary 4.4 if p’ is small enough.

Theorem 4.7. If u is a solution of (1.1B), then uw€H? if and only if
ff | uy[PdX < o0
Q

Proof. Assume u € H2. Tt suffices to take Q =@,

for every bounded A < R%.

@, ={X]0<xn<g, |x,| <p,i=1, .., n—1}.
We will need a special type of test functions y(X)=y(e, X) with the following

properties:
1° pECE(RY), supp(y) < Qap-
2° When X €Q,, y depends on x, (and ¢) only.
3° p(X) =0 for x, <g/2.
4° 0 <p(X) <z, everywhere, p(X) =2, for X €Q,, e<z,<p.
5° |y;| <K, |y;;| <K-x," where K does not depend on &.

6° [32{ max |y,,(xy, @3, ..., T,_y, 1)| }dt <K where K does not depend on e.
1X’|<40

Such a function clearly exists, e.g. p(X) =171(xn)-172(1/x§ 4+ ... +22_;) where 52(f) =1
for |t| <p and =0, |t| >2p and does not depend on &, while 5! satisties 3° and 4°
above, and d?y'(t)/ds? changes sign, say, at most four times.

Now regularize the equation (1.1) in R?%, multiply with ¢(X)-u(X) and integrate
partially:

ff pula’u,;— F + (@ — @), JdX =0,

Q20

JJQ patu,u;dX = fo — @', — pajuu, + yul — F + (a7 — a7) uy]dX

20 20
-1 f f {puuta? +ypulal}dX + 1ff {plal +ypual}dX
2 Q30 2 Q20
—I—f pul —F + (@ — @) u]dX.
Qg9
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If 7 is small enough, @"(X)¢&,>2/2|& for x, <7, and hence on the left hand

side
Jf yu,u;a"dX > A ff y|w;[dX — K(z)
ng 2 ngn{ln<7}

On the right hand side we have three integrals to estimate. We get using the prop-
erties of ¢ and Corollary 4.2,

fj {pyu*a? +ypulal}dX l
Q20

20

<K- | max|pyy, ..., %01, t)[dtf |u|2dX’+KJ‘f o ufdX <K
0 1X'|<2e 1X’|<2 Q92

independently of .

‘f {palu® +pfal}dX | <K 2% ufdX,
Q20

Q2q

’ f f yulF + (@ —a¥)u, | dX| < K f f o udX
Q20 Q20

+KU o 5 |ul2dX f o ix

+K[Jf xi‘f1|u|2dX] ) [Jf ot w2 +xi+°‘]ui,-]2dX] "
Qoo Q2o

Thus we get ff p|w,PdX <K + K(v)
Qo N Ty <7}

or f[ z,|u,dX <K + K (7).
J@en{zy,>e}

Since K and K(v) do not depend on &, the necessity part of the theorem is proved.
To prove the sufficiency, assume

ff x| uyPdX < o0
Q

for every bounded subdomain Q of R%. An easy application of Schwarz’s inequality

then shows that
ff @ ulfdX < oo
Q

for every y >0 and ff Blan) |u[?dX < oo.
Q Iy
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K.-0. WIDMAN, Boundary behavior of solutions

From Theorem 4.1 we conclude that the following integral is bounded when
is bounded
Jf 5w, PdX.
Q

Let D be a convex bounded region < R" the boundary of which is sufficiently
regular and contains the set {X|,=0, |X'| <g} for an arbitrarily chosen ¢>0.
Such a region is easily constructed. If we denote by d(X) the boundary distance
function of D, while J, is that of D,, we can construct a positive function A(X),
coinciding with 6(X) for §(X) sufficiently small, and belonging to C*(D). We observe
that A(X)—7<J.(X) if J is small enough.

Integrating partially, we find

J-f a@2uu, A(X)dX = — f {@72uuy (A — ) + @"2u;u(A — ) + @ 2uuy(A — 1)} dX.
D'!' DT
On the other hand
f f @2uu,A(X)dX = @ulA;dX ;) — ff {@Pu®A; + @A} dX.
D, ap, D,

Thus using the fact that u is a solution and that

y on L., A
@A dX o> 1/2, 48 =5 a8

on that part of 6D, which is below z, =¢ for some £¢>0 we get
f wWdS<K u?dS + Kff {az ™ ul? -+ 2% |u||w] + 2,0
8D n{zy, <€} D, n{z, >} D,

Ty | [ F] 2% |y | T} X <K - max |uft + K - U (s a2+ g} A
{z,>€} JJD

+K[ff xﬁ“‘1|u|2dX]% Uf zn|ui|2dX]t—l-Kff 8(—:"—)|u|dX
3 %
+K[ f f x:~1|u|2dx] [ f f xi+“|uij|2dX] .

Since the right hand side is finite and independent of 7, we have
f u?(zy, ...,xn-l,r)dX'<f wWAS<K < oo
1X’1<e 0Dy n{zy<e}

and the theorem is proved.

Theorem 4.8. Consider the equation (1.1 A) in R%. If u is a solution, possibly defined
only in V,(X'),! satisfying

1 In this case we assume that w, u;, and u;; are bounded in {xn >1}, say.
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Jf # " uldX < oo
Va(X)

for some y >0, then for all p>1 and all B’ > h

ff @i " | ufPdX < oo,

VX

Jf 2P, [P X < oo,
VX

ff 22 g Pd X < oo,
VA X

Proof. We introduce the sets V'=V3(X")=V,(X)0 {X|z,>71>0}. Let 6.(X)
denote the distance from X to 8¥". Using Lemma 3.1, we cover V' with spheres
having centers X,, then apply Lemma 8.7 (i) and (i) with X§=X'". After multi-
plication by 23?"?-87°7" we find

p+Ap—-n | 0¥
f f R A A7) =
1X - X,l<1,

KH 8z fufrdX
J.f 612:D+np~n . xﬂy—nnluﬁlpdx < (X - X,|<31,
1X- X, 1<,

+ Kff S rnr (| F [P+ 0Pz, uy [P} dX.
1X-X,l<8,

After summing over » we note that the constants do not depend on 7 and in a manner
by now familiar we get the inequalities

ff O A X
¥
<K{z'y+ Kffvt{é’i”'”x’;”“”fui” F LI L B P (2 ) P} dX
ffv15$+np~nx5;;—npiuilde
<K@)+K- f f Bty e 4 82 g e,y P X
which combined give rise to

ff So TP by |y g X < (4.8.2)
v K(r'”)—i—Kff SFP - gy Py [PdX.

ff oZoHnpngry=ap|y I3d X < v {4.8.3)
Ve ‘
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K.-0. WIDMAN, Boundary behavior of solutions

Using the same covering of V* as above, we now apply Lemma 3.7 (iii)

D
ff 6?”‘"xﬁ7“"p|u|de<K[ff x’,;‘”[u|dX]
1X-X,l<l, (XX, |<31,
" Kf .f gz rnengty np{ | FIP + o (x,) [uy |7} dX.
| X~ X,|<31,

Sum over ¥ and use the inequality X |a,|? <(Z|a,|):

»
J‘J OFP by P |y Pd X < K(z%) + K[ff " Iu]dX]
VT vT
+ Kff {8r2 a2 up(x,) | u|? + 02 1P Y TP (@) | [
VT
+ 82y n2g(x ), [P} dX.

Applying (4.8.2) and (4.8.3) while noticing that Ka’(x,)—~0 independently of z

we get
b
[[ srazrsiupax <o e [ aviuiax]”
Vi Vi

Since the right hand side is independent of 7, Fatou’s lemma gives
ff P By P |y |Pd X < oo,
Vh

Now (4.8.2) and (4.8.3) give the corresponding results for u; and ;;, and the theorem
follows with the observation that for every A’'>h, 6(X)> K-z, for X€V .

