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On the  l inear  p r e d i c t i o n  p r o b l e m  for  certain  

s tochast ic  processes  

B y  HARALD CRAM~R 

1. Consider an infini te sequence of complex-valued  random var iables  

�9 �9 . : X - 2 ~  X - I ~  X 0 ~  X l ~  X 2 ~  �9 . . 

with f ini te  second order  mean values.  Fo r  the  sake of s implici ty,  we shall  assume 
th roughout  t h a t  all f irst  order  mean  values  of the  x~ reduce to zero, while there  
is a t  least  one x= having a var iance  different  from zero: 

E xn = 0 for all n, 

E I x~ I S > 0 for some n. 

The covariance ]unction of the  xn sequence is 

.R (m, n) = E (x,, ~.). 

W e  m a y  in te rpre t  x~ as a measure  of the  s ta te  of some observed var iab le  
sys tem a t  the  t ime po in t  nt, where t is a given quan t i ty .  The  sequence of the  xn, 
wi th  n . . . .  , - 1 , 0 ,  1 . . . .  , will then  represent  the  t empora l  deve lopment  of th is  
system, and  will const i tu te  a stochastic process with discrete time. In  the  sequel, 
we shall  a lways t ake  t =  1, so t h a t  the  subscr ip t  n m a y  be d i rec t ly  regarded  as  
measur ing t ime.  

The prediction problem for a process of this  k ind  is the  problem of predic t ing  
the  s ta te  of the  process a t  some future  t ime  point ,  when i ts  pas t  deve lopment  
is assumed to be more or  less known. I n  this  paper  we shall  only  be concerned 
with  linear least squares prediction. Thus we shall wan t  to  f ind the  "bes t  poss ib le"  
predic t ion  of a cer ta in  x= by  means  of l inear operat ions  act ing on certain vari-  
ables belonging to  the  pa s t  of the  process, in te rpre t ing  the  "bes t  possible"  in the  
sense of minimizing the  mean  value of the  squared error  of prediction�9 

Consider the  expression 

Min E ] x , - C o X ~ _ p - c l  xn_v_ 1 . . . . .  cqx=_r_ql2=s~q>O, 
c o . . . . .  t q  

where n, p and  q are f ixed integers ~ wi th  p>O, q > 0 ,  while the  min imum has to 
be t aken  for all complex quant i t ies  c o , . . . ,  %. Then snvq will be the  least  possible  
error  of predict ion,  when xn has to be l inear ly  p red ic ted  in te rms of x~_p, x~-p-x, 
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�9 . .  ,xn v-q. Obviously  snva will never  increase when i/ increases, while n and p 
r ema in  fixed. The l imit  

l im s,vq = a . ,  > 0 
q---~ Oo 

will thus  a lways exist,  and  will be called the  prediction error for x~, when pre- 
dict ion is based on all  the  var iables  of the  process up  to and  including x~_,. W e  
easi ly  f ind t h a t  

0 < o'nl < o'n2 < "".  

The same th ing  m a y  be expressed a l i t t le  different ly,  if we look a t  the  quest ion 
from the  poin t  of view of Hi lbe r t  space geometry.  Consider the  Hi lbe r t  space 
H n - v  spanned b y  all the  var iables  xn_~, x n - v - 1 , . . . .  The elements  of th is  space are 
r andom variables,  which are ei ther  finite l inear  combinat ions  of xn-v, x~-r -1  . . . .  , 
or l imits  in the  mean  of sequences of such combinat ions.  The inner  p roduc t  and  
the  norm are defined by  the  usual  expressions 

Ilyll:(Ely l) . 
B y  P~_,  (xn) we denote  the  projec t ion  of x ,  on H , _ . .  Then z =  P~_v (xn) is the  
uniquely  de te rmined  e lement  of Hn-~ which minimizes the  d is tance  I I x~ - zH .  We 
shall  call Pn_v (x~) the  best possible linear prediction of x~ in t e rms  of xn-v. x~-v-1  . . . . .  
The corresponding error of predic t ion  will be 

If  an~ = 0 for all  n and p, exact  l inear  predic t ion  is a lways  possible. I n  this  
case every xn can be exac t ly  represented  in te rms of var iables  belonging to  an 
a rb i t r a r i ly  remote  pas t  of the  process. A process of th is  k ind  will  be called a 
deterministic process. 

