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Semi-groups of isometries and the representation and multi-
plicity of weakly stationary stochastic processes

By G. KALLIANPUR and V. MANDREKAR

1. Introduction and Summary

It is the purpose of this paper to examine the work of J. L. B. Cooper on the
representation of a continuous semigroup {S, >0} of isometries on a separable .
Hilbert space Y and to show how it can be adapted to give a complete discussion of
the representation theory of a very general class of continuous parameter, weakly
stationary stochastic processes which inelude finite as well as infinite dimensional
processes [12]. The possibility of such a connection between Cooper’s results and
representations of stationary processes has been noted by P. Masani and J. Robert-
son [15] (also [14]). However, the approach of these authors has been to reduce the
study of continuous parameter processes to certain discrete parameter processes
aggociated with them ([15], § 4).

The point of view adopted in this paper enables us to dispense with the associated
discrete parameter process and to give a time domain analysis based directly on
the stochastic process itself. A significant tool in our analysis is the fundamental
notion of multiplicity of a stochastic process introduced recently by H. Cramér [2]
and T. Hida [10], and studied extensively by the former author in subsequent papers
([31, [4]). Before we can bring out the relevance of Cooper’s ideas to our present aims,
it is necessary to complete his basic result in two essential respects: firstly, to in-
troduce the definition of multiplicity of Cooper’s representation and secondly to
show that it is equal to the dimension of the deficiency subspace R, R being the
range of the Cayley transform V of the maximal symmetric operator H, where iH
is the infinitesimal generator of {S,}. Cooper’s result thus completed and amplified
is presented as Theorem 2.1 in section 2.

In sections 3 and 4 we obtain some interesting points of contact with more recent
work on isometric operators in Hilbert space. We show in section 3 that Theorem 2.1
immediately yields in a simple and natural way a direct integral representation in
terms of “differential innovation” subspaces obtained earlier by Masani [14]. Indeed,
the vector valued integral of [14] turns out to be nothing other than the orthogonal
sum of N ‘“stochastic integrals”, N being the multiplicity of the representation. Sec-
tion 4 carries the study of the differential innovation subspaces further. Each such
subspace is shown to be a “weighted”” orthogonal sum of V*(R*)(n=0,1,...) which
are the innovation subspaces of the associated discrete representation (1.1) of [14].
We believe that this theorem (Theorem 4.1) puts in better perspective, the intrinsic
relationship between the given continuous parameter process and its associated
discrete parameter process.
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In sections 5 and 6 we apply Theorem 2.1 to the semigroup of isometries induced
by the unitary group of a stationary stochastic process X,(— oo <t < oo) defined on
a separable Hausdorff space ® and satisfying certain continuity requirements (Con-
dition (5.1)). We obtain the Wold decomposition of such a process, together with
the desired representation for the purely non-deterministic component (Theorem 6.3).
A consequence of our derivation is the very natural and significant role played by
the Cramér-Hida multiplicity of the process. This multiplicity is, in fact, shown
to be equal to the dimension of the deficiency subspace of the induced semigroup,
which in this case turns out to be Ly(x;0)© V-1Ly(x;0), V being the Cayley transform
of the unitary group and L,(x;0), the past and present up to time 0 of the process.
For finite dimensional stationary processes, this result yields the corollary (proved
in [12] by a different method) that the multiplicity of the process equals its rank.

The first time domain analysis of a continuous in quadratic mean, univariate
stationary process {z,, — co << oo} was given by O. Hanner in a remarkably original
paper [9]. Recently, with the help of the ideas of multiplicity theory we have ex-
tended his approach to obtain representations of multivariate (including infinite
dimensional) stationary processes {12]. These representations are seen to be essen-
tially the same as the ones derived in this paper, thus effecting a synthesis between
the ideas of Hanner and the ideas presented in this paper.

2. Continuous semi-groups of isometries on a Hilbert space

Let {S,t>0} be a strongly continuous semi-group of isometries on a separable
Hilbert space Y with ¢H as its infinitesimal generator. J. L. B. Cooper has shown
that H is a maximal symmetric operator with negative deficiency index, say, a(ax+0)
[1]. He further proved that every such semi-group yields the following decomposi-
tion of

Uji ® V(1) © Yoo, (2.1)

where (i) Y= Ni=0 S(Y) and the restriction of S; to Y, is unitary, (ii) each f
is chosen from Dy, the domain of the adjoint H* of H in such a way that 2 Jm{H*f‘?,
f)=~1 and (iii) M 3) is the closed linear subspace consisting of all elements of
the form (& p(w)d(S;u;f)), p€Ly(u,[0, o)), the Hilbert space of complex-valued
functions on [0, oo), square integrable with respect to the Lebesque measure u. In
the notation of [1] (pp. 837-839) the integral introduced above is defined as the
limit in norm of Riemann type sums. It will be seen below that such an integral is,
in fact, nothing but a ‘“‘stochastic integral” with respect to an orthogonal homo-
geneous set funetion (J. Doob [5], Ch. 1X, § 2, O. Hanner [9]).

