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On the derivatives of bounded analytic functions

By AkE SaMUELSsoN

1. Imtreduction

Let f be analytic in the unit dise, |z|<1 and suppose that |f(z)|<1 for
[z| <1. Then f (f40) admits a representation f=B-E, where

G (o —2)

B(z)=¢"?2" L (1.1
® x| ax] (1 —dx 2) )
is the normalized Blaschke product of f and where
27 eit+ P
E(z)=exp { —w(2)}, w(z)= [0 =, dul(t), (1.2)

with a bounded and non-decreasing function u defined on the interval [0, 27].
If # is a point in the open interval (0, 2x), such that

p@+h)—px—h)
3

—+coas h—+0, (1.3)
it is well known (cf. [1], p. 108) that
f(€®)= lim f(re")=0.
r—>1-0

However, condition (1.3) does not imply the existence of the radial limits of
the derivatives of /. In a previous paper [3] 1 proved that, if

..o it h) - p{r—h)
B i togh )

and if f(z)=+0 in the unit disc, then

f (e¥)= li{]fo f (re)=0.

It is the primary object of the present paper to improve and generalize this
result. We establish, if

20: 4 287



A. SAMUELSSON, On the derivatives of bounded analytic functions

lim inf KETR —p@h) n
B> 40 —hlogh 7

2

where n is a natural number, then

¥ (%)= lim f® (re")=0 for 0<k<=.
r—+1-0

Moreover, local conditions on the function g and on the Blaschke product,
implying the existence of f™ (¢”)=+0, will be given.

Throughout this paper we use the following notations and conventions.

The class of analytic functions f described above will be called F. The class
of analytic functions w defined in the unit disc by

et +z

¢z
et —2z

27
w(2)=fo H, () du(t), H,(t)= (14)

where p is a function of bounded variation on the interval [0, 2x], is denoted
by W. It should be noted that w€ U implies that Im w(0)=0. Moreover, U
will be the class of harmonic functions u, which are the Poisson integral of a
finite real measure on the unit circle |z]=1, i..

uvdﬂ=1rnPAx—ﬂduUL (1.5)

0

h Pr)=—g "
where ay 1+72—27 cos t
is the Poisson kernel and where u is a function of bounded variation on [0, 27].

If w€U, @ is the conjugate harmonic function of w determined by #(0)=0.
The classes U and U are related to each other as follows; if w€ W, then u=
Re welU and if w€U, then w=u-+ia€W.

The function y associated with the functions f,w and w in the representa-
tion formulas (1.2), (1.4) and (1.5) has a periodic extension denoted by p* and
defined as follows; put u*(¢)=u(t) for 0<t<2xz and extend this function to a
periodic function with the period 2z. :

If w€U is the Poisson integral of the finite measure induced by u, we put
| ] (#)= the total variation of x4 on the interval [0,¢], and |u| is then defined
as the Poisson integral of the positive measure induced by |ul.

The point z is always in the open interval (0, 2x).

For brevity’s sake it is convenient to introduce the funtions ¢ and ¢ defined by

_platt)—pz—1)
t

plu; x, t) , 1>0

_p 1)+ p(x—t) — 2 p(x)
t

and P(u; x,t) , >0,
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The function p is said to be smooth at the point z if and only if
lim @(u; z, t)=0.
i, s 9

If g is any function analytic in the unit disc the point set C(e”, g) is defined
as follows; (€C(e”, g) if and only if there is a sequence {ry}ino with 0<7,<1,
such that

lim 7,=1 and hm g(rie®)=_.

k->o0
2. Some properties of the classes W and U

The aim of this section is to connect the radial increase of the function w € U
and its derivatives with the increase of the associated function u. Of course,
the results obtained can be formulated in terms of functions u€U.