Remark. In the case of Laplace’s equation, Theorem 4.8 follows much easier if
we use the Poisson representation. In fact, Fubini’s theorem implies that there is
an k", h<<h"<h' such that

f 2" | u|dS < 0.
vy
Since V. is convex, |8G/on(X, ¥Y)| <K-|X —Y|'-" and with Holder’s inequality

plq
|u(Y)|"<[LV 1X—y11—nx;|u(X)|dsX] Ua |X—Y11‘"x;”(”‘1)|u[ds].
.

Vo

As Y€V,, |X—Y| >, K, and hence the first integral is finite. Multiplication with
y2?~" and integration over V. gives

H 2 u(Y)PAY <K - f x;m'D[u(X)wX“ y2 X - Y[ Y.
Vi OV Vi
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The proof follows with the observation that

H g X = Y[ AY <K@t
Vi

The following theorem for harmonic functions can e.g. be found in [22].

Theorem 4.9. Consider the equation (1.1B) in R". If u is a solution, possibly defined

m Vi(X') only, satisfying
ff 22" fu,PdX < oo
V(X9

Then @, | (X)| =0
as x, >0 in V,.(X') for every b’ >h.

Proof. Using Schwarz’s inequality, we see that the assumption implies

ff x| ulfdX < oo
V(X9

for every y>0. By Theorem 4.8, we can conclude the finiteness of the following
integrals for every >0 and every h” >h.

Jf 2, " |ulPdX, (4.9.1)

V(X0

ff ah v, PdX, (4.9.2)
VA X))

f f 22471y, PdX. 49.3)
V(X

Choose an arbitrary A'>h and let A’ >h">h. Then there is a constant % such that
a sphere around Y € V. with radius %-y, lies inside V... In this sphere we can write
% as the sum of two functions

w(z) =+ f oG X, Zyu(X) dSs

On J [ X-¥|=k-y, OV

1 n ;
o ” KX, 2)[F +{a¥(X) — a¥(X")} uij] dX = u® -+ u®,
Wy 1X-YI<k ¥y

where & is the Green function of the operator a¥(X")e?/ox,0x; in |X — Y| <k-y,.
Since u® is the solution of an operator with constant coefficients we find

2 n 2
<[z [ dX] <K-y;n” |ufPax.
i=1Yn J Jix-vi<k.y, |X-Yi<k-y,
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By the Dirichlet principle

f f [uPPaX <K - f J |, .
1X-YI<k ¥y 1X-YI<k-yy

On the other hand

ou®
o,

m|<x/] X = Y| ] X
|X-Y|<yy, -k

1/q Ly
<KUf X - Y|‘1’")"dX] Uf {|F|p+x°,§"]u”|”}dX]
X ¥I<k-uy, 1 X ¥I<k vy

1/p
<K-y,;1[” xﬁ”’"{|Flp+x‘;§”|uU,”}dX]
1X-YI<k -y,

if p>mn. Combining these inequalities we get

¥
awarver [[[ e
Vi n{z,<2y,}
1/p
" KUf P PP+ 2wy P+ 2 P+ 2P ul?) dX] i
Vo, <2yp,}

By (4.9.1-3) above we find that the right hand side tends to zero as y,—0.

Our next theorem is a corollary of Theorem 4.9 and the following theorem by
Wallin [25].

If w is a continuous Beppo—Levi function in R;f such that for some y, 0<y<n

ff 2% |u,PdX < oo
Q

for every bounded subdomain Q of R, then lim w(X) exists and is finite for all

2,0
X' € R™1 except when X' belongs to a certain Borel set E of m—2+vy-capacity zero.
A Beppo-Levi function is a function which is absolutely continuous on almost
every line parallel to some coordinate axis. A Borel set E is said to be of m —2+y-
capacity zero if for every non-trivial non-negative mass function y with support
in E the potential

wH(X) =f |X— Y|2""""”d‘u(Y)
Rn
is unbounded.

Theorem 4.10. If u is a solution of (1.1B) in R} with the property that

Jf |, fdX < oo
Q

for every bounded subdomain Q of R", then u has a nontangential finite limit at every
X’ € R™1 except in a set of m —2+y-capacity zero.
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Proof. Since, by our definition of solution,  is automatically a continuous Beppo—
Levi function, Wallin’s theorem shows that perpendicular limits exist except in a
set of the right size. Moreover, it can be proved that

” 22 | fdX < oo
VX0

for every A>0 and X’'€ R™! except for those X’ belonging to a set of n—2+y-
dimensional Hausdorff measure zero. See Wallin [25], Lemma 5. Combining these
facts with Theorem 4.8, the present theorem is proved.

5. It is well known that a positive harmonic function in the unit disc belongs to
H!. The traditional way of proving a theorem of this sort is to use the Poisson
representation of the harmonic function and show that the normal derivative of
Green’s function is bounded away from zero. See e.g. [27]. However, it is possible
to do without the Poisson representation.

Theorem 5.1. Suppose u is a non-negative solution of (1.1C). Then u€H?,

Proof. Choose an arbitrary ¢ >0. We shall prove that
f |w(@y, oo Tnr, B)|[dX' <K <00 as x,—>0.
1X’]<e

Let D be the convex bounded region < R? whose boundary contains
X2 =0, [ X' <o}

that was constructed in the proof of Theorem 4.7. D,, d, §,, and A(X) will have
the same meaning as there. Define

m(t) = max [f |u(X)|dSX] .
MX)=T

T2t

We shall prove the inequality
f 871 u X + f f 031 |y PAX < K(tg) + elt) [m(®F  (5.1.1)
o>t ot

for some p>1, {<t, where &(f;) and K(t,) do not depend on ¢, and &(f,) does not
depend on u, while lim &(t,) =0.
to—>0

To do that choose p<1+afn and y<1—1/p, and combine the inequalities (4.1.5)
and (4.1.6) from the proof of Theorem 4.1, with y =«, and (4.3.6) of Theorem 4.3,
with v, —a. We get

»
” 5;"1+“,ui]pdx+ff 6§p‘1+"‘luwll’dX<K(t0)+K[ff 6{‘1|u]dX] )
Dy Dy Dy

to
But ff 07 u|dX < K(ty) + Kmf(t)- f (s—t)" s < K(ty) + K - m(t) - #,
Dy t

which proves inequality (5.1.1).
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Now we regularize the equation in the region D, the boundary of which is suffi-
ciently regular if ¢ is small encugh, due to our assumptions. Thus we can find func-
tions a¥i(t, X)€C®(D,), |o/ox,a| <K-8;7%, a?€CX(D,), a’(t, X) =a(X) for 6(X) =t,
where K and the Hoélder constants of @¥ are independent of £. It is also clear that
27187 > @Y€ £, > 27127 when ¢ <§(X) <7 for 7 small enough. We get

’ ff d”uA,-j(X)dX‘ <Kff |u|dX < K(ty) + K -t [m(t)]. (6.1.2)
Dy Dy
On the other hand, using partial integration
ff dijuAijdX = dij’llAi dX(j) _ ff {d;juA, + dijuin} dX-
Dy OD: Dy

In the surface integral

i AeA ., A
a’AidX(,-)>§ a—ndS=§dS

for §(X) <7, from which we conclude, using the positiveness of «
J\ d“uAidX(j)>Kf |u'dS. (513)
oDy 0Dy
The first part of the double integral admits the estimate
K- ff 87 M u|dX < K () + K - e(ty) - m(t). (5.1.4)
Dy
In the second part, we integrate partially and use the fact that » is a solution:

’ ff au; A dX
Dy

f au (A —t)dX;— ff {at'u,(A — 1) + @, (A — 1)} Xm
oD, Dy

<U (65 us] + 8[| F| + (@9 — a¥) w1} X
Dy

<K+ K”D 5 [u|dX +K[ffb{6f"l+“|ui|p+ 6?”‘1+°‘|uij|p}dX] "
: :
If we use the inequality (5.1.1) we get
‘ an difu,-AidX‘ < K(ty) + e(ty) m(?). (56.1.5)
:
Combining (5.1.2)-(5.1.5) we get
f |w]dS < K(ty) + &(to) [m(t)].
8(X)=t

As we may assume that m(t) = [s-; |u|dS for some sequence {t,}°, t,"\0,
m(t,) <K(t)) +eltym,), »=1,2, ...
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If we choose t, so small that ¢(,) <%, m(¢,) <K(t,), and since m(t) is a non-increasing
function, it follows that

f |u|dS<K<oco as t—>0
(X)=t

which implies the theorem.

