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Stochastic processes and statistical inference

By ULrF GRENANDER

Introduction

The purpose of this thesis is, partly to show the possibility of applying
statistical concepts and methods of inference to stochastic processes, and partly
to obtain practically working methods of this kind by studying special cases
of inference.

Time-series have been subjected to statistical treatment in a more or less
systematical way for a very long time, but unlike the case of finite dimen-
sional samples, there exists no unified theory. The extensive literature on
stochastic processes has but rarely touched upon questions of inference. On
the other hand, the attempts to treat time-series data do not seem to have
been much influenced by the theory of stochastic processes. This is specially
the case when considering a continuous time-parameter, which will be our main
interest in the following chapters. The treatment of the problem~ in the present
dissertation is based on the general idea outlined in Cramfr: Mathematical
methods of statistics — to base statistical methods on the mathematical theory
of probability.

In the first two chapters we shall give a short survey of some fundamental
facts about stochastic processes and statistical inference. The third and fourth
chapters will deal with the problem of testing hypotheses and the fifth with
estimation. Finally in the sixth chapter we shall show very shortly that prog-
nosis and filtering of time-series are questions similar to testing and estimation
and can be treated on analogous lines.

Some topics in the theory of stochastic processes

1.1. Measure of probability. Let us consider an abstract space 2 with the
following properties. The points in £ are denoted by w. In £ is defined a
Borelfield of sets containing also £2. On this Borelfield there is defined a
completely additive, non-negative setfunction P for which P(£2)=1. Then P
is said to be a probability-measure on 2. It is sometimes convenient to close
the measure by defining every se, which can be enclosed by a set (belonging
to the Borelfield) of measure zero, as measurable with measure zero.
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U. GRENANDER, Stochastic processes and statistical inference

If f(w) is a real function defined on £ and measurable with respect to
P, (o) is called a stochastic variable. The mean value operator £ is defined as

Ef(w) = [f(0)dP (o)

if f{w) is integrable with respect to P. The modifications necessary in order
to treat complex valued stochastic variables are evident.
Let f; (), fo(w), . . . fn(w) be m stochastic variables defined on 2. If it is

true for every choice of n Borelsets E;, E,, . .. E, on the real axis that
n
Plii(w)€E;; i=1,2, .. H {fi () € By},
the variables are said to be independent.

Let A be an arbitrary measurable set and x (w), &3 (®), . . . xx (w) n stochastic
variables. Tf M is a “‘cylinderset” with an arbitrary measurable set in the n-di-
mensional Kuclidean space R, (xy, s, . . . %) as basis, there exists one, and
but for equivalence, only one function P (A|xy, s, . . . 2;) that satisfies

P(AM) = jP(Am,xz,...xn)dp(xl,xz,...x,,,)

for every M with the said properties (see KoLMOGOROFF 1, p. 42). P(A|zy, 2, ... %n)
is called the conditional (with regard to =y, @5, . . . z») probability of A. The
conditional expectation is defined in an analogous way (see KoLMOGOROFF 1, p.
47). It has been shown that the conditional probability has usually the same
properties as the absolute probabilities. Let /A be a fixed set. Then we have

0=<P(A|zy,...20) =1

for almost all xy, . .., and other similar analogies. More generally it can be
shown under some conditions that P (4 |zy, ... 2s) can be defined so that it
18 almost certainly a probability distribution.

1.2. Stochastic processes. Let T be the whole or a part of the real axis. In
the set of time-points 7' we observe a quantity depending upon time and in
some way or other containing a random component. By repeating this ex-
periment a large number of times we get a population of functions defined on
7. The idealization of such a population together with a measure of proba-
bility, which we shall define more precisely later on in this section, is called
a stochastic process. The elements in the population are called the realizations
or the sample-functions.

When we want to define in a more rigorous way what is meant by a
stochastic process, we find at least three different ways of doing so. Consider
the quantity under observation at a fixed time-point £,. The result of a large
number of such experiments can in the usual way be described by a stochastic
variable, which we denote by x(f), leaving out the o as is usually done in
this connection. Later we shall see that it is convenient to consider the stochastic
variable as a point in an abstract space, which of course is different from the
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sample-space 2, on which the stochastic variable is defined. When ¢, takes on
every value in T, we get a one-parameter family of stochastic variables. This
curve In the abstract space is defined as the stochastic process under con-
sideration. ‘

The second alternative is obtained by {ixing a realization, and regarding
this as a function of z. Let us denote the realization by w and the function
space consisting of all real functions defined on T by £. It is then possible
to define the process as the family z.(¢) of real functions, where @ plays the
role of a parameter.

This dualism depends evidently on the fact that the value of the process is
a funetion of two variables: the time ¢ and the realizaticn w. We get the
third alternative definition by defining the process as a randcm function f (¢, »),
where f(¢, w) for fixed ¢ shall be a measurable function of w, i.e. a stochastic
variable.

1.3. Stochastic processes as families of stochastic variables. Processes
regarded from the first point of view have usually been described with the aid
of the first two moments. Suppose that Fz (£)? << oo for all € T, and introduce
the quantities

fm(t) =Ex()

\r(s, ) = Ex(s) — m ()] [z (t) — m @)].

m(t) 1s called the mean wvalue function, and 7 (s, ¢) the covariance function.
By considering the process x(t) — i (f) instead we can suppose that () = 0.
Form all finite linear combinations

|2

(4 (ti)

i=1

with real coefficients ¢; and t; €T, and close this set by convergence in the
mean. We then obtain a Hilbert space L,(X), if we define the inner product as

(f,9)=1Efg.

