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On singular monotonic functions whose spectrum has a

given Hausdorff dimension

By R. SaLem

1. This paper deals exclusively with continuous monotonic functions which
are singular and of the Cantor type, that is to say which are constant in each
interval contiguous to a perfect set of measure zero. This perfect set will be
called the spectrum of the function.

We shall first prove the following results:

Theorem I. Given any number a, 0 << a <1, and a positive e, arbitrarily
small, but fixed, there exists a perfect set E, with Hausdorff dimension a, and «

non-decreasing function F(x), singular, with spectrum E, such that the Fourier
2

Stieltjes transform of dF belongs to LT for cvery q = . + &

/]

Theorem II. Guwen any number a, 0 < a <1, and a positive £ arbitrarily
small, but fixed, there exists u perfect set B, with Hausdorff dimonsion «, and «a
non-decreasing function F(z), singular, with spzctrum E, such that the Fourier-

li4

Stieltjes coefficients of dF are of order 1in>

Remarks.

1). Theorem I could be deduced from Theorem II, but since the method of
the proof is the same, we prove both theorems.

2). Theorem I has been proved in an earlier paper! for the case « = 1 (the
Lebesgue measure of the set being of course zero), even in the stronger form.
that the Fourier Stieltjes transform of the singular function belongs to L for
cvery g > 2. The argument is the same as in the present paper, although much
simpler.

We next prove:

Theorem III. No singular function (cxcept comstant) exists having as spectrum
a perfeet set ¢f Hausdor/[ dimension « >~ 0, and whose Fourier-Sticlties transform
f)

belongs to LY for some q < ™.
a

' R. SatEM. On sets of multiplicity for trigonometrical series. American Journal of Ma-
thematics, Vol. 64 (1942), pp. 531—538.
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Likewise, no singular function (except constant) can have as spectrum a perfect
set of Hausdorff dimension a > 0, and have Fourier Stieltjes coefficients of order

)

n 2 >0 (no matter how small ¢ is).

Remark. The results of theorem IIl are trivial for a = 1. So we prove
them for 0 <a < 1.

Finally, we show that the results of theorem I and II can be sharpened so
as to obtain:

Theorem IV. There exist singular monotonic functions having as spectrum a
perfect set of Hausdorff dimension a (0 << a << 1) and whose Fourier-Stieltjes trans-

2
form belongs to L% for every q > " .
a

Theorem V. There exist singular monotonic functions having as spectrum a
perfect’ set of Hausdorff dimension a (0 << a << 1) and whose Fourier-Stieltjes coef-

Q (n)

ficients are of order ~— -, 2 (n) increasing less rapidly than any positive power

n2

of n.

Remark. As we have said, Theorem IV is known for @ = 1. Theorem V,
in case a = 1, has also been proved in an earlier paper.

2. Preliminary constructions. Let OA be a segment of length L whose
end points have abscissae 0 and L respectively. Let d be an integer = 2.
Let a;, ay, ... as be d distinct numbers such that

0<yy<ay - <ag<<l.

Let each of the points L a; be the origin of an interval (Laj, La; + Ln) of
length L7, the number # satisfying the conditions

L >0, g<ag—a, P<az— 0y, ... <ag—ag-1, N<l—ag.

The d disjoint intervals thus obtained will be called ‘“‘white’’ intervals, the
d + 1 complementary intervals with respect tc O.A will be called “black” inter-
vals, and the dissection of OA4 will be said to be of the type (d, aj, a,, . ..
<. 0y 7). .

