On extensions of Lipschitz functions

By Jan-Erik Björk

Let X be a compact metric space with metric d. A real-valued function f on X is Lipschitz if there exists a constant K such that $|f(x)-f(y)| \leq Kd(x,y)$ holds for all points $x, y \in X$. The class of functions Lipschitz on X is an algebra Lip (X, d). On Lip (X, d) we can introduce a norm in the following way. Let $f \in \text{Lip } (X, d)$. We put $||f||_c = \sup_{x \in X} |f(x)|$ and $||f||_d = \sup \{|f(x) - f(y)| / d(x, y)| | x, y \in X \text{ and } x \neq y\}$. Finally we put $||f|| = ||f||_c + ||f||_d$. It is easily seen that Lip (X, d) is a Banach algebra with this norm. A general investigation of Lip (X, d) is given in [1]. We shall freely use results and notations from that paper. In this paper our main result is the following: Let F be a closed subset of a compact metric space X with metric d. Let G be a closed set contained in F. Let $f \in \text{Lip}(F, d)$ be such that $\lim_{x \to d} |f(x) - f(y)|/d(x, y) = 0$ as d(x, G) and d(y, G) tend to zero. Then there exists $H \in \text{Lip } (X, d)$ such that H = f on F and $\lim |H(x)-H(y)|/d(x,y)=0$ as d(x,G) and d(y,G) tend to zero. This result answers a question raised in [2] (see IV, Miscellaneous problems no. 8, p. 355). For the result above implies the following: Let X be a compact metric space with metric d. Let Lip (X, d) be the Banach algebra of functions Lipschitz on X. Let I(F)be the ideal of functions vanishing on a closed set F contained in X. Let G be a closed subset of F. Let J(G) be the smallest closed ideal with hull G. Let u be a continuous linear on I(F) which vanishes on I(G). Then u can be extended to a continuous linear form on I(G) which vanishes on J(G).

Remark. In [1] it is shown that J(G) consists of all functions $f \in \text{Lip } (X, d)$ such that $f \in I(G)$ and $\lim_{x \to \infty} |f(x) - f(y)|/d(x,y) = 0$ as d(x, G) and d(y, G) tend to zero. In the proof of Theorem 1 we shall need the following result from [3].

Proposition 1. Let X be a metric space with metric d. Let F be a closed subset of X. Let f be a bounded function Lipschitz on F, i.e. $||f||_c = \sup_{x \in X} ||and|||f||_d = \sup \{|f(x) - f(y)|/d(x, y)|x, y \in F \text{ and } x \neq y\}$ are finite. Then there exists a function H on X such that H = f on F and $H \in \text{Lip}(X, d)$ with $||H||_d = ||f||_d$ and $||H||_c = ||f||_c$.

Proof. Let us put $H_1(x) = \sup_{y \in F} \{f(y) - \|f\|_d d(x, y)\}$. It is not hard to see that $H_1 = f$ on F and H_1 is Lipschitz on X with $\|H_1\|_d = \|f\|_d$. Now we only have to put $H(x) = H_1(x)$ if $\|H_1(x)\| \le \|f\|_c$ and $H(x) = \|f\|_c$ if $H_1(x) > \|f\|_c$ and $H(x) = -\|f\|_c$ if $H_1(x) < -\|f\|_c$.

In the proof of Theorem 1 the following lemma will be useful.

Lemma 1. Let F and G be two closed subsets of a metric space X with metric d, such that if $x \in F$ and $y \in G$ then there exists $z \in F \cap G$ with $4d(x, y) \ge d(x, z)$ and $4d(x, y) \ge d(y, z)$. Let $f \in \text{Lip } (F, d)$ and $g \in \text{Lip } (G, d)$ be such that f = g on $F \cap G$. If we put h = f on F and h = g on G then $h \in \text{Lip } (F \cap G, d)$ and $\|h\|_d \le 4(d\|f\|_d + \|g\|_d)$.

J.-E. BJÖRK, Extensions of Lipschitz functions

Proof. Obviously h is a well defined function on $F \cap G$ since f = g on $F \cap G$. Let $x \in F$ and $y \in G$. By assumption we can find $z \in F \cap G$ such that $4 d(x, y) \ge d(x, z)$ and $4 d(x, y) \ge d(y, z)$. It follows that $|h(x) - h(y)|/d(x, y) \le |f(x) - f(z)|/d(x, y) + |g(z) - g(y)|/d(x, y) \le 4(||f||_d + ||g||_d)$.