Since Y is separable it is clear from (2.1) that N can at most be equal to Ry. Beyond
this, Cooper’s method of proof does not give any information about N. We shall
show that there is an intrinsic connection between N and the semigroup {S,;}. Let
V=(H—il)(H+4I)™! be the Cayley transform of H. (It will be often convenient to
write ¢(H) for the Cayley transform of H.) Let R=V({) and R*, the orthogonal
complement of R, We first prove that N =dim (R*) =ea. The essential point involved
in showing this is to recognize that Dy« is generated by the subspaces Dy and Rt
{Sz. Nagy B. {20], p. 38) and to see that the elements ) in (2.1) (ii) can actually
be chosen from EL. In order to bring out the significance of this result for weakly
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stationary stochastic processes we introduce a spectral resolution of the identity
associated with {S,}. Let ¥ = YO Y., and let () be the projection onto S,(Y)(t=0).
If we define _

Ety=I—E() if ¢t=0, and =0 fort<0,

then {H(t), — oo <t<oo} is the desired resolution of the identity in X. Our next step
is to show that N is equal to the multiplicity of the maximal spectral type g with
respect to {#(£)}, o being of positive Lebesgue type, i.e., ¢ is equivalent to the restric-
tion g™ of u on [0, o). (In fact, § is a uniform spectral type, although this fact is
not used here.) These facts, presented in Theorem 2.1, enable us to give a complete
discussion of the representation and multiplicity theory of stationary processes of
the most general kind and to put it in the perspective of the multiplicity theory
of purely non-deterministic processes developed by H. Cramér ([2], [3], [4]) and
T. Hida ([10]). It also enables us essentially to identify the multidimensional exten-
sion of the time domain analysis of Hanner [9] worked out by us [12], with the
theory developed here.

We begin by recasting the elements of I,(¢) as stochastic integrals. In doing so
we shall freely use the properties of the integral [&° p(u)d(S;u;fV) obtained by
Cooper ([1] p. 831 and p. 840). For each finite interval [a,b)(0<a<b<oo), let
ED[a,b) = I, nw)d(S;u; D), (1=1,2,...,N) where I}, y(u)=1 if u€[a,b) and =0,
otherwise. It can be seen that £(")[a,b) is a homogeneous orthogonal interval function;
i.e., for each ¢ and 0 <a <b <c,

(@) ED[a,b)+ED[b,c)=ED[a,c),
(B) &9[a,b) is orthogonal to £¥[b,c), and (2.3)
(v) 8:&9[a,by=E&P[a+t,b+t) forall t>0.

Since L,(u,[0,00)) is generated by the family {Ij, »(u)0<a<b<oo} we have
I, (i) = the subspace of Y generated by {&¥[a,b), 0 <a<b< co}. By the definition
of stochatic integrals ([5]) it then follows that

pr(u)dS"" (u), p € Ly(u, [0,00))}293?5(%')- (2.4)

M, (i) = {
0

It is convenient to recall at this point some of the terminology of multiplicity
theory in a separable Hilbert space. Let A be any self-adjoint operator with the
resolution of the identity {£(f)}. For any element f in Y let o, be the finite measure
on Borel sets of the real line (sometimes called the spectral function of f) given by
0,(A)=|E(A) f||>, where it A=[a,b), E(A)=E(b)—E(a). The family of all finite
measures on the line is divided into equivalence classes by the relation of equivalence
between measures (equivalence here means mutual absolute continuity). If o is used
to denote the equivalence class to which g, belongs, o will be called the spectral type
of f with respect to 4 (or {E(t)}). p is also referred to as the spectral type belonging
to A. If elements f and g are such that p,=g, they obviously have the same spectral
type o. We say that the spectral type ¢ dominates the spectral type o(p >0 or o <g)
if any (and thus every) measure belonging to ¢ is absolutely continuous with respect
to any measure belonging to g. g is called a Lebesgue type if every measure belonging
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to p is equivalent to the Lebesgue measure. ¢ and o are said to be independent
spectral types if for any spectral type v such that »<p and » <¢ we have »=0. An
element f is said to be of maximal spectral type ¢ (with respect to 4 or {E(t)}) if
for every g in Y g,<p,. The closed linear subspace ©{E(A)f, A ranging over all finite
intervals} is called the cyclic subspace (with respect to A) generated by f. If this
subspace coincides with Y, f is called a cyclic or generating element of 4 and 4 is
cyclic. Also if f is a generating element of A, f is of maximal spectral type and the
latter is referred to as the spectral type of the cyclic operator 4. It is to be noted
that if 4 is any self-adjoint operator (since Y is separable) there always exists a
maximal spectral type belonging to 4. Any system of mutually orthogonal cyclic
parts of A of type g is called an orthogonal system of type g relative to 4. An ortho-
gonal system of type ¢ which cannot be enlarged by adding to it more cyclic parts
of A is called maximal. It is a known result of this theory that all maximal systems
of type o have the same cardinal number. This uniquely determined cardinal number
is defined to be the multiplicity of the spectral type ¢ with respect to 4.