Starting from the interval (0, 1) and fixing the numbers d, ay, ay, . . . ag, We
operate a dissection of the type (d, «y, ... ag, ;1) and we remove the black
intervals. On each white interval left we operate a dissection of the type
(d, oy, ... g, ) and we remove the black intervals, — and so on. After p
operations we have d? white intervals, each of length #; % ... 7. When
p — oo we obtain a perfect set E nowhere dense, which is of measure zero if

! R. SaLem. On singular monotonic functions of the Cantor type. Journal of Mathematies
and Physics, Vol. 21 (1942), pp. 69—82. ‘
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dp g ... 1p—>0. This will be always the case throughout the paper. The
sequence 7y, 7y, . . . is arbitrary, provided each #; satisfies the inequalities (1).
The abscisse of the points of the set are given by the formula

T = a(e) + nraley) + mumac(es) + Mmyensx(es) + -

where «(j) stands for «; and each e takes all values 1, 2, ... d.
Let now Fp(z)} be a continuous non- decreasmg function such that F,(0) =

=0, Fp(l) = 1, F, increases linearly by -= on each of the d” white intervals

d
obtained on the pt: step of the dissection, F), is constant in every black inter-
val. The limit F(x) of F,(z) as p— oo is a continuous non decreasing func-
tion, singular, having the perfect set F as spectrum, and such that F (0) = 0,
F(1) =1. We extend the function so as to have ¥ (z) = 0 for z <0, F (z)=

for « = 1. The Fourier-Stieltjes transform y (u) = j é**d F (z) is the limit,

for k = o0, of
V1 . , C
Zﬁexp [tuo(gg) T tumya(ey) + -+ sun ... gr-1o(ex-1)]
the sum being extended to the d* possible combinations of &, ¢, ... &—1.
Thus, writing '
1 . . y
Q((P) = 3(eta,rp 4 gt 4. 4 e“’d’l’)

we have
y@) =Qw [l Qumna ... ).
k=1
The Fourier Stieltjes coefficient

1
fez-"-i’””dF =y ((2an)
0

will be denoted by ¢, or ¢(n).

The above construction of a set E and of the corresponding function F will
be used for the proof of Theorems I and II. For the proof of Theorems IV
and V it is necessary to use more complicated sets in which not only the
number #, but also d, a;, ... as change from one dissection to another (the
type of dissection being, however, always the same for each white mnterval at

a given step). If the successive dissections are of the type (d®, «f®, . U&,, k)

where
(2) >0, mp <ol —o¥ (5 =238, ... d8), g <1— ok
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and 1f
1 k)
o y
QV‘}L) ((P) d— A euzj ¢
j=
then
y(u) = QY (u) H QF 1 (wny ... M)
k=1

3. Lemma. Let P (@) = 2,€&“? 4 - 4 Jyei“a?, where the «; are linearly
independent. Let r > 0. There exists a positive Ty {(depending on 7, d, the 1;,
the o;) such that for T'= Ty, and for all values of a,

1 rhe ¥ -r \Y j2 :
T { |P((p)‘rd(p <2 (é -+ 1)2 (X A7)

a

The proof is immediate. Let 2¢ be the even integer such that »r < 2q <r + 2.

Then
IP ((P) ‘2(1 = 2 A2ho o 22hg ( 4 '__,,.,)2 + R
}ll . }l([!

N d

R being a sum of terms of the form Ae*? with non-vanishing g. Then ob-
viously

T+a

2 \IPY: qV 2
Ly /IP Brdg = 2N A (h ) f’.'i},,{!)

lL
<q! (A 4+ A3
<t (A 4+ A
uniformly in a. Hence for T = T, where T, is indépendent of a,

T+a

1
f|P |2qd(p 2‘1<2""1q (A2 + -+ 222

1
< 2% (g + 1) B+ + )2

hence
T+a

1 [IP@rde<2(y1)sate i

4. Proof of Theorem I. The numbers a, (0 <<« < 1), and & > 0 are given.
2 .
Let s =~ + e. Take for d the smallest integer = 2 such that
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£ 8
(3) 49 = 2(3 + 1)2.