The first systematic treatment of stochastic processes with the aid of Hilbert
space methods i1s due to Karmunex. In some connections it is convenient
to introduce complex-valued processes and the inner product is then defined as

(t.9)=Efjg.
If, for every z€ L, (X), it is true that the real function Ezx () is Lebesgue

measurable, the process is said to be measurable (K). If further, for every
2€Ly(X), Ezx(t) is Lebesgue integrable over T and the expression

szx dt

is finite, there exists a unique element X € L, (X) satisfying the equation

L€ D) “ZH
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EzX = [Ezz(t)at.
T

Then the process is said to be integrable (K) over T' with the integral X (see
KARHUNEN 3, Satz 5).

If ||z (¢) — z () || is a continuous function of ¢ at ¢ = ¢, the process is said
to be continuous in the mean at ¢ =¢, If the corresponding holds for every
to € T, the process is said to be continuous in the mean on 7.

Suppose that z (¢) is continuous in the mean on the finite interval (o, b). If
=1ty <t} <---<'=>b and Max (" —¢'_,) > 0 when 7 tends to infinity, it

can be shown that the expression

n

Sp= 2 w(E) (@ — 1)

y=1

converges in the mean to a stochastic variable I when n tends to infinity,
irrespective of the choice of the points ¢*. I is said to be the integral (C) of

z (t) over (a, b) ,
I={z@de

(See CrRAMER 2, lemma 3.)
If z(f) is continuous in the mean on (a, b), it is evidently measurable (K),
and using Schwarz’ inequality it is seen that

1
Su T
cemn |2l

[Ezm(t)dtl
T

is finite. Thus the process is integrable (K) over (a, b) with a uniquely deter-
mined integral. But S, and the limit element I belong to L, (X) and, as con-
vergence in the mean implies weak convergence, we get

Ezl=lim X Ezz (") (" —*_,).

n>0 =1

As Ezx(t) is continuous it is Riemann integrable and thus
b
Ezl=[Ezz(t)dt
a

so that in this case the two definitions of integration coineide.

Suppose that the process Z (1), — oo << A< co, has mean value zero and
finite variance. If for every pair of disjoint intervals (4;, 4,) and (43, 44) it is
true that

EZ () — Z(W)][Z(Ae) — Z(45)] =0
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Z(4) is said to be an orthogonal process. Then
r(A A)=EZA)*=F ()
1s a non-decreasing function of 1. Suppose that f( }t) is a real function with
f f(A?dF (1) <oo. Then it is possible to define f F(A)dZ (1) by the aid of

the Riemann-Stieltjes partial sums. (See KarnuNEN 3.) The analogous holds
for complex-valued orthogonal processes.

KaruuNex (3, Satz 10 which is more generally formulated) has given the
following important theorem on rtepresentation of a stochastic process. Let
z{t) be a process that can take complex values and with mean value zero and

ffsl f& Ado(d)

where o is a measure on the real axis. This measure shall have the property
that the whole axis is the denumerable sum of sets of {inite o-measure.
f(s, 2) shall be quadratically integrable with respect to ¢ for every s. Then
there exists an orthogonal process Z (1) so that

o0

z(t)=[f(t, HAZ .

—X

Consider a process which is continuous in the mean and has mean value
zero. If the covariance function 7 (s, t) depends only upon the difference s — ¢,
the process is said to be stationary in the wide sense. According to a well-
known theorem of KHINTCHINE 1 there exists a bounded non-decreasing func-
tlon ¥ (1) so that

o0

r(s, t) =r(s— )= [0 F ().

— o0

Then the process itself has an analogous representation

Jx(t} :fede(/z)
]L |Z(A) = F (2),

{see CraMER 3), where Z () is an orthogonal process. According to the mean
T

. 1
ergodic theorem (see Hopr 1) the expression ﬁ‘ x (tydt converges in the

Zp
mean to a stochastic variable x when T tends to infinity.

FP==F(+0)—F(—0)
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so that for z to be identically zero with probability one it is necessary and
sufficient that there is no discrete spectral mass at 4 =0.

Suppose that x(¢) is real and continuous in the mean on the finite interval
(a, b) with mean value zero and covariance function r(s, ). The covariance
function is positive semi-definite, and by considering the integral equation

Zfbrtsqa(s

one gets the representation

=

r(s, ) =£ 27(,
1

V

with uniform convergence according to Mercer’s theorem. Here <p.() are the
eigen-functions of the integral equation, and A, the corresponding eigen-values.
From Karhunen’s general theorem on representation of stochastic processes it

then follows that
) ¢
x(t) = Z zv?])/——;_)

with convergence in the mean for every ¢€(a, b). (See KArRBUNEN 1.) The
2’s are stochastic variables with

(Ez,=0
\Ez2, =06,

If the contrary is not stated we will always in the following suppose that the
kernel (s, t) is non-degenerate, i.e. A, < oo for all ».

