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Introduction

Most of the general theory of Banach algebras has been concerned with algebras
over the complex field. The reason for this is clear: the power of function theoretic
methods and the Gelfand representation [11]. But the complex algebras can be
regarded as a subclass of the real algebras and it is natural to ask what can be said
about this larger class. In several respects the extension of results that are known for
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L. INGELSTAM, Real Banach algebras

complex algebras is easy; many techniques valid for complex algebras will work in the
real case as well (cf. sec. 2). Also since any real algebra can be embedded in a complex
(sec. 3), some general results can be obtained in this way from the complex case. In
quite a few areas, however, new approaches are needed or different (“typically real”)
phenomena occur.

In much of the literature on Banach algebras incidental remarks on the real scalar
case can be found. Among more systematic confributions we can mention [1], [19],
[20] and in particular the monograph [24], in large portions of which the theory is
presented simultaneously for real and complex scalars. The author’s papers [15], [16],
[17] deal with special problems for real normed algebras.

This article intends to contribute to the theory of real Banach algebras in three
central areas: (1) the structure of the (quasi-) regular group (Ch. III), (2) abstract
characterization of real function algebras (Ch. IV), (3) the relation between real B*-
and C*-algebras (Ch. V). The questions studied here and in {15] lead us to introduce
and investigate a certain classification of real Banach algebras (Ch. II). An introduc-
tory chapter (Ch. I) gives some of the standard material from the general theory,
modified for the real scalar case.

For a more detailed survey of the contents the reader is referred to the short sum-
maries which are found at the beginning of each chapter.

Chapter 1. General theory of real normed algebras

This chapter intends to give a brief survey of those parts of the general theory of
real normed algebras that will be used in later chapters. Following the definitions
(sec. 1), some standard notions and techniques (regular and quasi-regular group,
adjunction of identity, natural norms, the function »{z), quotient algebras, comple-
tion) are described (sec. 2). The spectrum of an element in a real algebra is defined and
its relation to the complexification is discussed in section 3. For the Frobenius-Mazur
Theorem 3.6 on real normed division algebras we give a complete proof whose alge-
braic part is self-contained and elementary. In the last part (sec. 4) of the chapter
the real counterpart of the Gelfand representation theory {11] for commutative
complex Banach algebras is presented.

All the material in the chapter is known in principle, although many things, most
notably those of sec. 4, are rarely given explicitly for the real case.

1. Definitions

We let 4 be an associative algebra over the real numbers (E) or the complex
numbers (C). 4 is called a topological algebra if it is also a Hausdorff topological space
such that addition, multiplication and multiplication by scalars (from 4 x A4, 4 x4
and R X4 or C' x4 into 4, respectively) are continuous functions.

A norm on A is a real-valued function z—||z|| on 4 with the properties

= +gll <l + ¥l

llozl] =[],

||| >0 ifx =0
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for all #,y €A and scalars «. A norm defines a topology on 4, making A4 a topological
vector space.Two norms, ||-|| and |||-|||, define the same topology if and only if there
are two numbers ¢ and C such that

O<C<M<C

Il

for all . Two norms satisfying such a relation are called equivalent.

A topological algebra, the topology of which can be defined by a norm will be called
a normed algebra. (This terminology, though slightly unusual, is quite practical; when
a certain norm is replaced by an equivalent norm we can still speak of the same nor-
med algebra.) A norm that defines the topology for A4 is called admissible. A Banach
algebra is a complete normed algebra.

For a given norm | - || on 4 multiplication is continuous, i.e. 4 is a normed algebra
under || -||, if and only if there exists a number K such that

lzyll <Kl - l1]-

We will see that there are always admissible norms for which we can take K =1
{Proposition 2.3).

If A is an algebra over C' we can make 4 an algebra over R simply by restricting
scalar multiplication to R. Hence the class of complex algebras can be regarded as a
subclass of the real algebras; later on we will devote some effort to the characterization
of this subclass, the real algebras of complex type (Ch. IT).

2. Basic techniques

Throughout this section A is a normed algebra. If A has an identity element e
(ex =me =z for all z) the set A together with algebra multiplication forms a semigroup
(4, - ) with neutral element e. The elements with two-sided inverse in (4, - ) are called
regular and form a group G, the regular group.

If there is no identity we can still do something equivalent. Let zoy =z +y —zy;
then (4, o} is a semigroup with neutral element 0. The elements with two-sided inverse
in (4, o) are called quasi-regular and form a group Q9 the quasi-regular group.

G and G are topological groups with the (metric) topology of 4 [24, p. 19].

Proposition 2.1. If A has identity e, G2 is homeomorphically isomorphic to G, under the
map r—>¢—x.

We can also “adjoin an identity”. Let 4 be real and 4, =R & 4, direct sum as real
normed vector spaces. Multiplication is defined by

(x,2) (B,y) = (o, oy + Pz +y)
and the topology for instance given through a norm
[, 2)|| =] | + ][
Thus 4, is a normed algebra with identity (1, 0) and we have
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Proposition 2.2. Through x—>(0,x) A is embedded (homeomorphically and isomor-
phically) as an ideal of codimension 1 in A,. An element x € A is quasi-regular in 4 if and
only if (1, —a) is regular in 4,.

A norm is called natural if
llzv|| <||=|| ||#]] for all =,y (submultiplicative),
lle| =1 if A has identity.

Proposition 2.3. Every normed algebra has an admissible natural norm.

Proof. If 4 has identity, let

zl||=su
=1l ,,J.) Tyl
for some admissible norm || -||. Then |||-||| is natural and equivalent to || -||. If there

is no identity put |||z||| =]|| (0,)|||, the latter taken in A4,.

Remark. Using this device, the left regular representation, Gelfand [11] proved that
a Banach space that is also an algebra such that multiplication with any fixed element
is a continuous operation, is actually a topological (Banach) algebra.

Definition 2.4.
1
v(z) =inf ||"]"
n
for some natural norm || ||.

Proposition 2.5.
1
»(@) = lim || " ||
n—>00
for any admissible norm || -||.

For proof and further properties of », see [24, p. l(j].
We notice that »(x) is a topological invariant, independent of which admissible
norm was chosen to define it.

Proposition 2.6. If A is Banach and v(x) <1 then x is quasi-regular. If A has identity
and v(e —x) <1 then x is regular.

Proof. The series — >%_,2" and e+ > 5-1(¢e—2z)" converge and are the desired
inverses.

Consequences of this are, among others, that 0 has a whole neighbourhood con-
sisting of quasi-regular elements and that G? (or G) is an open subset of 4.

Proposition 2.7. If I is a closed two-sided ideal in a normed algebra A, A[I isalsoa
normed algebra. A|I is Banach if A s Banach.
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Proof. For [x]€A[I and ||| a norm for 4, take ||[z]|| =inf,e|x+y]||. Verifica-
tion that this is a norm, that multiplication is continuous and that completeness is
preserved, is routine.

For normed algebras we also have a standard procedure of completion.

Proposition 2.8. Any normed algebra A can be embedded (isomorphically and topo-
logically) as a dense subalgebra of a Banach algebra A’, called the completion of A.

Proof. Let A2, be the space of all Cauchy sequences (z,)5-1, #,€4. With a norm
l(x,)|| =sup||x,|| A% becomes a normed algebra. N ={(z,); x,—>0} is a closed two-
sided ideal. Then A'=A¢ /N is the desired Banach algebra and the embedding
2—>(x, =)z, +N. The conclusion follows from Proposition 2.7 and routine calcula-
tions.

3. Complexification and spectrum

As was indicated in sec. 1 the notion of a real normed algebra is more general than
that of a complex normed algebra. The complex theory is better known and in some
respects more satisfactory and we describe a procedure by which we can draw some
results (but far from all) for real algebras in general from the complex theory. The
real algebra A can be embedded in a larger (‘“twice as big”’) complex algebra.

Let Ac=A4 @ A4, direct sum as real normed vector spaces, and define multiplication

(a,b) (c,d)=(ac—bd, ad +bc)
and multiplication by complex scalars
(e +14f) {(a,b) =(oa ~ b, ab + fa).
Then A is a complex algebra and a real normed algebra, an admissible norm is for

instance
ll(@,8)|| =1la]l + |-

To show that A, is a complex normed algebra we construct an admissible complex-
homogeneous norm, following Kaplansky [20, p. 400],

||| 2]]| =max, || (cosp +ising)z||.

4 is embedded in A4 by the real-algebra monomorphism z—>(z,0). (A more detailed
discussion [24, p. 8] shows that, given a natural norm on A4, there exists an admissible
natural norm on A4, such that the embedding is an isometry with respect to these
norms.)

The spectrum ¢4 (z) for an element « of a complex algebra 4 is defined as the set of
complex numbers { such that - z is not quasi-regular, together with 0 if 2! does
not exist or 4 lacks identity. If the corresponding definition, with real numbers, is
used for real algebras the spectrum would frequently be empty and give no informa-
tion at all about the element. We therefore adopt the following definition, due to
Kaplansky [20].
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Definition 3.1. The spectrum of an element in a real algebra A is the set of complex
numbers
0 4(x) = {a +1B +0; (a2 + %1 (2 —2ax) not quasi-regular}

plus 0 if x~1 does not exist or A does not have identity.

We notice in particular that for a real o =+0,x€0 () if and only if a1z is not
quasi-regular.

Proposition 3.2. The spectrum of an element of a real algebra is equal to the spectrum
of the corresponding element in the complexification

04 (%) =05 (2, 0)).