Finally, we need the notion of a uniform spectral type. The spectral type o is
said to be uniform if every non-zero type ¢ dominated by ¢ has the same multiplicity
as o itself. Most of the above definitions have been taken from the article of A. I.
Plessner and V. A. Rohlin [16] to which the reader is referred for further details.

Let us denote by A4, the self-adjoint operator on X(=Yi) given by the resolution
of the identity {E(f)}. Our aim is to show that each Ik, reduces 4 and that the
restriction 49 of 4 to M, is cyclic with a generating element g € RT. We need
the following characterization of R* ([20], p. 38),

R ={p|p€Due, H'p= —ip}, (2.5)
and the relations due to Cooper ([1], p. 840 (5.12) (5.13));

(C1) E@)=8,8f foreach t=>0,

©2) &, f " pu) d(S; w; ) = f " plu— ) d(S; s )
0 t
for p € L,(u,[0,0)),
©3) 8 f " p () d(S; us ) = f " pla+ d(S; us 1),
0 0

Since Ela, b) [ p(w) d(S; u; f) = {E(a) — E(b)} f&° p(u)d(S;u; V) we have from (C1),
Ela,b) [ p(u)d(S;u; )= {8, 8% — 8,84} fop(w)d(S;u; f?). However, by (C3)
and (C2)

Lol

S, S’,fpr(u) d(S; u; fy = Sbf p(u+b)d(S;u; f1)= pr(u) d(S: u; f).
b

0 0
Hence it follows that

Efa, b)pr(u)d(s; u; f9) =fb1’(u)d(S; w; f9) =rp(u)l[a,b) (W) d(S; u; f9).  (2.6)
(1] a 0
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Lemma 2.1. For each i, there exists an element g € R, such that W,» = S{E[a, b)g"?,
where [a, b} is any finite subinterval of the line}.

Proof. Let us define g =V2 [ g“de®. Clearly from (2.6),

o, byg = V2 f T Ly () (S 3 1)

0
for ~co<a<b< +co. Also, €>0 for u>0 and L,(u, [0,o0)) is generated by
a0 (), 0<a<b< o}. Hence Mo =S {E[a,b)g", — 0 <a<b< + co}. To com-

plete the proof of the lemma, we now show that H*g) = —ig® so that by (2.5)
g E€RL. Let f€Dy, the domain of H. Then lim,_ o (¢7*[SF — I]g?, f) exists, since

lim (671 [8F — I]g*), f)=lim (g9, [S,— I1f) = (g, sHY). (2.7)
t—=>0 t—>0
Also, from (C3),
Sfgth = 2f XD A(S; u; )=t gD,
0
Hence
(9", iHf)=lim 71 (&= 1) (g0, )= — (¢, f) for fE€Dp; ie.,
t=>0
g9 €Dy and —i(H*gM, )= —(gM,f) for all f€Dy.
Thus H*g" = —ig and the lemma is proved.
Lemma 2.1 immediately implies that 4 is reduced by I;®, and that
A=AV 4+ AD 4 4 4D, (2.8)
where A, the restriction of 4 to M@, is cyclic with the generating element
g0 =V2 [ e*d(S; u; f9). If, further, puh (A)=pu(A n[0,00)) for each A (Lebesgue)
measurable on the real line, we get ’
Q=g a=...0um=p". (2.9)
Since X =2, @I, ®, it follows from Lemma 2.1 that
N _ . N _ .
X=20CG{E[a,b)g?", —cc<a<b< +oo}=>dS{H[a,b)g?, 0<a<b< o}
=1 Vs
(2.10)

The last equality in (2.10) is a consequence of the fact that E[a, b)g? =0 for
— oo <a<b<0. We now state the main theorem of this section.

Theorem 2.1. Let {S;t=>0} be a strongly continuous semigroup of isometries on a
separable Hilbert space Y. Then
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1) Y=Y M:w® Yoo, where (i) Yoo = N0 S:(Y) and the restriction of Sy to Yoo
18 unstary;

(2) Meo ={f& p(w)dED (w), p € Ly(u,[0,00))} where £P is a homogeneous, orthogo-
nal interval function and the integral (& p(u)d&® (u) is a “stochastic integral”;

(8) For each i, (i=1,2,...,N), Mo is a cyclic subspace of A with generating ele-
ment g*) € R* such that p;o=pu*, where u* is the restriction of the Lebesque measure
u to [0, 00);

(4) N s equal to the multiplicity of the common spectral type g of 9, with respect
to A;

(8) Finally, N =the dimension of the deficiency subspace R*.

Proof. Conclusions 1 and 2 follow from (2.1) and (2.4) respectively. Conclusion 3
is precisely Lemma 2.1. To prove concl. 4 observe that from (2.8) and (2.9) {4"} is
an orthogonal system of type §. To show that this is a maximal system of type g,
we have recourse to an argument based on the ideas of A. I. Plessner and V. A.
Rohlin [16] and used by us in {12] (Theorem 5.2).