Another type of representation is obtained in the following way. If Z(4)
is an orthogonal process of bounded variance

E|Z(A)PE <k —oo << oo,

(a bounded orthogonal process), we define the measure ¢ corresponding to the
non-decreasing function E|Z(4)|* in the usual way. The set of all functions
which are quadratically integrable over (— oo, 0o) with respect to ¢ is a Hil-
bert space if the usual quadratic metric is used. In this space we choose a
CON system of functions {@,{(1);v»=1,2,...}. Let £,(4) denote the function
which is one for 4 < A, and zero for A > 4;,. Then we obtain using the com-
pleteness of the system and Parseval’s relation

D (@es e1) (5 €0) = (8105 22)

and hence
o 7y Min (o, 41)

2 [y do f pWdo@) = [ do@).

1 —x —®



ARKIV FOR MATEMATIK. Bd 1 nr 17

But E|Z(min A, 4))[? is the covariance function r(A,, A;) of the orthogonal
process, so that by Karhunen’s theorem there exists a sequence of stochastic
variables {z,} for which

[Ezv:O
!EZ,yfw = 6vy,

Z(2) = Z z,,f%(l)da A
1 —00

Take as a special case ¢ as the Lebesgue measure in (0, 1) and vanishing out-
side this interval. On (0, 1) the system le277*7: p =0, = 1,...} is a CON
system and we get the representation

ez»mu

A EVESTE

b

Z (2 —zOXTZz,

2w

where the ' in the summation symbol indicates that the term corresponding
to »=0 1is left out at the summation. In the case of a normal process this
1s the Wiener random function (see PaLEY-WIENER 1).

The derivative of a stochastic process can be defined either as the strong
xz(t + hy — x(t)
h
in general be convenient when dealing with linear differential equations. In

this way one can show e.g. that the equation of Langevin

or as the weak limit of when % tends to zero. The latter will

L) 4 g, = 2B

where B is a constant and B (/) is the process of Einstein-Smoluchovsky has
the solution

-

z() = e P2 (0) + e [eB7d B (q).
0

The same solution has been given by Doos 4 usmg another interpretation of
the differential equation. As is known, one obtains in this way the stationary,
normal Markoff process.

We have hitherto supposed that the variance is finite. If we only suppose
that B|x ()P <oco, p=1 we can still use similar methods. We form all
finite hnea,r comblnatlons just as before and close this set with respect to
strong convergence according to the metric

p‘_i
le—yll=VE|lz—yl.

We get a Banach space X. X is evidently situated in L,(LQ). To define the
integral of a stochastic process we use the theory of integration in Banach
space developed by PErTis 1. The process is said to be measurable if for
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every linear functional F € X (where X is the adjoined space to X) F[x(f)] is
a Lebesgue measurable function of ¢ If there is a unique element I € X so that

F(I)= [ Flz)]dt
T

for every F € X the process is said to be integrable with the integral . Using
the general form for the said functionals (see e.g. Banach 1) we get a method
of integration which for p = 2 evidently gives us the (K) integration.

As most processes met with in practical applications have finite variance
and as it is possible to develop most of the theory in X in a manner which
is analogous to that used in Hilbert space we now leave this subject.

1.4. Stochastic processes as families of real fumctions. In the above
method the process is considered as a curve in an abstract space. In the in-
vestigation of the process only the metric properties of this curve have usually
been used, disregarding the concrete meaning of the points of the curve. The
method has been applied with great success to many problems, especially to
linear ones, but in certain cases they are not sufficient. This is particularly
the case when considering properties of the individual realizations, e.g. conti-
nuity and measurability. When we are going to make statements of inferential
nature, we clearly want to use all available knowledge about the process and
not only its linear properties. This is why we shall in most cases interpret
the concept of a stochastic process in the sense used by Doob in a series of
papers (see Doos 1, 3, 4).

Let #. 1ty ...t be a finite number of time-points in T and ay, @y, . . . ax,
by, . . . ba real numbers. Then the set

fa;<z(t)<b; =12, ...00,60

is called a finite dimensional interval in £2’. £ is the space of all real func-
tions defined on 7. Suppose now that the probabilities of all finite dimensiona}
intervals are given in a consistent way. Then it is possible according to a
theorem of KoLMOGoROFF 1 to extend the probability-measure to the Borel
field constructed from all finite dimensional intervals. The measure is closed
in the way mentioned in 1.1 and the measure thus obtained is denoted by P".

In order to be able to consider the probability of sets depending essentially
upon the values of the process in a non-denumerable set of time-points, e. g.
all continuous or bounded realizations, Doob proceeds in the following way.
Let 2 be a subset of Q" with P'(Q)=1. If A=A’ where A’ is measur-
able with respect to P, we define P(A)= P’'(A’). It can be shown that this
definition leads to a wunique determination of the measure. This means that
we have to confine ourselves to a smaller sample-space, consisting of appropriate
functions.