On the  other  hand,  every  process such t h a t  onv > 0 for a t  leas t  one pa i r  of 
values of n and  p, will be called non-deterministic. E v e r y  non-determinis t ic  process 
m a y  be represented  as the  sum of a de terminis t ic  component  /~nd a l inear  com- 
b ina t ion  of cer ta in  innovations, which represent  the  "new"  random impulses en- 
ter ing into the  process a t  cer ta in  moments .  I n  fact ,  i t  can be shown (el. Cra- 
mdr, 2) t h a t  for every  non-determinis t ic  process, there  exists a uniquely  deter-  
mined,  finite or infini te  sequence of integers 

such t h a t  
�9 .. < r _ l <  r o < r l <  -.- 

x , =  ~ c , r ~ k + y , .  (1) 
r k ~ r t  

Here y ,  is the  determinis t ic  component  of the  process, while the  ~rk are r andom 
var iables  such t h a t  

E (x. & ) =  c.~,, E(y.&)=o. 
F u r t h e r  ~ I c.r,] ~ is convergent ,  so t h a t  the  series in the  expression for xn con- 

r k _ ~ n  
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verges in the mean. If  n is a member  of the rk sequence, the quant i ty  cn~ is 
real and positive. Finally, the prediction error an~ is given by the expression 

a~p= ~ [ Cn~k [ 2 . 
n - p < r k ~ n  

I t  follows tha t  a~l > 0 when and only when n is a member of the rk sequence. 
Thus  it will be seen tha t  every rk is a point o/indetermination, where the process 
receives an  innovation proportional to ~k. On the other hand, when n is different 
f rom all rk, we have a~l = 0, so tha t  xn can be exactly predicted in terms of the 
preceding variables x~ 1, xn_2 , . . . ,  and there is no innovation corresponding to 
the t ime point  n. Thus in the expression (1) of x~, the non-deterministic com- 
ponent  is a linear combination of the innovations received by the process in all 
its points of indetermination preceding or coinciding with the time point n. 

2. The linear prediction problem has been thoroughly studied for the important  
class of stationary processes, which are characterized by  the fact  tha t  the cova- 
riance function R (m, n ) =  E (x m ~ )  only depends on the time difference m -  n. (We 
are not  here concerned with the so called strictly s ta t ionary processes, which 
satisfy more stringent conditions.) For  this class of processes, the sequence rk 
considered in the preceding section contains every integer n, and the representation 
(1) reduces to a decomposition theorem due to H. Wold, 1. With  respect to the 
general theory  of s ta t ionary processes, and in particular the prediction problem, 
we may  refer e.g. to  the books by Wiener, l, and Doob, 1. 

One of the most  impor tant  properties of the class of s ta t ionary processes is 
tha t  they  admit  a spectral representation by means of a stochastic integral of 
Fourier type. L o i r e  (1) has introduced a more general class of processes, which 
he calls harmonizable processes, and which possess spectral representations of a 
similar kind. I n  this paper, we shall consider the prediction problem for a group 
of harmonizable processes satisfying certain regulari ty conditions. 

Consider a stochastic process such tha t  x~ is given by the stochastic integral 

2n 

x~= f d ~  cl z (u), (2) 
0 

where z (u) denotes, for every u in the interval 0 < u < 2 ~, a random variable 
such tha t  

g z ( u ) = O ,  E ( z ( u ) z ( v ) ) = F ( u , v ) ,  

where F (u, v) - - in  general complex-valued--is  of bounded variation over the square 
C: 0 < u, v -< 2 ~. Obviously 

F (v, u) = F (u, v), 

while F(u, u) is real and non-negative. Under  these conditions, the stochastic 
integral (2) can be defined as a limit in the mean of certain Riemann sums, and 
the variable x, determines a harmonizable stochastic process. (Cf. also Cram6r 1.) 