Let {A;} be an orthogonal system of type ¢ and cardinality M’; i.e., a system of
orthogonal cyclic restrictions A; of the operator 4, the spectral type of each Ag
being §. According to our definition N is the multiplicity of g if we prove M'<N.
By the separability of Y neither N nor M’ can exceed ¥,. There is obviously nothing
to prove if N =¥,. Thus the only case to be considered is where N is a finite cardinal.
If possible let M'>N. Let g; be a generating element of 4. Clearly there is no
loss of generality in assuming that all these elements have the same spectral funetion
o (ie., o =04y =05®)- From (2.10) it follows that

N S N =]
gs= > f Fp(u)dE(u)g®, where | Fig(w) P do’ (w) is finite.
i=1J9 i=1J0
For every finite interval A we obtain
N
(E(A) g5, 97) = L% Fig(u) Fyy (u) do' (w).

The left hand side of the above relation is zero if 8+ and equals o' (A) if f=y-
Hence for u not in a set Mg, of zero p’-measure we have

uMz

Fip(u) Fyy (u) = g, for all g, y.

Since M’ is at most ¥, the set = U, , Np, is measurable and o' (1) =0. Choosing
a fixed point %, in the complement of N we see that

N
ZlFiﬂ (o) Fiy (ug) =g, for all B, y. (2.11)

If ag=(Fy5 (uo), ..+s F'ys(u,)) the relations (2.11) imply that the a,’s are M’ orthonor-
mal vectors in N dimensional space. Hence M’ < N. In other words ¢ has multi-
plicity N.
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Proof of 5. Let us consider for a(=1,2, ..., N) b€ Dy, = Dy N D;@. Then Dy,
is dense in M, @ and b= [ g,y (w) d(S; u; f©). It follows that the set {ge, n), # € Dy}
is dense in L, (u, [0,00)) for every «. It is known (see N. Dunford and J. Schwarz [6],
p. 1258) that (Hh, p) = (iDgy 1, Pay, Where ¢ = D31 [5 P, (w) d(S; u; ), { ,> denotes
the inner product in L, (u, [0, o)) and iD is the differential operator i (d/du). If,
further, ¢ € R*, from (2.5) we have,

(Hh, )= (h, H* @) = (h, — i) = {Gun, = 1Da- (2.12)

But since the operator ¢D is formally self-adjoint ([6], p. 1287),

DG, 1y Pa) = {Qon> DD = Qs — 1P (2.13)

from (2.12). The set {g, 1, #» € D} being dense in L,(u, [0, o)), from (2.13) we get
(d/du) p,.(u)= — p,(u) for every x. The above differential equation has the solution
in L, (u, [0, o)) given by p,(u)=a,é*. Hence ¢ € R* implies that

N

N o
=2 aaf e d(S; u; @)= a,/V2¢%; ie.,
a=1 )

o=

the orthonormal system {g'*), x=1,2, ..., N} in R* is complete, giving N = dim(R*).
The proof of Theorem 2.1 is complete.

3. An alternative derivation of a direct integral representation of P. Masani

It is well known (P. R. Halmos [8]) that if V is an isometry on a Hilbert space Y
onto a subspace R of Y, then

Y=3> oTHEYe NT* (V) | (3.1)

k=0

where for j=k V¥(R') | VI(R') and restriction of V to e V*(Y) is a unitary
operator. Recently P. Masani [14] has obtained a continuous parameter generaliza-
tion of the decomposition (3.1) as follows.

Theorem M ([14], Theorem 6.5). Let {8} (t=>0) be a stron;ly continuous sems-

group of isometries on Y into Y, +H ils infinitesimal generator and V the Cayley
transform of H. Then for every a, non-negative,

a

Sa(y):f Ty (R*) ® Ve, . To(RY) LYoos (3.2)
where R=V(Y), Yo = Ni=0 S, (Y) and for each a,b (0<a<b)
R T
Ta,,=1/1/§{s,,—sa—f Shdh}
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s an operator-valued measure and 3 Ty, (R*) is defined as a direct integral of differ-
ential innovation subspaces.

In this section we deduce Theorem M as a consequence of Theorem 2.1. In fact,
Theorem 2.1 even enables us to give an explicit representation for each “differential
innovation subspace” in terms of the subspaces V*(R*). The latter result furnishes
another generalization of (3.1) and as such we treat it in the next section.

Noting that the subspace JR:» of the preceding section reduces S, for each a0,
we can write the representation obtained in Theorem 2.1 in the following somewhat
more general form:

W) =3 ® 50 ® Yoo (3.3)

The elements of 8, M@ are “stochastic integrals”. Hence, we can rewrite (3.3) as,

S.(Y) = {vlv = kz=1 J‘ka (u) dE® (), ¢ € Ly (u, [0,00)} O Yuws (3.4)

where, if N(=dim R*) is infinite then the sum of stochastic integrals representing »
converges in norm.

For each finite subinterval [a,b)(0<a <5} let 7 , be the bounded linear operator
on R' which transforms the complete orthonormal system {g*} in R as follows:

T =E9a,b) (k=1,2,..., M). (8.5)

Then t,, is an operator valued measure on intervals which has the following pro-
perties ([14] p. 627 (4.2));

() TopTToe=7Ts (0Sa<b<c),

(ﬂ) StTab=Ta+t,b+t (t20,0<a,<b), (3 6)
(y) For every r,r, € R* and finite intervals J,, J, .