It there is a subset Q << Q' with P’ (Q) =1 such that the function x (¢, ),
where w € 2, is measurable with respect to the product-measure introduced on
£ X T in the usual way, the process is said to be measurable (D). In all the
cases we are going to consider, the processes are continuous in the mean. If T
is a finite interval (a, b), we obtain using Schwarz’ inequality
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f fl%’(i, o)|dPdt < co
T U

so that according to Fubini’s theorem z(¢) is Lebesgue measurable and inte-
grable with probability one. Further f z(t)dt is a measurable function on £,

i

i.e. a stochastic variable. This variable is defined as the integral (D) of the
process over (a, b). If z{w) is an arbitrary quadratically integrable function
on £ it can be shown by applying Fubini’s theorem that

Bz [a@dty= [ Ezalyde
T T

which implies that the (D) integral coincides with the (C) and (K) integral
m the case when the process is continuous in the mean. This identity can be
shown under considerably more general conditions.

Some criteria for deciding whether a process is (D) measurable or not have
been given. The following one is due to KoLMOGOROFF (see AMBROSE 1). In
order that a process z(f) shall be measurable (D) it is necessary and sufficient
that for every ¢ > 0 and almost every ¢

Pllz(t+h)—z(@)]>¢e -0

when 7 tends to zero in a set that may depend upon £ but not upon & and
of metric density 1 in 2=0. This condition is satisfied e.g. when the process
is continuous in the mean.

Another result in this direction is the following which we shall use later on.
On 2’ is defined a measure P’ belonging to a time-homogeneous process with

b

P’{a<ac(t+6)—ar(l,‘)<b}zi/;i—(s / e_z'_d“dac; 4> 0.
TOo.

&

Let £, be the set of all continuous functions. Then P’ (Q2.) =1 and £, is
the sample-space of a measurable process (see Doos 1).

If z() is a normal process with mean value zero and covariance function
o®eFli=s1 (8 > 0) (i.e. the process considered in connection with the equation
of LangeviN in 1.3) we make the transformation {see Doos 4)

y () = Vi (’()'lﬁ log t); t>0.

This process is of the type described above, and thus z () itself is a meas-
urable process with £, as its sample-space.

We introduce the translation operator T operating on the individual func-
tions (f) in the sample-space

Thz(t) =2zt + k).
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If for every set S it is true that P (S) = P (T»S) for all %, the process is said
to be stationary in the strict sense. Let further z(¢) be (D) measurable. If
f(w) 18 integrable on £, Birkhoff’s ergodic theorem states that the limit

T

1 .
lim. 27‘/ () dt = ()
Zr

exists almost certainly. f(w) is measurable and integrable on £ (see e.g. HopF 1).

If, for every integrable f(w) it is true that f(w) is identically constant
with probability one, the process is said to be ergodic.

A measurable set A satisfying Th 4 = 4 for all A is called invariant with
respect to the translation operator. If the process has the property that every
invariant set has probability one or zero, the process is said to be metrically
transitive. It can be shown that ergodicity and metric transitivity are equi-
valent concepts because of the finite measure of the sample-space (see Hopr 1).

In the third approach the process is considered as a function of two vari-
ables z (¢, w), w €2, t€T, with a given measure of probability on a reference
space . DooB and AmBROSE have shown that this is substantially equivalent
to Doob’s method. In particular problems one of these may be more suitable
than the other, but it has to be decided in each case according to convenience
which to use.

Elementary noticns in the theory of statistical inference

2.1. Power properties of a test. In this chapter we shall give some basic
facts about statistical inference in the case of finite dimensional samples. Let
us regard the observed values zy, #s, . . . Z, as representative of a population X,
whose probability distribution P, is completely specified by the hypothesis H,,.
Such a hypothesis which completely specifies the probability distribution, is
called simple.

Having observed , #,,...2, we want to make a statement about the
truth or falsehood of H,. The methods used for this purpose shall have the
property of giving correct results in the majority of cases in the long run.
Let us form a measurable region W with Py (W) =¢. Tf (xy, #s, ... 2x) €W
we reject the hypothesis, otherwise accept it. W is called a critical region of
size ¢ It is evident that when H, is true we shall reject it with the prob-
ability e.

In this way we can form an infinity of tests corresponding to the different
critical regions of size e, To be able to choose between them Neyman and
Pearson take an alternative hypothesis M, into consideration. The & introduced
above is called the error of the first kind. Another way of committing an
error is to accept Hy when H; is true. The probability of this is called the
error of the second kind and is P;(W*). Having fixed ¢ we now want to find
the region W of size ¢ and of minimum P, (W*). This clearly gives us a test
of optimum character.

The case usually dealt with is when the probability distributions P, and P,
are given by frequency functions f,(2y, ... 2s) and fy (zq, . . . 2s) Tespectively.
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‘The likelihood ratio is defined as

l(wl, Loy o v . xn) = m-?—“‘?
041 425 - - - R

The set where both numerator and denominator are zero have probability zero
according to both hypotheses, so that we can define the likelihood ratio as
e.g. one in this set. It can now be proved that the best critical region in the
sense explained above is given by

W = {l(xl, Ce X)) = C]fr,,...xn

where the constant ¢ is chosen to satisfy Py (W) =¢. For the trivial difficulty
when this equation has no solution we refer to Cramfr 4. The case when
the probability distributions are of the discrete type is dealt with in the
same way.

Usually the alternative hypothesis is not simple but may depend upon a real
parameter a, H, itself corresponding to the value a = ay. Then to every fixed
a we get a best critical region for H, against H, If all these critical regions
coincide, the corresponding test is called uniformly most powerful. Unfortunately
this 1s almost never the case when o—q, takes both positive and negative
values (see KenparrL 1).