First, let us construct an auxiliary function w,s, € W. Put

w; () = —log (1 —ze™ )
e~z
and wy (2) = — 21 log (—Z~:T)—a:+27z, lz]<1,

where log ( is the principal branch of the logarithm function, defined in the
region { +|¢|=+0 and uniquely determined by log 1=0. The auxiliary function
Wap, 18 Nnow defined by

Wiy (2) = aw, () = 1) + B = (wp(2) — ),

and the measure associated with w,s, is induced by p.g,, given by (cf. [2], p. 198)

t

27 papy ( t)‘ hm f Re wyg, (re?)dy=« lim | Re w, (re¥)dy
0

r—>1-0

% jim fRe w, (re”) dy — ( ﬂ—%n) £

r—>10
. r—Yy
2sm( ) )‘dy

and, observing that Re w,(2)=2n w(z,0,z), where w(z,0,z) is the harmonic
measure of the arc {e®; 0<t<w} (cf. [2], p. 7), we bhave

r—>1-0

t t
Obviously lim f Re w, (re")dy = — f log
0 0

r=>1-0

t
(27)7! lim fo Re w, (re?)dy=t+ (x—t)e(t),

where &(f)=0 if 0<¢{<z and e(t)=1 if x<t<2n.
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It is now easy to verify that the function u.s has the properties
hlimo {7 @(tapy; ©, h)+alog b} =0
>+
and m 2 @(uqg,y; 2, h)=1yp.
h->+0

We now state and prove a theorem connecting the increase of the real part
of w with the increase of the associated function u.

Theorem 2.1. Let w€UWU. Then, if « ts any real number,

lir’? iI;f {mo(u;x,b)+oalog h}<a+ limlirtl)f {u(re”) + « log (1 —7r)}
—>+ r—>1-

and
lir’? sup {mo(u; z, )+ a log h} >a+ lim sup {u(re®)+« log (1—r)}.
—-+0 r—>1-0

Proof. If «=0, Theorem 2.1 is nothing but a re-writing of Fatou’s theorem
on Abel summability (Zygmund [4], p. 99).
If «+0, we put w,=Re w,o. Since

h]imo {m@(te; x, ) +a log b} = o+ u, (reé*) + o log (1—7)=0,
>+

we may apply Fatou’s theorem to the function u—wu, to obtain Theorem 2.1
in the general case.

Corollary 2.1. If
hlimo {np(u; , k) +alog h}=4
>+

then lim {u(re®)+oalog 1—1r}=f—a

r>1-0

The following two inequalities

L me(us Ry u(re”)
1 f——"-—<1 f ——— 21
11}11_):‘1)1' ~log h e log (1—71) (21)
. ne(u; z, h)> . u(re'®)

and lmnl-jgp ~logh = hzl_l. P T log (1 —1)

are immediate consequences of Theorem 2.1. It should be noted that there are
harmonic functions, such that the sign of equality does not hold in these in-
equalities. For instance the function u associated with the singular positive meas-
ure induced by
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el if x+e i<t 2m,
uty=<ne ™ if x+e " '<t<ate ™, n>2,

0 if 0<t<2z

is such a function
Theorem 2.1 shows that the radial increase of u depends on the behaviour

of ¢. Likewise, the increase of the conjugate harmonic function 4@ is connected
with the behaviour of @. This connection, however, is more intricate and the
only thing we prove is the following analogue of Corollary 2.1.

Theorem 2.2. Lét w€U and suppose that

lim 2¢(u; =y,
Jim, 2005 2 )=y

Then
r{ t
Ii i (re’®) — v 1 _ Sl - Y4 LA di
'_11111_0{’“(7‘6 )=y log (1 T)““fl_r( (u”; x 1) 2)2sin2 1/2 }
—u(0) cotg—y log 2.
In particular lim {d(re'")—yp log (1 —1)}
7>1-0

exists if and only if the integral

T . X _Z t
J‘o' ((p(,u » @ b) 2) sin® ¢/2 o

converges.