(V7 7y, Tr, 1) = il N ) (14, 75).

We shall show (Theorem 3.1a) that 7, is identical with the operator valued mea-
sure — Ty, on R*. Following Masani we denote by L, ([a, b], R*), the Hilbert space
of all strongly (Lebesgue) measurable functions x on [a, b] with values x(f) in R*
and such that [} ||x(¢)||>dt is finite. Since each element % of L,([a, b], R*) has the
form x(t)=>7_1c,(¢) g™ where ¢, € L,(u, [a,b]) the integral 3 7, (z (f)) can be na-
turally defined as follows,

f Tar (% (£)) = Zf Ca(B)dE™ (1). (3.7)

a 1

The above definition is unambiguous because the functions ¢, € Ly(u,[a,b]) are uni-
quely determined by . From the properties of stochastic integrals, one can show
that (3.7) is a “generalized vector-valued integral” of the kind introduced by Masani
[14] and satisfies the following properties:
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b b b
(1) (f Tdt(x(t)):f sz(y(t)))=f (x(2), y(8)) dt,

a a

for all z, y € L, ([a, b), R*);

b b b
(i) f Ta(l z() + A y(t) =1, f Tar(x(8) + A, f Tat(y (9)),

for 4,, A, complex numbers;

, i » (3.8)
(iii) f T (@™ (£)) — f 7a(2 (£)) || converges to zero as
f b [[2™ () — 2(t)||* d¢ tends to zero;
(iv) S, f b Ta(x(t)) = f::’d“ (u—s) for s=>0.
Let us now define
fb Ta(RY) = {vlv = f :rdt(x(t)), z€L,([a, bj, Rl)}. (3.9)

Then % 7, (R*) is a closed linear subspace of Y isomorphic to L, ([a, b], B*). From
(3.4) and definitions (3.7), (3.9) it follows that

a

Sa(y) =f Tdt(Rl)@yooa f 7o (RY) L yoo- (3.10)
0

The direct integral representation of Masani is identical with the one obtained in
(3.10). We show this by proving that v,,r= —~ T, 7 foralla,b (0<a<b)and rER*
and [ 74 (2(8)) = — f& Tar(2(2)) for all x € L,([a, b], R*). Since [ 74 (R*) is a subspace
the result will then follow.

Theorem 3.1. (a) If 7,=1y; ts defined as in (3.5) then r,2= — T,z for all x € R*
and t >0, where To,=1/V2 (8,~ 1 — f4 8, dh).
(b) For x€L,([a,b], B*) and all a,b (0<a<b)

b /]
f tul@ ()= — f T (1)), (3.11)

a a

where [8 Ty (x(t)) is the gemeralized vector-valued integral due to Masami ([T4],

(6.2) (a)).
Proof of (a). 1t suffices to prove that T,(—g®)=§&"[0,#) for each >0 and
k=1,2,...,N. Now,

¢
T,g® :]/—1§ {St g —g® — [f Shdh] g(’"}.

0
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For each t >0 (see Section 2 (C 3))

Sy (—g®y= —V2e fw e d(S;u; [ = —V2 ¢ fwé”dé'(k) (). (3.12)
¢ ¢
But

ﬁe‘fw

t

e dE® (u)=¢' g — V2 etftéu dE® (u) = e g — V2 ¢! (1), (3.13)

0
where ()= [§&*d&® (u).

Since

[ftshdh] (—g‘k))=ftSh(—g(k’)dh= —g"‘)j hdh+V2f e (h) dh
0

0
= —gW(et—-1)+V2e () V2 fte”dC(h)
0
we get from (3.12), (3.13) and the definition of T, that
Ty(—g*)= —V—{e g% =2 L(t)— g ~g® (= 1)+ V2 L(0) ff et dg(h }
ie, =T, g®=T,(—g® = fle"dz(h). But

f ot dehy— f “ago iyl
0 0

for k=1,2,..., N.

= 0. Hence - TOt g(k) = (,&(k) [O> t) = Tot g(k)y

Proof of (b). It suffices to prove (3.11) for the functions z € L,([a, b], B*) of the
form z(t) = > 7 I,,(£)¢"®, where I, is the indicator function of the subinterval J of
[a,b]. By (3.7),

b N b N N
f rdt(x(t))=§f Izk(t)dé""(t)zgﬁ d&""(t):%m(g‘k’)-

But 75,(9") = Ts(—9*) and hence [{ 74 (¢ () = — 21 Tn(g®) = — f& Ta(g™). (See
[14] (5.2) (a).) The proof is complete.

4. A representation of T,; in terms of {¥V'", n> 0}

The representation (3.1) of Section 3 closely resembles the Wold decomposition of
a weakly stationary stochastic process into a sum of innovation subspaces and its
remote past. Interpreting k as the time, V¥(R') can be regarded as an innovation
subspace of Y. In the continuous parameter situation we shall refer to T',,(R*),
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(0<a<b< o) as the differential innovation subspace of the continuous semi-group
{8;, >0} ([14], p. 624). The purpose of this section is to express each T, (R') in
terms of the discrete subspaces V*(R*), (n=0,1,2,...).