Proof. 0 is easily checked out to belong to neither or both of the sets. For a+i8 +0
the element 2’ = (a +4f)~? (x,0) = (a2 + )~ (o, —Bz) €G7if and only if 2" = (a2 +f2)!
(ocx, Bx) €EGY, hence if and only if 2’ ox” = (a? +§2)1 (2% — 202, 0) EG.

Given a complex algebra A4, “regarding” it as a real algebra may distort the notion
of spectrum but in a non-essential way:

Proposition 3.3. If A is a complex algebra
o4 (2) =05 (x) U 0§ (2).

Proposition 3.2 enables us to quote, directly from the well-known theory of complex
algebras, the following two important results:

Proposition 3.4. For any element x in a normed algebra A, o 4(x) contains at least one
number { with [J| >v(x). In particular o 4(x) is never empty.

Proposition 3.5. In a Banach algebra A, o, () is a compact set and

max |{|=»(x)
Leoq(

for all z€A.

A division algebra is an algebra with identity in which every non-zero element has a
two-sided inverse.

Theorem 3.6. A normed real division algebra A is isomorphic to the real numbers (R),
the complex numbers (C) or the quaternions (Q).

Proof. From Definition 3.1 and Proposition 3.4 follows that every element that is
not a scalar multiple of e satisfies an irreducible quadratic equation. Such an algebra
is called quadratic and we prove that every quadratic real (associative) algebra is
isomorphic to R, C or Q.

If 4 has dimension 1 or 2 it is clearly isomorphic to R or C. Assume therefore that
there are 2,y € 4 so that {e,x,y} is linearly independent. Since any x, which is not a
multiple of e satisfies an equation (x, —&e)2= —n2,n +0, we can assume 2Z=y2= —e.
With a=2+y, b=2—y we have ab+ba=0 and

xy+yz=a®—at—y*=oa +ye,
xy +yr=z+y?—b*=pb+Je
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for scalars «,f3,7,0. Since {e, a, b} is also linearly independent «=f=0 and y =4. We
now put e, =(2—y) ta, e,=(2+y) 1 b, e;=ee, and notice that e,e,,e,, e, satisfy
exactly the multiplication rules of the four basis elements of Q. Let their linear span
in 4 be @,. We prove that @,=4.

Assume that there exists a z¢Q,. As before we can take 22 = —e. From the quadratic
law follows, for =1, 2, 3:

ez+ze,—=(e,+2)2—ef —2t=u,(e,+z)+ e,

eztze,= —(e,—20+ef +2t=py,le, +2) tre.

The linear independence gives %, =u; =0 and »;,=1,. Take w=¢(22+2}4;¢,). Then
e, u+ue; =0 for i=1,2, 3 and ¢ can be chosen so that u2= —e. But the associative law
is not satisfied; we compute ue, equ in two ways:

u((egep)u) =ulegu) =u( —ues) = —u’e;=e,

(ue;) (equ) =(—eyu) (—uey) —e; ule,= —e,6,= —é;.

Hence @ =A and the theorem is proved.
Related results are given in [16] and [17].

4. Gelfand representation

The remarkable result of Gelfand that a complex comr.utative semi-simple Banach
algebra is isomorphic to an algebra of continuous functions generalizes to real alge-
bras in general. Some modifications of a technical nature are needed.

Throughout this section we let A be a real normed algebra. A left ideal I is called
modular if there exists an element e, such that x —xe, €I for all x€4. A direct conse-
quence of Theorem 3.6 is that if 4 is commutative and M is a closed modular maximal
ideal A/M is isomorphic to R or C. The (Jacobson) radical R, is the intersection of all
modular maximal left ideals. 4 is called semi-simple if R, ={0} and radical if R,=A.

Given a real normed algebra 4, let ¢, be the set of non-zero continuous real algebra
homomorphisms of 4 into C. We will call ¢, the Gelfand space of A. The connection
between ¢, and the set of closed modular maximal ideals, T, is slightly more com-
plicated than in the complex case and will now be described.

Given ¢ €¢, we define 79 by 7p(x) =@(x) (complex conjugate). This 7, as a function
from ¢, into ¢ ,, is called the conjugate mapping. Since any ¢ €4, maps A onto either
R or C we can distinguish a ‘“real” and a “complex’ part of ¢ ,

¢i=lp; p(4) =R} ={g; 7p =g},

¢ ={o; 9(4) = C} = {g; vp +9}-
The extreme cases when either ¢ or 43 is empty will be discussed somewhat in Chap-
1-’el"l‘gc.) homomorphisms @,y €4 , are called equivalent if p =y or ¢ =7y. If $% is the set

of equivalence classes we have
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Proposition 4.1. For a commutative real normed algebra A with Gelfand space ¢, and
conjugate mapping T, the set ¢% is in one-to-one correspondence with M, the set of closed
modular maximal ideals.

Proof. We define the function p—~Kerg,p €4,. Since Kerg =Kerzp and Kerg is a
closed modular maximal ideal this defines a function g from ¢ , into M. From Theorem
3.6 follows that g is surjective. To prove that it is also injective assume Ker ¢ =Kery.
Then ¢ and % induce an automorphism « on R or C so that g =coy.But for E,a=
identity and for C, x =identity or complex conjugation. Hence ¢ and y are equivalent
and g injective.

We now proceed to define the Gelfand representation and state the results in two
theorems.

Definition 4.2. For an element x of a normed algebra A, the Gelfand function £ is a
complex-valued function on ¢, defined by

) =p(x), p€4-

Theorem 4.3. If A is a real normed algebra and the Gelfand space ¢, is given the
weakest topology in which all Gelfand functions £, x€ A, are continuous, then

(1) ¢4 ts locally compact,

(ii) ¢ 4 is compact if A has dentity,
(iii) 7 ¢s @ homeomorphism,
(iv) 7% is a closed subset of ¢ ,.

Proof. A* denotes the real normed dual of 4. We embed ¢ 4 in 4* X 4* in a one-to-
one manner ¢—>¢' =(3(tp+¢), }((p —7¢). An element (f,g)€A* X A* belongs to the
2
image ¢ if and only if (f,g) 40 and

flay) =f(x) f(y) —g(x)g (),

g(xy) =f(2)g(y) +{(y)g ()

for all #,y€A. We topologize A* with the weak* topology and A* x 4* ¢, and ¢,
accordingly. This topology on ¢, is the weakest in which the Gelfand functions are
continuous. A natural norm on A induces a norm on A* and it is easy to see that
¢4 <8, x 8,, where S, is the unit sphere in 4. Since S, is weak* compact, the closure
$4 is compact. But a (f,g) €44 must satisfy the multiplicative relation above and
consequently either belong to ¢4 or be =0. Thus we have two cases:

1. 04 ¢4; ¢ 4 is compact. In particular if A has identity 0 cannot be an accumulation
point.

2. ga=daU {0}; ¢, is equal to a compact Hausdorff space minus one point, hence
locally compact.

Since 7 corresponds to changing the sign of the second component in 4* x 4* (iii) is
clear. Any ¢ € § must satisfy ¢ =g, hence p €45 and ¢ is closed.

Remark. Since 7 is a homeomorphism it is easy to verify that 71 in a commutative
A, given the topology of 4%, is compact or locally compact as ¢, [7, § 10, No. 6, 10].
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Now we can give the Gelfand representation theorem for real commutative Banach
algebras. We recall that in a Banach algebra all the modular maximal ideals are
closed [24, p. 43], in particular B, = N yemM. I Q is a locally compact Hausdorff
space Cy(Q) denotes the Banach algebra of all complex continuous functions that
“tend to 0 at infinity” (i.e. tend to O after the filter generated by the complements of
compact sets); the topology being defined by the maximum norm. If Q is compact
Cy(£2) =C(Q), the algebra of all continuous functions on Q.

Theorem 4.4. Let A be a real commutative Banach algebra and ¢, its Gelfand space.
The algebra homomorphism h:x—>& of A into Cy(d,) has the properties

(i) Ker h R,
(ii) o (b 4) (the range of £) for all x, with the possible exception of 0 if A does
not hm;e zdentzty,
(ii}) maxgey,|2(g)| =(2),
(iv) kb is continuous.

Proof. From the way the topology of ¢, is defined follows that £€Cy(¢,). From
Proposition 4.1 follows that Kerh= n peoy Ker@= N yem M =R, and (i) is proved.
For given x and «+if 40 put x,= (a®-+A2)1 (42 —2ax). If «+ifdo,(x) then there
exists a y so that wy+y=xyy, £,+7==7 and £o(p)==1, £(p)=+=a+if for all ¢. If,
on the other hand, «+if€g 4(x) the set I = {y —yxy; y €A} is a proper modular ideal
with x,=e;. But I is contained in some maximal modular ideal M with e, =¢;=xz,.
According to Proposition 4.1 there exists ¢ €4, so that £,(@)=4&,(rp)=1; hence &
takes the value a+if at ¢ or 7p. If A has identity every ideal is modular, and x is
regular if and only if it does not belong to any maximal ideal; in other words O¢o 4()
if and only if £(p) ==0 for all p€4,. Now (ii) is proved. From (ii) and Proposition 3.5
follows (iii). Since »(x) < ||| for any natural norm ||-||, % is continuous and the proof
is finished.