Then it is customary to consider only a subset of all possible tests. It is
fairly evident that P(W; a) = P(W; o) = ¢ is a desideratum for a good test.
Such a test is called unbiased. In the class of all unbiased tests we try to
find a region of size & for which P (W?*, ) is minimum for a fixed a. Under some
regularity conditions it can be shown that the test

W= {f(xla cee Xy a) Zcf (T, .. Zas ) F ey (E, - - T ao)}zl,.urn’

where f (2, ... 20; 0) = Mé"a'—%iﬂ, has the desired property. It can
happen that for every a we get the same region W. Then the corresponding
test i3 called the uniformly most powerful unbiased test.

For more complicated situations, e.g. when it is required to test one composite
hypothesis against another, we refer to KENDALL 1, where also a list of the
original papers may be tound. In the following chapters we shall show the
possibility of using the above methods on stochastic processes. The principal
difficulty of transferring these concepts to the infinite dimensional case thus
being solved, it seems easy, at least in principle, to extend the results to
.composite hypotheses in the same way as in the finite dimensional sample case.

2.2. Some desiderata for an estimate. Suppose now that the hypotheses H,,
are completely specified by their probability distributions P, when « is known.
@ is a real parameter in some interval 4. We want to form a sample-function
a” (21, . . . zy) which can be used as an estimate of a. One has several possible
ways of describing desirable properties of a*.

Let the sample-number # tend to infinity. Then our information about the
‘population is increased, and if the sequence aj (zy, ... Zs) converges to a in
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probability with regard to P, for every a €4, we say that the estimate (or
more correctly the sequence of estimates) 1s consistent.

Irrespective of this asymptotic behaviour we can describe the goodness of
an estimate o (x;, ..., for a fixed n, by studying its two first moments.
If for every a€4 it is true that

E.af =a

we say that o is an unbiased estimate of a. This is certainly a desirable
property.
The fluctuation of an estimate about its true value can be measured by the
expression E,(a* — a)®. Put
Eoad® =a+ b(a),

where b(a) is called the bias of «®. Then it can be shown under some
regularity conditions that (see CRAMER 4)

db\®
* 2> N T
Felam—a) ) (QJog f)2
“\ da
If «* is unbiased, we define the efficiency e(a*) of a* as
1
e(a”) = 27
log f
2 * b
D?*(a*) E. da )

and thus have

In the case e(a*) =1, we say that the estimate is efficient. It can be shown
that if two estimates af and af are both efficient, then aof = ai almost
certainly.

When we are considering a sequence of estimates a; it may happen that it
has desirable properties although the two first moments do not exist. The
following definition (WALD 1) takes this possibility into account. The estimate
is said to be asymptotically efficient if there is a sequence of stochastic vari-
ables u, with

lim B, u, =0; lim B uj, =1

"> o0 n—= o0

. R Y]
I/E“ ({ZJPgLf) ((ln - a) — Up = 07 n— o,
Jda

in probability with regard to P. for every a € A.

The most important method of estimation is the method of maximum
likelihood. If 2y, 2,, . . . x» are independent stochastic variables, each of them
having the frequency function f(z; a), we form the simultaneous frequency
function

so that
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f@y, o xns a) =f(a1; @) [ (225 @) . . . [ (2a; Q).

As an estimate of a we take a non-identically constant solution a* (xy, . . . x)
of the equation
dlog f(xy, . .. %n; @)
da

= 0.

Under some regularity conditions it can be shown that this equation has a
solution, which converges in probability, with regard to P., to a for every
a€d4 when n tends to infinity. This estimate is asymptotically normal and
asymptotically efficient. The analogous result holds for the discrete type of
distribution.

2.3. Confidence regions. The preceding section deals with point-estimation.
In many cases we do not want to assign a single value to the unknown para-
meter but an interval or some more general region, which, for a given &, con-
tains the true value of the parameter with the probability 1 — ¢, for all a € 4.
It is possible to do so in the following way (see CRAMER 4).

For every fixed value of a we choose a set S (a) € X, such that P, [S(a)] =1—-e.

For every (z;,...2,)€X we denote by X (21, ...zs) < A the set of all a
such that for the element (a;x,...x,) in the product space 4 X X the
relation
(a3 @y, . . . xn) €D
holds, where D < 4 X X is determined as the set of all (a; z, . .. ) such
that (21, ...2x) €S(a). Then we have for every a
[y, ..z €S ()} ={a€Z(xq, . . . x))
so that
Pila€X(zy, ... 20)] =1—e.

(21, . . . n) is called a confidence region for a with the confidence coefficient
1—e If, in particular, X (zy,...x,) is an interval in 4, we call it a con-

fidence interval for the parameter.

Observable coordinates of a stochastic process

3.1. In the following we shall try to transfer the classical methods of
statistical inference to stochastic processes. Let us consider specially the case
when it is required to estimate a single parameter a. From the preceding
chapters it is evident that the natural way of doing this is to form a function
of the observed realization, and choose this function in order to make it a
good estimate of a in some sense. As a function of a function the estimate
i1s a functional defined on the sample-space. Now the theory of functionals
has mainly been developed for linear functionals or some special types. Usually
(but with some exception to be studied later) there is nothing in our problem
that gives us reason to confine ourselves to these special types of functionals.
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Therefore we shall consider quite general types of functionals, restricted only
by some natural regularity conditions.