We might ask ourselves whether this theorem is sharp or if it is possible to weaken
the conditions on the equation. It seems probable that the coefficients in front of
u; and % in the assumptions on F may be replaced by £(6(X))/d(X) and &(6(X))/6*(X)
respectively, where ¢(t) is a Dini function, i.e. is monotonic and satisfying

J"-s—(t-)dt<oo
ot ’

However, in general it is not possible to go further with this type of assumption,
as is seen from the following theorem. For further discussions, see after Theorem 7.3.

Theorem 5.2. Let ¢(t) be a non-decreasing function on (0,c0), satisfying

f%mdhﬂw,s@ﬂ<2way

o t
Then there exists a positive function u(x,y), y>0 such that u—>co as y—~0 for all
2€(—1, 1), and such that

MM<K5%%M+K%?WL (5.2.1)

Proof. Define ()= [§ e(|t|)dt, |x| <2, and use Lemma 3.9 to construct a func-
tion ®(x, y), y >0 with the following properties:

D(x, 0) = p(x),
()
%(x,y)ﬂ <K-ely),

12| <K -2,
Y

D
2 ) —et@| <K<

K g<®<K-y+K-a

1 Oz +t,y)
If = :
we put u(z, ¥) f_l Py dt,

elementary calculations show that u satisfies (5.2.1). Also
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o @(t)
,Y) = ——— dt> K T dt—K-—>co as —0
uy) f|x~t|>y D+ (x + 1) sy B Y

if || <1, which proves the theorem.

6. Before we go on with solutions to the equation (1.1) we shall investigate the
boundary behavior of a special type of solutions to the equation Au =f, namely so
called Green potentials

um) - [[ o niEax,
Ry

where (f is the Green function of the Laplacian, or, more generally, of any linear
homogeneous second order elliptic operator with constant coefficients.

We note first that in order that the defining integral exist as an absolutely con-
vergent integral it is necessary that

|f|
dX < oo,
ffﬂ'}rl"'le"

As the behavior of u in the neighborhood of a boundary point depends on the
values of f in a neighborhood of this point, we shall assume in this section that f
has compact support, say in {X|| X| <1, ,>0}. The necessary condition above is
also sufficient to guarantee the existence of perpendicular boundary values of u,
a fact which was first proved by Littlewood [15] for n=2. The proof in the general
case is similar and we state here without proof:

Theorem 6.1. If
” 2l f(X) X < oo,
RY

then the Green potential u of f satisfies

limou(?/b Yo +or Yn—15Yn) =0

Yp—>
for almost every (yy, ..., Yo_,) ER" .

In order to ensure the existence of non-tangential boundary values, we have to
assume higher order integrability of f. One such condition was given by Solomencev

[20], namely essentially
H 2| fPdX < oo
w

for some p>n/2. This result can be improved. We also believe our method of proof
to be simpler than the ones used earlier.

Theorem 6.2. If
[ aalicax < (6:2.)
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and if there is a p >n/2 such that to every X’ belonging to some (measurable) set K < R"1
there is an h>0 such that .

ff 227" | fPdX < oo, (6.2.2)
Vi(X)
then the Green potential w of f has non-tangential limit zero at almost all points of K.

Proof. By Lemmata 3.2 and 3.3 there is a set £’ < E such that E — E" has measure |
zero and

ff 22" |fPdX < oo (6.2.3)
V(X

for all A>0 and all X' € E'. If

then lim &(7)=0.

(1) = f f 2| f(X)|dX,

Define the set function ®(e), e = R*1, by

(D(e)=ffxn|f|dX,

where the integration is performed over

{X|0<z,<7, (25, ..., ¥,_y) €e}.
By a well-known theorem from the theory of integration (6.2.1) implies that @ has
a finite regular derivative almost everywhere, and a simple argument shows that

|®"(X")| <y(x) = Ve(r)

except in a set B” of measure at most #(r). Let Xo€ E' N CE". The proof shows that
it is no restriction to assume X;=0. We shall prove that

lim sup |u]<K-5(7) ' (6.2.4)
YeYV_;?O)
for every h>0. By choosing a suitable sequence 7, tending to zero sufficiently fast,

it is not difficult to see that the theorem is hereby proved.
To prove (6.2.4) choose J so small that

= <2w,-1°7 ' (6.2.5)

if p<¢ and e={X|x,=0, | X'| <g}.
We have with a fixed Y€V,

N
|u(Y)]<ff , O, V)|fldX <L, +I;+I,+1I5+ zllm
RY v=
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where the regions of integration are
I: {X|a,>1},
Is {X||X'|>6),

’

Iy: {X|0<xn<‘r, | X'| <2, IX——Y|>%},

Iy {XHX Y|<y"}
I: {X|0<z,<7, 20<|X'|<2"g},
o=|Y|, and N is chosen so that § <2¥*7p <2.
Now lim sup I, <limsup K-77" ynfL >racn|f|dX =0,

yp—0

lim sup15<1imsupK-6‘"-ynff z,|f|dX =0.
X126

yp—>0

Moreover, by (6.2.5)

yﬂ v+1 \n—1._ —1
L|I<K- ( dX<K- 2 =K-2
! | 2%)" J}sz”“ Ifl (2” )n 7]( ) K

N N
and so >IL<K-92>2"=K-y,
v=1 p=1

1’"[] z,|f|dX<K-9.
1X"<2¢
Finally,

?
Sl X [ )| ax
1X-YI<y, /2
SKJ.J' 2p nlflde [ (n— 2p)/(p—1)ff |X_y|(2—n)qu}
1X-YI<yy,/2 1X-Y|<y,/2

<K f f 227X,

where the last integral is performed over V,,(0) N {x, <2y, }. This integral tends to
zero with y, by (6.2.3). The theorem is proved.

By Lemma 3.2 we get the following Corollary. While this manuscript was in its
final stage of preparation, Arsove and Huber [2] announced a similar result for n=2.

ff z,|f|dX < oo,

2

f f 221 f|PdX < oo
.

I

p—1

Corollary 6.3. If
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for some p>n/2, then w has non-tangential boundary values zero almost every-
where.
By Hoélder’s inequality we get

” &2 1| fPdX < oo
B}

for some p>n/2 and some £>0, then w has non-tangential boundary values zero almost
everywhere.

It is not possible to allow p =n/2 in Theorem 6.2, which is seen from the following
example.

Corollary 6.4. If

Example 6.5. T'o every positive, locally bounded weight function g(t), 0<t<1, there

exists an f such that
ff Z,|f|dX < o0,
RY

[, sotaisreax <eo

while the Green potential w of f does not have non-tangential boundary values anywhere
in | X'| <1, with the possible exception of a set of measure zero.

Proof. For each », construct a grid of points X, lying in the plane z, =27, the
n—1 first coordinates of which are integral multiples of 2-7. Inside |X|<1 there
are roughly 27" gsuch points for each ». Let B,; be the ball having center X,
and radins 2-»—2, Define the sequence {£,}i°, k,>1, in such a way that

2—1/k,,((n/2)—1)+vn Sllp g(t) < 1’
where the supremum is taken over those ¢ for which ¢>2-7»-1. Now define
f(X)=|X - X,| 227" if X€B,; and exp (—2")<|X —X,;|<277?