Chapter II. Reality conditions

The main object of this chapter is to present a certain classification of real Banach
algebras. In sec. 6 the class of real algebras that can also be complex is characterized
and four ‘“reality conditions”, R,—R,, are introduced. It is shown (Theorems 6.5 and
6.8) that these conditions stand for increasing degrees of “reality” and also that, when
an identity is adjoined to an algebra, the reality properties are preserved (Lemma
6.9). The significance of the conditions in various parts of the theory is discussed
in sec. 7. It is finally shown that, under suitable finiteness assumptions, an algebra
can be decomposed in a “complex” and a ‘“real” part (Theorem 8.1). This result, like
several notions and results of the chapter, is purely algebraic.

5. The modified exponential function

In a Banach algebra without identity we cannot define the usual exponential func-
tion. It is, however, always possible to define the function

ooxn

T —>ixpx= — —
!
n=1 N1
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which is defined and continuous for all x and moreover satisfies ixp (x +y) =ixpz o
ixpy for commuting x and y. If the algebra A is commutative ixp is & semi-group
homomorphism of (4, +) into (4, o). The function

x—>1lx)=— 2

x
n n

1

is defined and continuous for all x with »(z) <1 and satisfies ixpl(x) =x. If there is an
identity e we clearly have
expx=e—ixpz,

log (e —x)=I(x).
For future reference we make two technical remarks concerning the ixp function.

Lemma 5.1. I}, for a topologically nilpotent element x in a Banach algebra A, ixp ax
is a bounded function of the real variable o — oo <o << oo) then x=0.

Proof. For a continuous linear functional f, the function
o"
@ (o) =f(ixpaz)= — Z 1@

can be extended to an entire function i on the whole complex plane. Since
fE™)" < K" ||2™||V" we have that

(=) [=O(expdlz]), |e[ oo,

for every 6 >0. Hence v is at most of order one, minimum type, and since it is bounded
on the real axis a Phragmén-Lindel6f theorem [5, p. 84] tells that it must be bounded.
Hence f(x) =0 for arbitrary f and z=0.

Lemma 5.2, If for some x there exists a convergent sequence a,,n=1,2,..., of real
numbers such that ixp o, £=0 for all n then =0.

Proof. Let f be a linear functional and ¢,  as in the proof of Lemma 5.1. Now o
is an analytic function with a non-isolated zero, hence =0, f(x) =0 for all f and z=

6. Reality conditions

As we have already pointed out (sec. 1) the complex (normed) algebras can be
regarded as a subclass of the real (normed) algebras. Next we look into this situation
in some detail.

Detinition 6.1. A real (normed) algebra is said to be of complex type if it is possible to
extend the scalar multiplication to complex scalars so that the algebra becomes a complex
(normed) algebra.

A somewhat more technical description can be given:
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Proposition 6.2. A real (normed) algebra A is of complex type if and only if there
exists a (continuous) linear operator J on A satisfying

“J{ab)=Ja -b=a-Jb
and such that —J? is the identity map.

Proof. The “only if” part is trivial; a—>ia is a map with the desired properties.
Assume J given with the properties above. A complex scalar multiplication can
then be defined
(x+if)a=aa+fJa.

If A is normed, let |- || be an admissible (real) norm. Following Kaplansky [20] we
can construct an equivalent, complex norm

Il ||| = max, || cos ¢ - x +sin ¢ - J ||.

Corollary 6.3. 4 real (normed) algebra A with identity e is of complex type if and only
if there exists an element j tn the center of A, satisfying 2= —e.

Proof. If such a j exists, take J :x—jx. If A is of complex type, j =Je with the J of
Proposition 6.2 has the desired properties.

The question whether scalar multiplication can be extended to complex numbers
or not is not trivial even if the compatibility with multiplication is disregarded, i.e.
for real vector spaces. If the dimension is finite complex scalars can be introduced if
and only if it is even. Any infinite-dimensional real space can be given a complex
structure in the algebraic sense. There are, however, infinite-dimensional real Banach
spaces on which no complex multiplication exists, making them complex Banach
spaces; Dieudonné [10].

Our main concern in the sequel will be real algebras that are not of complex type.
We introduce conditions, signifying different degrees of ‘“‘reality” of an algebra A.
The first set is such that it can be used for algebras with or without topology:

Definition 6.4. A real (normed) algebra A is said to be

R,, of real type, if A is not of complex type.

R, if A does not contain any subalgebra of complex type with identity.
Ry, of strictly real type, if —a? is quasi-regular for every x.

It is clear that the two following conditions are equivalent to R,:

R': A does not contain any subalgebra isomorphic to the complex numbers.
R The equation 3+ =0 has no solution in 4 except 0.

Theorem 6.5. For a real algebra A we have
(a’) R4 = R2>
(b} By= Ry= R, if A has identity.

Proof. If A4 is not R, we have some k +0 satisfying k +4*=0. If 4 is also R, there
exists a y such that
O=yo (—k¥)=y—k?+yk?
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Multiplying by k gives k* =y(k +%3) =0 and k=0 against the assumption. This proves
(@). In (b) it is trivial that B, = R, if 4 has identity.

For a Banach algebra we have alternative formulations and one additional condi-
tion.

Detinition 6.6. A real Banach algebra A is said to be

R; if ixp =0 implies x=0,
R ifixp o is a bounded function of a, — oo << oo, only if =0,
R; if 0 4(x) is real for every x€ A.

Proposition 6.9. For a Banach algebra A
(@) By < R,
(b) R, < Ry.

Proof. (@) Assume that A is not Rj, ixpz =0 with =+ 0. Then, according to Lemma
5.2, ixp2~" x40 but ixp2-"1 =0 for some n>0. Put y=2-""1z and take ¢,=1/2
ixp2y and i, —e,—e,ixpy. Then e§ —e, and 15 = —e, and so the algebra generated by
e, and 7, is isomorphic to the complex numbers, and A4 is not E,. If 4 is not R, we
have an element k 4-0 such that & +k3=0. Then ixp 25wk = —ksin2x —k*(1 —cos2x) =0
and A is not R;.

(b) Tt is well known that B, and Rj are equivalent if 4 is commutative [24, p. 119].
For a given z let B be a maximal, commutative subalgebra containing x. Then quasi-
inverses of elements in B are already in B; in particular spectra of elements do not
change (except possibly for 0) when restricted to B. If 4 is B,, B is also E,, hence
o5 (z) and ¢ 4(x) are real. Thus B, = R and since R, = R,is obvious from Definition 3.1
the proof is complete.

From now on we leave out the primes in the conditions and use the different formu-
lations interchangeably.

Theorem 6.8. For a real Banach algebra A

(@) By= By R,,

(b) BRy= R;= R,~ R, if A has identity,
(¢) By= R, if A is not radical.

(d) Any radical 4 is R,.

Proof. Assume that 4 is R,. The quotient algebra 4/R, (R, is the radical) is semi.
simple and R,, hence commutative (Theorem 7.1). If, for zEA/R ,, ixp xz is bounded
this is true also for its Gelfand function A(ixp «z) =ixp aZ. But since £ is real £=0 and
2=0. Hence, if 2€ 4 and ixpax is bounded, z€ R, and »(z) =0. But then, according
to Lemma 5.1, z=0 and A is R,. R;= R, is obvious since if ixpx =0, ixp ax is periodic
in o, hence bounded, and 2 =0. Thus (a) is proved. Then (b) follows from Theorem
6.5. For (c) let A be strictly real and P a primitive ideal (see [18, Ch. I]). Since P is
closed A/P is a primitive Banach algebra. An argument by Kaplansky [20, p. 405]
shows that A/P is isomorphic to the real numbers. If 4 is also of complex type then,
for every z, *= —(Jz)2. Then z must be mapped into 0 of 4/P and z€P for every P.
But this implies that every z is in the radical, contrary to the assumption. (d), finally,
is trivial since all elements in a radical algebra are quasi-regular.
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Theorems 6.5 and 6.8 apparently give us reason to regard R, through R, as suc-
cessively stronger reality conditions. It is easy to see by examples that none of the
four are equivalent (see [15, p. 30]).

We also notice that the reality conditions are preserved when an identity is
adjoined. Given 4, 4, is the algebra defined in sec. 2.

Lemma 6.9. For a real (normed) algebra A

(a) 4, is always R,,

(&) A, is R, if and only if A is R,.
If A is a Banach algebra

(c) 4, is R, if and only if 4 is R,,
(d) 4, is R, if and only if A is R,.

Proof. (a) and (b) are trivial. For (¢) we notice that for (£,2)€4,
ixpo(&,z)=(1 —expaé, expal -ixpox).

For this to be bounded it is necessary that £=0; thus it is bounded if and only if
£&=0 and ixpazx is bounded in 4.

In (d), it is clear that if A, is R, then 4 is R,. For the “if”’ part a technique due to
Civin and Yood [9] is used. We assume that 4 is R, and prove that o 4, ((£,2)?) is non-
negative real for any (&,x) € 4,. Take h =2&x +x2 and let B be a maximal commutative
subalgebra of A containing &. B is a commutative Banach algebra and, thanks to the
maximality, os(x) =6 ,(x) (except possibly for 0) for x€ B. If B is radical the conclu-
sion is clear, hence assume that B has a non-empty Gelfand space ¢z and a Gelfand
representation x—£. For every ¢ €¢5 there is a w€ B such that u(p) =1. With y =&u
+au we have y2=£%u2+hu?€ B and

0 < P(p) = E0% () + h(p) 4%(p) = & + K(p).
Hence 64, {0, R)) =04 (h)=05(h)= — &
and finally 04, (&, 2)) =04, (L R)=E*+ 0, (h) >0

and the proof is finished.

