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On singular monotonic functions whose spectrum has a 

given Hausdorff dimension 

B y  R.  SALEM 

1. This paper deals exclusively with continuous monotonic functions which 
are singular and of the Cantor type, tha t  is to say which are constant in each 
interval contiguous to a perfect set of measure zero. This perfect set will be 
called the spectrum of the function. 

We shall first prove the following results: 

Theorem I.  Given any number a, 0 < a < 1, and a positive s, arbitrarily 
small, but /ixecl, there exists a per/ect set E,  with Hausdor]/ dimension a, and a 
ngn-decreasing /unction F (x ) ,  singul,~tr, with spectrum E, such that the Fourier 

2 
Stieltjcs trans/orm c,] d F belongs to Lq /or every q ~ + e. 

Theorem I I .  Given any number ~1, 0 < a < 1, and a positive ~, clrbitrariIy 
~mall, but fixed, there exists a per/ect set E, with Hausdor// dinwn~ion a, an:l ~ 
non-decre.~sing ]unction F (x), singulur, ,with spectrum E, such that the Fo~n'i,r- 

Stieltjes coe//icients o/ d F  are o/ order 1/~t 2 

Remarks. 

1). Theorem I could be deduced from Theorem II,  but since the method of 
the proof is the salne, we prove both theorems. 

2). Theorem I has been proved in an earlier paper* for the case r = 1 (the 
Lebesgue measure of the set being of course zero), even in the stronger form, 
that  the Fourier Stieltjes transform of the singular function beh)ngs to L q for 
every q > 2. The argument is the same as in the present paper, although much 
simpler. 

We next prove: 

Theorem I l I .  No ,singtdar /unction (except constant) cxi,~ts having as spectrum 
a per/ect set c] Hausdor// dimension a > O, ~nd v,hos<, Fourier-Stieltjes trans/orm 

, )  

belon.qs to L q /or some q < ~. 
OL 

1 ]~. SALEM. On sets  of m u l t i p l i c i t y  for t r igonorae t r i ca l  series. Amer i can  Jou rna l  of Ma- 
themat ics ,  Vo]. 64 (1942), pp. 531--538. 
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Likewise, no singular function (except constant) can have as spectrum a per/ect 
set o/ Hausdor// dimension a > O, and have Fourier Stielt]es coe//icients o/ order 

. . . .  8 
n 2 ~ > 0 (no matter how small e is). 

R e m a r k .  The results of theorem I I [  are trivial  for a = 1. So we prove 
them for 0 < a < l .  

Finally,  we show tha t  the results of theorem I and ] I  can be sharpened so 
as to obtain: 

T h e o r e m  
per/ect set o/ 

/orm belongs 

IV. There exist singular monotonic /unctions having as spectrum a 
Hausdor// dimension a (0 < a < 1) and whose Fourier-Stieltjes trans- 

2 
to Lq /or every q >  . a 

T h e o r e m  V. There exist singular monotonic /unctions having as spectrum a 
per/ect ~ set o] Hausdor// dimension a (0 < a < 1) and whose Fourier-Stieltjes coe/- 

/icients are o] order ~2 (n) [2 (n) increasing less rapidly than any positive power 

n 2 
O /  n .  

R e m a r k .  As we have said, Theorem IV  is known for a = 1. Theorem V, 
in case a = 1, has  also been proved in an  earlier paper. 1 

2. P r e l i m i n a r y  c o n s t r u c t i o n s .  Let  OA be a segment of length L whose 
end points have abscissae 0 and L respectively. Le t  d be an integer --> 2. 
Le t  az, a~ . . . .  aa be d distinct numbers  such tha t  

0 < a 1 < a 2 "" < ad < 1. 

Let  each of the points  L a i  be the origin of an interval (Lai, L a j +  LT)  of 
length L T, the  number  7 satisfying the conditions 

(1) 7 > 0 ,  7 < a ~ - - a l ,  7 < a s - - a ~  . . . .  7 < a d - - a d _ l ,  7 < l - - a d .  

The d disjoint intervals thus  obtained will be called "whi te"  intervals, the 
d + 1 complementa ry  intervals with respect to OA will be called "b lack"  inter- 
vals, and the dissection of OA will be said to  be of the type  (d, al, a~ . . . .  
�9 - .  ~ ,  7). 