Having thus fixed d, determine the number & by the condition

log d
4 Do T =
®) log 176~
1 . . . .
so that 0 < & < Fix now d numbers o, ... ag, linearly independent, satis-

e
fying the conditions

1
0<a1<dA§

1
E <oy — oy <

d

E<Cag—ay <

d

. 1
:<a¢i‘0(d*1<d‘

from which it follows that wg<<1— &, that is to say all inequalities (1) are
satisfied for # = £ A fortiori, all inequalities (1) are satisfied when # is any
positive number <& Consider a sequence of numbers &, &, ... & ... satis-
fying the following conditions

a1:€(1_‘§12' _<_§1SE
m-t(1-g) =6 =¢
(5) 3
% 5(1 »J%") =&HE=<¢
(k- 1')2

Denote by E (&, ... & ...) the perfect set obtained by the successive dissec-
tions (d, a4, . .. aq, &), where the & satisfy the inequalities (5). To every
sequence &y, ... &, ... satisfying (5) corresponds a set E. It is clear from (4)
and (5) that all such sets have Hausdorff dimension «. To every set E we
associate the corresponding function F described above and having E as spectrum.
Writing

& = ax + (& — ax) Lk,
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we have 0=<(; =<1 and by the Steinhaus method, we map the interval
0=<t=1 on the “cube” 0 ={; <1 (k=1,2,...) of infinitely many dimen-
sions. If

t=-P1BsPs-.-

is the dyadic expansion of ¢ we put

Ga(®) =-P1BsPs ---
Co(t) =-PaBs By -
(3(t) = BaBs s ---

The correspondence is one—one, except for sets of measure zero. Moreover it
is well known that for any measurable function @({; ... {p) one has

l_ 1 1 1
[o1ao. . o@a=[ [ [@l .. L.
0 00

whenever either side exists.
The set E (&), &, ... & ...) = E; depends now on the variable ¢t and we shall
show that for almost all t the Fourier-Stieltjes transform of the function F;(x)

2
corresponding to E; belongs to L? for ¢ = = + ¢ = s. Writing, with the nota-
o

tions of § 2,
w [JQ@é ... &)
k=1

it will be enough to show that y,(u) belongs to L* for almost all ¢, and to this
end it will be sufficient to prove that

© 1
(6) [du [|pu)dt<co.
0 0

First, fix a T, such that

T+a ’
1 s sz 1
r [1e@lap=2(5+1)" 5

for all @, and T = T,, as is clearly possible by the lemma. Then one has,
by (3)

Tfl@ Wags—ti=0  @=1y)

d2 10
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Now

»

= 1 }Q(ufl Ek)'szf(u: p):

k=1

say, p being any positive integer. But

1 1 1
ff(u’i’)dt { ff(u p)dé ... d =
0 0

:f
0

The last integral with respect to the variable &, is equal to

1
fp—1)dL .. Al [1QE ... &),
0

O%w

1 1
“Q(u§1 copeafap + E—ap G PdE, = fIQ(lCI' +m) | ds,
0 0

l+m

= ; / Q@) de

m

where | = ué ... & 1 (E—ap) > bug? (—}1)2, b being an absolute constant.
Choose p in function of «, such that

5 1
P>
bué PP T,

that is to say
) logu —plog1/&—21log (p + 1) + log b = log T.

It is sufficient to take, when u is large enough

_ B logw |
p=1p(u) = [Blog 1/5] 1

the brackets denoting the integral part, 6 < 1 being fixed, but arbitrarily close
to one if u is sufficiently large. Having thus chosen p = p(u), the inequality

u &l =1,

1
(g + 1)

1s satisfied a fortiori for every ¢ << p; hence, successive integrations give us

1y
[ln@lkdt=<gr,  u>uy(0).
0
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Now
X 1 1 1
o = s ey T TN togu logd {8 ¢\
(l(;1~ m) ? d('{f 10) og 12 a0 o 12 (-_z_ i(})
Fix now 0 such that ()(S) - 1-80») i—* ; Then, for w larger than a fixed
number, .
! ]
s < 'l
|ye (u) | dt 1;;,)
o w (,2 5
But

s £ 1 3¢ s ¢ 3uae
R T =1+ > 1
5 5 o« 100 “( ) =

This proves (6) and, consequently, Theorem I.