1. Significance of the conditions

Strict reality, R,, was used already in Gelfand’s original paper [11] in order to
make sure that the representation of a real commutative Banach algebra only con-
sists of real-valued functions. It is clear from section 4 that, for a commutative real
Banach algebra, R, and ¢5 =4, are equivalent conditions, and that, for a R, algebra,
the Gelfand space ¢, can be identified with the set of modular maximal ideals. B, is
in fact a very strong condition, which is seen for instance from the remarkable result
that a B, Banach algebra is commutative modulo its radical:

Theorem 7.1. (Kaplansky) 4 strictly real semi-simple Banach algebra is commutative.

The proof [20, p. 405] amounts to showing (by means of the density theorem) that
any primitive B, Banach algebra is isomorphic to the real numbers. Since a subdirect
sum of commutative rings is commutative the conclusion follows.
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In Chapter IV some criteria for strict reality are given. In that context the closely
related problem to characterize those real algebras whose Gelfand representation
consists of all real funetions in Cy(¢,) is discussed.

The R, condition was introduced by the present author in connection with studies
of the geometrical properties of the unit sphere [15]. A point on the boundary of a
convex set is called a vertex if no straight line through the point is a tangent of the set.
A real Banach algebra with identity e is said to have the vertex property if e is a vertex
of every unit sphere that belongs to an admissible natural norm. We have [15,
Theorem 2]:

Theorem 7.2. A real Banach algebra with identity has the vertex property if and only
if it is R,

It would be interesting to know if there is an algebraic condition equivalent to R
(cf. Proposition 6.7).

Since any algebra without non-zero idempotents is R,, and so quite a few complex
algebras are in fact R,, this condition seems rather weak. From Chapter III, however,
it will be clear that R, is the “correct’ reality condition for the quasi-regular group;
in R, real algebras this group has distinctively different connectivity properties from
that of complex (type) algebras.

8. A decomposition theorem

In this section, which is purely algebraic, we give a theorem to the effect that a
commutative real algebra satisfying some suitable finiteness condition can be split
in a direct sum of a complex type algebra and a R,-algebra, thus enabling us to a
certain extent to discriminate between the “complex” and the “real” properties of
the algebra.

We consider the two conditions on an algebra A:

DOS = Any descending chain

A=4,24,>..24,24,,>...

of ideals of 4, such that 4, , is direct summand in 4,, has only a finite number of
distinct members.

FI=The center of 4 contains only a finite number of idempotents.

Clearly, DCS is implied by the more familiar Artin descending chain condition for
ideals, a fortiori by A being finite dimensional. The FI condition, on the other
hand, is often satisfied by function algebras. Moreover, DCS implies F1I.

Theorem 8.1. A commutative real algebra, satisfying the F1I (or the DCS) condition,
is the direct sum of an algebra of complex type with identity and a R, algebra.

Proof. If A is not R,, we have elements ¢, and k such that —k*=e, and e =e,.
With 4,=e,4 and 4A,={a—e,a; a€A4} we have

A=A4,90 4,,

where 4, is of complex type. If A is R, we take 4, ={0}. Then we can split up 4, in
the same manner, 4,=4, ® 4,, then 4, and so on. The result can be described by the
diagram
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where all the maps are algebra homomorphisms and

1. All horizontal maps are onto and split.
2. Sequences containing only one horizontal map are exact.
3. All members of the middle row are of complex type with identity.

Since each non-zero 4,,4;... contains a different idempotent, the FI condition
guarantees that only a finite number of them are == {0} and the upper row becomes
stationary from some element on. (The DCS tells directly that only a finite number
of the 4, 4,... can be different.) Hence, for some n, we have

A=4, 04,8 ...® 4y, ;0 A4y,

where it is impossible to split up A4,, non-trivially, hence 4,, is E,. Since a direct
sum of complex type algebras with identity is again of complex type with identity,
the conclusion follows.

Without any finiteness assumption of the type DCS or F1I, the conclusion of Theo-
rem 8.1 is no longer valid. To see this, let ¢z be the algebra of all sequences of complex
numbers converging to real limits (with component-wise multiplication). Assume that

CR:ACG;AR

with 4. of complex type with identity. Its imaginary unit & = {x, } satisfies & +£%=0,
hence we must have »,= +7 or 0, and consequently there is an N such that »,=0,
n=N. Hence {,=0,n>N for all {{,}€A4,. But Az is never R,: the elements with an
arbitrary complex number in the Nth position and 0’s elsewhere belong to Az, but
they clearly form a subalgebra isomorphic to the complex numbers.

Without the commutativity condition the theorem does not hold; for a finite-di-
mensional {i.e. DOS) counterexample take the algebra of all 2 X 2 matrices with real
entries. This algebra is obviously not of complex type, but it contains a subalgebra
isomorphic to the complex numbers, namely matrices of the form

(52

hence it is not R,. But it is simple, thus indecomposable.

Remark 1. Since the decormposition in Theorem 8.1 is in fact effected by an idempo-
tent it is clear that, if 4 is a topological algebra, both summands are closed. In parti-
cular if 4 is a Banach algebra the summands are Banach algebras.

Remark 2. There exists a purely ring-theoretic analogue to Theorem 8.1. A ring
(R, +,-) is said to be of complex type if there exists a group endomorphism J on
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(R, +), satisfying J(ab)=J(a)-b=a-J(b) and such that —J?2 is the identity. It is
called R, if the equation #® +2 =0 has nosolution z +0in R. If the conditions DCS and
F1I are read with “ring” instead of “‘algebra’” we have:

A commutative ring, satisfying FI (or DCS), is the direct sum of a ring of complex
type with identity and a R, ring.

Chapter III. The quasi-regular group

In this chapter the main object of study is the group of quasi-regular elentnts of
a commutative Banach algebra. We first show that for a “sufficiently real” (i.e. R,)
algebra the principal component of the quasi-regular group is simply connected (Theo-
rem 9.3). This depends on the extension of a result by Blum [4] to the general case of
real algebras without identity.

A theorem by Lorch [21] says that in a complex commutative Banach algebra with
identity the (quasi-) regular group either is connected or has an infinite number of
components. This is obviously not true for real algebras in general but we obtain a
satisfactory analogue for real commutative R, algebras: the components of the quasi-
regular group are at least as many as the idempotents of the algebra, equal in number
if the set of components is finite (Theorem 10.3). It is also shown that the Lorch
result is true even without the assumption of identity. Finally (sec. 12) we make
some remarks on how a recent result on the cohomology of the maximal ideal space is
related to the questions discussed in the chapter.

9. Structure of G§

The set of quasi-regular elements, which we have called G9 is a group under the
circle operation (xoy =z +y —zy) and a topological group in the topology of the alge-
bra (sec. 2). Its principal component (the maximal connected subset of G¢ containing
0) is called G§. The following lemma, which is well known for the case with identity
[24, p. 14], is technically important.

Lemma 9.1. In a Banach algebra A, G§ is the subgroup generated by tap (A). If A 1s
commutative x—ixpx is a homomorphism of (4,+) onto (G§, o). :

Proof. Since ixpiz, 0<¢t<1, is a continuous path in G? between 0 and ixpz we have
ixp(4) c G{.If & is the group generated by ixp(A4) we show that G’ is open and closed
in G

There exists a neighbourhood U of 0 consisting only of elements ixpa, a€4
(sec. 5). For a z€@ the set x o U is a neighbourhood of = and belongs to G, hence «
is an interior point and & is open. If €@ then (zoU) N & is not empty, hence an a
exists 8o that z oixpa =g €@ and z€G'. (As by-products we get that G is pathwise
connected and open in G9.)

From here on we restrict our attention to commutative algebras. Let II,(G¢) (or
only IT,) denote the fundamental group of G§. The following theorem generalizes a
result by Blum [4] for complex algebras with identity. We take P = {x; ixpz =0},
which is a subgroup of (4, +).

Theorem 9.2. In a commutative Banach algebra I1,(G§) is isomorphic to P.
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Proof. P is the kernel of the epimorphism ixp:A4—>G§, hence A/P is isomorphic to
@3§. We show that P is discrete, which is the case if 0 is an isolated point of P. Assume
that z€P and ||z| <1. Since ixpz =0 the spectrum of x only consists of points 27i NV,
N=0, £1, +2.... Since ||z|]| <1 we have that the spectrum of = is {0} and so z is
topologically nilpotent. But @(«)=ixpax is continuous and periodic in «, hence
bounded, and Lemma 5.1. shows that ¢(e) =0 and z =0. Since A islocally connected,
simply connected and locally simply connected, P discrete and ixp an open map, a
theorem by Schreier [28] applies and shows that the fundamental group of (the to-
rus) A/P is isomorphic to P.

Theorem 9.3. For a commutative Banach algebra A the following statements are equi-
valent:

(@) ixp: A—GY is an isomorphism,
{(6) 4 is R,,

(c) G§ is simply connected,

(d) G§ s torsion free.

Proof. From Lemma 9.1, Proposition 6.7 and Theorem 9.2, respectively, follows
that (a), (b) and (c) are all equivalent to P ={0}. We prove that (b) and (d) are equiva-
lent.

Assume that 4 is not R,. Then ixpx=0 for some z+0. From Lemma 5.2 follows
that there exists an 1nteg4=r n =2 such that y, —1xp w1z +0. Then y,€Q§ and y°" =0
so G§ is not torsion free. Now assume that there is a z€G§ such that z +0 and 2°¥ =0.
According to Lemma 9.1 z=ixpu for some %, and so ixp Nu=2""=0, and 4 is not
R,, which completes the proof.