Star t ing from the interval  (0, 1) and fixing the numbers  d, ~1, ~ ,  �9 �9 : ~d, we 
operate a dissection of the type  (d, al  . . . .  a4, 7 1 ) a n d  we remove the  black 
intervals. On each white interval  left we operate a dissection of the  type  
(d, ~ 1 , . . .  ~ ,  7~) and we remove the black intervals, ~ and so on. After p 
operations we have d ~ white intervals, each of length 71 7 ~ . . .  7p. When  
p - +  oo we obtain  a perfect  set E nowhere dense, which is of measure zero i f  

1 R. S~LEM. On singular monotonic functions of the Cantor type. Journal cf Mathematics 
and Physics, Vol. 21 (1942), pp. 69--82. 
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d~ 7~ 7 2 . . .  ~ - ~  O. This will be always the case throughout the paper. The 
sequence 7~, 72 . . . .  is arbitrary, provided each 7~ satisfies the inequalities (1). 
The abscissae of the points of the set are given by the formula 

x = ~ (So) + V~ ~ (s~) + m 72 ~ (~s) + 7~ 7 s  73 ~ (~3) ~ . . . .  

where ~r (j) stands for ~j and each ek takes all values 1, 2, . . .  d. 
Let  now Fp (x) be a continuous non-decreasing function such that  Fp (0) = 

1 
-- 0, Fp (1) = 1, Fp increases linearly by ~/~ on each of the d p white intervals 

obtained on the pth step of the dissection, Fp is constant in every black inter- 
val. The  limit F (x) of F~ (x) as p -+  c~ is a continuous non decreasing func- 
tion, singular, having the perfect set E as spectrum, and such that  F (0) = 0, 
F(1)  = 1. We extend the function so as to have F(x)  = 0 f o r x - - < 0 ,  F ( x ) = l  

a~ 

for x--> l. The Fourier-Stieltjes transform ~, (u) = j" e~U~dF (x) is the limit, 

for k = c ~ ,  of 

Z ~ e x p  [iu0c (eo) + iu~ h Qr ( e l )  + ' -~- i u ? ] l  . . . 7 k -  1Gt ( ~ k - 1 ) ]  

the sum being extended to the d ~ possible 
Thus, writing 

we have 

1 
Q (~) = d (e ia, 

combinations of so, ~i, - . .  ~k-1. 

-~  eia..,q ~ -~ . . .  ~ eiCrdrP) 

?(u)  = Q (u) f i  Q(u71 ~ . - -  7k). 
k = l  

The Fourier Stieltjes coefficient 

1 

0 

will be denoted by c, or c (n). 
The above construction of a set E and of the corresponding function F will 

be used for the proof of Theorems I and II. For the proof of Theorems IV 
and V it is necessary to use more complicated sets in which not only the 
number 7, but  also d, ~ 1 , . . .  ~ change f rom one dissection to another (the 
type of dissection being, however, always the same for each white interval at 
a given step). If the successive dissections are of the type (d (k), a(1 k) . . . .  ,(k) 

where 

(2) (k) _ ~ I  ( i  = 2, 3 . . . .  d(k)), yk < 1 - -  O(d(k) 
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and if 

then 

d'k) 
Q(k) (~v) : dl~. ' ~ e~,) ~'1 ,,, 

}::1 

7 (u) - Q,l)(u) I I  Q k~l, (a ;~]I " " " I l k ) .  

k=l 

3. L e m m a .  Let P ( ~ ) =  21ei",'P + . . . .  r 'r, where the ~ are linearly 
indepemtent. Let  r > 0. There exists a positive T o (depending on r, d, the 2i, 
the ~i) such that  for T >_ To, and /or all values o~ a, 

( r (-. i v ) '  

The proof is immediate. Let 2q be the even integer such that  r ~ < 2 q < r  + 2. 
Then 

Z t ..... q '  . . . .  h l + . . . + h d _ = q  1 . . .  2 2 h d ~ h l  ! . . .  h , l !  ] ~ R 

R t)eing a sum of terms of the form A e;.,,'l' with non-vanishing i t. 
viously 

T4-a 

lira 1 /" 
tr 

uni /ormly in a. 