Proof. If y=0, Theorem 2.2 is in Zygmund (4], p. 102). Putting », =Re wqo,
we see that

lim {a,(reé”) —y log (1—7)} = —y log |sin g

r—>1-0

—y log 2.
On the other hand, elementary calculations yield

b if 0<t<min (z, 27 —2)

Plpzs 2 =1
' z_t i min {z, 2x—2)<i<m

and thus, if 1-r<min (z, 27 —x),

* t ? om—t x
D *; 2 1) — Z) - =Z - — —
L_,("’("V w05 ) otz %"y ), sinte/a B (0 oty +ylog

and it follows that the theorem is true for the special function w,.

sin ©
in
2

2
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“The proof is now completed applying the theorem in the special case when
y=0 to the function u—u,.
Observing that

” ¢
fff Wdt:o(log (1-7)) asr—>1-0

1

we have the following corollary.

Corollary 2.2. If lim 2¢@(u; z, k) =1y,
h—s+0
~ iz
then lim G ¥

r>1-0 log (1—7)

Before studying the increase of w™®, let us again return to the auxiliary func-
tion w,g,. It is easy to verify that

limo(l—r)"wgfg’y (re®)=(k—1)! (x—3y)e ™", for k>1.
rT>1-

However, this is true for any function w€ W, such that

hlim {ne(u; x, h)+a log b} = (2.2)

—>+0

and lim 2@ (u; 2, B)y=1y. {2.3)
h>+0

Theorem 2.3. Let w€ U and suppose that (2.2) and (2.3) hold. Then, if k is
any natural number,

Hm (1= r)fw® (re®) = (k—1)! (x—iy)e ™

T->1-0

Proof. Since the theorem is true for w=1w.s; we may assume that a=pf=
y=0. Derivation of (1.4) yields

27
(1 — 7)* et 3 (pei) — j K, (t—2)du(), (2.4)
1}
1—r)fet
where K. (t)=2k! Eeit__Z)_m

is a complex kernel with the following properties;
K, (t)=K,(—1),
lim sup [tK,(—#)|=0 for 0<d<=m

T1-0 dgign

and f |tK;(t)|dt=0(1) as r—>1—0.
0
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The first two of these properties are trivial. Observe that, if 0<t<zm, O<r<l,
we have
[t K, @)|<zmr k! L+ (1+E)P,(t),

where P, is the Poisson kernel. Hence the last property follows by integration.
Using the first property of K, the integral in (2.4) may be written

anr (¢ — ) du(t) = K, (—z) w(0)
0

——f o(u*; =, t)tReK;(t)dt—if G(p*; x, t) ¢t Im K, (t) dt,
0 0

whence, if 0<d<n,

27 7T
f K,(t—x)d,u(t)‘ <|w(0)] |K,(x)|+0(,f ItK,'.(t)Idt-*—:tC,,ong [t K. ()],
0 0 <t<nm
= *. Sk,
where Co= sup |o(u®; =, 0)|+ sup |§(u"; =, 9)].
Since 0 —0 as d — +0 we have, by the properties of K,,
27

lim | K, (t—x)du()=0,
o

r=>1-0

establishing the theorem.

Remark. If (2.2) and (2.3) are replaced by ne(u; =, b)+a log h=0(1) and
@u; ¢, )=0(1) as h—>+0, we may conclude that w® (re®)=0 (1—7r)"%) as
r—>1-0.

Writing w=u+4% we have

eikx w(k) (Teix) —

Fulre®y | & a(re®)
o Tk

A closer examination of the proof of Theorem 2.3 shows that (2.2) alone implies

lim Re {(1—7r)*e* w® (re*)} = (k—1)! «,

r—>1-0
while (2.3) implies
lim Im {(1-—r)*e® w® (re®)} = — (k—1)! y,

r>1-0

and thus Theorem 2.3 may be transformed into the following two theorems
concerning harmonic functions in the class U.

