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Some remarks about the limit point and limit circle theory

By AxE PLELJEL

ABSTRACT

Let L be a formally selfadjoint differential operator and p a real-valued function, both on
a<x<oo, The deficiency indices are the numbers of solutions of Lu =24 pu for Im 4>0 and for
Im A< 0 which have a certain regularity at & =oc. (A) If p(x)> 0 this regularity means that the
intogral of p(z)|u|? converges at infinity. (B) If p changes its sign for arbitrarily large values of
 but L has a positive definite Dirichlet integral it is natural to relate the regularity to this
integral. Weyl’s classical study of the deficiency indices is reviewed for (A) with the help of
elementary theory of quadratic forms. Individual bounds are found for the deficiency indices
also when L is of odd order. It is then indicated how the method carries over to (B).

0. Introduction

If ¢ is a continuous real-valued function on a <z < co and A a non-real para-
meter, then
—u"+qu=2Au 0.1)

has at least one solution which is square-integrable on a <z < co. This result
was deduced by H. Weyl in his fundamental treatise [3] on spectral properties
of ordinary differential equations. If the equation is replaced by

—u"+ qu=Apu, (0.2)

where p and ¢ are real-valued functions, Weyl’s method can be applied even if
p takes both positive and negative values but has a definite sign for sufficiently
large values of z. If the last assumption is abandoned, but ¢ is non-negative, it
seems natural to relate the behaviour at infinity of the solutions to the Dirichlet

integral
L]
f [+ glul.
a

As a base for such considerations we shall present Weyl’'s method in its de-
pendence on quadratic boundary forms. For (0.1) Weyl proved that given any
solution y one can find another one, v, satisfying a boundary condition at x=a
(for instance v(a)=0) such that p —v becomes square-integrable over ¢ <x< oo,
This result can be generalized to any formally selfadjoint equation of even order
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(Everitt [1]). But for equations of odd order a set of solutions satisfying a
boundary condition at x=a is generally too small for the purpose. However,
according to the elementary theory of quadratic forms one can instead use a
linear set of solutions determined by a quadratic boundary inequality at z=a.
In this way Weyl’s result can be generalized to formally selfadjoint equations
of arbitrary order.

The numbers of square-integrable solutions of Lu=Au on 0 <z < oo for Im1>0
and for Im A< 0 are the deficiency numbers of the selfadjoint operator L. A com-
plete hilbert space treatment of real selfadjoint differential operators of arbitrary
(even) order was first given by I. M. Glazman [2]. In a footnote Glazman ob-
served that the order (even or odd) of a differential operator is a lower bound
for the sum of its deficiency numbers but gave no individual estimates.

After the presentation of Weyl’s method we indicate how it carries over to
Lu=jpu when the integral

f _pluf?

is indefinite in an essential way but the differential operator has a positive de-
finite Dirichlet integral.

1. The differential operator

Let the linear differential operator

1 d
V-1 dx

be defined on an open interval I containing a <z < co. The coefficients 4;(x)
are assumed continuous and so regular that the adjoint

M
L=3A,x) D, D=
i=0

can be formed. Let L be formally selfadjoint i.e. let L and L* coincide. Then
Green’s formula reads

B — B
f # Lu—u Lo =i [k(u, v)]. (1.1)

o

Here the “boundary form” k(u,v) is linear in # and hermitean. Thus £ is a
quadratic form with coefficients depending on z. By computation

m—1 _ N —
k(u,v)= > (D'Bju+ D'uB;v)— Apm+1 D™ D™u (1.2)

i=0
when M=2m or M=2m-+1, where m is an integer. In the case M =2m it is
understood that As,.1=0 in (1.2). The Bu (j=0,1, ..., (m— 1)), are linear in «.