Thus we have that for “‘sufficiently real” Banach algebras G{ is simply connected.
For every non- R, algebra, in particular every complex algebra with identity, how-
ever, II, has a subgroup isomorphic to the additive group of integers. For complex
algebras without identity it can very well happen that Gf§ is simply connected. For
every radical Banach algebra, for instance, we have 4 =G=G4.

We conclude this section with a technical remark on commutative complex type
algebras.

Theorem 9.4. A commutative real Banach algebra A with identity e is of complex type
if and only if —e belongs to the principal component of the regular group.

Proof. If A is of complex type, exp (ipe), 0 <@ <, is a path in G between e and —e;
hence —e belongs to the principal component G,. If —e€@, then (Lemma 9.1) there
is a u €A such that expu = —e. But then j=exp 1u is an imaginary unit and 4 is of
complex type.

10. Components of G*

In this section we study the quasi-regular group G? of a commutative Banach
algebra, in particular the number of components of G2 For eomplex Banach algebras
with identity we have a result by Lorch [21, Theorem 12]:

G? (and G) either is connected or has an infinite number of components.

It is immediate that this does not hold for real algebras in general. For instance
for the real numbers R, G=R~— {1} and has two components. A counterpart to
Lorch’s theorem will be given for real R,-algebras. As a preparation we prove two
lemmas.

18:3
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Lemima 10.1. Every element of finite odd order in G9 belongs to its principal component
Gs.

Proof. Let#®* =0, n odd. The line segment
A(r)=(1—71)r, 0<t<l,

connects 0 and r. But with
n—1
Br)=[1-7)"~ (=0T 2 A0~ *r*

we have A(t) oB(r)=0. Hence A(r)€G? and r€G{. (This result obviously holds in
any power associative real topological algebra, i.e. not necessarily commutative,
associative or normed.)

Lemma 10.2. Let A be an abelian topological group such that its principal component
18 torsion free. If x and y are two elements of finite order in A they belong to different
components unless x=y.

Proof. Assume z and y are in the same component, A’. z—z~12 maps A’ homeo-
morphically onto the principal component A,. Then 2~y €A, and x—1y is of finite
order, hence z'y =¢ and z=y.

For the formulation of the main theorem we introduce the set of idempotents
I={y; y*=4}. GYGE, the set of components of G, is called K.

Theorem 10.3. In a commutative R, Banach algebra holds

(@) card I<card K,
(b) card I=card K if K is finite.

Proof. We first introduce the subset S of G9 consisting of all elements of order 2,
8={x; 2> =2x—22=0}. Evidently z—}z is a one-to-one map of S onto I, so card
I=card §.

To every element x €S we associate the component of G%, I';, in which it lies, defin-
ing a function

frx—T,

of 8 into K. But ¢ is torsion free (Theorem 9.3) and Lemma 10.2 shows that f is
injective, which proves (a).

Now assume that K is finite, take an arbitrary element '€ K and let k€T. The
powers k°", n=1,2,..., cannot all lie in different components. If k&°™ and k°™*? are
in the same component, k' =k""™ok°"*"€@§ and there exists €A such that
ixpu=£k* (Lemma 9.1). The element v=koixp(—wu/l) satisfies v’ =0 and v€l.
Lemma 10.1 together with the fact that G§ is torsion free shows that there are no
elements in G¢ of odd, finite order. Hence I =2" and v°%" =0 for some 7 >0. But in a

R, algebra, 2°*" =0 for some n>1 implies that already z°2=0. To see this, assume
that £°4=0 but 2°2+0. Then

k=3}(2x—3a2% +23) = (2% —2)
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is =+0, because otherwise 2°?=gox°*=2°4=0 against the assumption. But % also
satisfies £+ k® =0 (notice the formal identities k=1(} —z) [1 — (1 —=z)?]and (1 —z)*=1)
and the algebra would not be R,. Hence we have v°2=0, v€S and I'=T", so f is onto
and the proof of (b) is complete.

The inequality in (@) above can be strict. An example (slightly modified after S.
Kakutani) is the following. 4 is the real R, algebra of all continuous complex func-
tions on the unit circle |z| =1 that take only real values at z=1. The elements f,, with
falz)=2",m=0, 1,2..., lie in different components of G, but the number of idempo-
tents is 2.

11. The regular group of A,

In this section we investigate the connection between the properties of the quasi-
regular group of 4 and that of 4, (4 with adjoined identity, sec. 2). Here we reserve
the notation G and @, for the regular group of 4, and its principal component, while
G? and G stand for the quasiregular group and its principal component in 4.

For a given component I" of G? we define the subsets

I+ ={«(1, —g); a>0, g€}, T'-=-T+
of 4,.

Theorem 11.1. If A is a real Banach algebra then

(a) to every component I' of G in A correspond two components I't and '~ of G
m A,

(b) card G|G,=2 card G%GY,

(c) the fundamental groups of G§ and G, are isomorphic,

I1,(G,) ~ I1,(G§).

Proof. The map #—>(1, —x) is a homeomorphism of G¢ onto the subset (1, —G9) = G.
If I is a maximal connected subset of G then (1, —T') =T+ and I+ is clearly maximal
connected. '+ and '~ are homeomorphic and lie in disjoint homeomorphic half-
spaces, hence I'- is also a component. Since for any component A of @ either A or
—A must contain an element (1, —g), g€GY, (a) and (b) are proved.

For (c), we rely on Theorem 9.2. Since ixp(&,2) =0 implies £ =0 we have

I1(Gh) ~ {(§,%); ixp(&,2) =0} = {(0,); ixpx =0} ~T1,(G¥).

For an algebra of complex type we can, as an alternative to the construction used
above, adjoin a complex identity; take

Ac=Ce A,

direct sum as normed vector spaces, with the algebra operations defined as in sec. 2.
We use the notations @, G,,G% @§ as above, and for a component I' of G? we define
the subset

I°={{(1, —g); {+0,g€T'}
of A,c.
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Theorem 11.2. If A4 is a Banach algebra of complex type and a complex identity is
adjoined, then

(@) to every component I' of Q% in A corresponds a component I'° of G in A,

(b) card G|{G,=card G*|G§,

(c) the fundamental group of G, is isomorphic to the direct sum of the fundamental
group of G§ with the integers Z,

Hl (G)=11,(G§) & Z.

Proof. (@) and (b) follow as in Theorem 11.1. For (¢) we notice that ixp({,x)=
(1 —exp{, expl-ixpx)=0 if and only if { =2nin, n€Z, and ixpz =0. Hence Theorem
9.2 gives

I1,(Gy) ~ {(¢,2); ixp (L, ) =0} = {(2min,x); n€Z, ixpxr=0}~Z & I1,(GF).

A simple consequence of Theorem 11.2 (b) is that Lorch’s theorem (see sec. 10)
generalizes to the case without identity:

Theorem 11.3. I'n a Banach algebra of complex type the quasi-regular group either is
connected or has an infinite number of components.

12. Remarks on a cohomology result

A recent result due to Arens [2] and Royden [25], [26] is that, for a complex com-
mutative Banach algebra with identity, G/G, (as a group) is isomorphic to HY{M,Z),
the first Cech cohomology group of the maximal ideal space 71 with the integers as
coefficient group. We can make two remarks on this, due to the fact that for any
compact space ), HY(Q,Z) is torsion free.

This is immediately clear when Q is a finite simplicial complex. Then H(£2,Z)
is isomorphic to the direct sum of the free (Betti) part of H,(Q,Z) and the torsion
part of Hy(Q,Z) [8, p. 127). Since H, is always free H(2,Z) is torsion free. :

For Q an arbitrary, compact space H*(,Z) is the direct limit of H((2,,Z), where
Q, are finite simplicial complexes: the finite open coverings (or “nerves” of such
coverings) of Q (for terminology, see [14, p. 132]). Since a direct limit of torsion free
groups is torsion free, the conclusion follows.

Hence, if H(Q,Z) is not trivial, it is infinite. Since we also know of real commuta-
tive Banach algebras in which G/G, is finite but non-trivial, we can make the two
remarks:

1. For real, commutative Banach algebras in general it is not true that G/G,
~ HYQ,Z) for any compact space .

2. For complex, commutative Banach algebras with identity the result that
GG, ~ HY(M,Z) (Arens, Royden) implies that G/G, has either one or an infinite
number of elements (Lorch).

Chapter IV. Strict reality and full function algebras

The first part (sec. 13) of this chapter contains criteria for a real Banach algebra
to be strictly real (R,). One of the conditions (Theorem 13.1) is analytic in character,
the other (Theorem 13.3) deals with geometric properties of the unit sphere and com-
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plements previous results by the author [15]. These conditions can also be formulated
in terms of an ordering of the algebra (sec. 14). In section 15 we give criteria for a
Banach algebra A4 to be homeomorphically (or isometrically) isomorphic to a C§(Q),
the algebra of all continuous real functions on a locally compact space that tend to 0
at infinity. The key to these results is the observation (Theorem 15.2) that if, in a
strictly real algebra, the spectral radius »(z) is in a certain sense compatible with the
topology, the algebra is isomorphic to Cy(¢,). The results generalize a theorem by
Segal {29] that has been used in his work on the foundations of quantum mechanics.

13. Conditions for strict reality

We recall the definition ixpz= —> 5., (n!)~! 2" and start with an analytic criterion
of strict reality.