Theorem 2.4. Let u€U and suppose that (2.2) holds. Then, if k is any natural
number,
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Theorem 2.5. Let w€U and suppose that (2.3) holds. Then, if k is any natural
number,

tim (12— o THED

— !
r>1-0 ork (e=Dty.

The result of Theorem 2.5 in the case k=1 is in Zygmund ([4], p. 108).
We point out another consequence of the representation formula (2.4). Since

2k!
&, 0] <7 Pr0),

we have, if w=u+ii.
) . 2kt [ 2Fk!
EPAY ') () iz - _ — iz
(1 =) |w® (re )|<—1+Tfo P (t—z)d|u| ) —1+r|u|(re ),

establishing the following theorem.

Theorem 2.6. Lei weUW. Then, if k is any natural number,
. 2k! .
— K (k) ir < — ir .
(1 —r)* |w® (re”)| 1+r|ul(re )

Theorem 2.6, for k=1, is in Zygmund ([4], p. 258) in the special case when
u is absolutely continuous.

3. Boundary kehaviour of f(™

In this section we transfer the results of section 2 to the functions f€F, de-
fined in section 1. We denote by B, E and w the functions defined by (1.1)
and (1.2). Unless otherwise stated u =Re w throughout this section.

Theorem 3.1. Let f€F and suppose that

h—>+0 ~10g h

’

where n 1s a natural number. Then

/(k) (eir) = lim f(k) (reix) =0
r—>1-0
for 0<k<n.
The proof of this theorem is based on the following lemma.
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Lemma. Let u be a non-negative, harmonic function defined in the unit disc and
let C, be a circle with center z, |z|<1, and radius B(1—|z|), 0<B<1. Then

for every C€C,.

Proof. If (€0, Harnack’s inequalities applied to the function u restricted to
a disc concentric to C, and with radius (1 —|z[), where f<y <1, yields

;—;§u<z><u<5)<%u(z>-

The lemma follows as y tends to 1.

Proof of Theorem 3.1. Under the assumption of the theorem we have, by (2.1)

.. u(re'®)
1 —— >
lfill-%f —log (1—7) "

and thus there is an «>1 such that
u(re®) +an log (1—7r)—>+ o0 asr—1—0.
Put Sp={z; |z| <1, |z—e®| <1, |arg (1 —2e*)| <6},

where §=arcsin § and (1+8)/(1-B)=c.

Then im 1% _¢ (3.1)

™ (Z— eia:)n

where the approach is uniform in S,. To prove this let 7' be the mapping of
Sy onto the segment 0<|{|<1, arg (==, defined as follows. Given z€S, let
Tz be the point closest to €, such that arg (T2)=z and |z— Tz|=pB(1 —|Tz|).
Obviously (1—8)(1—|Tz|)<|e—z| and thus Tz e” as z—> e, where the ap-
proach is uniform in S;. According to our lemma we have

|f(z)l < e @ gexp{—(l—ﬂ)u(Tz)/(lﬁ*ﬂ)}
[z—e=|* ~|z—e=|" 1-8rQ—|T=)h)"

= (1= )" éxp {—a " (u(T2) +an log (1—|T2|))}

from which (3.1) follows uniformly in S,.
We now take z=re* and use Cauchy’s integral formula

_kL[ @
050t | e 96

295



A. SAMUELSSON, On the derivatives of bounded analytic functions

where C, is the circle defined in the lemma. Hence we obtain

1) i ts)
peape s o s

|1 @)| < k! sup

and thus, by (3.1), we have f® (¢%)=0 for 0<k<n.

