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On extensions of Lipschitz functions

By Jan-Erix Bjork

Let X be a compact metric space with metric d. A real-valued function f on X is
Lipschitz if there exists a constant K such that |f(x) —f(y)| < Kd(, y) holds for all
points x, ¥y € X. The class of functions Lipschitz on X is an algebra Lip (X, d). On
Lip (X, d) we can introduce a norm in the following way. Let f€Lip (X, d). We put
17l =supeex /)] amd |[fla—sup {[f(e) —fig)|/die> )| y€ X and +y}. Finally
we put ||7|| =|I#|l. +1|f]le- It is easily seen that Lip (X, d) is a Banach algebra with this
norm. A general investigation of Lip (X, d) is given in [1]. We shall freely use re-
sults and notations from that paper. In this paper our main result is the following:
Let F be a closed subset of a compact metric space X with metric d. Let G be a closed
set contained in F. Let f€Lip(F,d) be such that lim |f(x)—f(y)|/d(x, y)=0 as
d(z, @) and d(y, @) tend to zero. Then there exists H €Lip (X, d) such that H=f on
F and lim |H(x) —H(y)| /d(z, y) =0 as d(z, ) and d(y, @) tend to zero. This result
answers a question raised in [2] (see IV, Miscellaneous problems no. 8, p. 355). For
the result above implies the following: Let X be a compact metric space with met-
ric d. Let Lip (X, d) be the Banach algebra of functions Lipschitz on X. Let I(F)
be the ideal of functions vanishing on a closed set F contained in X. Let G be a
closed subset of F. Let J(G) be the smallest closed ideal with hull G. Let « be a
continuous linear on I(F) which vanishes on J(G). Then » can be extended to a con-
tinuous linear form on I(#) which vanishes on J(G).

Remark. In [1] it is shown that J(G) consists of all functions f € Lip (X, d) such that
f€I(G) and lim |f(z)—f(y)]|/d(z,y) =0 as d(x, G) and d(y, G) tend to zero.
In the proof of Theorem 1 we shall need the following result from [3].

Proposition 1. Let X be a metric space with metric d. Let F be a closed subset of X.
Let f be a bounded function Lipschitz on F, i.e. ||f||l;=supscx| and ||f||ls=sup {|f(x)
—f)|/d(x, y)|x, yE€F and x ==y} are finite. Then there exists a function H on X such
that H=f on ¥ and H €Lip (X, d) with ||H||,=||f|| and |H]|.= |/l

fllad(x, )}. It is not hard to see that
H,|la=||ls- Now we only have to put

Proof. Let us put H,(x)=sup,cs {f(y)—(
|o i Hy@)>|f]l. and H(z)=—|f]]. if

H,=fon F and H, is Lipschitz on X with
H(z)=H,(z) if |H(z)|<[f||. and H(z)=||f
Hy@) < |}l

In the proof of Theorem 1 the following lemma will be useful.

Lemma 1. Let F and G be two closed subsets of a metric space X with metric d, such
that if € F and yEG then there exists z€ F N G with 4d(x, y) =d(z, z) and 4d(z, y) =
d(y, z). Let f€Lip (F, d) and g€Lip (G, d) be such that f=g on F N G. If we put h=f
on F and h=g on @ then h€Lip (F N G, d) and ||b]ls<4(d|f]+ l9]l)-
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Proof. Obviously 4 is a well defined function on F (G since f=g on F n G. Let
x€F and y€(G. By assumption we can find z€ F @ such that 4 d(z, y) >d(x, z) and
4d(x, y)>d(y,2). It follows that |h(z)—h(y)|/d(z, y)<|f(x)—f()|/d(x, y)+ |g(2)
—g@ |/ ) <4(|fla+ll9llo)-

Theorem 1. Let A be a normed linear space. Let d be the metric on A defined by the
norm A. Let F be a compact subset of A containing the origin 0. Let f €Lip (F, d) be such
that Lim |f(x) —f(y)|/d(x; y) =0 as d(z, 0) and d(y, 0) tend to zero. Then there exists
HeLip (4, d) such that H=f on F and lim |H(x)—H(y)|/d(z, y) =0 as d(z, 0) and
d(y, 0) tend to zero.