Theorem 13.1. If in @ real Banach algebra ixp(—ox?),a >0, 1s a bounded function
of o for every x, then the algebra is strictly real.

Proof. Take an arbitrary element « of the algebra 4 and let B be a maximal, com-
mutative subalgebra containing . B is closed and the spectrum of x in B coincides
with the spectrum of z in 4 (except possibly for 0). If £ is the image of z in the Gelfand
repregentation of B, ixp(—«#?) is a bounded (complex function-valued) function of
«. Then Re £2>0 and the spectrum of x is contained in the “double wedge” |[Im(|
<|Re(]| of the complex plane. Since this holds for every element it follows from the
spectral mapping theorem (for powers) that the spectrum of every element must be
real.

The condition that ixp{—a«a?) is bounded for all x, which is sufficient for strict
reality, is not necessary, which will be shown by examples. We first make an observa-
tion about “topologically very nilpotent” elements.

Lemma 13.2. If x is an element of a Banach algebra such that ||z"||'" =o(n"1),
n—>co, and ixp ax is bounded for « >0 then £=0.

Proof. For any continuous linear functional f, f(ixp «x) =@(x) is an analytic function
on the real line that can be extended to an entire function on the whole complex
plane. As such, it is at most of order 4, minimum type, and since it is also bounded
on the positive real line a Phragmén-Lindelof theorem tells that it must be constant
(¢f. Lemma 5.1). Hence f(x)=0 for all f and z=0.

Remark. Results of this type are obtained by Lumer and Phillips [22]. They also
disprove the conjecture by Bohnenblust and Karlin [6] that, in a Banach algebra
with identity, no ray e +ox, « >0, z€ R,, can be a tangent of a natural unit sphere.
It is true, however, that no full straight line e+ ox, — oo <a<oo, z topologically
nilpotent, can be a tangent of a natural unit sphere ([15], cf. also Lemma 5.1 and
Theorem 7.2).

In view of Lemma 13.2 it is sufficient to exhibit an element == 0 in a Banach algebra
satisfying ||z*"||"* =o(n=1). The closed subalgebra generated by x will then be a radi-
cal Banach algebra and automatically strictly real (Theorem 6.8, (d)) but ixp ( — az?)
must be unbounded. A trivial example is then a nilpotent element z, where [J22"|| =0
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from some n on. A little less trivial is the following. The algebra is the vector space
C [0,1] with the maximum norm || -|| and the multiplication

t

xxy(t)y= f z(t — s)y(s)ds.

0

Let ¢ be the function with ¢(f) =1. It is easily verified that

1

)" =n"20(1).

tn-—l

_
@n—1)!

1

c"(t) = 1) and ||*||"= (

Next we give a condition for strict reality in terms of the geometry of the unit
sphere. For an algebra with identity e, we define the enveloping cone at e of a certain
natural unit sphere to be the collection of all rays e + o, >0, that either are tangents
to the unit sphere or cut through it. In terms of the Gateau differential ¢(x)=
lim,, .00 *(|le + oz|| —1)the raysin the enveloping cone are precisely those belonging to
z such that ¢(x) <0. The author has proved that if a Banach algebra is strictly real
then the enveloping cone at e does not contain a full line through e for any natural
unit sphere (vertex property [15, Theorem 4], cf. Theorem 7.2). The following theorem,
which also deals with the local properties of a unit sphere at e, is in a way comple-
mentary to this result.

Theorem 13.3. If a Banach algebra with identiy e has a natural norm such that every
ray e —oax?, a=>0, is in the enveloping cone at e, the algebra is strictly real.

Proof. The assumption is equivalent to ¢(—=z2)<O0 for every = for some natural
norm || -||. But we also have ¢(x) =lim,.oa ' logllexpaz||, [15, p. 25]. With A(x) =log
llexp(—aa®)||, «=>0, we have h(x+B) <h(x)+A(B). From this follows

1)

= -

o
[v4

IR

for any natural number ». If A{«) >0 for some «, this inequality shows that we cannot
have
h
é(—2?) = lim Me) <0

a->+0 &

and so we conclude that A(a) <O for all «>0. But then |lexp(—owr?)|| <1 and Theorem
13.1 shows that the algebra is strictly real.

14. Order-theoretic formulation

We call a set K in a real vector space a cone (with vertex at 0) if x,y € K implies
z+y€K and ax €K for every a>0. K is called proper if —x€K and z€ K together
imply x=0. Given a cone K we can define a partial ordering (the K-ordering) of the
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space by defining x>y as z —y € K. Then x>y and y >z imply =y if and only if K
is proper; K consists of all positive elements, >0.

The image of an enveloping cone at ¢ under the mapping z—>e—z is a cone (with
vertex at 0) which we call N. N is proper if and only if the unit sphere has a vertex
at e (cf. Theorem 7.2). Theorem 13.3 can now be reformulated in terms of N-ordering.

Theorem 14.1. If a Banach algebra with identity has a natural norm such that in the
corresponding N-ordering every square is posttive then it is strictly real.

It follows that under the assumptions of the theorem N is proper [15, Theorem 4].

For a commutative algebra it is obvious that the set of all z, such that ixp(—ax)
is bounded for « >0, form a cone. If we call this cone ¥ we get directly from Theorem
13.1.

Theorem 14.2. If in a commutative Banach algebra every square is positive in the
E-ordering then the algebra is strictly real.

E is proper if and only if A is R,. From Theorem 6.8 it follows that E is proper if
the algebra satisfies the assumptions of Theorem 14.2.

A discussion of ordered real algebras is found in Kadison [19]. (In our discussion
the ordering has no a priori connection with the multiplicative structure, i.e., it is
not necessarily an algebra ordering in the sense of [19].)

15. Abstract characterization of C§ ()

If Q is a locally compact Hausdorff space, C5(Q) denotes the real Banach algebra
of all real continuous functions that tend to 0 at infinity; the topology is defined by
the sup norm. In the abundance of properties for C§(£2), we can ask for a set of topolo-
gical or metric conditions oh a Banach algebra 4 to guarantee that 4 is isomorphic
and homeomorphic to a C§(Q2). Largely two different sets of conditions of this kind
can be found in the literature:

I. A is commutative and has a natural norm that satisfies ||z||? <al||22+32|| for all
z and y and some fixed a.

This follows as a special case of a theorem by Arens and Kaplansky on real com-
mutative *-algebras [1] (also [24, p. 191]) and depends on the fact that the complexi-
fication of 4 is (essentially) complex B* (cf. also sec. 18).

II. 4 is commutative, has identity and a natural norm that satisfies

l=*ll =ll=|l* and [j*—y?|| <max]l2*[|, ]|y}l

This is due to Segal [29, Theorem 1]. Conditions of type I have been used by Kadi-
son [19]; different proofs of T and IT have been given by Aurora [3].

We are going to give conditions that in a sense generalize II. Theorems 15.2 and
15.3 show that the conditions in II can be relaxed considerably. In the following
we denote, as usual, ¥(x) =limn.,||z"||"" for some admissible norm (and hence for
all). S, is the set of x for which »(x) <1.

Lemma 15.1. The conditions

(i) S, is bounded,
(ii) for some admissible norm (not mecessarily nmatural) it holds that ||22|| > ollx||2
for all x and some fixed >0,
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(iii) for every meighbourhood V of O there is a neighbourhood U of O such that x¢V
implies 2*¢U,

(iv) for some admissible norm there exist positive constants m, M such that m||z||
<v(z)<M||z| for all x,

on a normed algebra are equivalent.

Proof. (i) means that for some admissible norm |||, which we can choose as
natural, (z) <1 implies ||z|| <C for some fixed C. Hence for any x we have

| %

— < =0 |l
|v(x) <C and »(x)=C ' x|

and since || -|| is natural
o1l <) < ],

Thus (i) and (iv) are equivalent.
(ii) and (iii) are easily seen to be equivalent for a normed algebra. If (ii) holds we
have, for some admissible natural norm |-| and fixed >0,

|2*| =B
From this follows by direct computation »(z)>8|z| and

Blx| <v(x) < |x|.
But from (iv) follows

ll22ll = M—1v(x?) = M~w(x)2 > M m?||z||2

and so (ii) and (iv) are equivalent.

The following result will be used for the metric-topological characterization of CE(Q)
but it has also independent interest. In a slightly weaker form (and with a different
proof) it is found by Kadison [19, Theorem 6.6].

Theorem 15.2. A strwtly real Banach algebra A satzsfymg one of the conditions
(i)-(iv) of Lemma 15.1 is isomorphic and homeomorphic to Cg (¢ 4)

Proof. Since v(x) =0 implies =0, 4 is semi-simple. Then Theorem 7.1 (Kaplansky)
applies and shows that 4 is commutative.

For any x and the Gelfand mapping (sec. 4), h:z—>&, £ is real and so % is a map into
C¥(4,). A and h(A) are isomorphic and, since ¥(x) =supees,|£(¢)|, » an admissible
norm for 4 and A an isometry under » and the sup norm. But from Stone-Weierstrass’
theorem follows that (A4) is dense in C§($,). Being complete it must be closed, we
have #(4)=C§(¢,) and the theorem is proved.

By combining the criteria of strict reality from section 13, the result of Theorem
15.2 and the different conditions from Lemma 15.1 it is now possible to formulate
various metric-topological conditions for an algebra to be a CF(£). We choose a
metric formulation that might be applicable.