We remark that the assumption of Theorem 3.1 is just a sufficient condition.
To illustrate this put f=B-E, where B is a Blaschke product with the following
properties;

B(re*)=0(1—7) and B (re®)=0(1) as r—>1—0.
For instance the Blaschke product

o (1—k %) —ze
I311—(1 k%)ze ®

introduced by Frostman ([1], p. 109) has these properties. Since ¥ is bounded,
E(*)=0 implies E' (re")=o0((1—7)"") as r—~1—0 and it follows that /' (¢”)=0
independent of the increase of g(u; «, h). In this case the behaviour of f’ (re®)
depends on the zeros of f in the neigbourhood of €%, but even if f has no zeros
it may happen that (cf. (2.1))

lim inf TP 5 ) (u; 2, B)
h>+0 —10g h
ir
while lim inf — "¢

f>1-0 —log (1—7)

and since the proof of Theorem 3.1 starts from this inequality, we still have
®(e®y=0 for 0<k<n. However, if

. w(u; x, h)
lim 200 = og k<"

the conclusion of Theorem 3.1 is false, provided the zeros of f are not too close
to the point €”,

Theorem 3.2. Lef f=B-E€F. Suppose that f* (e®)=0 for 0<k<n and
lim sup | B(re®)|>0.
7->1-0

Then lim sup {mg(u; z, b)+n log h} = + oo. (3.2)

h=a+0
Proof. If 0<r<ry<l we have
To
|f(k—1) (7.0 eir) — f(lc—l) (reir) | < fr |f(k) (eeiz) I d@
whence we obtain as r,—>1—0
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1 N
12 0o < [ 11 (el de

r

for 1<k<n. Repeated use of this inequality yields
n!|f(re®)|< (1 —7)" sup [f™ (0€™)|.
r<e<1

Hence, since f™ (¢%)=0,

lim inf | E(re®)|/(1 —r)"= lim inf exp {—u(re)—n log (1—7)}=0
r=>1-0 r—>1-0

and thus, using Theorem 2.1, (3.2) follows.
Let us consider f€F such that
wpu; =, b)+nlog h=0(1) as h—+0. (3.3)
1t follows from Theorems 3.1 and 3.2 that

lim sup |f™ (re®)| >0,
r>1-0

provided B(e”*)+0. However, (3.3) does not imply that f™ (re”) is bounded.
For, if ¢ is any integrable function, such that g(y)=0 if 0<y<=, g(y) =+ o0
as y—>x+0 and u is the Poisson integral of the finite measure induced by

t
u(t) =f 9(y) dy,

0
it is easy to verify that

. iz
M >+ ccas r—>1-—-0

(1—7)

and of course we can choose g so that (3.3) with n=1 holds. Then, if w=u+ i
and E=exp { —w}, we have

R du(re®
r| B (re )I>(l—r)l%)

exp { —u (re®) —log (1 — 1)}

and thus, by Theorem 2.1, |E’ (re®) [ + o as r—1—0. However, if we assume
in addition to (3.3) that @(u;x, B)=0(1) as h—+0 we may conclude that
f® (re®y=0(1) as r—1—0.

Before we prove this statement let us consider a function E, given by (1.2).
Since

n-1 —
E® @)= — > (nk 1) w" P () E® (2), n>1,
¥=0

we may write
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E® (2)=Q, (w' (2), w” (2), ..., w™ (2)) E(z) for n=>0 (3.4)

where @), are polynomials of degree n defined by

n-1 n—1
Q():l: @n (®1 Tgy oory Xp) = _kz ( k ) Zn_r Qr (xl, Lgs coes Zg).
=0

The polynomials €, have the homogenity property
Qn (Axla 12 xza e ln wn) = ln Qn (xp xz; A xn):

where A is any complex number. It is convenient to introduce another sequence
of polynomials P, connected with @, by

P,(2)=0,(0!2 1!z ..., (n—1)! 2).