5. Proof of Theorem II. Take here, « and & being given, (0 < a <1,

3 !
LT

e>0), == 2% Determine d as the smallest integer = 2 such that
e

9 $
dt = 2(; + 1)2-

Then determine &, the x;, the & as before. Next determine I’y and p = p(u)
in the same way as in the proof of Theorem 1. Then

1 1

' 1
f lec(my P de = {Iw Qau)fdi= Sy =
0 0 d(T) oA ()

)

Fixing 0 such that 6 (57; 1) = 1, one has

Writing « ( — 1) = 2 4+ y, we have

[NR R

1
St [lem)rde < oo
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and so n'|e, | > 0 for almost every set. A fortiori, for such sets and the corres-
ponding functions

hut

which proves the theorem.

. ) L
Remark. Taking o« =1--§, & = ;, o arbitrarily small, one proves the
existence of a singular monotonic function of the (antor type with Fourier

Stieltjes coefficients of order This result has been obtained in an earlier

et

paper’ by a quite different method. This method is inapplicable to the proof
of the general result of Theorem II.

6. Proof of Theorem III. This is reduced immediately to a known result.
Suppose the existence of F non-constant having as spectrum a perfect set E

ntate

of Hausdorff dimension o, and Fourier Stieltjes cofficients ¢, = ()( , )

N\ ICN I2
One has Z
that the («x 4 ¢) capacity of E is positive (the terms of the series being asymp-
totically of the same order as the terms of the series representing the energy-
integral with respect to the distribution dF, and the generalized potential with
kernel 7=+, But the Hausdorff measure of order « -+ & being zero, the
(o + €) capacity is also zero, by a well known theorem, and this contradiction
proves the second part of theorem III.
The first part is proved in a similar fashion, using the fact that if y(u)€ Lt

1w, <<oo. This proves, by classical results on capacity of sets,
nl=e

where ¢ = 07372;, (e >0, arbitrarily smzll, « + 2¢ <C 1), one has
(u) 2du N 2 a2 * du l—a—2¢
[L";Ll:;[_e <! | IY(U)IHZEM} { ﬁ;:,‘-'g‘]

7. Proof of Theorem IV. We only sketch the proof which is more com-
plicated than the proof of Theorem I, without involving essentially new ideas.

e 2 . . 2
Fix first an sy > ~, taking, for instance, s, = . 4+ 1. Let » = i (x) be the
o

integer such that s <2r<s, + 2. Take an increasing sequence dV, d% ... d% . ..
T {

! R. 8aLEM. On singular monotonic functioas of the Cantor type. Journal of Mathematics
and Physics, Vol. 21 (1942), pp. 69—82,
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For each d* determine a £W® such that log d® = « log 1/£%. We construct
the polynomial Q% (¢) of § 2 by choosmg the numbers o', (j =1,2,...d¥)
such that

0 <ot <dk) 3

£4 < ot;"’) ot”” d(lk (G3=23,...d%

(so that all inequalities (2) are satisfied for n; =~ £%), and we further submit
the @ to the condition that | ¥ A;ect| has a positive lower bound u® when

the 1ntegers h; take all possible values, not all zero, such that |A;| <r. It is
easily seen that the conditions for the «* are compatible if u* = (Cr)-2d®),

C' being an absolute constant. This number u'* is relevant in the determina-
tion of T'¥), which replaces T, at each step, and which is such that

THa

%j “elde *<{ [lQ" @) |"wa12'< Vf;“

a

¥ T'=T}, s=2r, A, depending on r only. One finds by easy calculation
that T#® may be taken equal to (C 7)3‘1”‘).

