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On the linear prediction problem for certain
stochastic processes

By HaraLp CrRAMER

1. Consider an infinite sequence of complex-valued random variables
e, X2, Xy, Xo, X1, X2, « - -

with finite second order mean values. For the sake of simplicity, we shall assume
throughout that all first order mean values of the z, reduce to zero, while there
is at least one z, having a variance different from zero:

Ez,=0 for all »,

E | #,[2>0 for some .
The covariance function of the a, sequence is
R (m, n) = E (x, x)-

We may interpret z, as a measure of the state of some observed variable
system at the time point n#, where ¢ is a given quantity. The sequence of the x,,
with n=--., —1,0,1,..., will then represent the temporal development of this
system, and will constitute a stochastic process with discrete time. In- the sequel,
we shall always take t=1, so that the subscript » may be directly regarded as
measuring time.

The prediction problem for a process of this kind is the problem of predicting
the state of the process at some future time point, when its past development
is assumed to be more or less known. In this paper we shall only be concerned
with linear least squares prediction. Thus we shall want to find the “‘best possible”
prediction of a certain xz, by means of linear operations acting on certain vari-
ables belonging to the past of the process, interpreting the “‘best possible’” in the
sense of minimizing the mean value of the squared error of prediction.

Consider the expression

. 2__ 2
Min E|2,—Co%n_p—C1%n_p_1—  — CqZn_p-q|*=5%pa 20,
Convnne cq

where n, p and ¢ are fixed integers with p >0, ¢ >0, while the minimum has to
be taken for all complex quantities ¢, ..., c,. Then s,,, will be the least possible
error of prediction, when 2, has to be linearly predicted in terms of ,_5, Tn_p-1,
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.e s Ty_p_q Obviously s,,, will never increase when ¢ increases, while n and p
remain fixed. The limit

lim $,p,= 04, 20
g—>o0

will thus always exist, and will be called the prediction error for x,, when pre-
diction is based on all the variables of the process up to and including z,_,. We
easily find that

0§0’n1§0’n2§ s

The same thing may be expressed a little differently, if we look at the question
from the point of view of Hilbert space geometry. Consider the Hilbert space
H,_, spanned by all the variables z,_,, Zn_5_3,.... The elements of this space are
random variables, which are either finite linear combinations of x, ,, Zn_p-1,.--,
or limits in the mean of sequences of such combinations. The inner product and
the norm are defined by the usual expressions

.2 =E@yz), |yl|l=E|#)

By P,_,(x,) we denote the projection of x, on H,_,. Then z=P,_,(z,) is the
uniquely determined element of H,_, which minimizes the distance ||z, —z||. We
shall call P,_,(x,) the best possible linear prediction of z, in terms of ,_,, Tn-p-1, .. ..
The corresponding error of prediction will be

Onp= ” Ty — Py (24) ”

If 6,,=0 for all » and p, exact linear prediction is always possible. In this
case every z, can be exactly represented in terms of variables belonging to an
arbitrarily remote past of the process. A process of this kind will be called a
deterministic process.

On the other hand, every process such that ¢,,>0 for at least one pair of
values of n and p, will be called non-deterministic. Every non-deterministic process
may be represented as the sum of a deterministic component and a linear com-
bination of certain innovations, which represent the “‘new’” random impulses en-
tering into the process at certain moments. In fact, it can be shown (cf. Cra-
mér, 2) that for every non-deterministic process, there exists a uniquely deter-
mined, finite or infinite sequence of integers

R T A IR
such that

Xy = Z Cnn En t Yn- 1)

ThEN

Here y, is the deterministic component of the process, while the &, are random
variables such that

E§,=0, E (51'1;1%) = 6]10
E (z, gfk) =Cm, & (¥n E-rk) =0.

Further 3 |cu,|* is convergent, so that the series in the expression for x, con-
T"=n
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verges in the mean. If » is a member of the 7, sequence, the quantity c¢,, is
real and positive. Finally, the prediction error o,, is given by the expression

o= > e
N—-P<TE=N

It follows that o,1>0 when and only when » is a member of the 7, sequence.
Thus it will be seen that every 7, is a point of indetermination, where the process
receives an innovation proportional to &,. On the other hand, when = is different
from all 7, we have g,;=0, so that », can be exactly predicted in terms of the
preceding variables x, i, Z,_2,..., and there is no innovation corresponding to
the time point n. Thus in the expression (1) of z,, the non-deterministic com-
ponent is a linear combination of the innovations received by the process in all
its points of indetermination preceding or coinciding with the time point .