The expression for k(u,u) can be written
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m—1 m—1
b(u, u)= _ZO 1| Diu+ Byul?— jzo% | D’ — Byu|? — Aspsr | D™ul? (1.3)
= <
On a finite dimensional linear set of functions the quadratic form % has a
certain signature [m,v] or [m,,v,] for every z. This means that on the linear set
k(uw, %) can be written as a sum of z squares (of absolute values) minus » squares
of altogether m+ v linearly independent linear forms. From (1.3) we conclude that

ws<m®, v<m’, (1.4)

where
mt=m =m if M=2m, (1.5)
mt=m+1, m =m if M=2m+1 and Az,:+1(2)<0, (1.6)

+

m =m, m =m+1 if M=2m+1 and Ay, 1(x)>0. (1.7)

Observe that in all cases m™+m™ = M.

2. Solution space

We shall study solutions of the differential equation
Lu=Jpu 2.1)

on a<x<oco. Here p denotes a real-valued function which for instance is con-
tinuous. It should not vanish identically. In our presentation of Weyl’s method
(8§ 2-5) we suppose

px)=0 for a<z< oco. (2.2)

In (2.1) 2 is a non-real parameter. To fix the ideas we assume in general that
Im A >0. 2.3)

The highest order coefficient of a formally selfadjoint differential operator is always
real. We assume Ay (x)==0 for all z in a<zx< oo. Because of this the equation
(2.1) has M linearly independent solutions on ¢ << co which form the solu-
tion space

I={u|Lu=Apu}

of dimension M. A solution cannot vanish on an interval without being 0 every-
where.

3. Signature of the houndary form

If uel ie. if u satisfies Lu=Apu and if we put v=wu in the Green’s formula
(1.1), we obtain

_ 78
k,g(u,u)—lcm(u,u)=l@—,Z’Jv plul?. 8.1)
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Let us assume that the interval o <2 <g is so large that p does not vanish iden-
tically on this interval. Because of (2.3) the factor (A— 1)/% is positive. Thus the
right-hand side of (3.1) is positive definite.

The signatures of k, and ks on ! are [m,, v.], [7s, v5). The left-hand side of (3.1)
can be written as a sum of mz+ v, squares minus 7, + v squares. We shall first
prove that M <mz+ v, Assume mz+v,< M. If we equate to O the sz + v, squares
in kg(u,uw) — ky(u,u), we obtain a linear subspace of ! which because of ms+
<M has a positive dimension. But this is contradicted by the fact that (3.1)
implies ¥ =0 for every u belonging to the subspace. Thus M <7+ ¥,

But according to (1.4), our last inequality can be completed to M <ms+ v, <
m*+m”™ =M. Hence, mg=m" and y,=m . This is true for arbitrary values of
o and B in the interval I, where L is defined. This shows that the signature [, v]
of k on 1 is independent of x and that

n=m*, y=m",

where m* and m~ are defined in (1.5)-(1.7).

4. Weyl’s method

Let a <x<b be a finite interval. The signature of &, on ! is [m*, m~]. According
to the theory of quadratic forms there exist linear subspaces of I of dimension
m*, but of no higher dimension, on which k, is positive definite. Let I be such
a subspace

dim I} =m*, k,(u,u)=0 on I, equality only if u=0. (4.1)

Similarly, since the signature of k, on [ is [m*,m”] we can chose a linear sub-
space I, of I such that

diml; =m~, ky(u,u)<0 on l;, equality only if u=0. 4.2)

For «=a, =0 the formula (3.1) takes the form
A4 (°
ky (u, w) — ky(u, u)=7f plul 4.3)

It wel; nl; the left-hand side of (4.3) is non-positive according to (4.1) and
(4.2). Since the right-hand side of (4.3) is non-negative this gives uw=0. Thus
Is NIz ={0}. But diml, +dim I =m  +m* =M which is the dimension of I. It so
follows that the solution space equals the direct sum

=15 12 (44)

Let p €. On account of (4.4) we write y =%+ v, where 4 €; and v € . Insert
u=yp—v in (4.3). Since k,(u,u) <0 it follows that