=0 elsewhere.

Then ffxn|f| dX < Z or-Dg-v, 2-kyvff IX -X, |~2dX < z 277 < oo,
v By v

f fg(wn)lfl”’de =327 27 @RI i g1 < 277 < o,

But AX,Y)>K-|X—-Y|*" in B, and hence
g—7—1
u(X”)>K-2-’%”f |X—Xm-|‘"dX>K-2"Cv"f “%>K>o.
exp(-2 ")

Now if X’ is any point satisfying | X’| <1 and & is small enough, V,(X') contains
at least one grid point X, for each », and our assertion is proved, since by Theorem 6.2

lim infu(X)=0.
X=X’
XeV (X9
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On the other hand, for a given p>n/2, 227~ is the largest weight function we can
allow:

Example 6.6. If for some p>nj2, lim g(t)-t1-2?=0, then there exists a function
0

f20 such that
ff 2, |f|dX < oo,
#

f f g(a) | fIPdX < oo

but whose Green potential w does not have non-tangential limits anywhere in |X'| <1
with the possible exception of a set of measure zero.

Proof. Choose a suite t,, t,,, <27, such that g(t,)-t, *” <2-v. In the plane z,=¢,
we construct a grid of points as in 6.5. If B, is the ball with center X,; and radius
t,v=2 we define f=+*-1,% in B,; and f=0 elsewhere. That f satisfies the hypothesis
and assertion of the theorem follows as in 6.5.

Theorem 6.2 is, however, not the ultimate in this connection.

Theorem 6.7. Suppose M(t) and N(t) are complementary in the sense of Young.

If f satisfies

ff nxn|f|dX< oo,

[[ .z agomax <o,
and if f N(|XP™)dX < oo,

| X|<1

then the Green potential u of f has non-tangential limit zero at almost all boundary points.
Remark. As examples of M(t) which satisfy these requirements, we mention
M(t) ~ t*2(log )P~ (log log £)™*@* ... (log log ... log )@ 71**, £>0,

for large values of ¢. By [14], p. 75, we have
Nt~ "2 yn-om [(log t) (log Jog £) ... (log log ... log )@~ D111,
n

We also remark that Theorem 6.7 does not contain Corollary 6.3.

Proof. The proof proceeds with Lemma 3.2 as in Theorem 6.2, except that Young’s
inequality is used instead of Hélder’s in the estimate of Ig.
From the theory of Orlicz spaces, see [14], we know that if

f N(|XP ) dX =0,
| X|<1
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we can find f such that

f M(HdX <1
1X|<k

while f f | X [*"fdX
| X|<k

can be made arbitrarily large, for each k. Using this, it is possible to prove

Example 6.8. If M and N are complementary, and

” N(|X]P™)dX = oo,
1X]<1

then to every positive, locally bounded weight function g(f), 0<<t <1 it is possible to

find an f satisfying
[[ mflax <,
ol

Hkﬁg‘”")M"”’dk s

but whose Green potential u does not have non-tangential boundary values in | X'| <1,
disregarding a set of measure zero.
For the sake of completeness, we state the corresponding results in the case n=2.

Theorem 6.9. If for n=2, f satisfies

+
J:LZ %, | f(X)| log | f(X)|dX < oo,

then the Green potential u of { has non-tangential limit zero almost everywhere on the
boundary.

Remark. This theorem was proved by Tolsted [23]. In [20], Solomencev claims
to prove a more general condition, namely

_|_
ff , %ol f| log [,|f|1dX < oo.
By
However, if f satisfies Solomencev’s condition, it also satisties Tolsted’s, since
+ + +
z2|f| log || <2-xz? log 2x7 ¥ + 4| f| log .| f.
+
Contrary to the case n >3, M(f)=tlogt is the best possible for n=2.

4
Example 6.10. If lim g(t)[tlogt]1 =0, then to every positive locally bounded weight
t—>00
function h(t), 0 <<t <1, there is an [ such that
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ffkax2|f|dX<oo,

[ renatiihax=-

but whose Green potential u does not have non-tangential limits in |xy| <1, with the
exception of a set of measure zero.

The proof presents no new difficulties, and we omit it.

We shall investigate what the integrability condition on f means when 1 <p<n/2.
In order to do so, we need some new notation. Consider the ‘‘k-dimensional cone’

{Xlxk=xk+1 eae =x,,_1=0, h(z%‘i‘ PN +xf‘;;_1)<xﬁ <].},

where 2<k<n—1 and h>0. For a fixed & we denote by ¥,(0) the image of this
“cone” after an orthonormal mapping of R*! into itself leaving the origin fixed.
V,.(X’) will be the usual translation of U,(0). A typical case where the situation
can be visualized is n =3, k=2. The convention that f has support < {|X|<1} is
still in force.

Theorem 6.11. If V,(0) is a fixed k-dimensional cone, and f satisfies

Jf x,|f|dX < oo
RY

k
and ff 22 fPdX < oo with p>§,
rY
then lim w(¥)=0
Y->X
Yev,(X)

for almost every X' € R™ ™, if w is the Green potential of f.

Proof.. With a suitable coordinate transformation, we can always assume that
V,(0) is of the original type considered above. Define

e(r) = f f 2271 {PdX.

An inspection of the proof of Theorem 6.2 shows that it is sufficient to consider
the integral I, i.e. the integral over {X||X — Y| <y,/2}.

Put X=X z,)=(X", X7, ;) = (%1, Tgs .., Tpo_g, Ty ++0» Ty, T)

and define

W(X") ={U V(X" X7} {7 <7},

where the union is taken over all X € R*%. If y(Y, X") is the characteristic function
of W(X"), we have

f YT X) dX'<K-yi .
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Hence

J X"U yw |t Y)I"dY=f dX”H (¥, X7y F|fPdY
whx) Bk Tn<F

<K- ff Y221 f]PdX = K - &(7),
zn<‘[
which implies that

” Y2 |fPdY < K -p(r) =K Ve(r)
w"(X)

except for X” in a set whose % -—1-dimensional measure is less than #(z). If X" is
not in this exceptional set, the set function ®(e), e R" ¥, defined by

_ f ix” f Y|P Y dy,
e (87 (X" X N Ty <T}

has a derivative <K-l7(t) except in a set of at most »-—k-dimensional measure

Vi(r). It Xg=(X4, X2) and X§ and X7 do not belong to the exceptional sets above,
we have for y, small enough

S ol o]

S HIX i

where s=(n—k—y+2p—ap)/(p—1)> —n if y is small enough.

IflnkyX<K 2(20 —lnky 217 kle)lde
|X-7|

<K-VF>-yZ*2p+V22-W<K-VTr>,
Ui ) n

where D,={UVnn(Xs, X"} N{x, <7},
the union being taken over those X" for which |X” —X;"| <2-7y,. Hence

lim sup |I5| <K - [n(z)]"?2,
Yz‘l?h)(fxo)

and since 7(t) =0, the theorem follows in the usual way.

[[lflax <o

and fo” HfPdX < oo, 1<p<g,

Theorem 6.12. Suppose
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then for every p' <p** =np/(n—2p) we have

ff ¥ M w(X)PAY < oo
V(X9

for almost every X', all y >0 and all h>0.