I n  the sequel, we shall assume tha t  the function F (u, v) satisfies two addi- 
tional conditions, which we denote by (A) and (B). Thus we shall assume: 

u v 

F (u, v) = f f [ (s, t) d s d t, (3) 
0 0  
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where 

(A) /(s,t) belongs to L 2 over the square C. 
(B) /(s,  t) is bounded in the  vicini ty of the diagonal s = t of C, so t ha t  there exist 

posit ive constants  h and M such tha t  I / (s, t) l < M for I s -  t I < h. 

The covariance function of the xn process is then given by  

21t 27t 

R (m, n) = E (xm ~ )  = f f e t(m u- nv) d F (u, v) 
0 0 

2.2~ (4) 

0 0 

More generally, for any  g(u)and h (u) belonging to L 2 over (0, 2z  t), the r andom 
variables 

2~ ~ 

~ = f  g(u)dz(u), ~ = f  h(u)dz(u)  
0 0 

are well defined, and we have 
2~ 2~ 

E 0) = f f g (u) h (v) / (u, v) d d v. (5) 
0 o 

The function F (u, v) is called the spectral/unction of the xn process, and  is said 
to define the spectral distribution of the process, which is a distr ibution of com- 
plex-valued "mass "  over  the square C, such tha t  every surface element d u d v 
carries the mass  /(u, v)du d v. The function / (u ,  v) is the spectral density of the  
process, while z (u) defines the corresponding spectral process. 

I have elsewhere (Cram~r, 2) given a sufficient condition tha t  a harmonizable  
process will be deterministic.  In  the present  note, I shall be concerned with an  
xn process as defined by  (2), and such t ha t  the corresponding spectral  densi ty  
/ (u, v) satisfies the  conditions (A) and (B). I t  is proposed to find, for this process, 
the conditions under  which an arbi t rar i ly  given sequence of integers rk will con- 
s t i tute  the complete set of points  of indeterminat ion of the process. 

3. Suppose t h a t  we are given an xn process as defined by  (2), with a spectral  
function F(u,v) satisfying (3), and a spectral  densi ty / (u ,  v) satisfying the con- 
ditions (A) and (B). Le t  there further  be given an increasing sequence of integers: 

�9 " ~ r_l~ ro~ r l~  "", 

which m a y  be finite or infinite, in one or both  directions. 
In order that the given r~ sequence will constitute the complete set o/ points o/ 

indetermination o~ the given x, process, the/ollowing condition is necessary and su/- 
/icient. The spectral /unction F (u, v) should admit a development ol the/orm: 

F (u, v) = ~ tk  (u) t k  (v) § (7 (u, v), (6) 
rk 

where G (u, v) is the spectral /unction o /a  deterministic harmonizable process, while 
the series in the second member converges absolutely for all u and v, and we have 
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= ~,,~ e +/3k u + 7k, (7) 
n ~ r k  

the one-sided trigonometric series occurring here being absolutely convergent/or all u, 
while the o~, fl and y are constants such that ar~k~=O /or every rk ~=0, f lk=O /or rk>0,  
and the series 

[ ~ k  [ 2 , 
r k < n  

extended over all r k < n, converges /or every /ixed n. 
We shall first show that  the condition is necessary. Since by hypothesis r~ is 

a point o f  indetermination of the given x~ process, the innovation 

is not identically zero. As in the preceding section, we may  take Crk~k real and 
positive, and such tha t  E I ~kl 2= 1. As before we write 

c,~k = E (x, $~), 
observing tha t  we have 

c~k = 0 for n < rk, (8) 

as the innovation associated with ~rk does not enter into the process until the 
t ime point rk, and is thus uncorrelated with every x, preceding this time point. 