A= ,
kalp—vp—0)+ | plyp—ol*<o. (*5)
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Let @y, @s, ..., pm+ be a base in I and write v as a linear combination

mt

v= 2 t;p;.
i=1

For all » in I we have k,(v, v) >0 with equality only if v=0. Thus, when Im 4 >0,
the part of the left-hand side of (4.5) which is quadratic in T'=#,1,,...,tn+ i
positive definite on I,

Geometrically (4.5) tells us that T belongs to the interior or the boundary
of a m*-dimensional unitary ellipsoid E,. Our reasoning shows that the ellipsoid
defined by (4.5) is not empty since there exists a function » for which (4.5) is
satisfied. If ' >b the definition by (4.5) of the ellipsoids E, shows that B, c K,
Thus there is at least one point T which belongs to all the compact sets E,.
Let v=4,¢,+lypy+ ... +m+@m+ be the function in I; which corresponds to such
a T. For this » the inequality (4.5) is satisfied for all values of b. Consequently

A==
ka(zp-—v,y)—v)-l-Tf ply—v[*<0.

It follows that f ply—vfP< oo,

i.e. that y—v€ L3(a, oo;p). We have proved that every solution y of Lu=Apu
can be “compensated” by a solution v in I so that

Y =yp—v€L¥a, o;p).

Let v, 9., ..., vn~ be a completion of ¢y, @, ..., pn+ to a base of I. Then the
compensated functions

v =v;— ;€ L*(a, o0; p)

(j=1,2,...,m™), also form a base together with ¢, @, ..., gn+.

Thus, Lu=Apu has at least m~ linearly independent solutions in L*(a, oo; p).
Under the condition Im A >0 we have m™ =m if the order of L is M=2m, or if
M=2m+1 and Ayns1(2)<0, while m =m+1 if M=2m+1 and Agyi1(z)>0.
If Im A< 0 the inequalities for Asp.q(x) should be reversed.

5. Compensating functions and boundary conditions

The signature of &k, on I is [m*, m™], where m* +m™ = diml. According to the
theory of quadratic forms there exist linear subspaces of ! of dimension min (m*,m~),
but of no higher dimension, such that k,(w,v)=0 for every % and v belonging
to the subspace. Let I3 be such a maximal nullspace with respect to k,. Thus
ky(u,u)=0 if w€ll. If wel; NI (compare (4.2)) the relation (4.3) proves that
u=0.

The dimension of I; is m~. If M is even, or if M=2m+1 and 4,5, .1(x) >0,
then m* <m~ and dimI)=m"* (provided ImA>0). In these cases

=1 +1 (5.1)
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But if (5.1) holds true we can (as Weyl actually did) use [ instead of I; in the
reasoning of section 4 (after formula (4.4)). Thus if M =2m, or if M =2m+ 1 and
Aspmi1(x) >0, we can compensate any solution ¢ of Lu= Apu by means of a solu-
tion v in IJ so that —v becomes square-integrable with respect to p.

If M=2m+1 and 4y, (x)<0 the relation (5.1) is not valid and a set 19 is
generally not sufficient to compensate every solution y to square-integrability
over @ <x< oo,

A boundary condition for L on a <z<b can be defined as a maximal null-
space of the quadratic form

ky (u, v) — kg (u, v).

If M is even, any two subspaces of [ which are maximal nullspaces I3 and I with
respect to k, and k, determine a boundary condition. This is not true when M
is odd but it seems anyhow fit to call a maximal nullspace with respect to k,
a boundary condition at x=a both when M is even and odd. Under this agree-
ment the result of the present section can be formulated as follows.

If M=2m or if M=2m+1 and Ag,,1(x) >0, we can use solutions which satisfy
a boundary condition at x=a to compensate any solution of Lu=Apu to square-
integrability on a <z < co with respect to p. If M=2m~+1 and Aspi1(z)<0 this
is not generally possible. These statements are true when ImA>0. The changes
when ITm A< 0 are obvious.

Remark I. One might want wider possibilities to find spaces of restricted dimen-
sion which are sufficient to compensate any solution to square-integrability. For
this we can note that the maximal dimension of subspaces of I on which £, is
positive (not necessarily definite) is also m*. A space IJ'° of this type is suffi-
cient for the compensation.