Theorem 1. Let A be a normed linear space. Let d be the metric on A defined by the norm A. Let F be a compact subset of A containing the origin 0. Let $f \in \text{Lip }(F, d)$ be such that $\lim |f(x)-f(y)|/d(x,y)=0$ as d(x,0) and d(y,0) tend to zero. Then there exists $H \in \text{Lip }(A,d)$ such that H=f on F and $\lim |H(x)-H(y)|/d(x,y)=0$ as d(x,0) and d(y,0) tend to zero.

Proof. The case when 0 is an isolated point of F is trivial so now we assume that 0 is not an isolated point of F. If $y \in A$ we put $\|y\| = d(y,0)$. Choose $(x_n)_2^\infty$ from F such that $2\|x_{n+1}\| \le \|x_n\|$ and $F \subset \{y \in A \mid \|y\| \le \|x_2\|\}$. We also assume that f(0) = 0 here. Let us put $B_n = \{y \in A \mid \|y\| \le \|x_{2n}\|\}$, $S_n = \{y \in A \mid \|y\| = \|x_{2n}\|\}$, $W_1 = \{y \in A \mid \|x_3\| \le \|y\| \le \|x_2\|\}$ and for $n \ge 2$ we put $W_n = \{y \in A \mid \|y\| = \|x_{2n+1}\| \le \|y\| \le \|x_{2n-1}\|\}$. Using proposition 1 we can extend the restriction of f on $W_n \cap F$ to the set $(W_n \cap F) \cup S_n$. In this way we obtain $g_n \in \text{Lip }((W_n \cap F) \cup S_n, d)$ such that $\lim \|g_n\|_d = \lim \|g_n\|_c = 0$. Let us put $Q_n = \{y \in F \mid \|x_{2n+2}\| \le \|y\| \le \|x_{2n}\|\}$ and $T_n = S_n \cap S_{n+1} \cap Q_n$. On T_n we define h_n as follows: $h_n = g_n$ on S_n , $h_n = g_{n+1}$ on S_{n+1} and $h_n = f$ on Q_n . Because F contains a point x_{2n+1} such that $2\|x_{2n+2}\| \le \|x_{2n+1}\| \le 1/2\|x_{2n}\|$ we see that Lemma 1 can be applied to prove that $\|h_n\|_d \le 4(\|g_n\|_d + \|g_{n+1}\|_d)$. Let us put $R_n = \{y \in A \mid \|x_{2n+2}\| \le \|y\| \le \|x_{2n}\|\}$. Using Proposition 1 we find $H_n \in \text{Lip }(R_n, d)$ such that $H_n = h_n$ on T_n with $\|H_n\|_d = \|h_n\|_d$ and $\|H_n\|_c = \|h_n\|_c$. It follows that $\lim \|H_n\|_d = \lim \|H_n\|_c = 0$. Now we define H on $H_n = \|f_n\|_d$ and $H_n = \|f_n\|_d$ on $H_n = \|f_n\|_d$ and $H_n = \|f_n\|_d$ and $H_n = \|f_n\|_d$ on $H_n = \|f_n\|_d$ and $H_n = \|f_n\|_d$ on $H_n = \|f_n\|_d$ on $H_n = \|f_n\|_d$ and $H_n = \|f_n\|_d$ on $H_$

Theorem 2. Let X be a compact metric space with metric d. Let F be a closed subset of X. Let G be a closed set contained in F. Let $f \in \text{Lip }(F, d)$ be such that $\lim_{x \to a} |f(x) - f(y)| d(x, y) = 0$ as d(x, G) and d(y, G) tend to zero. Then there exists $H \in \text{Lip }(X, d)$ such that H = f on F and $\lim_{x \to a} |H(x) - H(y)| / d(x, y) = 0$ as d(x, G) and d(y, G) tend to zero.