Proof. Choose an arbitrary >0, and let X, € B"-! be a point where the set function

1
=JdX'f x,|f|dX, ecR",
e 0

has a finite derivative and where

f f 22| P X < oo,
Viin

Put u(Y)=ff +Jf G(X, Y)fdX =u, + u,.
1X-YI<y, /2 |X=YIzy,/2

With Minkowski’s inequality

1p’ 1p
m y%‘"luz(Y)P'dY] < f f x,.f(X)[ f f |X—Y|‘""'-y%+”""dY] ix
Vp(Xo) R’_:’_

<K” xn|f||X'—X{,|v+1‘"dX<K§°2”<"—1—V>” 2| f]dX
BT v=0

]X’—X0'|<2_v+l

)
<K Y27 < oo,
r=0

where the double integral without integration limits is taken over
0= | X'~ Xo|-K} 0 V,(Xo).
With Hoélder’s inequality

1X)|
(D] < fflx vi<yp2 | X — Y| xoypetE

xzp llflp 1/p’ op-1 llp—llp"
n D—
] [E=s] " [[fura]
<K o flP i
[ =]
where p”=p'[n—2+(y—n)g'] and p” =ypgt+(n—1)(p’—p)(pp’)™" from which
follows
” y;n|u<Y)|ﬂ'dy<KH 2291 {PAX < oo
Vi (Xo) Viain(Xe)

The theorem is proved.
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+

Remark. By putting f(X)=x,%(log(1/,))*(loglog(1/x,))~% in 0<z,<1, |X'| <1,
we see that it is not possible to allow % =0 in the theorem above. Likewise, by using
the grid of Example 6.5 and defining f=2*¢"?> in |X —X ;| <2-%” we see that we
cannot take p’ >np/(n —2p). It is probable, however, that p' =np/(n —2p) would do.

7. In this section we state and prove some theorems on the existence of boundary
values of solutions to (1.1), and how these are approached. The first ones are exten-
sions of the Fatou theorem [9].

Theorem 7.1. Suppose u is a solution of (1.1B) in R", and uw€H. Then at almost
every point of R"1, w has a finite, non-tangential limit. The limit function is locally
summable.

Proof. 1t is clearly sufficient to prove the existence of limits in bounded sets,
| X’ <¢/2 for arbitrarily large o. Put

D, = {X|r<z,<l+7, ;] <p,i=1,..,n-1}, 720

and D,=D. The part of 8D, satisfying x, =7 will be denoted by &'D,.
By definition

ff x |u|dX < oo (7.1.1)
Q
for all y>0 and all bounded sets < B". From Corollary 4.4 we conclude that
H (| - | + 25|y | 14X < oo (1.1.2)
o
On the other hand, (7.1.1) implies that
Jf @, " |u|dX < oo
Vp(X)
for all A>0, all y >0 and almost all X’'€ R*1, By Theorem 4.8
ff @ w2l |7 22 [P d X < oo (7.1.3)
V(X9

for all >0, y >0, and almost all X’ € R™1, )
The next step will be to find a suitable representation formula for %. To that end
we first note that by (7.1.2) and Fubini’s theorem

f @, | u;|dS < oo
Dn(zj=t}

for j=1, ..., n—1 and almost all t€ R1, We can assume that
f Zplu;|dS< oo and f |ujd8 < oo. (7.1.4)
oD-&D 8D-9'D
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Consider the sequence du™(X')=wu(zy, ..., Z,_y, 7¥)dX’ on |X’L<g. By the defini-
tion of H! we can pick out a subsequence {t*¥}7° such that dug» converges weakly
to du, say. By the Lebesgue decomposition theorem, du=1u(X')dX’+dm, where
@ €LY X’| <o) and dm is a singular measure. Let X; be any fixed point in | X'| <o/2
and let V,(X’), >0, be an arbitrary cone. If ¥ is a point in this cone, denote by
Y. the point ¥ 4 (0, ..., 7). G* will be the Green function in {X|x,>7} of the operator
a¥(X,) (%0 0%;). Now apply Green’s formula in D,. We get

1 [ o7
v)-—| Z&, 7,
u(Y) wnfap,av( Y,)u(X)dSx

1 O X)GH(X, Y.)dSx+ f f Ga'(X ) uydX
DT

Wy ,31)1_6'1_)131’
and after using the fact that « satisfies the regularized equation
a"(Xo)uy=F +[a7(X) — a¥(X)]uy + [%(Xo) — a(X)] uy,

w,,-u(Y,)=f gqfudSX—f a—uG"(JlSX
a F

D, o Dt_a'nrav

n f f &(X, Yo) {F + [a"(X) — a¥(X)]u,}dX
+ f G[69(Xo) — a¥(X)] u;dX.

Before letting v tend to zero we integrate partially in the last integral over the
region D; — {X||X — Y| <o} =D;— B, where y,/4<0<y,/2,

f f {}dX = f - Grlat(Xg) — a'(X) u;d X gy — f f Gatu,dX
Dy~ Bgy Dy 0Bgy D= Bgy

- U - f } Gia"(Xo) — (X )] udX
aD, @Byy
+ f f {@4[a7(Xo) — @ (X)]u + Gavu} dX.
Dy—~Bgy

Now put 7=1% and let k ->co. If we use (7.1.2), (7.1.4), the fact that du® converges
weakly and Lebesgue’s principle of dominated convergence, we see that all passages
to the limit are allowed. After this we integrate with respect to o between y,/4
and y,/2, divide by y,/4, and get the following representation formula for w:

o, u(Y) =f % X, V) {@(X')dX’ +dm) (7.1.5)
1 x7|<0 OV
+ f z—f (X, Y) [a¥(Xe) — a(X)] {a(X) dX’ + dm} (7.1.6)
| x|<e 0%;

520



ARKIV FOR MATEMATIK. Bd 6 nr 26

+ f a#(X) ul@;dX g — Ga'(X)u,dX (7.1.7)
0D~ Dy
4 (o2 ot i
+— J’ dO‘{J\ G[dlj(Xo) - d”(X)] ’U/id,X(j)
Yn Jyyit 9B,
+ G,-[d”(X(')) —a?(X))] udX(i)} (7.1.8)
ff G{F + [@9(X) —a"(X)] u”} dX (7.1.9)
Yyul2
+~ do‘Jj Gla"(Xg) — @l X)ju,dX (7.1.10)
Yn Jypia
Ypl2
-I- — daff {Gﬂ[a” XO —a(X)]u
ypld
+ @;aiu — Gaju} dX. (7.1.11)

We intend to prove that u—@(Xo) at almost all points of |X'| <g/2. To do so we
note that

f % X Y)iSs—w,
op OV

and hence if X, is a point in the Lebesgue set of @dX’-+dm, i.e. a point where

h(t) =t1‘"flx . M{]a(X’) —a(Xg) t—0, (7.1.12)

we have

w,|(7.1.5) —a(X¢)

oG ,
<fl (X', V)| X") ~ 4(X))

X’ |<93’V

+f %d +f %(X, Y)a(Xo)dSx
1 X'l<e OV aD—-&'D OV

K-S | @) - a@pldx +an)
+K-6‘"~ynf {|d(X’)—ﬁ(X{,)]dX’—de}-l—K'g“"-ynf |u|dSx
| X' —Xy'|20 8D-9¢'D
<K- e(é)élfv + K5 Yy,
where I—=| Y — X;| and (8) = sup h(t).