Theorem 15.3. A real Banach algebra A with identity e that has an admissible natural
norm satisfying

(1)

(i)

<l+o(x), o—>-+0,

e — our?|
|z)|2, k>0,

2| =k
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for all x€A, is isomorphic and homeomorphic to C*(¢ ) with ¢, compact Hausdorff; in
particular A is commutative. If k=1 it is isometric with respect to ||| and the sup
norm.

Proof. Condition (i) and Theorem 13.3 tell that A is strictly real. But (ii) is condi-
tion (ii) in Lemma 15.1 and so Theorem 15.2 gives the conclusion.

Corollary 15.4. (Segal.) A real (commutative) Banach algebra with tdentity and an
admissible natural norm satisfying

ll#* —g?|| <max ([}, l}*]),

ll2]}-= [}

is isometrically isomorphic to C®(¢ ).

Chapter V. Real algebras with involution

One of the main results in the theory of complex Banach algebras is that a B*-
algebra (a *-algebra with norm satisfying ||z||2=||z*z||) is isomorphic and isometric
to a C*-algebra (a self-adjoint algebra of bounded operators on a Hilbert space).
This chapter deals with the corresponding problem for real algebras.

After some introductory discussion of real *-algebras and some conditions relating
the involution to the topology (sec. 16) we obtain a negative answer to the question
whether a real B*-algebra is necessarily C*. It is shown, however, that a symmetric
(—z*r is quasi-regular for all z) real Banach *-algebra with a norm satisfying
||lz||><B||x*x| is isomorphic and homeomorphic to a C*-algebra (Thorem 17.6). If
the norm condition is strengthened, symmetry will follow and so ('*-algebras can be
characterized by norm conditions only (Theorem 18.6):

A real Banach *-algebra with identity and a norm satisfying ||z||?=||z*z|| for all
and ||z||?<eafz*2+y*y|| for all normal, commuting z, y and a constant «, is isomor-
phic and isometric to a C*-algebra.

The same result is obtained (under slightly stronger hypotheses) even for non-
complete normed algebras and algebras without identity (Theorem 18.7).

In some parts of this chapter the technique can be borrowed, with no or little
change, from the complex case. Brief mention is always made, however, in order to
make the presentation self-contained.

16. Definitions and preliminaries

All algebras treated here have the real numbers as their scalar field. With a *-al-
gebra is meant an algebra on which is defined-an involution, x—>«*, which is an in-
volutive (#** =x) linear operator and moreover satisfies (zy)*=y*z*. For a complex
algebra, regarded also as a real algebra, real involution clearly is a more general
concept than complex involution. A *-algebra is called symmetric if —z*z is quasi-
regular for all .

An element = of a *-algebra is called hermitian if x* =z, antihermition if x*= —g
and normal if x*x=2xx*. The sets of hermitian, antihermitian and normal elements
will be denoted H, K and N respectively.
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We make some remarks about decomposition of elements and linear functionals.
Since z=4§(x +2*)+L(x—x*) and 0*=0, it is clear that every element has a unique
decomposition in a hermitian and an antihermitian part. A linear functional F is
called hermitian if F(z*)= F(x) and antihermitian if F(x*)= — F(x). A hermitian func-
tional satisfying F(z*x)>0 for all z is called positive. If we take F=H+K, H(x)
=} F(x+z*) and K(z)=1 F(r—z*), we see that every linear functional can be
expressed uniquely as a sum of a hermitian and an antihermitian functional. If
z=h-+k, h€H and k€K, we also have F(x)=H(h)+K(k) with H and K as above.

In a normed *-algebra it may or may not happen that involution is continuous.
If it is, it is also isometric with respect to a norm:

Proposition 16.1. If a normed algebra has a continuous involution there exists an
admissible natural norm such that ||x*|| =|z|| for all x.

Proof. Let |-| be a natural, admissible norm. Then ||z|| =max (|#|, |«*|) is natural,
equivalent to |-| and has the desired property.
We define, for later use, some conditions linking norms with the involution.

Definition 16.2. 4 natural norm on a *-algebra is called

b* if||z|[2 <pB||x*z| for all x and some constant B,

B* if||zlj2=|\x*z|| for all 2,

De* if||z||2=|z*z|| for all x and ||z|2<aljz*x+y*y|| for all normal, commuting z, y
and some constant o,

D* if||x||2=||z*z| and ||z||?<a|z*x+y*y| for all z, y and some constant a.
*.algebra with an admissible b*(B*, Dc*, D*) norm will be called a b*-(B*-,
De*.. D*.) algebra.

It is clear that these conditions are successive strengthenings of each other, i.e.
every D*-algebra is Dc*, every Dc* is B* and every B* is b*. In all four cases involu-
tion is continuous: for b* we get ||z*|| <B||=|| and hence (Proposition 16.1) we have a
b*-norm with |z||=]||z*||, for the other three this identity is automatic from the
conditions.

If 4 is a real *.algebra, 4, (sec. 2) can be made a real *-algebra by defining (&,x)*
=(&,z*). For later use we state two technical lemmas about 4,.

Lemma 16.3. If A is a b*-(B*-, D*-) algebra then A, is also b*(B*, D*).
Proof. For (§,x)€A, and || - || a natural norm on A, we define

lll(€.2)[|[ = sup [[£2+az].

Since |]]-||| is an operator norm, it is natural on 4,. Assume that ||z <o||z*z+y*y||
and ||z*||=||z| for all z,y€A. Then, for z, =(&,2),y,=(1,y) €4,

|6z +a2||2 <a|(62 +x2)* (£2+a2) + (2 +y2)* (nz+y2)|
<all2*||-llz: e+ vl -l
and [P <alfl 2y *2: +92 %y |l
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In the same way, if ||«||2<p|lx*z| and |*| =|]
[l [11* <82 " ]

This proves the b* part. If =1 it follows |||z, *||| =|||z.||| and [[|=.||[2={]] 2. *=]]-
The D* case, finally, follows from B* and the calculation above.

The next lemma is proved under somewhat more general assumptions than will be
needed in sec. 17, but seems to have independent interest. The technique is partly
due to Civin and Yood [9]. .

Lemma 16.4. If A is a real symmetric Banach *-algebra with continuous involution,
A, is also symmetric.

Proof. We show that o4, ((£,2)*(&,)) is non-negative. Let A=§(z* +2) +2*x and B
a subalgebra of 4 which is maximal with respect to the properties of being commuta-
tive, contain 4 and be contained in H. Then B is a strictly real Banach algebra and
6 5(b) =a (b) (except possibly for 0) for b € B. We proceed as in the proof of Lemma 6.9
(@) to show that
op(h)y=04h)>= —& and o,((&2)* (& 7))=0.

By a C*-algebra will be meant a *-subalgebra of B(X ), the algebra of all bounded
linear operators on a Hilbert space X, with involution defined as taking the adjoint
of an operator. A C'*-algebra is, unless otherwise stated, supposed to carry with it the
operator norm of B(Xy), |4]2=supe.s)-1 (4w, Az). This norm satisfies |4|2<|4*4
+B*B|, hence a C*-algebra is necessarily D*,

17. Representation of symmetric b*-algebras

The purpose of this section is to prove that every real, symmetric b*-algebra is
homeomorphically isomorphic to a C*-algebra and, if it is also B*, isometric with
respect to the B*.norm. For complex algebras it is a classical result [12] that a sym-
metric B*-algebra is isometric to a C'*-algebra. It was conjectured and later, through
the contributions of several authors, proved that the symmetry condition is redun-
dant, see [27]. (Another conjecture of [12], that B* could be weakened to |z*z| =
ll#*|| - )|z]l, was recently proved by Glimm and Kadison [13].)

Our first remark will be that in the real case the assumption of symmetry cannot
be waived entirely. We notice:

Proposition 17.1. Bvery complete C*-algebra with identity is symmetric.

Proof. Let the C*-algebra be A and its identity p. This is a self-adjoint projection
that commutes with every element of 4. Then we can regard A4 as a closed *-subal-
gebra of B(pXy) rather than of B(Xy). Since 4 now contains the identity of B(pXy)
a standard argument, see [23, I, p. 299], gives the result.

The complex numbers C, as a real algebra, is commutative, hence involution can
be defined as the identity map. The usual absolute value is a B*-norm but C is obvi-
ously not symmetric. Then (Proposition 17.1) it cannot be C*; the answer to the ques-
tion [24, p. 181] if a real B*-algebra is necessarily C'*, is negative.

The decisive step in the proof of the announced result is the extension Theorem
17.5. In preparation for this we prove three lemmas. The line of argument will be in

265



L. INGELSTAM, Real Banach algebras

principle that of the classical [12] but modifications, sometimes quite significant, have
to be done to take care of the real scalar case.
The sets of “positive’” and “semi-positive” elements are defined

Pt={z; x*=z and o,(x)>0},
P={z; x*=x and o,(z)>0}.

Lemma 17.2. In a symmetric real *-algebra with identity

(@) 0 4(x) is real for every x € H,
(b) x*x EP for every w.

Proof. We recall that in a real algebra A4 with identity e the complex number
a+18 belongs to o,(z) if and only if 2’ =(x — ae)? -+ A% is singular. For § =0 we have

that , , .
e 5 )

which is regular according to the symmetry assumption. This proves (a). Now we
know that z*z, being hermitian, has real spectrum. If —32 €0 4(2*x), % real, then with
@, =x"'x we have 0€g (e +x, *z,) contrary to the symmetry assumption. Therefore
0 o{(z*z) is non-negative.