It follows from the recurrence formula of the polynomials @, that the polyno-
mials P, are determined by

Py(z)=1, P, (2)+(z+1—n)P,_1(2)=0
whence we see that

n-1
Py @)= (1" I = k).
=0
The homogenity property of @, may be used to rewrite (3.4) as

(1 _ r)lc—aE(k) (,’.eia:) eiﬁ(re"")

E (re"")_j J—

=@ (1 — e w' (re®), ..., (1 —r)* ** w® (re')) - ](1 s ,  (3.5)

where « is any real number. By Theorems 2.1 and 2.3, this identity has the
following two consequences;

if wplu; x, h)+o log h=0(1) and H(u; x, k)=0 (1) as h—+0,
then for k>0
E® (re®)=0((1—7r)*"%) as r—1-0, (3.6)
if Lim {(mp(u; z, h)+olog h}=p and lim 2@(u; x,h) =7,
k>+0 h+0
then for k=0
lim (1—r)*~*E® (re'?) ¢re™ = P, (o —ip) #7152, (3.7)

r—>1-0

We are now able to prove the statement concerning the boundedness of /.
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Theorem 3.3. Let f€F and suppose that
we(u; x, h)+nlog h=0(1) and @(u;x, h)=0(1) ash—>+0.
Then {™ (re*)=0(1) as r—>1-0.

Proof. Since |B(z)|<1 implies B ¥ (re") =0 ((1—r)*"") as r—1-0, for
0<k<mn, we obtain from (3.6), with a=n

E® (re®) B (7¢%)=0 (1) as r—>1—0, for 0<k<n
and thus ™ (re®)=0(1) as r—>1-0.
Theorem 3.4. Let E be given by (1.2) and suppose that
hl_i:?o {mo(u; z, b)+nlog b} =F and nl-iﬁlo 2¢(u; x, h)=1y.
Then C(e*, E™)<C, where
C={z;| z|=|Pu(n—iy)| e}
If y=+0, the two sets C(e”, E™) and C are equal. If y=0 the set C(¢, E™)

reduces to one point if and only if the integral

7 o ¢
. v 3.8
fo P(u;x,1) sin? 1/2 dt (3.8)
converges.

Proof. If we put k=x=n in (3.7) we obtain
lim0 | B® (re”) | =| P, (n—iy)| " P+0
r—>1-

and thus C(e”, E”)<(C. If p=+0, Corollary 2.2 shows that |d(re”)|—+ oo as
r—>1—0 and thus C(e”, E™)=C. If y =0, the conclusion of the theorem follows
from Theorem 2.2.

Let f=B-E€JF and suppose that the associated measure satisfies the condi-

tions of Theorem 3.3. Then the existence of B(e”) implies (cf. the proof of
Theorem 3.3)

C(e(x ’t(n)) — B(eiz) 0(6”, E(n))

and thus we have the following corollary of Theorem 3.4.

Corollary. Let f€F and suppose that B(e') exists. If u is smooth at the point
x, the integral (3.8) converges and

’}imo {ne(u; =, k)+nlog h}=F
-+
then f™ (e} ewists.
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Remark. Under the assumptions of the corollary we have
f(n) (€)= (—1)*n! B(e“) en—ﬂ—i(i(e")+nz)

The identity (3.5) may also be used to prove Theorem 3.1. Using the assump-
tion of Theorem 3.1 it follows from Theorem 2.6 and this identity that

lim (1—7)*""E™ (re*)=0 for 0<m<k<n
r-»1-0

and thus arguing as in the proof of Theorem 3.3 we may conclude that /* (¢ =0
for 0<k<n. This method was used in [3] in the case n=1. In both proofs
of Theorem 3.1 we really use the fact that p is non-decreasing, while in Theo-
rems 3.2, 3.3 and 3.4 it is enough to suppose that u is of bounded variation.
Actually, if the analytic function f is ‘“beschrinktartig” Theorem 3.1 is false.
To see this put

w(z)= —(1+e¢) log (1 —ze ®)+ie™ (exp { —¢ log (1 —ze *} —1).
If 0<e<]1, this function belongs to W and some simple calculations yield

hlimo {mp(u; x, B)+(1+¢) logh}=1+s.
-+

However, if f=exp { —w} it is easy to verify that C(e, f') is equal to the unit
circle |z|=1.
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