Proof. The case when 0 is an isolated point of F is trivial so now we assume that 0
is not an isolated point of F. If y€ A we put |y|| =d(y, 0). Choose (,)s° from F such
that 2||@,,|| <||«,]] and F<={yeA4||y| <|z.]}. We also assume that f(0)=0 here.
Lot us put, B,=(y€4 |yl <[} SnmtveAl (ol =[aul} Wi={yea]|z]
<yl <||#,|} and for n>2 we put W,={y€A| ||Zamss| <|¥|l <|[#2n-a]|}- Using
proposition 1 we can extend the restriction of f on W, n F to theset (W, n F)U 8,.In
this way we obtain g, € Lip (W, n F)U S, d) such that lim ||g,||,=lim ||g,|].=0. Let
us put @, ={yEF| ||[%ansal| < ||yl <||%2]|} and T, =8, N 8,11 NQu. On T, we define
b, as follows: h,=g, on 8,, h,=g,,, on 8,,, and h,=f on @,. Because F contains a
point y,,; such that 2|z, || <||#anqa]] <1/2|220]| We see that Lemma 1 can be
applied to prove that |h,|s<4(||g,]la+ [|gnsalls). Let us put R,={y€A] ||z
<|lyll <||v2x)|}- Using Proposition 1 we find H,€Lip (R,, d) such that H,=h, on
T, with ||H,||¢=||k.|la and ||H,||c=||%4||.- It follows that lim || H,,||,=lim ||H,].=0.

ow we define H on B, as follows: H=H, on R, and H(0)=0. Now we prove that
HelLip (B, d) and that lim |H(x)—H(y)|/d(x, y)=0 as d(x, 0) and d(y, 0) tend to
zero. For suppose that y€R,,, and z€ R, with v>0. Now the line segment {z(t)=
tx+(1—1)y|0<t<1} contains points z(t;) €S, ; for j=1, ...,v. Now we get |H(x)
—H(y)| < | Hy@) —Ho(t))] + v+ | Hogol ) — Hp o) | <K, d(®, ) whero we have
put K, =sup {||H,||s|»>n}. Finally we can extend H from B, to 4 using Proposition
1 and the theorem is proved.

Theorem 2. Let X be a compact meiric space with metric d. Let F be a closed subset of
X. Let G be a closed set contained in F. Let fELip (F, d) be such that lim |f(x)—f(y)/
d(x, y)=0 as d(z, G) and d(y, G) tend to zero. Then there exists H €Lip (X, d) such that
H=fon F and lim |H(x)—H(y)|/d(x, y)=0 as d(x, G) and d(y, @) tend to zero.

Proof. Let I(G) be the ideal of functions in Lip (X, d) vanishing on the closed set
G. I(G) is now considered as a normed linear space with the norm ||f|| =sup{|/f(z)
—fw)| /A, y)|®, y€X and z=+y}. Every point z€X defines a linear form & on
I(@), ie. we put &(f)=f(x) for f€I(GF). Obviously we have |&(f)| <||f||d(x, @) for
every f€I((). Let I'(G) be the normed dual space of I(G). Let d be the metric on
I'(Q) defined by the norm on I’(@). Hence we have the mapping 7 : X —~I'(G)
introduced above. Since we can find f€ I(G) such that f(z) =d(x, G) and ||||,=1 when
x€X —@, it follows that d(£, 0) =d(«, @) holds when x€ X — @, while £=0if x€G. It is
also easily seen that d(#£, ) <d(x, y) holds. Let us also consider two points z, y € X — G.
We may assume that d(x, @) <d(y, Q). If d(x, y) <d(y, @) we easily find d(£, §) =d(z, y).
Let us now consider a function f€Lip (F, d) such that lim|f(z) —f(y)| /d(x, y) =0 as
d(x, G) and d(y, @) tend to zero while f vanishes on G*. Now we define a function f
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on T(F)={£€l'(§)|x€F} as follows: f(#)=f(x) for x€F. We see that T(F) is a
compact subset of I'(G) containing the origin 0.

Let z, y € F with d(z, @) <d(y, &). It d(z, y) <d(y, G) we have d(£, §) =d(z, y). In this
case we get |A(£)—f(@)|/d(&, §)=|fx)—fy)|/d(x, y). If d(z, y)>d(y, G) we choose
z, w€G such that d(z, z) =d(z, G) and d(y, u) =d(y, ). Then we get [F(£) —f()d(#, §)
< @)~ 1| (&, §)+ | 1) 1) (&, 9)2|[@)—F=)| Az, 2) + | {@)— )] [dty, w).
It follows that f€Lip (T(F), d) and lim |f(#)—f(9)]/d(#, §)=0 as §(# 0) and
d(4, 0) tend to zero. We also have || f}|d<2” f|ls- Now Theorem 1 shows that we can
find Q€Lip (I'(G), d) such that Q=7 on T(F) and lim |Q(a)—Q®)|/d(a, b)=0 as
d(a, 0) and d(b, 0) tend to zero. We also have ||@||s <O||f]|a <16||f||s- Now we define a
function H on X as follows: If x€X we put H{z)=0Q(£). Since d(&, §) <d(z, y) it
follows that H€Lip (X, d) with |H|,<||Q]|z <16||f|l..

Corollary., For every e>0 we can find an extension H of f in Theorem 2 such that
12 lle<+e)|flla and [|H]l.=]Ifllc-

Proof. The constructions used in the proof of Theorem 2 show that we can find
an extension H of f such that |H||,<16]|f||,. Using this estimate we can reduce the
problem to the case when f€Lip (¥, d) is such that f vanishes in a neighborhood of @
and this case is easy.
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