Lemma 17.3. In @ Banach *-algebra with identity and continuous involution there
exists to every element x € P+ an element y € P+ such that y* =zx.

Proof. We can assume that o,(x) <(0,1) (open interval) and then, for z=e—u,
0 4(z) <(0,1). We define the sequence of polynomials

Pt :éo( 3 1)1(%) £

for which holds that
(@lm P, (£)=11—-§& for &€(—1,1),

N-»0

the convergence being uniform on every inner subinterval.

(b) Po(£) =1 and P,(£) is a decreasing sequence for each positive &, since the coeffi-
cients of P, (except the first) are negative.

If we define v, =P, (z), v, is hermitian and since »(z) <1 there exists a y such that

lime,=y, y*=y and JP=e—z=2.

N>R

According to (a) and (b) above, P, maps the interval (0.1) into itself and the spectral
mapping theorem gives

04(t0) =04(Pn(2)) = Py(04(2)) = P,((0,1)) = (0.1).

Since y and v, commute we can apply a continuity theorem for the spectrum [24,
p. 36] and obtain o 4(y) = 0. But 0€0,4(y) means that y is singular which is impossible
when y% =2z is regular. Thus it is proved that y EP+,
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Lemma 17.4. In a symmetric Banach *-algebra with identity and continuous involution
%, %, EP tmplies x; +x,€P.

Proof. (Well known {23, IX, p. 302].) We show that z=x, +x,+20e is regular for
«>0. From Lemma 17.3 z=(x;+ae)+(x,+oe)=0i+ys=yi(e+y,2y5) with y,,
Yo €EPT. Bub o,(yi y3) =041t u*uy,) =0 (u*u) >0, (u=y.yi') because of the sym-
metry. Thus z is the product of regular elements, hence regular.

We are ready to state the important extension theorem for positive functionals.

Theorem 17.5. Let A be a symmetric Banach *-algebra with identity and continuous
wnvolution such that the only topologically nilpotent hermitian element is 0. To every
element a € A belongs a positive functional F, with norm 1, satisfying Fa(a*a)=v(a*a).

Remark. Since the norm of any positive functional F is F(e) (23, p. 190] it is inde-
pendent of the choice of (natural, admissible) norm for 4.

Proof. If x€P and —x€P then o,(x)={0}, z is topologically nilpotent and =0
according to the assumption. Together with Lemma 17.4 this shows that P is a proper
convex cone in the real space H. Moreover, e is an interior element of P. Now let S,
be the subspace of H spanned by the elements e and a*a. On S, we define F, as

F (le toaa*a)=A+av(a*a).

It is clear that F, is non-negative on 8, N P and since S, N P also contains the interior
point e of P, we can apply a standard extension theorem [23, p. 63] and get F, defined
on the whole of H and taking non-negative values on P. Finally we extend F, to all
of 4 by defining

2

-+
Fo(x)=F, (A—)
and this F, clearly has the stated properties.
We can now give the main representation theorem.

Theorem 17.6. 4 complete, symmetric real b*-algebra is homeomorphically *-isomor-
phic to a C*-algebra.

Proof. Lemmas 16.3 and 16.4 show that we can adjoin identity, if necessary, without
affecting the assumptions. Hence we assume identity from here on.

For a b*-norm and » € H, »(h) =p~1||h||, hence »(h) =0 implies » =0 and the assump-
tions of Theorem 17.5 are satisfied. For a certain a€ 4, take F, according to that
theorem and form the inner product (z,y),= F,(y*z). From here we proceed in a
well-known manner. Let N,={x; (z,2),=0}, then N, is a left ideal and we can
form X, =4 — N, as left modules. The desired Hilbert space X g is the completion of
the [2-normed direct sum of the X_’s. The left regular representation of 4 induces
(via reduction to X,, direct sum representation and extension by continuity) a
*-representation b—7', of 4 on X . We further get

BBl < Tol <|2],
where || -|| is any given b*-norm and 8 its b*-constant. This shows that the represen-

tation is a homeomorphism. Then 4 is homeomorphically *-isomorphic to its image
by the representation and the theorem is proved.
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Corollary 17.7. A complete symmetric real B*-algebra is isometrically (with respect to
the B*-norm) *-isomorphic to a C*-algebra.

Proof. 1f it is necessary to adjoin an identity, Lemma 16.3 tells that we still have
a B*.norm after doing this. The last inequality in the proof of Theorem 17.6 with
B=1 gives |T| = [o].

18. Characterization of real C*-algebras

In this section will be shown that if the b*-condition is strengthened to  Dc*,
symmetry follows and so real C'*-algebras can be characterized by a norm:condition
only.

We will repeatedly use the following theorem by Arens and Kaplansky [1, Theorem
9.1], also {24, p. 191]:

A real commutative Banach *-algebra A with identity that has an admissible norm
satisfying ||z}|2<o||z*z+y*y| for all , y €A and some constant «, is homeomorphi-
cally *-isomorphic to an algebra C(Q,y).

Here Q) is a compact Hausdorff space, y a homeomorphism of Q into itself such
that y oy =identity. C(€,) consists of all complex-valued continuous functions such
that f(w)=f(yw); involution on C(Q,y) is complex conjugation.

We give two lemmas based on this result.

Lemma 18.1. Let A be a Banach *-algebra with identity, continuous involution and an
admissible norm satisfying ||z||2<o||2®+y?| for commuting x,y € H and a constant .

Then

(@) x€P if and only if v(e—x/C) <1 for all sufficiently large positive numbers C;
(b) to every x € H belongs u, v€P such that x=u—v, uv=0.

Proof. Take x€H and let B be a maximal commutative hermitian subalgebra
containing z. Then o(x) =0 4(z), and moreover B is closed, hence Banach, and iso-
morphic to the algebra of all real functions on a compact space (2, according to the
Arens-Kaplansky theorem. Let f. be the function corresponding to x. For {(a) we
notice that if z€P then f(w)>0 and |1 —C7" f,()| <1 for all C > »(z). If, for some
C>0,v(e—x/C)<1,1-C7' f(w)<1 and f,(w)=>0.

For (b) take fi{w) =max [f,(w), 0]
fal@) = —fo(w) +fr(w).

Then f,(w)>0, f,(w)>0 and f,(w) f.(w)=0. But since every continuous function
belongs to an element of B we have u, v so that f,=f,, fo=f, t=u—v, uv=0 and
u, vEP.

Lemma 18.2, Let A be a real Banach *-algebra with identity, continuous involution and
an admissible norm satisfying |z|2<a|x*x+y*y|| for all commuting, normal z, y €A
and a constant «. If k*= —Fk then —k*€P.

Proof. Let B be a maximal commutative *-subalgebra containing k. Then B con-
tains inverses, in particular (k) =0 ,(k). But B is also closed, hence Banach, and
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isomorphic to a function algebra C(Q,y). The function corresponding to k has only
imaginary values, hence g5(k) =0 ,(k) is imaginary and o ,( —k2) non-negative real.
In preparation for the announced result we prove two lemmas on Dc*-algebras.

Lemma 18.3. In a Banach Dc*-algebra with identity x,y €P implies x+y€P.

Proof. For the Dc*-norm and € H we have |[42]| = ||«||? and »(2) = ||2]|, hence  is a
norm on the real vector space H. Take C' >v(x)+»(y). Then

rTy x Y
R4 g | 2 41 —Z)<1
”(e 20) 2”(6 0) 2”(6 0)

according to Lemma 18.1 (a), and then also z+y€P.

Lemma 18.4. Let x be an element of a Banach Dc*-algebra with identity. If —x*x€P
then x*x=0.

Proof. 1t is easy to see that z*z and xz* have the same spectrum except possibly
for 0. If we write 2 =h+k with A€ H, k€K (anti-hermitian) we have

x*r=2h%+2(— k%) +( —ax*)

and, according to Lemmas 18.2 and 18.3, x*x € P. Since both z*x and —z*z belong to
P we have o(z*z)={0}. Then v(z*r)=0 and x*x=0.

Theorem 18.5. A real Banach Dc*-algebra with identity is symmetric.

Proof. We will prove that, for every x,o(x*z) >0. If this is true (e-+2*x)~! exists
and the algebra is symmetric. The proof depends in a well-known manner [27] on the
preceding lemmas. Since z*z is hermitian we can write z*x~u—v according to
Lemma 18.1. Then

—(vx)*(vx) = v x*x v = —v(u—v)v=13€EP

and Lemma 18.4 shows that (vx)*(vx) =0. Then v*=0, v=0 and z*z=u€P, that is
o(x*z)=0.
An immediate consequence of Theorem 18.5 and Corollary 17.7 is now

Theorem 18.6. A complete real Dc*-algebra with identity is isometrically (with respect
to the Dc*-norm) *-isomorphic to a C*-algebra.

We do not know whether one or both assumptions of identity and completeness in
Theorem 18.6 can be removed. However, if Dc* is replaced by the stronger D*, this
is possible. Given a D*-algebra A4, 4, is a D*-algebra (Lemma 16.3). The completion
Ay is also D* since the D*.relations hold on a dense subset. Hence A4 is isometrically
embedded in a complete D*.algebra with identity, and Theorem 18.6 gives

Theorem 18.7. A real D*-algebra is isometrically (with respect to the D*-morm)
*-1somorphic to a C*-algebra.

Corollary 18.8. If a real *-algebra has a natural norm satisfying ||=||2<|z*z+y*y||
for all x,y then it is isometrically *-isomorphic to a C*-algebra.
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