By (7.1.11) ¢(6) tends to zero with § and hence for every >0
lim sup w,|(7.1.5) —u(Xo)| <e,

Y->X,
YeVy(Xo)

521



K.-0. WIDMAN, Boundary behavior of solutions

ie. (7.1.5) tends to w, #(X,) as ¥ —>X; non-tangentially almost everywhere. In the
same way,

[(7.1.6)| <K-6*+ Ky y,,
whence (7.1.6) >0 almost everywhere. The integral (7.1.7) admits the estimate

Kgf fanlus] + |ul} S
0D—-9'D

which tends to zero for all X;, by (7.1.4). (7.1.8) and (7.1.10) can be estimated by

7”[[ | u,|dX

[X-Y|<y, /2

+K~y;"ff xﬁ‘uldX+Kff|X—leﬁnx‘;luijldX
1X-YI<yy,/2

1p
< Kffx}f“‘" | ;| dX + Kffxff" |u|dX + K[ffxip*nwp |uij|p]

if p>1, all the integrations in the last membrum being performed over V,,(X) N
{2, <2y,} from which we conclude, using (7.1.3), that (7.1.8) and (7.1.10) tend to
zero for almost every X;. Also by (7.1.3), (7.1.2) and Theorem 6.2 we find that
(7.1.9) and the last term in (7.1.11) tend to zero almost everywhere in the prescribed
way. To estimate the first term of (7.1.11), put

g(r) = ff &y |dX.
{rp<rinD

Then the set function
,
f Xmf x;a/Z)flluldxm eCRn—l’
e 0

has a derivative <1 except in a set of measure <e(r). If X; is outside of this set we
have

Yypl2
f do f f Gula"(Xg) — a¥(X)] udX!
Yn D-B,
< Y X-—X|*
J‘J\D;Bynle—YP“l ’

N v+1,
Yn(2
< X + aX
Kvgl 2vl)n+1 ffx X.,|<2"+1llu|d = ynfle Xo|=r/2 u‘

N

N
> x(,f‘m)’1|u[dX+K,~yn<K-r“/2212"’+K,-yn,

1 X - X0 <ov+1l
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where I=|Y —X;| and r-2-1<2¥*1.7<r. Hence with the usual argument we see
that this integral tends to zero for almost every X;. The second term of (7.1.11)
is estimated in the same way. Since @(X')€L'(|X'| <p), the last statement of the
theorem, and thereby the whole theorem, is proved.

An examination of the proof of Theorem 7.1 shows that nowhere has the fact
that u is a solution in R% been used, only that  is a solution in a region €, one
part of the boundary of which lies in a hyperplane H, or, more carefully, to every
X in this part of 8Q there is a neighborhood N such that #Q N N< H. This and
the same remark about Theorem 5.1 imply the following theorem.

Theorem 7.2. If u is a non-negative solution of (1.1C) in a region Q, some part I’
of the boundary of which lies in a hyperplane in the sense stated above, them at almost
every point of I', u has a finite, non-tangential limit.

Theorem 7.3. If u is a non-negative solution of (1.1C) in a Liapunov region Q,
then w has a non-tangential, finite limit at almost every point of the boundary 0€).

Proof. 1t is sufficient to prove the almost everywhere existence of limits in a
neighborhood of an arbitrary point X,€6Q. By the definition of Liapunov surfaces,
there is a sphere X, of radius ¢ >0 and center X, such that a line parallel to the
normal at X, intersects 0Q at most once inside X, We can also choose p so small
that any two normals issuing from points of 0Q inside ¥, form an angle < /4, say.
It will be no restriction to assume that X, =0 and that the positive z,-axis is along
the (inner) normal of 6Q at X,,. Then, inside X, 8Q is described by z, =@(y, ..., 2,_,),
where ¢ €C*7(] X'| <p +¢). Lot A be this part of 8Q, and use Lemma 3.9 to extend
the function x, —g(x,, ..., #,_,) from 4 into R". We assume that we have multiplied
the extension ®(X) by a function in C§° which is identically one in | X | <10g, say.
Since 6®/ox,=1 on 4 we can consider the connected region D =that connected
component of the set {X||X'| <}p, 0®/éx,>}, ®>0} which has 4 as part of its
boundary. It is clear that ® has the following properties in D:

1° ®ec (D),

2 Kyfz,—g(X)]<O<K,5,—p(X)], K,>0,

3 | D®Q|<K-0" 1,

4° For each X', | X'| <}, ® is strictly monotonic considered as a function of z,.

The mapping ¥ =H(X)=(h', k2, ..., B") =(x,, ¥y, ..., ¥,_;, P(X)), X ED, is one-one

and maps D onto a region D' which contains the set {Y||Y’| <1, 0<y,<t}, for
some 7 >0, in such a way that 4 and {|Y’| <1p} correspond. Consider the function
v(Y)=u(H~}(Y)). We shall prove that v satisfies the following differential equation,
which is of admissible type in D’

@NY) vy =F(Y, 0(Y), v(Y)) = D*(Y) v (Y), (7.3.1)
where @*(Y) =a(H YY) K(H (X)) RE(H YY),

F=FHY), o(Y), v(Y) bi(H(Y)),

B{(Y) =a(H(Y)) kiy(H(Y)).
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In fact, since u=v(H(X)) we get u; =v(H(X))h¥(X) and ;= v ik, - v b, and
after substitution in (1.1):

atuy, = aijuijvklhzkhll' + “ij”kkiﬁ =F(X, uw(X), u(X)).

By reordering and putting X =H-1(Y) we get (7.3.1). To see that (7.3.1) is of ad-
missible type we note that the functional determinant ||H| of H is=0®/dx,>}.
Hence v

inf min |HZ|>K >0

XeD |[&=1

and (&, HAWE) = (WE, AW 22| WE|2 =K -4]&]2, K>0.

Here we have denoted by & the matrix H operating on the vector £ of B*, (.,.) is
the inner product in R", and A is the matrix ¢”. Thus (7.3.1) is uniformly elliptic
in D'. Also since o®/ox,>%, H(Y) is Hélder continuous, in fact with exponent
one. The &} being Hélder continuous by 1°, we see that @ are too. Using 2° and 3°
it is also easy to check that the growth properties of # and b* are the right ones.

Thus v(Y) satisfies the requirements of 7.2 and we can conclude that v has non-
tangential limits almost everywhere in | Y’| <g/2. Again since 0®/0x, > § the image
of an essential part of every truncated cone with vertex in |X —X,| <p/2 is con-
tained in some cone V,(Y’). The theorem is proved with the observation that sets
of measure zero in 4 correspond to null sets in | Y’| <g/2 and inversely, due to 1°
and the fact that 6®/éx,>1 on 4.

Remark. Tt is easy to see that the mapping H works with solutions of (1.1B) also.

The question might be asked, whether the hypotheses on the equation can be
weakened while the theorems just proved still hold. It is not difficult to see that if
we assume the same growth conditions as in the discussion after Theorem 5.1 then
w€HP with p>1 implies the existence of non-tangential boundary values of u. It
seems probable that p=1 or « >0 would suffice in this case also. However, Theorem
5.2 shows that in general no more is true. In particular u =coslog, is a bounded
solution of

1 1
Au+—u, +—5u=0
xn n xn
in R} without boundary values.
On the other hand, if we consider the equation

Lu=Au+£uxn=O
x

n

with k<1, it is well known that the boundary value problem
Lu=0 in R%,
u=p(X') X'€R",
where @ has suitable properties, has the solution
w¥)=K- y}:"Ln_l S L
[2:1 (y:— )" + ?/?L]
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see Weinstein [26]. Now it is easy to see that it is possible to represent a positive
solution of Lu=0 in a similar manner with a positive measure du(X') instead of
p(X')dX’, and in a standard way it follows that « has non-tangential boundary
values almost everywhere.

Whether the uniform ellipticity is necessary is not clear. If we keep the other
conditions, and e satisfy only

aE &, = e(x,) ]2,

where ¢(£) \ 0, then it is necessary that

fi('i)dt
ot

since else u =sin(log,) is a solution of

&u &eu
ot e n)éx—n_f’
2
where |f|='—§%(sin log %, + cos log z,)| < 8(3").

The author hopes to return to the question of the “right” conditions in this context.

Theorem 7.4. If u is a solution of (1.1B) and belongs to H?, p>1, then w(X’, x,)
converges n LP(Q) when x, >0 to its almost everywhere boundary function @(X') for
every bounded subdomain Q of R™ 1,

Proof. We shall prove that for every ¢>0, (X', 2i) converges to #(X’') in
LA( IX | <p/2) for every sequence {@°}7_; tending to zero. Since the limit function
is unique, the theorem follows.