IP( )l  dq  = ~ ~ hl . /~ghd ~ - - .  q!  ~f~ 
�9 " ,l ~ h l ! . . . h , ~ ! l  

<_ q! ( ~  -~ . . . .  + 2~)q 

Hence for T ~ To, where To is independent of a, 

Then ob- 

hence 

T ~ a  

IT ie(~)12~dw 2q < 22qq2(2~ + . . .  + ;t~)~ 
a 

< 2 ~ + l ~ ( ~  + . . . +  ~ ) ~  

T+a 

P (~)]rd~o < 2 + 1  ~(2~ + .-- + 2~)~. 
a 

4 .  P r o o f  o f  T h e o r e m  I.  The  n u m b e r s  a,  ( 0 < a < l ) , a n d e > 0 a r e g i v e n .  
2 

Let s = -  + e. Take for d the smallest integer >--2 such tha t  
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(3) d ~ > _ 2  s + 1  ~. 

Having thus fixed d, determine the number ~ by the condition 

log d 
(4) i0g-i ,"~ = :c, 

1 
so that  0 < ~ < d .  

fying the conditions 

Fix now d numbers el . . . .  ed, linearly independent, satis- 

1 

1 

1 

d 

1 

from which it follows that  ~d < 1 -  $, that  is to say all inequalities (1) arc 
satisfied for ~ = ~. Afor t ior i ,  all inequalities (1) are satisfied when ~ is any 
positive number <.$.  Consider a sequence of numbers ~1, -~2, . . .  ,1,..~ . .  satis- 
fying the following conditions 

(5) 

1 
a l =  ~ ( 1 - - 2 - 2 ) g ~ l - - < ~  

a ~ = ~  1 (k+  -- - -  

( 

Denote by E(~I . . . .  ~ k . . . )  the perfect set obtained by the successive dissec- 
tions (d, ~1 . . . .  ~d, ~),  where the $~ satisfy the inequalities (5). To every 
sequence ~1 . . . .  ~k, . . .  satisfying (5) corresponds a set E. I t  is clear from (4) 
and (5) that  all such sets have Hausdorff dimension u. To every set E we 
associate the corresponding function F described above and having E as spectrum. 
Writing 
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we have  0--< Sk--< 1 and by  the  Steinhaus method,  we m a p  the  in terval  
0 ~ < t ~ l  on the " c u b e "  0 ~ $ k ~ < l  ( k =  1 , 2  . . . .  ) of infinitely m a n y  dimen- 
sions. I f  

t = . f l l f l 2 f l 3 . . .  

is the dyadic expansion of t we put  

~1 (t) = " ~1 ~3 ~6 " ' "  

~2 (t) = "  ~2 ~5/~9 * ' "  

~3  ( t )  : " f14 f18 ~ 1 3  " * " 

The correspondence is one -one ,  except  for sets of measure  zero. Moreover it 
is well known tha t  for a n y  measurable  function ~ (~1 . . .  ~v) one'  has 

1 1 1 1 

.[ '~b[~ i ( t ) . . .  ~,p(t)]dt = f f " "  j ' ~b (~  1 . . . .  ~p) d ~ l . . ,  d~p 
0 0 0 0 

whenever  ei ther side exists. 
The set  E ( ~ 1 ,  ~2  . . . .  ~k �9 �9 .) = JEt depends now on the variable t and we shall 

show t h a t  for a lmost  all t the Fourier-Stieltj 'es t r ans form of the  funct ion Ft (x) 
2 

corresponding to Et belongs to i q for q--> - + s = s. Writing, with the  nota-  

t ions of w 2, 

7t (u) = Q (u) ~ Q (u ~1 . .  �9 ~k) 
k = l  

it will be enough to show t h a t  ~t (u) belongs to L * for a lmost  all t, and to this 
end it will be sufficient to prove  t h a t  

(6) f du Jr,(u)l'dt < ~ .  
0 0 

First ,  fix a To such tha t  

T + a  

a 

for all a, and T--> To, as is clearly possible by  the lemma.  Then one has, 
b y  (3) 