From Theorem 2.1 we recall that Y=3oM:wD Y, where N=dim (BL) and
the restriction of S; to Y., is unitary. Let us set X =21 @ M:®. It is well known
(see, e.g., Sz. Nagy [20], p. 40) that X also has the decomposition

N
X=>o0oM, where M= {gh, Vg, V2, ., where {g™.i=1,2,...,N}
I

is the complete orthonormal system in R* introduced earlier. Since H is reduced
by .o, its Cayley transform V is also reduced by Mo, and thus for each i
Mo =M. Hence, for each finite subinterval [a, b) (0<a<b)

o]

EDMa, b)=> Cp(a,b)V" g (4.1)

n=0

and V"g‘”=f y (w) dEW (u), where u € Ly(u, [0,0)). (4.2)
0

From (4.2) and the fact that {V"g)} (n=0,1,2,...)is a complete orthonormal sys-
tem in Mo we obtain the following relatlons

(a) f 9 (@) 92 (W) du(w) = (m+m),

f |9 (w) | * du(u) = 1; (4.3)

(e) f P (u)du(u)=0 for n>1.
0

Further the system {vP(u), n= O 1,...} is complete in L,(u, [0, »)). Let us now
denote by LP*(u) =1/1/2 " y® (u). Then LP*(u) satisfy the equations:

zf e“z"L(,?*( )Lm*(u)d,u( U)=0py (M,n=0,1,...).
0
In other words, we have

f e " LY (u/2) LY (u/2) dp(u) = 6,y for all m, m. 4.4)

0

From the completeness of the system {y¥(u),n=0,1,2,. }1n Ly{u, [0, 0)) and
the orthogonahty relations (4.4) it follows that the functions L(“ (#/2),n=0,1,2,,

are complete in the space of functions on [0, oo), square 1ntegrable Wlth respect to
the measure e “du(u). Hence for each i=1,2, ..., N, L?"(u/2) = L, (u), where L, (u)
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is the nth Laguerre polynomial (G. Sansone [19]). Hence for each i, 7 (u)=
V2 e *L,(2u) and

Prg = Vo on e " L (2u) dED (u). (4.5)

0
From (4.1) and (4.5) we have

b
Crla, )= (§V{a, b), V" g2y =V2 f e " L,(2u) du. (4.6)
Theorem 4.1. (a) If Top=1/V2 (8, — 8, — % 8, dh) (0<a<b), then on R*
=3 C,(a,b)V", (4.7)
n=0

where Cp(a,b)=V2[% e L,(2u) du(u) and the operator-valued power series on the
right-hand side converges in the strong sense on R*.

(b) The differential innovation subspace T, (BY)= > 7.0 Cn(a, b)V"(R*).

Proof of (a). Let us observe that

—Torg?=¢0[a,b)=> C,(a,b) Vg for every 1=1,2,..., N. (4.8)
n=0

For any f€R*,
13 Onta 3V =3 ot DENT = IFES Cuta . 49)

But 357 o|Cu(a,b)]*=2 & €72 I 4.0y (w) du(u), by Parseval’s identity. Hence from
(4.9) it follows that the operator-valued series » oo Or(a, b)V™ converges strongly
on Rt Clearly the operator 25 Cy(a, b) V" is linear and bounded (see (4.9)). This
along with (4.8) implies that — T, = >3 0 Cn(a, b)V"

Proof of (b). From (a) we have — T, (R*)=>7.0Cy(a, b)V*(R"). Since T, (R*)
is a subspace, T, (R*) = — T, (R*). This completes the proof.

In the next two sections we shall apply the results hitherto developed to the
representation and multiplicity theory of weakly stationary stochastic processes.

5. Stationary stochastic processes and the associated semigroup of isometries

We consider the stationary stochastic process (henceforth, S.P.) of the following
kind. Let ® be a Hausdorff space satisfying the second countability axiom. We
say that X,(— co<<t<<oo) is & S.P. on ® if for each ¢ €P, x,(¢p) is a complex-valued
random variable on a probability space (Q, P) with mean zero and £|X,(¢)]2 finite.
The process {X,}(— co<i< 4 o) is called weakly stationary (or briefly, stationary)

if for all g, €® and arbitrary real numbers s, t and 7, we have E[X;.{p)Xs-(p)]=
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Exy(@)x,(p)]. The covariance function E[x(¢)x,(y)] of the process depends ont —s,¢,y.
It should be noted that the stationarity considered here is a temporal one and does
not involve @. Nevertheless, it is sufficiently general and useful for our purpose since
it includes as special cases many stationary random processes of practical interest.
For instance, if @ is a ¢-dimensional euclidean space and x,(¢p) is linear with respect
to @ for each ¢, then the x;-process can:be regarded as a ¢-variate stationary process
(see Yu. A. Rozanov [18]).