2. The linear prediction problem has been thoroughly studied for the important
class of stationary processes, which are characterized by the fact that the cova-
riance function R (m,n)= E (x,z,) only depends on the time difference m —n. (We
are not here concerned with the so called strictly stationary processes, which
satisfy more stringent conditions.) For this class of processes, the sequence 7,
considered in the preceding section contains every integer n, and the representation
{1} reduces to a decomposition theorem due to H. Wold, 1. With respect to the
general theory of stationary processes, and in particular the prediction problem,
we may refer e.g. to the books by Wiener, 1, and Doob, 1.

One of the most important properties of the class of stationary processes is
that they admit a spectral representation by means of a stochastic integral of
Fourier type. Loéve (1) has introduced a more general class of processes, which
he calls harmonizable processes, and which possess spectral representations of a
similar kind. In this paper, we shall consider the prediction problem for a group
of harmonizable processes satisfying certain regularity conditions.

Consider a stochastic process such that x, is given by the stochastic integral

2n
xn=fe’""dz(u), 2)
]

where z(u) denotes, for every w in the interval 0 <4 <2, a random variable
such that

Ez(w)=0, E(z(w)z()=F (,v),

where F (u, v)—in general complex-valued—is of bounded variation over the square
C: 0=5u,v=2x. Obviously

F(v,u)=F (u,v),

while F(u,u) is real and non-negative. Under these conditions, the stochastic
integral (2) can be defined as a limit in the mean of certain Riemann sums, and
the variable x, determines a harmonizable stochastic process. (Cf. also Cramér 1.)

In the sequel, we shall assume that the function F (u,v) satisfies two addi-
tional conditions, which we denote by (4) and (B). Thus we shall assume:

F(u,v)=fff(s,t)dsdt, (3)
60
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where

(4) f(s,t) belongs to L* over the square C.
(B) f(s,t) is bounded in the vicinity of the diagonal s =¢ of C, so that there exist
positive constants b and M such that |f(s,t)| <M for [s—t|<h.

The covariance function of the x, process is then given by

27 27

R(m,n)=E (tn2,)= [ [ ™™ d F (u,v)
00

2n2n (4)

=ffei("‘“‘"”)f(u,v)dudv.
00

More generally, for any g (u) and % () belonging to L* over (0,27x), the random
variables

2n 2n
E=[gydzw), n={h(@)dz()
0 0

are well defined, and we have
E(5ﬁ):fjg(u)mf(u,v)dudv. (5)

The function F (u,v) is called the spectral function of the x, process, and is said
to define the spectral distribution of the process, which is a distribution of com-
plex-valued ‘“‘mass” over the square C, such that every surface element dudv
carries the mass f(u,v)dudv. The function f(u,v) is the spectral density of the
process, while z(u) defines the corresponding spectral process.

I have elsewhere (Cramér, 2) given a sufficient condition that a harmonizable
process will be deterministic. In the present note, I shall be concerned with an
x, process as defined by (2), and such that the corresponding spectral density
f (u,v) satisfies the conditions (A4) and (B). It is proposed to find; for this process,
the conditions under which an arbitrarily given sequence of integers r, will con-
stitute the complete set of points of indetermination of the process.

3. Suppose that we are given an z, process as defined by (2), with a spectral
function F(u,v) satisfying (3), and a spectral density f(u,v) satisfying the con-
ditions (4) and (B). Let there further be given an increasing sequence of integers:

e <<y < e,

which may be finite or infinite, in one or both directions.