T + a  

i f  1 ] Q ( ~ ) ] ' d ~ -  ~_•  = e (T >-- To). 
a d 2 lO 
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Now 

In (u) l l s = l ( u ,  p ) ,  
k = l  

say, p being any positive integer. But 

1 1 1 

f I ( U ,  ~ 9 ) d t  = . f  . . - f / ( l / . ,  : p ) d ~ ' l  . . .  d C p  = 
o o o 

1 1 1 

= j" ... f / ( u ,  p - -  1 ) d r  d r  ~,)l"d~v. 
0 0 0 

The last integral with respect to the variable Sp is equal to 

1 1 

.f lQ (u $~... #,,_~ [a, + (# - a p )  ~p])I' d ~p = f [Q (1 ~p + m)]~ d ~, 
0 0 

14m 
1 

= i f ]Q(~)l"d~ 

where 1 = U~l . . .  ~ , - 1 ( ~ - - a , ) >  bu~ p 1 (p + 1)3, b being an absolute constant. 

Choose p in function of u, such that  

" 1 
bump >- ro 

that  is to say 

(7) l o g u - - p l o g l / ~ - - 2 l o g ( p +  1) + l o g b - - ~ l o g T  o . 

I t  is sufficient to take, when u is large enough 

log u | 
p =  p(u) = 0log 1/~]  -'~ 1 

the brackets denoting the integral part, 0 < 1 being fixed, but  arbitrarily close 
to one if u is sufficiently large. Having thus chosen p = p (u), the inequality 

1 
b u #q - -  > To (q + 1) ~- - 

is satisfied a fo r t io r i  for every q ~ p; hence, successive integrations give us 

i]•'t (u) 
�9 ["dt<--QP, U>Uo(O). 
0 
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N()w 

QP = 
1 1 1 

Fix  llOW 

n u m b e r ,  

S 
- -  �9 Then ,  for u larger  t h a n  a f ixed 

2 5 

l 
0 

[ ]r ,(u)l ,  d t <  .. 1 ,  . 

B u t  

2 ,5 ~ i -6'  ~ 1 "  10 > 1 .  

This  proves  (6) and ,  consequen t ly ,  Theorem I. 

5. P r o o f  of T h e o r e m  I I .  Take  here, e a n d  e be ing  given,  (0 < e < 1, 
2 + r 

e > 0), s ............. . D e t e r m i n e  d as the  smal les t  in teger  > 2 such t b a t  
C 

d -~ > '2 + 1 2. 

Then  de t e rmine  ~, t i le xi,  the  &. as before. Nex t  de t e rmine  T o and  p = p ( u )  
in  the  same w a y  as in the  proof of Theorem I. T h e n  

I 1 

�9 f l  
[ ic,(,Ol, d t = r , (2~ , , ) l ,  dt<~ 1 < 1 

F i x i n g  0 such t h a t  0 ( '~ :  2 1)  ,~' = '2 .... 1, one ha,; 

1 

I ]ct(n)l~dt ~ - 1 )' n ~-- no. 

2 ~ 7, we have  

1 

~ , n r f l c t ( n ) l * d t  < oo 
0 
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and so n= ]c,, [~-~ 0 for almost every set. 
ponding fimctions 

})tit 

Afort iori ,  for such sets and the corres- 

1 
Ic, [ <  ,i ,  .~ ' 

s 2 s s 2 

which proves the theorem. 

b 
R e m a r k .  Taking cA = I ..... b, e = ~, 6 arbitrarily small, one proves the 

existence of a singular monotonic function of the Cantor type with Fourier 
1 

Stieltjes coefficients of order n,~_~. This result has been obtained in an earlier 

paper I by a quite different method. This method is inapplicable to the proof 
of the general result of Theorem II .  

