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A note on recurring series

By Curister LEcH

We wish to prove the following theorem, which extends to any field of char-
acteristic 0 a result, proved by SkorEm [4] in the field of rational numbers
and by Manrer {2] in the field of algebraic numbers.

Theorem. In a field of characteristic 0, let a sequence
G y=0,1,2,...
satisfy a recursion formula of the type
€, =0;C1FUCzt+ "+ AnCpn v=n,n0+tLn+2, ....

If ¢,=0 for infinitely many values of v, then those c, that are equal to zero occur
pervodically tn the sequence from a certain index on.

It will be shown by an example that the restriction for the characteristic is
essential (section 6).

From the theorem can be deduced a characterization of those sequences {c,}
that contain 0 (or: any number) an infinity of times (see MamLER [2]). In
particular, only a finite number of the ¢, can be equal to zero if the quotient of
two different roots of the equation 1=o; {+ayt®+ -+ +ayt” is never a root
of unity.

SkoLEmM and ManmiLer used for their proofs a p-adic method, due to SkorLEM
[3]. Our proof will closely follow that of Maurer, and is partly built on it.

1. A sequence {c,} in any field may be considered as the TavLoR-coefficients
of a rational function if it satisfies a.linear recursion formula as above. By
resolving this rational function into partial fractions it is possible to get an
explicit expression for the ¢,. In a field of characteristic 0 we get

ez = 2 Aj P; (x) £=0,1,2, ...,

j=1

where the P;(x) are polynomials whose coefficients, together with the 4;, are
algebraic over the field that is generated by the ¢,. Therefore, to prove the
theorem, it is sufficient to prove the following lemma.

Lemma. Let the function F (x) be defined by
F@)- 347 P (o),
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where the P;(x) are polynomials whose coefficients, together with the A;, belong to
a field K of characteristic 0. If F (x)=0 for an infinity of rational integral values
of =z, then there is a natural number r and different numbers @, r®, ..., 1@ of
the set 0,1, ...,r—1, so that all the values

ez, rP+rz, ..., 194rz 2=0,+1,%+2, ...

and, in addition, at most a finite number of rational integral values of x make
F () vanish.

Without loss of generality we can suppose that K is just the field generated

by the A4; and the coefficients of the P;(z). Denote by P the field of ra-
tional numbers.

2. First assume that K is algebraic over P. This is the case treated by
MaurLEr. We give a sketch of his proof. Choose a prime ideal p of K, dividing
neither numerator nor denominator of any A4;. Denote by |a|, (x€K) the

. . 1 .
corresponding valuation of K, normed so that |p!p=1—), where p is the natural

prime divided by p. (In the sequel this special norming of a valuation will
be tacitly assumed.) Applying a generalization of FErRMAT’s theorem we can find
a natural number 7, so that

1

) |4j=1f, <p 21 i=1,2, ..., m
As a consequence of these inequalities, the functions
AfF i=1,2,...,m,

where z is restricted to rational integral values, can be represented by p-adic
power series of z. Instead of F (z) consider now the r functions

F,z)=F(c+r2)= ZlA,"A,'-zP,- (6+72) o=0,1,...,r—1.
i

For rational integral values of z these functions can all be represented by »-
adic power series. If any of them has an infinity of rational integral zeros, it
vanishes identically. In fact, the zeros then have a p-adic point of accumula-
tion in the region of convergence of the power series, and, as in the case of a
power series of a complex variable, this is impossible unless the series vanishes
identically. From the connection between F (z) and the r functions F,(z) we
get the desired result about the rational integral zeros of F ().

3. Now assume that K is not algebraic over its prime field P. Observe that
if we were able to find a valuation of K, continuating a p-adic valuation of
P, so that a precise analogue of the inequalities (1) could be proved, then the
reasoning of the preceding section could be carried through. Actually we shall
construct such a valuation of K. Denoting it by ¢ («) (x € K) and meaning by

. . 1
p the corresponding natural prime ((p (p)= ;}), we have to prove that for some

natural number r
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1

(2) | p(dj—1)<p 71 i=1,2,...,m.