We get the information obtained by observing a stochastic process in the
form of one or more real functions. For our purpose it will be more con-
venient to translate this information into the form of a sequence of real
numbers (¢, Cg, - . .), 1f possible, which implies that we have to use a sample-
space of smaller power than the space £’ consisting of all real functions. This
will be the case in the problems we are going to study. How to choose this
sequence is only partly a mathematical question. One has to take into account
what properties of the realizations that really can be observed in the practical
application under consideration. The ¢’s are called the observable coordinates
of the process. We shall see that it is very important to choose these coor-
dinates in a way that facilitates the construction of estimates, test functions
and so on.

Consider the following important case. z () is a normal process that is ob-
served in the finite time interval T == (a, 6). The process is continuous in the
mean with mean value function m (f) and covariance function 7 (s, ). As shown
in 1.3, we have

z () =m() + i 2, i:éi)
1 »

with convergence in the mean for every te 7. A, and g, (¢) are the eigen-values
and the corresponding eigen-functions of the integral equation

b
ps)=A[r(s, ) (t)dt

and

[E'z.,zo.

|Ez 2, = Oy g

In this case the stochastic variables z. will obviously be normally distributed,
being limits of finite linear combinations of the values of x(¢) at time-points
in T.

Now we represent the process by the following random function

‘T(ti 6()) :x(ty 21 %9, - - ) :m(t) + > Zr?;‘:;;j)’

where the quantities in the right hand member have the same properties as
before. Kac and SiEcerTt 1 have shown that the sum converges for almost
all (¢, ) In T X Q. Further, they have shown that the expression converges
in the mean with regard to Lebesgue measure on 7 almost certainly. Taking
a quadratically integrable function f(¢) € Ly (T') it is now possible to form the

integral [ f{&)z(t)d¢ which is a measurable function on £, because of the
7

random function being measurable on 7 X £.
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We now want to represent the information contained in a certain realization
in a convenient way. One rather natural way of doing this is to form the
Fourier-coefficients (cy, ¢y, . . .) of the realization with regard to a CON system.
It is particularly convenient to take {g,(f)} as this system if it is com-
plete, otherwise we make it complete by adding another orthonormal system
to it in the usual way. The probability distribution of these ¢’s is easily ob-
tained when we only consider a finite number of them. Then the usual pro-
cedure is used to extend the measure to the Borel field. When (¢q, ¢a, . . .) 18
given we know the realization completely if we consider two functions differing
at most in a set of points of measure zero as identical. From the practical
point of view this seems quite enough.

In cases when the covariance function is of some simple form it may be
better to use another system of coordinates. Let us consider the normal sta-
tionary Markoff process. We have seen in 1.4 that it is possible to choose the
set of all continuous real functions on I as the sample-space of the process.
Let {t! be a denumerable set of points everywhere dense in 7. Then, with
probability one, the realization is completely specified when the values x(f,) = ca
are known for all ». We shall see that the choice of this system of observable
coordinates will prove advantageous in the treatment of the process.

An important type of processes is the class of pointprocesses with adjoined
stochastic variables. As the natural sample-space of these processes consists of
step-functions, the following system of coordinates seems appropriate. If a
realization has the form

{x(t):xo for a<t=<y

sx() =z for H<t=t, 1=1,2,...n—1,

lx(t):xn for t.<t=b
where #n,f;, .. .%n, g, ... &n are stochastic variables, we use as coordinates
the sequence {n: g, #;, %1, . . . tn, Zn}. To get the coordinates in a form sym-

metrical to the above, we add an infinite sequence of real numbers. To these
we assign some simple probability distribution, e.g. such that they are inde-
pendent of each others and of the preceding coordinates {(except of # of course),
each having a normal distribution (0, 1). This means just a formal simplifica-
tion. We shall only deal with the case when P (n <Coo)=1.

When considering other types of processes it can of course happen that we
have to introduce a different type of coordinates. In the following we shall
always suppose that the information given by a realization can be expressed
with the aid of a denumerable sequence of real numbers. We shall sometimes
denote the coordinates (zy, z,, ...) = w€ 2, using the letter w to symbolize
the information observed in a realization. £ is then called the coordinate-space.

The problem of testing statistical hypotheses
4.1. Existence of a most powerful test. We shall now begin to study the
problem of testing statistical hypotheses in the case of a stochastic process.

In this chapter it will be shown that it is possible to transfer the fundamental
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ideas and methods of the Neyman-Pearson theory to this case. By a simple
hypothesis will be understood a completely specified measure of probability on
the coordinate-space 0.

Let us test a simple hypothesis H, corresponding to the measure of prob-
ability P, against a simple alternative H, corresponding to P;. In the same
way as in the classical theory we want to form a critical region W of size ¢
such that the error of the second kind P, (W™) is as small as possible. In the
case of a finite dimensional sample this was done by choosing the region where
the likelihood function was as large as possible. In our case we have no fre-
quency functions in £ at our disposal, but we shall get an analogous concept
serving the same purpose. Usually in the classical case one considers only the
situation when the probability distributions are either of the continuous or
the discrete type. These restrictions are not essential as will be seen in the
following.