Associated with the x,-process are the following spaces. (a) The past and. present
up to time ¢ of the x,-process, L,(x;¢) is the subspace S{x,(p),p €D,7 <t} of L,)(Q, P)
generated by the random variables {x,{g),p€®,7<t}. (b) The remote past of the
proeess Ly(X; — oo) = [ Ly(x;2). (¢) The space of the process Ly(x) is the smallest
subspace of Ly(Q2,P) containing Ly(x;¢) for each .

The stationary S.P. considered will be assumed to satisfy the following condition.

(i) If gp,— @ then &|x,(@n) —X;(¢)[>—0 for each ¢,
(ii) For each p €D, |X,(p) —X,(p)[*—0 as s—¢, (5.1)
(iif) L,(x, — ) ={0}.

It has been proved by us ([12], Lemma 2.1) that, under (5.1), L,(X) is a separable
Hilbert space. If we define the operator U, from Ly(xX) to Ly(x) by U,z,(@) =, (@),
@ €® and s, ¢ real, then U, is a unitary operator for each ¢. Under condition 5.1(ii) and
stationarity {U;— co <t < + oo} is a strongly continuous group of unitary operators.
We shall refer to this group as the unitary group of the stationary S.P. For (>0,
Uf=U_, is reduced by Ly(x;0). If 8, denotes the restriction of U; to Ly(x;0) then
clearly {S,}(t>0) is a strongly continuous semi-group of isometries on Ly(x;0) which
we shall call the semi-group of isometries associated with the process {x,}. In what fol-
lows we shall write Y in place of Ly(x;0). From (5.1)(iii), we have lim,_, .., S,(Y)=0.
The following lemma gives the relation of the infinitesimal generator ¢K of {U,} to
tH, the infinitesimal generator of {8,}.

Lemma 5.1.

(1) The infinitesimal generator of the unitary semi-group {Uf,t> 0} is —iK;

(2) —1K 1is reduced by the space L,(x;0);

(3) <H 4s the restriction of —iK to L,(x;0).

Proof of (1). By the definition of K we get that for every real ¢, U,=exp (itK).
From this it follows Uf =exp(—itK) for ¢>0. Since {U7, ¢>0} is a strongly conti-
nuous semi-group of unitary operators, from Theorem XII.6.1 ([6], p. 1243) it fol-

lows that {Uf} has a unique infinitesimal generator iK, given by U} =exp (itK,).
Hence K= —K.

Proof of (2) and (3). For each ¢>0 and f€ Y, by the definition of S; we have
S, — I1f =47 [UF - I1f. (5.2)
If f€Dy, then lim,_t[UF—I]f exists; i.e., Dg=D_g N Y. Also from (5.2) we

get, by a similar argument, that D_xz N Y = Dy. For each fED_x N Y, —iKf belongs
to Y and equals sHf. Hence it follows that ¢H is the restriction of —iK to Y.
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Let W =¢(H) and V =c(K). Since — K is reduced by Y and ¢(—K) = V-1 it follows
that V-1is also reduced by Y. Further, from (2) and (3) of Lemma 5.1, it is easy to
see that Dy=Dy-1 N Y and Wg=V-1g for all g€ Dy-1 N Y. Hence we have

Corollary 5.1. (a) V™' is reduced by L,(x;0); and (b) W is the restriction of V™*
to L, (x;0).

6. Representation of stationary S.P.’s: Multiplicity as generalization of rank

The rank of a discrete parameter ¢-variate stationary S.P. is defined as the rank
of its ¢ x ¢ prediction error matrix [21]. This definition brings out the importance
of this notion to prediction theory and to the development of the spectral theory of
stationary S.P.s. The definition of the rank of a g-variate, continuous parameter
stationary S.P., however, is less direct. In this case, the rank is defined to be the
rank of the associated discrete parameter process. Let 2,( — oo <t < co) be a continuous
in quadratic mean, univariate stationary S.P., and let {U,} be its unitary group
with infinitesimal generator +K. If V is the Cayley transform of K, the S.P. {V7,
n=0,F1,...} is called the associated discrete parameter process [15]. This definition
extends easily to infinite dimensional stationary S.P.’s (see [12]). Using this exten-
sion we were able to show that the multiplicity of an infinite dimensional stationary
S.P. is the proper generalization of rank.

In this section we rederive this result and also obtain a representation of the purely
non-deterministic component of the S.P., basing ourselves on Theorem 2.1 and
Theorem 6.2 below. The representation and multiplicity theory of continuous para-
meter stationary S.P.’s is thus put on an independent footing without any appeal
to discrete parameter processes. For the proof of Theorem 6.2 we need the following
result proved by us in [12].

Theorem 6.1. ([12], Theorem 5.2). For each &, let E(t) denote the projection operator
from L,(x) onto L,(x;t) (cf. Section 5). Then {E(t)} (— oo <t < + o) is a resolution
of the wdentity tn L,(X) and its maximal speciral type o has uniform multiplicity M.