6. P roof  of T h e o r e m  I I I .  This is reduced immediately to a known result. 
Suppose the existence of F non-constant having as spectrum a perfect set E 

of Hausdorff dimension ~., and Fourier Stieltjes coffi(-ients c .  = 0 n , . ~  ~ �9 

1r 2 . One has . ~  n~_.._ I < co. This proves, by elassieal results on capacity of sets, 

tha t  the (cA + e) eapaeit.y of E is positive (the terms of the series being asymp- 
totically of the same order as the terms of the series representing the energy- 
integral with respect to the distribution d r ,  and the generalized potential with 
kernel r-("+o). But the Hausdorff  measure of order cA-i--e being zero, the 
(cA + e) capacity is also zero, by a well k n o w n  theorem, and this contradiction 
ploves the second par t  of theorem I I I .  

The first part  is proved in a similar fashion, using the fact tha t  if y ( u ) E L ' ~  
2 

where q -- ~ + 2 s '  (e > 0, arbitrarily small, cA + 2 e < 1), one has 

r162 or 

. !  u '  . . . .  * < (u )b+-2*du  I I . . . . . .  ' - " - *  ] 
�9 "l U l - ( ~ - 2  ~ 1 1 

7. P roof  of T h e o r e m  IV. We only sketch the proof which is more com- 
plicated than the proof of Theorem I, without involving essentially new ideas. 

2 
Fix first an So > 2, taking, for instance, s o . . . .  q- 1. Let  ~ . . . .  r(cA) be the 

CA CA 

integer such tha t  So ~< 2 r < s o  + 2. Take an increasing sequence d (1~, d'2~..,  d '~) . . .  

1 R .  SALE~. On  s i n g u l a r  m o n o t o n i c  f u n c t i o a s  of t h e  C a n t o r  t y p e .  J o u r n a l  of M a t h e m a t i c s  
a n d  P h y s i c s ,  Vol .  21 (1942),  pp .  69--82.  
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For each d k) determine a ~(k)such that  log d k) = a log 1/'~ 'k~. We construct 
the polynomial Qk)(6) of w 2 by choosing the numbers o:'ik~ , (j = 1, 2 . . . .  d (~)) 
such that  

1 
o < ~i~> < ~ - ~ ~) 

1 
~k) < a(k) ~/ < (j = 2, 3, d ~k/ 

j - -  0 ( . i _  1 d ~ " . . , 

(so that  all inequalities (2) are satisfied for ~k = ~k:), and we further submit 
the :r to the condition that IX hi :r has a positive lower bound #+k) when 
the integers hi take all possible values, not all zero, such that  [hi[ G r. I t  is 
easily seen that  the conditions for the ~ )  are compatible if #f~)= (Cr)-Zg (k), 
C being an absolute constant. This number #~k) is relevant in the determina- 
tion of Tgk) , which replaces T O at each step, and which is such that  

T + a  T 4 a  
~1 Q k) 1 1 Ar 
[T I (q~)l'd~ , <  [Q 'k)(@l 2rd ~ - <  

�9 V ~ - ~  
a a 

if T >---To k), s ~ 2r, Ar depending on r only. One finds by easy calculation 

that  Tok/ may be taken equal to (Cr) ad'k) . 
Now, the sequence ~k which will, as before, constitute our set of infinitely 

many variables of integration, will satisfy the conditions 

1 ) ~(k/ 
~k) 1 (k + 1) 2 -< ~ ~< " 

The condition (7) will be replaced by 

where 

P 1 
l o g u - - ~  log ~ - - 2 1 o g ( p +  1) + l o g C > l o g T ~  p+I) 

1 

= 3 d (v+l) log Cr 

v 1 p 
Z1 log 1/~'k) can be replaced by ~r  logd  ̀ k,. Let us assume, as we 

may, that  d :~) increases in such a way that  

d p + I )  = o{ ~ log d(k)}. 
1 

We can take, e.g., d k) = k  + 1. Then p = p ( u )  can be determined so as to 
have 
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P 

log d 'k) = 0:r log u u > Uo (0) 
1 

where 0 < 1  can be chosen as close to 1 as we wish. Let  now s be a fixed 
2 

exponent  such tha t  So > s > - ,  and fix 0 such tha t  Os > 2/~. Then 
0r 

1 

f AV AV A; '  I~,t (u)I'dt <-- [dr2 ) . . .  d(p+~)],~_ < [d(1 ) . . .  d(p)],,.~ - o , '  
0 ~ 2 

But  log u is of order p log p, and thus p is of order log u Hence 
log log u" 

.I'du f l~t(u)]*dt < ~,, 
0 0 

2 
which proves tha t  given s such tha t  So > s > , there exists a set G, of measure 

0~ 

1 in (0, 1) such tha t  for t 6 G,, the corresponding ~t (u) belongs to L' t  I t  is enough 
2 

now to take a sequence s o > s ~ > s 2 . . . > s m . . . ,  sm~ , to  prove the exist- 

2 
ence of a Fourier  Stieltjes t ransform 7t(u) belonging to Lq for every q > - .  