The analytical tools we are going to use for our purpose are the Lebesgue
decomposition of an additive set-function and the Radon-Nikodym theorem (see
Saks 1). Applying these to our problem we get the following: there is a set
H of Pyg-measure zero and a non-negative function f(w) integrable over £ with
respect to P, such that for every measurable set £ << 0

Py(E) = [ [(w)d Py () + Py (EH)
E

It is evident that f(w) plays the same rdle here as the likelihood ratio in the
classical case. We form the set

St =1 (w) =k} + H

and determine % so that Py (S;) =& One can deal with the trivial difficulty of
this equation having no solution in % in the same way as in the classical case
(see CrAMER 4) but we suppose that such a solution exists. Then we have
the following

Theorem: The test corresponding to the critical region Sy 1s the most powerful
test of H, against Hy on the level &.

To prove this, let £ be another set with Py (E) =¢, and introduce

EH*=A, EH=B, H* {f(o) =k} =F.
Then

Py (F)=P,(F — FA) + P,(FA) = k Py (F) — k Py (F A) +
+ Py(FA)=kPy(d) — kPy(FA) + Py(FA) = Py(Ad— AF) + P (FA)= P, ()

and
Py(Sy) = Py(F) + Py(H) = Py (4) + Py(B) = Py (E)

which proves the theorem.

4.2. Construction of a most powerful test. The above theorem has the
character of a proof of existence. We shall now proceed to show how to con-
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struct H and f(w). In order not to complicate the proof we suppose that the
probability distributions of a finite number of coordinates is of the absolutely
continuous type so that it is given by frequency functions gq (z;, s, . . . #x) and
g1 (Ty, %s, . . . xx) respectively according to the two hypotheses. It is possible
to prove the same results also when the coordinates have a discrete distribution
or a combination of these two simple cases. We shall consider the possible
alternatives.

A: Suppose that Py(H)=0. This will be called the regular case. Take an

arbitrary cylinderset C, << Q with a basis B, << Ru (24, Ta, . . . Zn). Put
g1 (Ti5 - - . 70)
In(w) = F—— e
n(®) 9o (1, - -« Tn)

1f the numerator and denominator in this expression both vanish we put I, (w) =1.
Then

ff =P, (Cp)= fl (@1, « -« Tn) Go (Tgs « - Tn) ATy, « . . dp.

According to the definition of conditional expectation (see 1.1) we get
n(@y, -« 2n) = Eo[f ()| 2y, . . . 2]

almost certainly with respect to P,. Using a theorem by Levy which has been
generalized by Doob (see DooB 3) we have

n~o Gp (L1, « . . Tn)
almost certainly -with respect to P,, and also with respect to P, as Py (H) = 0.

B: Suppose that 0 << Py(H) << 1. As we always have Py (H) = 0, it is possible
to cover the set H by a denumerable sum of disjoint finite dimenqional inter-

[

vals I, in the coordinate space so that PO{Z I } <& As Z Pi(l)y=1, we

1

can choose an integer N so that Z Py (I,) <e We get
N+1

Py{H; I (w) = PllZIV: )= }S 1{21}, w)<k}

Choose # greater than the largest index wused in determining the intervals
I, Ly, ... Iy. Then the set

12 I;1, } < 2
is a cylinderset with a basis C' in R, (x;, %y, . . . @), and we have
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P {H; L (w) = k}<£+flnx1,...xn)go(x1,...xn)dxl,...dxné

¥
<e+ kPO{Z L.}Se(l + k).

As this can be made arbitrarily small for given & we have proved that I.(w)
converges in probability with regard to P; to + oo in H, as n tends to infinity.

Consider the measure of probability

P, (SH?) /'
F(S) Pl H* Pl dPO )

which is possible as Py(H*)>0. We have F(S)=P;(S|H"), and the fre-
quency function of (zy, #s, . . . Zn) With respect to F is

X)) Py (H* |24, . . . T0)

" J1 (.1:1, PR
Zy, Lo, - - X | H?) = =
g (1, T l ) P, (H)
because of
P (H* |2y, . .. 2n) P B)
f P, () g1(T1, - - - Zn) Ay .. dXy = P, (") = F(B)
which is true for every set B << R, (%y. ... z.) according to the definition of
conditional probability. As the case P, against F is regular, we can use the

above result and get

f () — Jim g1 (g, - - -
P (H*) aaw go(Xy, - . - Zn) P, (H")

) PL(H® [y, . . . 2a)

almost certainly. But if w € H* we have

lim Py (H* |2y, . . . 20) =1

N> 0

almost certainly with respect to P;(see DooB 1), i.e. we have proved that in H*

01 (215 -+ . Tn)
:1 e
f () nlw go (Z1, . . . Tn)

almost certainly with respect to P;. If there is a set £ << H* where the above
is not true, we have just seen that P;(£)=0. But if Py(E)> 0, then we
can use our previous result applied to P; and P, (in changed order) and get

9o (r1, . . .aﬁn)’9 L oo
g1 (X1, - - - )

in probability with respect to P, in E, 1e.
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in probability with respect to Py in K. But in E we must have f(w) =0
almost certainly with respect to P, so that we have in E with convergence in
probability with respect to P,

C: Suppose finally that P;(H)=1. Then we have shovn that l,(w) con-
verges to + oo in probability with respect to P;. It is easily seen that I, (w)
tends to f(w) in probability with respect to P,.