We now define a random variable w by writing 

2~t 

w=f udz(u), 
0 

where z (u) is the spectral process appearing in (2). The stochastic integral is 
defined in the way indicated in the preceding section. We further write 

d~ = E (w ~k) (9) 
and  

1 ~r 1 1 - Y/c-"~e-~"~ ( u + ~ ) - 2 ~ d ~ ,  (m) 

where the accent on the summation sign indicates that,  if the value n =  0 falls 
between the limits of summation, the corresponding term should be omitted. 
Clearly this is an expression of the form postulated in (7). In  order to show that  
the trigonometric series appearing here is absolutely convergent, we observe tha t  

2~ 2n  

0 0 

Thus by  condition (A) the quantities [cn,~ [2 are, for a fixed rk, the Fourier coef- 
ficients of a function in L ~, so that  the series ~ [c.~k[ 4 is convergent. Hence by 

n 

HSlder's inequahty it is easily shown tha t  ~ '  c.,~ is absolutely convergent. I t  has 
n n 
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already been remarked  in connection with (1) t ha t  the series ~ [c~k[ 2 is con- 
r k ~ n  

vergent  for every n. We finally observe that ,  in consequence of (8), the lower 
l imit  of summat ion  in (10) m a y  be replaced b y  - ~ ,  since the new terms thus  
introduced all reduce to zero. 

We now consider the expression 
K 

Gx (u, v) = F (u, v) - y K ( p ~  (u) ~0~. (v), (11 ) 

with appropr ia te  modification in case the rk sequence is finite in ei ther direction. 
We shall first show tha t  GK (u, v) is, for every K, the covariance function of 
some random variable z~(u)defined for every  u in (0, 2z~), so t h a t  

G~ (u, v) = E(z~ (u) z~ (v)) 

for all u and v in (0, 2z l). I n  order to show tha t  G K (u, v) is a covariance, i t  is 
sufficient to show (cf. Lo i r e ,  1) tha t  

2 n  2 ~  

j f q(u) q(v)GK(u,v)dudv>O (12) 
6 0  

for any  continuous q(u). Obviously it is even sufficient to show tha t  (12)holds  
for any  tr igonometric polynomial  q(u). Taking 

B 

q(~)=  ~ ~.ne i~, 

Q ( u ) =  ~ '  ~'=2 (efnU_l)+)to(U_2:~), 

we have  

By  (3) we have  
Q' (u)=q(u), Q ( 2 ~ ) = 0 .  

F (u, 0) = F (0, v) = 0, 

so t h a t  we obtain by  par t ia l  integration, using (4), (5) and  (9), 
2~ 2n  . ~  2~  

]] q(u)q(v))E(u,v)dudv=f f Q(u)Q(v)/(u,v)dudv= 
O 0  O 0  

B 

(13) 

On the other hand  

f f q(u)q(-~k(u)q~,,(v)dudv=[ f q(u)~,,(u)du[', (14) 
0 0  0 

and by  some simpl~ calculation we find 

2,, s ,  )..  
f q (u) ~ (u) d u = - 2:_~ ~ (~-.~ - co~.) - ~o (d~ - 2 ~ ~ . )  = 
0 
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Writing 

X - ~ '  2"_ (x~ ~- x0) + 2o (w - 2 nxo), 
A S n  

we obtain from (11), (13), (14) and (15) 

2n 2g 

fo fo q(u)q(v)G~:(u,v)dudv= E l i ]  u-  ~IE(X ~rk) l u. 

The ~Tk being orthogonal random variables, (12) now follows directly from Bessel's 
inequality. 

Thus GK(u,v) as defined by (11) is always a covariance function. I t  follows 
that GK(u,u)>= O, so that, allowing K to tend to infinity, the sum over all k 

I v~ (u)l u 
k 

is convergent, and consequently by the Schwarz inequality 

~k (u) ~ (v) 

is absolutely convergent. Thus GK(u,v) tends to a limit G(u,v)as K-->oo. 
The limit of a sequence of covariance functions being itself a covariance function 

(el. Lo~ve 1), we have now proved that F (u, v) admits a development of the 
form (6), where G(u,v) is a eovariance function, while ~k(u) has the form (7), the 
stated convergence conditions being satisfied. I t  remains-to show that G(u,v) is 
the spectral function of a deterministic harmonizable process. 

In order that a covariance function G (u, v) defined in the square C" 0 < u; v 
=< 2 g, should be the spectral function of some harmonizable process, it is neces- 
sary and sufficient that  G (u, v) should be of bounded variation over C. We shall 
first show that this property holds here. 