Proof. Let I(G) be the ideal of functions in Lip (X,d) vanishing on the closed set G. I(G) is now considered as a normed linear space with the norm $||f|| = \sup\{|f(x) - f(y)|/d(x,y)|x,y \in X \text{ and } x \neq y\}$. Every point $x \in X$ defines a linear form \hat{x} on I(G), i.e. we put $\hat{x}(f) = f(x)$ for $f \in I(G)$. Obviously we have $|\hat{x}(f)| \leq ||f|| d(x,G)$ for every $f \in I(G)$. Let I'(G) be the normed dual space of I(G). Let \hat{d} be the metric on I'(G) defined by the norm on I'(G). Hence we have the mapping $T: X \to I'(G)$ introduced above. Since we can find $f \in I(G)$ such that f(x) = d(x,G) and $||f||_d = 1$ when $x \in X - G$, it follows that $\hat{d}(\hat{x},0) = d(x,G)$ holds when $x \in X - G$, while $\hat{x} = 0$ if $x \in G$. It is also easily seen that $\hat{d}(\hat{x},\hat{y}) \leq d(x,y)$ holds. Let us also consider two points $x, y \in X - G$. We may assume that $d(x,G) \leq d(y,G)$. If d(x,y) < d(y,G) we easily find $\hat{d}(\hat{x},\hat{y}) = d(x,y)$. Let us now consider a function $f \in \text{Lip } (F,d)$ such that $\lim |f(x) - f(y)|/d(x,y) = 0$ as d(x,G) and d(y,G) tend to zero while f vanishes on G. Now we define a function f

on $T(F) = \{\hat{x} \in I'(G) \mid x \in F\}$ as follows: $\hat{f}(\hat{x}) = f(x)$ for $x \in F$. We see that T(F) is a compact subset of I'(G) containing the origin 0.

Let $x, y \in F$ with $d(x, G) \le d(y, G)$. If d(x, y) < d(y, G) we have $\hat{d}(\hat{x}, \hat{y}) = d(x, y)$. In this case we get $|\hat{f}(\hat{x}) - \hat{f}(\hat{y})|/\hat{d}(\hat{x}, \hat{y}) = |f(x) - f(y)|/\hat{d}(x, y)$. If $d(x, y) \ge d(y, G)$ we choose $z, u \in G$ such that d(x, z) = d(x, G) and d(y, u) = d(y, G). Then we get $|\hat{f}(\hat{x}) - \hat{f}(\hat{y})|/\hat{d}(\hat{x}, \hat{y}) \le |f(x) - f(z)|/\hat{d}(\hat{x}, \hat{y}) + |f(y) - f(u)|/\hat{d}(\hat{x}, \hat{y}) \le |f(x) - f(z)|/\hat{d}(x, z) + |f(y) - f(y)|/\hat{d}(y, u)$. It follows that $f \in \text{Lip } (T(F), \hat{d})$ and $\lim_{x \to \infty} |\hat{f}(\hat{x}) - \hat{f}(\hat{y})|/\hat{d}(\hat{x}, \hat{y}) = 0$ as $\hat{y}(\hat{x}, 0)$ and $\hat{d}(\hat{y}, 0)$ tend to zero. We also have $||\hat{f}||\hat{d} \le 2||f||_d$. Now Theorem 1 shows that we can find $Q \in \text{Lip } (I'(G), \hat{d})$ such that $Q = \hat{f}$ on T(F) and $\lim_{x \to \infty} |Q(x) - Q(x)|/\hat{d}(x, x) = 0$ as $\hat{d}(x, 0)$ and $\hat{d}(b, 0)$ tend to zero. We also have $||Q||_{\hat{a}} \le 0||\hat{f}||_{\hat{a}} \le 16||f||_d$. Now we define a function H on X as follows: If $x \in X$ we put $H(x) = Q(\hat{x})$. Since $\hat{d}(\hat{x}, \hat{y}) \le d(x, y)$ it follows that $H \in \text{Lip } (X, d)$ with $||H||_d \le ||Q||_{\hat{a}} \le 16||f||_d$.

Corollary. For every e>0 we can find an extension H of f in Theorem 2 such that $||H||_d < (1+e)||f||_d$ and $||H||_c = ||f||_c$.

Proof. The constructions used in the proof of Theorem 2 show that we can find an extension H of f such that $||H||_d \le 16||f||_d$. Using this estimate we can reduce the problem to the case when $f \in \text{Lip }(F, d)$ is such that f vanishes in a neighborhood of G and this case is easy.

Department of Mathematics, University of Stockholm, Stockholm, Sweden

REFERENCES

- SHERBERT, D. R., The structure of ideals and point derivations in Banach algebras of Lipschitz functions. Trans. Am. Math. Soc. III (1964).
- Function Algebras (Proceedings of an International Symposium on Function Algebras held at Tulane University, 1965).
- 3. McShane, E. J., Extensions of the range of functions. Bull. Am. Math. Soc. 40 (1934).

Tryckt den 30 augusti 1968