By Egorov’s theorem it is sufficient to find an L? function which majorizes u
independently of x,. This majorant function is constructed with the he]p of the
maximal functions of Hardy and Littlewood.

We use the representation formula from the proof of Theorem 7.1. Since u€H?,
the choice of the limit measure du can be made in such a way that du —adS where
#€LP(| X'| <p). Using some by now evident estimates we get the following inequality:

| ( |<K+Kf X Y)|a|dX + K-y nff {a%uy| + a2 Hu|}dX

1X'1<e v X-Yi<y,/2

+KH (X, Y){|Fl+x,,|uw|}dX+Kff G(X, ¥)a|uy| dX

1X-YI<y,/2

il (61X = ' Flul +16 )5 ul = G- X,
D—{|X-Y|<yp,/4}

where Y’ is the orthogonal projection of ¥ on R™! and @ is the Green function of
a’(Y') 02|02, 0x,.
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0
Define qJ(X'):J {5 u] + a5 |w| + 20wy } e,
0

for | X'| <o, ¢ =0 elsewhere. Hélder’s inequality shows that ¢ € LP(R"-1). The maximal
function @* and ¢* of |@| and ¢ respectively, defined by

’ ]' ’ r
¢*(Y):Sup—m'f p(X)dX,
1X'—-Y'|<6

both belong to LP(R™1), of. Zygmund [28], p. 32. We shall prove that u(Y)<
K[1+a*(Y')+¢*Y")], | Y'| <o/2. In fact, using the inequalities of Lemma 3.5 and
choosing IV suitably large,

G
f o Y)|a|dX'
|X'|<931’
a4 .
<K- ()X + K-S (X', Y)|a|dX
X~ Y|<y, =0 Z”yn<IX vy, a”

<K- Hf a|dX’ Y f @|dX’
Yn 1x Y’|<ynl | (2y)" |X’—Y'|<2”+1yn| I

¥
<K-a@*+K>2’|al*=K-a".
r=0

Moreover,

Joms et I
D 1X-YI<yp, 2 {X-Y|zv,/2ln D
IJ‘J]X YI<yy/2

<k+K-% U Glaz 2] + 2% |y + 2% [ugy| 14X
v=1 vl <ix-vi<2Thy,

o

-1
<K-3 _Ln_sz {of Hul+ 2 fu| 20wy |} dX
=1 (27%,,) 1X-vi<2 "y,

<K- § 2 ¥y =K g*(¥')+ K

<KKZ

v

The remaining integrals are estimated essentially in the same way. As an example

Il Gl ax <k 3 | o2 |l dX <K -*().
D—{IX-YI<y,/2} (2 Yn) 1x-71<2"y,

The theorem is proved.

! H {on ]+ fug] 23wy} X
2yn 1X-7I<2y,

N
<K 2279"Y) =K ¢g"(Y) K.
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Theorem 7.5. If u is a bounded solution of (1.1B) in a Liapunov region L, or uw€H?
in BY, with p>1+(n—1)/2, and w—0 almost everywhere on a set E on the boundary,
then w—0 uniformly on every subset F of E whose distance to the complement of E
18 greater than zero.

Proof If we use the mapping of Theorem 7.3 we see that it is sufficient to assume
that u is a solution in {X|,>0, | X| <2¢}, that u tends to zero almost everywhere
in | X'| <p and to prove the uniform convergence in | X’'| < o/2.

We use the representation formula of Theorem 7.1 with Xo =Y’ =the orthogonal
projection of ¥ on R™1, Theorems 7.1 and 7.4 show that @ is identically zero. We
get the inequality

]u(Y)|<K~yn+ffDGde—FKffDG{x?‘fﬂu]+x2’1|ui|+x3§|u”]}dX

+KH x:-nlu;dxuc-ff (161X = Y [|u]
1 X-YI<y, /2 D-{|X—-Y|zy,/4}
+|Gj|x2*1|u|}dX

for | Y’| <g/2. In the remaining part of the proof K will denote constants indepen-
dent of Y’. The first two terms on the right hand side tend to zero uniformly with
Y- In the third term we divide the area of integration into two parts, | X — Y| <y,/2
and | X — Y| >y,/2. With Holder’s inequality

fleﬂlsyn/z( ' )Xm

<K -yt um—ein [ff x?f’"““{luﬁk’ + 2,7 |, f? +x;2p|u[p} dX]
D

1/p

X [ff IX -Y lq(2—n)dX:| e <K- yi+(1—-n~o¢)lp =K- y’ﬁ,
1X-Y|<y,/2

where >0, from the assumption on p
p
[ oax|<me [ [[ dr et varlub ol ax]

oz 1 1/q
dX
[fﬁx Y|>ynl2|X Y| ]

1/q
<K- Yn Z ( yn x?L ldX <K ?/n1> 71>0'
1x— Y1<2”+1

The remaining integrals are treated similarly after which the theorem is proved.

8. In [22] Stein proved that a necessary and sufficient condition for the harmonic
function » defined in R’ to have non-tangential boundary values at almost every
boundary point is that the “generalized area integral”
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f f 2w, FdX
Vp(x)

is finite for almost every X'(h >0 may vary with X’). This theorem had been proved
in the case =2 by Marcinkiewicz and Zygmund [17], and Spencer [21], and the
necessity part of it for n>2 by Calderén [5]. Widman [27] proved the same theorem
for regions other than a half space. In [4] Calderdn proved that a sufficient condition
for u to have non-tangential boundary values is that « is bounded in V,(X') for
almost every X'. This was later generalized by Carleson [7], who proved that it is
sufficient to assume boundedness below in almost every V,(X'}). See also the work
of Brelot and Doob in [3]. We shall prove the theorems of Stein and Calderdn in
the case when w is a solution of (1.1). The reader will notice that the manner of
proof is somewhat different in some aspects. Thus Stein uses Calderén’s theorem in
his proof, while we will get Calderdn’s theorem as a corollary of that of Stein. The
chief difference lies in the sufficiency part of Stein’s theorem. The proof of the
theorem corresponding to Carleson’s generalization has so far escaped our efforts.

Theorem 8.1. Suppose w is a solution of (1.1B), in a Liapunov region 2, with the
property that for almost every X ,€0Q) there is an b >0 such that w is bounded in V,(X,).

Then
ff (X)) | u,PdX < o0
Vi(Xo

for all k>0 and almost all X,€8Q.

Proof. Using the mapping of Theorem 7.3 we realize that it is sufficient to consider
the case Q=R

By Theorem 4.8 we see that the boundedness of « in V,(X’) implies that

Jf 2" uyPdX < oo,
VXD

ff 7wy PAX < o0
Vp (X9

for all >0, A’ >h and p>1. Moreover by Theorem 4.5 z,|u(X)| <K <co in each
Vi (X"). If we take an arbitrary £>0, an arbitrary ¢ >0 and an arbitrary k>0 we
can find a closed set F< {|X'| <p} such that mes(F)>w, ,-¢"*/(n—1)—¢, and

such that
ff @ T JuyPdX < oo,
Wy (F)

[u] and z,|u;] <K in W(F). In order to be able to integrate partially in W,(F)
we approximate the irregular part of the boundary of W, (F) with a sequence of
regular surfaces I',: 2, =¢,(X’) €0, the normal of I', always making an angle with
the z,-axis which is bounded above by /2 —x, where » >0 depends on k. For this
construction, see Stein [22]. The I',’s are constructed in such a way that Wj< Wi
and U, W} =W, (F) where W}, denotes W, (F)n {X|x,>¢,(X")}. If & is small enough,
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and » large enough, the boundary of W consists of two parts, namely I', and a

section of the hyperplane z,=1.
Now multiply the regularized equation by z, % and integrate partially in W%.