Since G (u, v) is a covariance function, there exists for  every u in (0, 2 ~) a 
random variable Z(u) such that 

a (u, v) = F (u, v) - ~ ~k (u) ~ (v) = E (Z (u) Z (v)). 
k 

(16) 

For an arbitrary sub-interval (u, u +  h)of  (0, 2~) we then have,  taking differ- 
ences in the obvious way, 

and thus 

Let now 

A2 G (u, u) = A S F (u, u) - ~ I A ~ (u) I u = E I A Z (u)I u, 
k 

E [ A  Z ( u )  1 2 < A u F ( u , u ) .  (17) 

0 = U 0 <  U l <  - . .  < u r n =  27~ , 

0 =  V 0 <  Vl ,~  - .-  < Vn=  27~, 

be two arbitrary sub-divisions of the interval (0, 2 ~). All differences occurring in 
the sequel will be understood to be related in the obvious way to the sub-inter- 
vals in these divisions. 

51  



H. CRKMI~R, On the linear prediction problem for certain stochastic processes 

From (16) we obtain 

As G (u. v,) = E (A Z (u,) A Z (v,)), 

and further by the Schwarz inequality, using (17), 

IA:G(~:,v:)I~_E{IAZ(~:)I.IAZ(~s)I} 

<-_ V EIA Z(u,)I:.EIAZ(~:)r 

< V~:F(u.u~).~F(v,,v:). 

Summing over all the sub-intervals in both variables, we thus obtain by  means 
of the condition (B), assuming tha t  all sub-intervals are sufficiently small, 

~:]A~ G(~,v=,)l ~ ~ V A~F(u.ur)'E ~/ A~F(vs, vs) <4ze~M, 
r , 8  r 8 

which shows tha t  G(u, v) is of bounded variation over C. 
Comparing now the general representation {1) of a non-deterministic xn process, 

and the development (6) of the spectral function F (u, v) in the present ease, i t  is 
easily verified that  the term ~ ~k (u)~k (v) in  (6), where ~k (u) is determined by 
(10), is the spectral function of the sum ~ cnrj, ~ in (1), while the remaining term 
G(u,v) is the spectral function of the deterministic component y.  of the x~ pro- 
cess. We have thus completed the proof that  the given condition is necessary. 

The proof tha t  the condition is also sufficient is now very simple. We first 
observe that  the predictionary properties (prediction being always understood in 
the sense of linear least squares prediction) of a stochastic process are entirely 
determined by the eovarianee function of the process. Thus if we are given an x~ 
process with the covarianee function R (m, n), and if we can show tha t  R(m,n)  
is the eovariance function of some stochastic process having the given sequence 
of the rk for its points of indetermination, it follows that  the given x~ process 
will have precisely the same points of indetermination. For a harmonizable pro- 
cess, the covariance function is uniquely determined by the spectral function F (u, v), 
so tha t  the same remark applies here to F(u, v). 

Suppose now that  we are given an rk sequence, and an xn process with a 
spectral function F (u, v) satisfying all our conditions. In  particular, F (u, v) will 
then be given by the development (6), where ~k (u) is given by (7). According 
to the remark just made, we shall then only have to show tha t  F (u, v) is the 
spectral function of some stochastic process having the given r~ for its points of 
indetermination. 

Consider a stochastic process x* represented in the form (1), where we take 

cnr~ = - 2 n ~t i~n~ for rk ~ n, n # O, 

co,~=2ztfl~ for rk_-0, 

while the ~ are orthogonal random variables, and also orthogonal to the yn, 
which are the variables of a deterministic process with the spectral function G (u, v) 
appearing in (6). Then it will be immediately seen tha t  the x* process has the 
given rk sequence for its points of indetermination, so tha t  the proof is hereby 
completed. 
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We finally remark that  the development of the difference F (u, v) - G (u, v), 
which follows from (6), is formally analogous to the well-known development of 
the kernel F (u, v) - G (u, v) in terms of its characteristic functions. However, it 
is easily shown by means of examples that  the ~k (u) appearing in (6) are not 
necessarily identical with the characteristic functions of the corresponding kernel. 
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