Remark I11. For M =2 the ellipsoids E, are one-dimensional i.e. of the form
|t —c(®)| <o(b)-
They are circles in the complex ¢-plane and coincide with the classical Weyl
circles. If b" >b the circle |t — ¢(b")| <o(b') is contained in the cirele [¢—c(b)| <g(b).
If for b—>oco the circles shrink to a single point we are in Weyl’s limit point

case. If they shrink to a limit circle we are in the limit circle case and all solu-
tions are square-integrable. If M >2 the classification is similar but more elaborate.

6. Weyl’s method for operators with positive Dirichlet integrals

A real, formally selfadjoint linear differential operator can be written
L=73 Dla;(z) D
i=o

with real-valued functions a,(z). As in §1, let L be given and sufficiently regular
on an open interval I containing @ <z < oo. By partial integrations

B B B
f #Lu=~ i [Bu, v)]+ f D(u, v), (6.1)
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m _
where D(u, v)= > a,(x) D'u D (6.2)
i=o
m-1____
and B(u,v)= 2> DvB,u.
i=0

The expressions B;u are linear in u. The Dirichlet form (6.2) is evidently her-
mitean. If for instance a,(x) >0 (j=0,1,...,m), the integral of D(w,u) from o
to [ is non-negative and increases when the interval ¢ <x<f increases. We
assume that this is so and also that if the interval ¢ <z < § is sufficiently large,
then

B
f D(u,u)=0

holds true for a “regular” % only if %(z)=0 in a subinterval of a<z<p. If
these conditions are fulfilled we say that L has a positive definite Dirichlet
integral.

Interchanging » and » in (6.1) and taking the complex conjugate we obtain

B __ 8 i
f uLv= —i[B(v, u)]+ f D(u, v). (6.3)
Let Lu=Apu and take v=wu. Then (6.1) and (6.3) give
8 B 8
[l = iTBn+ [ D, (64)
= [ B B
/IJ plulf= —i[B(xu, u)]+f D(u, u). (6.5)
From (6.4), (6.5) it follows that
7 B
hg(u, u) — by (u, u)=z@—_lf D(u, u), (6.6)
m-1 - R
where " h(u, v)=jZO(B,ulD’v+}.D7quv). (6.7

For the signature [m,»] of the evidently quadratic form kb, considered on any
finite dimensional linear set, it follows from (6.7) (see §1) that

T<m, v<m.
If Im A >0, the equality (6.6) shows that Ag(w, u) — h.(u, %) is positive definite on
the solution space

1= {u| Lu= Apu}.

A reasoning similar to the one performed in §3 proves that the signature of A
on [ is independent of x and always equals [m,m].
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Repeating, but with (6.6) instead of (4.3), what was done in §§4 and 5 we
arrive at the result that every solution vy of Lu=Apu on a<x< oo can be com-
pensated by a solution v belonging fo a maximal nullspace for hy, so that u=yp—v

gives a finite value to
f D(u, u).
a

That » belongs to a maximal nullspace for h, can be considered as a kind of
boundary condition for » at x=a. But in general the boundary conditions at
= determined by h, do not coincide with the boundary conditions of § 5 which
are related to k,. Dirichlet’s boundary condition at a(D'u(a)=0,j=0,1,...,(m—1))
is a boundary condition at a, both with respect to k, and %,. Observe that a
maximal nullspace in I with respect to %, has dimension m. If H denotes a hil-

bert space with norm
oo 1
jul= ([ D)

it follows that Lu= Apu has at least m solutions tn M. This is true if L is real
formally selfadjoint of order 2m and has a posttive definite Dirichlet integral. The
result is essentially independent of p.

7. Conclusions

Clearly questions related to Weyl’s result have their similarities in a theory
about differential operators with positive Dirichlet integrals. Some of these ques-
tions are easily settled, others give rise to certain difficulties. It is the intention
to discuss some of them in a forthcoming paper from the Department.

Mathematics Department, Uppsala University, Uppsala, Sweden
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