J‘f zyul@u; —F + (" —a?)u;]dX =0,
Wy
1

.. " . 1 ;
f , Tau@u,dX g — ff , T @ uu,d X — 2l ™ d X+ 3 f f ) aru’dX
oW’ w, aws, WY,

- ff | T duudX -+ ff wau[(0? — @) u,;— F1dX =0.
Wy

Wi

By the ellipticity

j‘f xnu?dX<K+KJf d”u,-u,xndX<K~f @, | u|[u|dS
wh, W oWy,

k[ was ek [[ G al - lul o)Ll ]2l ax.
wh .

v
oW,

The right hand side of this inequality is bounded independently of v, since the area
of I', is bounded by a fix constant over cos(7 —x), and hence

Jf @, | u, [P dX < oo.
Wi (F)

By Lemma 3.2 we conclude that

f f 22 u,PAX < oo
V(X

for almost every point of  and every 2>0. As the measure of ¥ differs from that |
of {|X'| <¢} by the arbitrary e, the theorem is proved.

Theorem 8.2. If u is a solution of (1.1B) in a Liapunov region Q, and for almost
every X ,€0Q there is an h>0 such that

f f 8 (X |y [PdX < oo, (8.2.1)
Vp(Xo)

then w has a non-tangential limit at almost every boundary point.

Proof. As in the proof of Theorem 8.1, it is sufficient to consider the case Q = R,
Taking arbitrarily ¢>0 and ¢ >0, and using Lemma 3.3 and Theorem 4.8 we see
that to every k>0 we can find a closed set F< {|X’| <g} whose measure differs
from that of {|X'| <p} by at most ¢, such that

529



K.-0. WIDMAN, Boundary behavior of solutions

f f 2P Pl 2 P+ g} X < oo, (8.2.2)
W o (F)

ff T | w;PdX < oo (8.2.3)
WP

with p>n/2 and also with p =2. Moreover, by Theorem 4.9 and Lemma 3.4 we may
assume x,|%;| =o(1) when z, 0 uniformly in W,(F).

We shall construct a representation formula similar to that of Theorem 7.1, but
first we have to prove that w€H?, in a certain sense at least. To that effect, let
W, A F)={X|(zy, ..., %, —t) € W,(F)}. Then approximate the lower part of oW, (F)
by surfaces I';, like in the previous proof. If W%, is that part of W , which lies
above I';,, W%, is connected if ¢ is small enough, and dWY ; consists of I'; ,, and a
section of the hyperplane x,=1+t. In W} ; we integrate partially to get, with [z,];,=
o, /0x;

f f @2unfe,,dX = | aPe,],dX o - H &/, ), dX.
Wit OWp,t Wt

On the other hand

ff a’2uu,x,);dX
Wt

_ . . B _,
= fa w” a 2uu;x, dX g — ff , {a2uu;x, + a’ 2u, ux, + @ 2u;u;x,} dX.
k.t Wi,t

We can assume that ¢, ¥ and & beforehand were chosen so small that @"[«,],dX >
2/4d8 on T, ,, which implies, using (8.2.2), (8.2.3), and the fact that  is a solution,

f u2ds<K+KH {x‘;i‘1|u|2+x$i‘l|u|+xn|ui|2}dX+K-f |u|ds
Ty Wit T

3 %
+Uf x:;—1|u|2dx] Uf x2+°‘|u,-j|2dX] <K+Kf |ulds.
Wi, Wit Tio

Since the K’s can be chosen so as not to depend on » or f, we conclude that

f wdS< K< oo,
Ft,v

In particular,
f|ut(X’)|2dX’ =f|u(xl, ey Ty_gs P&y, wees Tyqg) +1) |24 X <K <oo,

where 2, =g(,, ..., %,_,) is the equation of that part of 8W,(F) which does not lie
in ,=1, and the integration is performed over the domain of this function. Thus
we may select a subsequence £;\ 0 such that u't converges weakly to a function
#(X') in L?. We choose a point X which is in the Lebesgue set of @ and which is
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also a point of density of F. Let V,(X;) be any appropriate cone. Y is a point of
Vyand Y, denotes the point ¥ +(0, ..., ¢). Using the Green function G* of the operator
a'(Xg)0?/ox,0x; in {X|x,>t}, and integrating partially in W%, — B,,, where B,,=
{X| | X-Y,| <q}, we find

wnu( Yt)

t
- f O (X, ¥ u(X)dSx— f G'au,dX ) — f Gjla"(Xo) —a¥(X)]udX
3 oWy oWy 4

W;,tav

T f G (X) ~ 3(X)] X oy — f G (X7 — a(X) udX e
0Bg ¢ By, ¢

e [] etr-wan-aranugax, + ([ e -,
Wit JBs 4

. f f  {GAAXE) - ) u + Gt — G} dX.

Wi,t— B, ¢

Now consider the projection onto R"! of the absolutely continuous measure
(0G"|ov) (X, Y;)dS on TI,;. We observe that this measure is independent of #, and
is bounded by
K-y
il LI ) & (8.2.4)
lp(X) = Y|

Thus we can select a subsequence v; converging weakly in L2, say, to the measure
p(X')dX’'. We use the fact that

- 4 aGt - s

wa(Xo) =f ) 8_(X’ ¥,) a(Xo)dsS,
oWy, 9V

integrate with respect to o and let »;,>co. After some obvious estimates we get the

following inequality:

Jry - ey ax |
+KfP GY(X, Y,)|u,|dS + Kfl(p,,(X') — Xo|*| (X' |w(X')dX

@

LK f f {77 | X = Xo [ ] + 92" X — Xof*|u|}4X
1X-Yl<y, /2

+ Kff G| F —[a" — a"]uy,|dX + Kff 1G5y
Wi, t W, U X=Y>y, /4

+ 65| X — X |u] +| G |a | u| }dX.

Since X is a point of density of F we find that z,|u;| <e on Ty, if ¢ is small enough
and | X —X;| <4, say. Thus on this part of T',

fG‘iuiIdSSG' o AS<K-e.
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On the remaining part of I',
fG‘|ui|dS<yn-K(5).

Now put t =¢,, use the estimates just obtained, let  >occ and use the weak convergence
of u%; it is easy to check that all the integrals involved are convergent. We get

o w(¥) — W Xe) | < K(0) -y + K&+ ‘ J[@Z(X') — #(Xo)]p(X") dX’

i

Assuming that Xg does not belong to a certain subset of F having measure zero,
as in the proof of Theorem 7.1 we find that the integrals represented by dots tend
to zero as Y ->X, inside the given cone. The following estimate presents no diffi-
culties, if we use (8.2.4)

WX")|p(X)dX" +

Ja)-aapperiax|<x- 3 e [ e -aglax

(2"l)n
SKG) ya| (A - AXIAX <K K )y
|X’|=6
where ! =|X,— Y|. Hence
hm sup]u(Y) WXo)|<K-e

¥ev, h(x., )
¢ being arbitrarily small we see that » has a finite non-tangential limit at almost
all points of F. But the difference in measure between F and |X'| <g can also be

made arbitrarily small, and the theorem is proved.
As immediate corollaries of Theorems 8.1 and 8.2 we get the following two theorems.

Theorem 8.3. Suppose u is a solution of (1.1B) in a Liapunov region Q. A necessary
and sufficient condition for u to have non-tangential boundary values almost everywhere
18 that to almost every X € 0L there is an h>0 such that

” &7 (X) | [fdX < oo.
V(X0

Theorem 8.4. Suppose u is a solution of (1.1B) in ¢ Liapunov region Q. If to almost
every X, €0Q there is an h>0 such that u 1s bounded in V,(X,), then u has non-tangen-
tial boundary values almost everywhere.

Departement of Mathematics, University of Uppsala, Sweden
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