In order that the given r, sequence will constitute the complete set of points of
indetermination of the given x, process, the following condition is necessary and suf-
fictent. The spectral function F (u,v) should admit a development of the form:

F(u,0)=3 () @i (9) + G (u, ), (6)

where G (u,v) 13 the spectral function of a deterministic harmonizable process, while
the series in the second member converges absolutely for all u and v, and we have
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@ (u)= Z a‘"Tke‘inu"l'ﬂku_""‘}/k’ (7)

n=rk

the ome-sided trigonometric series occurring here being absolutely convergent for all u,
while the o, § and y are constants such that anr#+0 for every r, +0, §,=0 for r,>0,
and the series

2. fomn %,

TREEN

extended over all r,=n, converges for every fixed n.
We shall first show that the condition is necessary. Since by hypothesis 7, is
a point of indetermination of the given x, process, the innovation

Crar Eri = T — Pry-1(T)

is not identically zero. As in the preceding section, we may take cnr real and
positive, and such that E|&,[*=1. As before we write

cure=E (2, &),
observing that we have
Cnrp = 0 for n <27y, (8)
as the innovation associated with £, does not enter into the process until the

time point 7, and is thus uncorrelated with every =, preceding this time point.
We now define a random variable w by writing

P21
w:fudz(u),
0

where 2 (u) is the spectral process appearing in (2). The stochastic integral is
defined in the way indicated in the preceding section. We further write

dy= E {w 51’):) 9
and
I Jem _iny 1 1
- > Omin L — 4, 10
Pl = —g S 2 & T, ot o d (10)

where the accent on the summation sign indicates that, if the value n=0 falls
between the limits of summation, the corresponding term should be omitted.
Clearly this is an expression of the form postulated in (7). In order to show that
the trigonometric series appearing here is absolutely convergent, we observe that

2 2n

lemPSE|wy[PE|&nP= B|aa =] [ " f(u,v)dudv.
00

Thus by condition (4) the quantities |can|* are, for a fixed 7, the Fourier coef-
ficients of a function in L?, so that the series D |cu|* is convergent. Hence by
n

’ Corg

Holder’s inequality it is easily shown that is absolutely convergent. It has
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already been remarked in connection with (1) that the series 2 |cun|? is con-

r<n
vergent for every n. We finally observe that, in consequence of (8), the lower
limit of summation in (10) may be replaced by — oo, since the new terms thus
introduced all reduce to zero.
We now consider the expression

K -
Gx(u,v)=EF(u,v)~k;§K¢k(u)¢k(vL (11)

with appropriate modification in case the r, sequence is finite in either direction.
We shall first show that Gy (u,v) is, for every K, the covariance function of
some random variable zg(u) defined for every u in (0, 2x), so that

G (u, v) = B(zg (4) 2 (v))

for all ¥ and v in (0,2x). In order to show that Gx(u,v) is a covariance, it is
sufficient to show (cf. Loéve, 1) that

2n 2n

[[q@)q(v) Gx(u,v)dudv20 (12)
00

for any continuous g(u). Obviously it is even sufficient to show that (12) holds
for any trigonometric polynomial ¢ (%). Taking

B :
q(u)= 2 Ane™,
n=A

R T (RS NUREEY

n=

we have

Q (w)=q(u), Q(2n)=0.

F (u,0)=F(0,v)=0,
so that we obtain by partial integration, using (4), (5) and (9),

By (3) we have

2n 27 o 27 2n o
oféfq(u)q(v)F(u,v)dudv=”Q(u)Q(v)f(u,v)dudv=
00
B
=E|;'%’; (00— T) + A (w— 2 2p) 2. (13)
On the other hand
27 21 o - 2
of f q(#)q (v) i (w) g (V) dud v =] ({ 7 (@) g (@) dul?, (14)

and by some simple calculation we find
2x B ln
fa)ge @) du= — 3" T (cnn— crs) — Ao (e — 270 Cqn) =
0 naAt
B An
= — E{(é in (s —29) + A (w—2nx°))5,,‘}. (15)
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Writi
riting R

A
= 4 _.Zl. — _—
X é in(xn' Zo) + Ao (w0 — 27w 1),

we obtain from (11), (13), (14) and (15)

2n2n

J‘J'q(‘u)qv) GK(u,v)dudv=E’|X]2—g|E(X§m) .
00

The &, being orthogonal random variables, (12) now follows directly from Bessel’s
inequality.

Thus Gg(u,v) as defined by (11) is always a covariance function. It follows
that Gg(u,u)=0, so that, allowing K to tend to infinity, the sum over all &

> g (w)*
k
is convergent, and consequently by the Schwarz inequality
g% () g (v)

is absolutely convergent. Thus Gx(u,v) tends to a limit G (u,v) as K—oco.