Now, the sequence & which will, as before, constitute our set of infinitely
many variables of integration, will satisfy the conditions

1

w1 Y« (®)
o (1= ) e

The condition (7) will be replaced by

»
log u — Z, log ﬁ-— 2log (p + 1) + log C = log T?+V
1
= 3d®tVlog Cr

L4 P
where Z log 1/£% can be replaced by ! Z log d®. TLet us assume, as we
1 *
may, that d* increases in such a way that
) I i k)
drtl) = log d' }
14

We can take, e.g., d¥ =k + 1. Then p = p(u) can be determined so as to
have '
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P
2 log d* = o log u u > ugy (0)
1

where 0 <1 can be chosen as close to 1 as we wish. Let now s be a fixed

2 .
exponent such that s, > s> =, and fix 6 such that 6s > 2/«. Then
o

sp ’ sp sp
jl?” Yde < 2 =X 1 - '>"z=4L“
[df ). (pﬂ] [d( I AL Py

w 2

But log w is of order p log p, and thus p is of order .l.ElgsL_ Hence

0 1
f duf|yt(u)]‘dt<oo,
0 0

. . 2 .
which proves that given s such that sy, > s > -, there exists a set G5 of measure
[+ 4
1 in (0, 1) such that for ¢ € G;, the corresponding y: () belongs to L*. It is enough

2 .
now to take a sequence sy > s, >S5 ...>8m ..., S;m— -, to prove the exist-
o

. . . 2
ence of a Fourier Stieltjes transform 7, (u) belonging to L¢ for every q > o

8. Proof of Theorem V. Again we only sketch the proof, inasmuch as the
result is apparently not the best possible one. We consider a sequence of in-
tegers 7; increasing infinitely with 4. Following the method of the preceding
paragraph we determine the polynomials Q%) (), for an increasing sequence d'*,
m such a way that

T+a

(8) fIQ(’“ ) l“kdw—[

2 ik

e

for T=1T¢. It is not difficult to see that T can be taken equal to (Crg)3?"

provided r; = o(d'®), which we shall suppose. We remark that (8) 1mphes
for p <k,

T4a 1 L -
(71 @pag) ™ =2
T+a 9 r’p
© 7109 @Frdp= i

a
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We write now here, changing slightly the method of Theorem I:

2p
P =< 1l 1% @& ... &
k=p+1
and we integrate successively with respect to Cop-1, C2p-2, ... {p, that is to

say p times. Provided that p = p(u) satisfies the condition

(10) log u — 2, log L(,l —21log (2p) + log b = log T2

p+1
= 3d2» log Cry

one has, using (9),

1

> 2P (rp+1 Tps2 - . - T2p)'P
/ lye(u)Prode <~ rdj()pu’? dzl"’]"b
0
(0 rr.,,)p
= e A

Now, taking again d%¥ =% + 1 and log ri = o (log dr) one sees that (10) 18
satisfied by taking p = p(u) such that:

2p
Z log d*~1 = 0,a log u
1

where 0, is a certain function of p with the property 0, <<1, 6, > 1 as u,
and so p = p(u), increase infinitely. Then

1 ( 7 \P
. 9y 11)
2p
‘/ I'Yt .47['71« Ierdt = nﬂparp :
0
. . log n
Now log n is of order p log p, and so p is of order e Take, now, e.g.,
loglog »

7o~ Vlog p. Then
S log
pllog 2 + 7, log rzp] = 0 (pVlog p log log p) < ? 92g P log n

for large n, so that for n > n,,

1

nﬁp @ rp—l

[|c, (n)prode < -,
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Taking v, == 0,2 r, — 3, one has

1
Mot I ler(m)Erodt < oo

d—
0
and thus. for almest all ¢,
wn e, |2 = 1

for n large enough. Hence the existence of a function such that

1
len] = 2ty (n > ny)
but
P By 3 x
2, 2 2, 2

with & = o (1), which proves the theorem.

Tryckt den 21 november 1950
Uppsala 1950. Almqvist & Wiksells Boktryckeri AB
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