The fact that the multiplicity is uniform, is of great importance in the ensuing
argument. For each ¢>0, E(t) = E(0)— E(—t) and K(¢) =0 for t <0. For any f€ Ly(x)
and — co<a<b<0, ||B(a,b] E(0)f|[2=| E(a,b]f||*=||E[—b,—a)f||* Also for

0<a<b<oo, | E(ablf|*=|E[-b, —a)f|>

Therefore the spectral function g, of § with respect to {E(t)} can be regarded as the
spectral function p, of E(0)f with respect to {E(f)}; i.e., every spectral type ¢ of
{E(t)} is a spectral type of {E(t)}. But p is the maximal spectral type with respect
to {E(t)}, so that § <p. The multiplicity of ¢ being uniform by Theorem 6.1, we have
M =multiplicity of every spectral type g with respect to {H(t)}. In particular, M
equals the multiplicity of the maximal spectral type g of {E(t)}. Hence from Theorem
2.1, M=N.

Theorem 6.2. The multiplicity M of a weakly stationary S.P. satisfying (5.1) is
equal to the dimension of the space L,(x;0) OV ' L,(x;0) where V=¢(K), iK being

the infinitesimal generator of the unitary group {U.} (— oo <#< + o) of the process.
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Proof. It has just been shown above that M =N. From Theorem 2.1, N =dim (RB*) =
dim (Ly(x;0) © Wiy(x;0)) where W is as defined in Section 5. Corollary 5.1 shows
that W is equal to the restriction of V™! to Ly(x;0). Therefore M(=N) equals

dim [Ly(x;0)© V1 Ly(x; 0)].

If in the definition of a stationary process, ® is ¢-dimensional and x; is linear on
®, then {X,— co<t< oo} is a g-variate process (see Rozanov [18]). Let us denote the
associated discrete process by {X,}(n=0,+1,...). The “prediction error matrix” of
{X,} has rank equal o the dimension of L2(X 0)0 Ly(X; — 1) where Ly(X;7) =S {X,,{¢),
@€D,m=n,n—1,...}. But LyX;0)=Ly(x;0) and V-1Ly(X;0)=LyX;—1). Thus the
rank of the associated discrete process is equal to the dim[L,(X;0)© V-1L,(x;0)]
which by Theorem 6.2 equals the multiplicity. Hence the multiplicity of the S.P.
is, in reality, the generalization of rank.

Let us define for each k, & (u) = — £%(0, u] for >0, and = U,&%(0, —u] for u<0
where {£®(u), u>0} is as defined in Section 2 and {U,} is the unitary group of the
S.P. With this definition {£,(u), — co<u < + oo} (k=1,2,...,N) are orthogonal pro-
cesses with stationary orthogonal increments possessing the property U, & (u) =
Ex{u — ) for all real ¢ and u.

Theorem 6.3. Let {x, — co <t< + oo} be a stationary S.P. on a separable Haus-
dorff space ® satisfying (5.1) (i) (ii). Then

X(p)= 2 J W@y u) d&, (u—1t) T2 (@), where

n=1J0

(i) M is equal to the multiplicity of {x.},
(i) 201§ | Fulpsu)|?du is finite for each ¢ and,
(iil) {2, — oo <t< + oo} is a deterministic stationary stochastic process on @; i.e.,
Ly(z; — o0) = Ly(z) ‘
(iv) For each (t, @), (s, y): E[z(p), ¥ ( 9] =0 with ys( )
=201 8 Falys u) dEp(u—s).

Proof. From Theorems 2.1, 6.1 and 6.2 we get

Xy (p) = Z f Fr(p; u) dén(u) + P, x; - ) Xe (@),

0

where M is the multiplicity of {X;, — oo <#< oo}. But for each ¢,

(QD)_UtXO (P)*Zf qj’u)dgn( _t)+PLz(X;—VJ)Xt(¢)

by definition of &, process and the fact that U, Py, (x; - ce) = Pr,(x; — o) U Let us
define z;(p) = Py, (x; - ) X;(); then {z, — oo <¢< + oo} is a stationary process on @
and since Ly(x; 0) = L,(y; 0)® Ly(2; 0) = L,(y; 0) ® Ly(x; — 00), Ly(z; 0) = Ly(X; — 00) =
Ly(z; ~ o).
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As a corollary we obtain the following representation for finite-dimensional pro-
cesses due to K. G. Gladyshev ([7], see also [17]). For univariate processes the cor-
responding result was first given by K. Karhunen [13] (also [9]).

Corollary 6.3. Let [z, (8), ..., 2,(8))] be a continuous in q.m., weakly stationary -
variate process. Then

2 JW w) dé, (u—1) + 2 (t);

where (i) M is the rank of the process, ()2 § | Fin(u)? du is finite, (iii) [(2,(2), ...,
z,(t))] is a g-variate stationary process orthogonal to [(y,(f), ..., ¥, (£))] where y,(¢) =
Zn 1!0 m(u dEn( t) (7’—1 ’q)

Theorem 6.3 and Corollary 6.3 were obtained by us in [12] (see also [11]). The
method used there was an extension of Hanner’s approach made possible by the
application of the ideas of multiplicity theory. The proof given here is directly based
on Theorem 6.2 and the modified version of Cooper’s result given in Section 2. The
essential unity of these two approaches is thus demonstrated.
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