8. P r o o f  of T h e o r e m  V. Again we only sketch the proof, inasmuch as the 
result  is a p p a r e n t l y ' n o t  the  best possible one. We consider a sequence of in- 
tegers r~ increasing infinitely with k. Following the  method of the preceding 
paragraph we determine the polynomials Qm (6), for an increasing sequence din, 
m such a way tha t  

T + a  

1 ( 2 r~k (8) ~ ~ ]Q(k) (~)[2~kdw <-- [r 
t$ 

for T > T~ k). I t  is no t  difficult to  see tha t  T~o k) can be taken equal to (Cra) 3't(k), 
provided rk = o (d(kl), which we shall suppose. We remark tha t  (8) implies, 
for p < k, 

T4-a  1 i 

{ i _< . . . . . . .  

VM 
tt 

(9) 
T+a 

1 t" 2r~v 
T i  IQ(~)(~)12rPd~ < [d~k)] r, 

a 
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We write now here, changing sl ightly the  method  of Theorem I: 

2 P 

-< | l  I Q  : _Olz"9 
k=p  i-1 

and we integrate  successively with respect  to ~-~9-a, C 2 9 - o , . . .  ~p, t ha t  is t,) 
say p t imes.  Provided  t h a t  p = p (u) satisfies the condition 

2t, 1 
0o) log - log 

9 -  1 

one has, using (9), 

2 log (2 p) ~,- log b > log TI~") 

= 3 d (2~'* log Cry, 

1 

" 2 p ( r 9 + 1  ~'9+2 - - -  r 2 9 )  rp 

�9 l y t ( u ) l " - r ~ ' d t ~  [d ( ~ )  _i .  d, eg)J"p 
0 

(2 r~9~ 9 
< ~ _ . f i 9 !  . . . . . .  

- -  [d(p) . .  . d(~v-')]q,  

Now, taking again d t) = k 4 -1  and log rk = O (log dt.) one sees t ha t  ( 1 0 ) i s  
satisfied by  tak ing  p = p (u )  such that :  

2p 

log d '~'-1) = 0 v :r log u 
9 - 1  

where 09 is a certain funct ion of p with the  p rope r ty  Of < l ,  09 -~ 1 as u, 
and so p = p ( u ) ,  increase infinitely. Then 

1 

]'[yt(2~n)l%~dt < (2rr2w)9 
- -  . 

�9 - -  h o p  e~r 9 

0 

log n 
:Now log n is of order  p log p, and so p is of order l o g l o g n "  

rp ~ }/logg p .  Then 

p [log 2 + r9 log r2p] = 0 (p  ]//log p log log p) < p 10: P 

Take,  now, e.g., 

< ]og n 

for large n, so t h a t  for n > no, 

1 

f 
0 

I ct (n) [ 2rp d t < •Op  ~: r p -  i " 
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T a k i n g  v,, =: 0~, ~ r ~ , - - 3 ,  one  has  

t 

x,  ,~,,, t I~, (n)I ~',, d~ < 
0 

and  thus ,  for a l m o s t  a l l  t, 

n'~lcnl2",, S~ t 

for n large  enough .  H e n c e  the  ex i s t ence  of  a func t ion  such  t h a t  

b u t  

1 
I c,, I ~ n,,./2 (n > no) rp 

2 rv 2 2 rv 2 ~ 

with  Sn = 0 (1), wh ich  p r o v e s  t h e  t h e o r e m .  

T r y c k t  den 21 n o v e m b e r  1950 

Uppsala 1950. Almqvist & \Viksells Boktryckeri AB 
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