The limit of a sequence of covariance functions being itself a covariance function
(cf. Loéve 1), we have now proved that F (u,v) admits a development of the
form (6), where G (u,v) is a covariance function, while g, (1) has the form (7), the
stated convergence conditions being satisfied. It remains to show that G (u,v) is
the spectral function of a deterministic harmonizable process.

In order that a covariance function G (u,v) defined in the square C: 0=wu;v
<2mx, should be the spectral function of some harmonizable process, it is neces-
sary and sufficient that G (u,v) should be of bounded variation over C. We shall
first show that this property holds here.

Since G (u,v) is a covariance function, there exists for every » in (0,2x) a
random variable Z(u) such that

G(u,v)=F<u,v)—g¢k<u)ﬁm=ﬂ(2(u) Z (v)). (16)

For an arbitrary sub-interval (u,u+ k) of (0,27) we then have, taking differ-
ences in the obvious way,

A,G(u,u)=A2F(u,u)—g]A(pk(u) F=E|AZ @),

and thus

E|AZ (@) <Ay F (u,u). 17)
Let now

O=uy<u, <+ <u,=2m,

O=y<y, < <o, =2m,

be two arbitrary sub-divisions of the interval (0,2 x). All differences oceurring in
the sequel will be understood to be related in the obvious way to the sub-inter-
vals in these divisions.
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From (16) we obtain
A, Glu,v)=E (A Z(u,)A Z(vs)),

and further by the Schwarz inequality, using (17),
| Ay G (uyv) | S E{|AZ ()| |AZ(v)]}
SVE|AZ (w,)[-E|AZ(v,)
SVALF (up,u,) - Ay F (v, 05).

Summing over all the sub-intervals in both variables, we thus obtain by means
of the condition (B), assuming that all sub-intervals are sufficiently small,

518G 00) | S S VAF (ur ) - 3 VB F(0,0,) 422 M,

which shows that G'(u,v) is of bounded variation over C.
Comparing now the general representation (1) of a non-deterministic z, process,
and the development (6) of the spectral function F (u,v) in the present case, it is

eagily verified that the term > g (u)@y(v) in (6), where @i (u) is determined by
(10), is the spectral function of the sum 2 ¢ur, &r in (1), while the remaining term
G (u,v) is the spectral function of the deterministic component y, of the z, pro-
cess. We have thus completed the proof that the given condition is necessary.

The proof that the condition is also sufficient is now very simple. We first
observe that the predictionary properties (prediction being always understood in
the sense of linear least squares prediction) of a stochastic process are entirely
determined by the covariance function of the process. Thus if we are given an z,
process with the covariance function R (m,n), and if we can show that R(m,n)
is the covariance function of some stochastic process having the given sequence
of the 7, for its points of indetermination, it follows that the given x, process
will have precisely the same points of indetermination. For a harmonizable pro-
cess, the covariance function is uniquely determined by the spectral function F (u, ),
so that the same remark applies here to F (u,v).

Suppose now that we are given an 7, sequence, and an x, process with a
spectral function F (u,v) satisfying all our conditions. In particular, F (u,v) will
then be given by the development (6), where @, (u) is given by (7). According
to the remark just made, we shall then only have to show that F(u,v) is the
spectral function of some stochastic process having the given r, for its points of
indetermination.

Consider a stochastic process z represented in the form (1), where we take

Care= — 20 7 10tnr;, fOT 7, <1, N0,
001k=2nﬁk fOl‘ Tk§0,

while the £, are orthogonal random variables, and also orthogonal to the y,,
which are the variables of a deterministic process with the speetral function G (u,v)
appearing in (6). Then it will be immediately seen that the x7 process has the
given r, sequence for its points of indetermination, so that the proof is hereby
completed.
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We finally remark that the development of the difference F (u,v)— G (u,v),
which follows from (6), is formally analogous to the well-known development of
the kernel F (u,v)— G (u,v) in terms of its characteristic functions. However, it
is easily shown by means of examples that the ¢ (v) appearing in (6) are not
necessarily identical with the characteristic functions of the corresponding kernel.
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