4. Since K is gencrated by a finite number of elements, it must be of finite
transcendence-degree k& over P. It may therefore be considered as an algebraic
extension of a field P (x,, ..., x%x), where %, ..., % are algebraically inde-
pendent over P. This algebraic extension must be finite and hence simple, as
the characteristic is 0. Thus every element of K may be written in the form

1

B G

(Po(styy evey 26) Py 36y, ooy i) At oo+ Pry (6, ey ) A7),

where 1 satisfies an equation, irreducible in P (i, .. ., #i),
@Oy, oo, i3 NTA+CL (06, ooy me) A oo+ Ci(2y,y o, %) =0,

Q (2%, ..., %), the P,(%,, ..., %) and the C, (%, ..., %) being polynomials
with rational integral coefficients.

Let 4; (2, ..., 5;4) (j=1,2,..., m) be expressions of the form (3) for the
numbers 4; and denote by D (sx,, ..., x;) the discriminant of ¢ (%,, ..., xx; 1),
regarded as a polynomial in A.

After these preliminaries we proceed to the construction of the valuation.

5. Choose % rational integers a,, ..., ax, so that when these numbers are
substituted for »,, ..., , then D (%, ..., %) and the denominators of the
A (sy, ..., #x; ) do not vanish. Fix in P[A] one irreducible factor of the
polynomial ¢(ay, ..., @; 4) and let ¥ be a root of this factor, thus
@ (@, ...,a,; 3)=0. According to section 2 there are a valuation of the field
P (9), corresponding to some prime ideal p, and a natural number r, such that

1

(4) [(di(ay, ..., a; ) —1|<p »-1 i=1,2, ..., m,

p denoting the natural prime divided by p (|p]p=?—13)-

We denote by P (&) the perfect p-adic extension of P (9). — Let ¢, ...,
be elements of P (¥#) which are algebraically independent over P!). We have

lim | (@, +9"¢,) — a,},=0 v=1,2,..., k

which means that in the sense of the valuation of P(#) the numbers
a+p e, ...,ax+p" & tend to ay,...,a; respectively when n tends to in-

finity. We assert that for large values of n there is also in P (&#) a root A™

') The existence of such elements €,..., & follows from the fact that P (#) has the
cardinality of the continuum. To obtain an effective construction, let Pr(x1, ..., 2k) (¥=1,2,3,...)
be an enumeration of all polynomials in k variables with rational integral coefficients. Write
£1,..., &k as infinite sums of rational numbers. Define these sums by steps, every step
consisting in the addition of one term to each sum, and the »th step having no influence
on |pu(er,..., &) |p (<v) but assuring that p, (¢1,..., k) + 0. This eonstruction can be
precised by some univocal law,
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of the equation @(a;+p" e, ..., ax+2"ex;3)=0, such that A tends to 9
when » tends to infinity. For it is clear that the polynomial congruence ‘

Pla+p &, ..., ae+p" & 2) =@ (ay, ..., ax; x) (mod p7)

is satisfied. Furthermore, for large values of n the discriminant of ¢ (e, +9" ¢,
..., Gx+p" &; x) will have the same valuation as the number D (a,, ..., a),
which is different from zero. According to HENsEL ([1], pp. 68-70, 153-156) we
can therefore deduce, since there is a factorization in P (&)

(p(al, --~;a'k;w)= (CE "9)'/’(39),

that, for large n, there is a factorization in P (&)
play+ ey, ..., Gt p" e 2) = (= 2A7) pa (2)
with
lim | 2™ —@],=0.

As the rational functions in a valued field are continuous in the sense of

the valuation, we can find an »n for which
1
6)  [(dila+p e, ..., ax+p" e A7) —(dj (ay, - . ., ax; 9) [p<p »1
i=1,2,..., m.
Fixing this value of », we have, by (4) and (5),
1 .

(6) | (i (@, +D" ey, -y @+ e AP) = 1p<p »-1 j=1,2,...,m.

The valuation of K=P (%, ..., %x; A) is now obtained by an embedding of
this field in the valued field P (#) in conformity to the formulas

#, > a,+p" &,
IO

It is indeed evident from our choice of the £, and A™ that the field P (a,+

+p ey, .., @+ D" e A7) (< P(9)) is isomorphic to K. The validity of the
inequalities (2) is expressed by (6). Our proof is thus completed.

6. There are fields of prime characteristic in which the statement of the
theorem (and of the lemma) does not hold. We shall show this by an example.
Let e be the unity element of the prime field with p elements and let x» be
an indeterminate over the same field. The sequence

e, =(e+x)—e—xn" y=0,1,2, ...
satisfies the recursion formula
e={(2€+2x)c,_1—(e+3x+x%) c,at+ (x+%°) Cyos.
It is seen that ¢,=0 if and only if » is an integral power of p.
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