Summing up we have:

Wath respect to Py: l,(w) converges to f(w) in probability.
With respect to Py: ly(w) converges to f(w) in probability in H*.
With respect to Py: l,(w) converges to + oo in probability in H.

Now we can take as usual a sub-sequence I, (w) converging almost certainly

with respect to both measures to f(w) and to + oo in H* and H respectively.
We thus have

Sp = {lim by () = k.

r— 00

In the applications it will hardly be necessary to choose such a sub-sequence
for different reasons. In a certain type of application the coordinates can be
chosen in such a way that they are independent stochastic variables, and ac-
cording to the zero or one law we will have probability zero or one for the
convergence of /,(w). We will thus have either the regular case or the extreme
singular case. For the pointprocesses to take another important case I, (w) will
be independent of » when » is greater than the first coordinate n, so that we
will have no difficulty with regard to the convergence of the sequence. Almost
all cases we shall meet will be of the regular type.

4.3. Tests for composite alternatives. In the preceding sections we have
shown how to construct the most powerful region for testing a simple hypo-
thesis against another simple one. In practice, however, one meets more com-
plicated situations. To deal with these several types of critical regions have
been proposed. Difficult as these questions are, it is evident that the principal
difficulty of transferring the concept of the best critical region to the case of
stochastic processes has been solved in 4.1-4.2. Therefore we will only treat
two more cases.

Suppose that we still want to test the simple hypothesis H, but against a
family H, of simple alternatives. Here « is a real parameter, which may be
normed so that a =0 corresponds to H,.

Fix a and construct the best critical region S, < 2 for testing H, against
H,. on the level &. If we get the same S for all values of a under considera-
tion, we call the test corresponding to S uniformly most powerful. Unfortunately
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this is seldom the case, except sometimes for one-sided alternatives, where a
takes values only of one sign.

In the classical case it is then sometimes possible to find a uniformly most
powerful unbiased test. Using the result of 4.1-4.2 it is easily seen how to
transfer this to our case. Suppose for simplicity, that the singular part H

vanishes. If then the derivative 9 ff}w ) exists almost certainly and is dominated
a
‘d“w’ V| < F(0)
Ja

for au o, where F(w) is integrable with respect to Py, we take as critical
region the set

5= (o0 =0t 01(77'f)a:0}w'

da

We suppose that this set is independent of a and that it is possible to choose
the constants ¢ and ¢; to satisfy

Py(S)=¢
(5.0

If E is another unbiased region of the same size, we get

P.(S—ES
Po(S—ES) = [fwadPo( )= cPo(S—ES) + (6—(0{!)0{:0:

S-ES

« EME
=cPy(E—ERS) + cl(Q—P (éafﬂ

) = P, (E— ES)
a=0

and

P.(S) = P, (E).
Thus S is really the uniformly most powerful unbiased region.

4.4. Tests for the mean value function in the normal case. Now we are
going to apply the obtained results to the following problem. (¢) is the normal
process considered in 3.1 with known covariance function 7 (s, t). We want to
test the hypothesis

) . Hy: Eyz(t) = my(¢)
against the alternative
H,:E z(t) = my (0).

As described in 3.1 we take as the observable coordinates of the process

wv:f z(t) g, (t)dt; fw Yo, () dt; v=1,2,....

a
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Here {g,(#)} is the orthonormal system corresponding to the integral equation
of the process. In most practical cases r(s, t) is a positive definite kernel so
that {@.(f)} is a complete system. It may, however, happen that the system is
not complete and we then add another orthonormal system {y, (¢)} with {y} L {¢p}.
It is immediately seen that the y’s have a normal distribution with the para-
meters

b
[Ei?/v :fmi(t) v, () dt; =0, 1.
\Diyw:O; i=0,1.

If there is an integer v such that E,y, & E;y, we take as the critical region
b
Sz{f:c(t)zpw(t)dt:Elyv},
a

which has Py(S) =0, P;(8)=1. We have thus arrived at the extreme end of
the singular case and can determine the true hypothesis from the knowledge of one
realization, if we disregard events of probability zero.

In the following we exclude this case by supposing Eyy. = E;y, for all ».
Then we only have to take the #’s into account. They have independent normal
distributions with parameters

EByz,=a) Eiz,=a)
Hy:¢ 1 Hy:q 1
0 Daxv:}T ' Dixu:T7

b
where af = f mi(t) v (1) dt. We have the frequency functions in R,
a

n
Vi it ShG-dr
o (T1, .+ . 2p) = _I—T' e 1
(@2m)?
7
ﬁ ~3 N, @, —
R SRR i 1
g1 (x]_, FE .’En_) — w
(2m)?

and
n n
—E N2 @ - = N g, (@h—a)) 2,
I{w)=¢ 1 1
0 .
Suppose now that Z Jo(ay — ai)® < oo, We have, putting
1

2o =—134 (&) — a\) — Lz, (@) — a})
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that
Eyz, =— 14, (a) —a})? IEl 2, =} A (@b — a})?
b2 = Ay (@b — ad)?. | D2z, = 4, (@) — ab)2.

Then using a known theorem of Kolmogoroff we see that Z zy 18 converging

1
almost certainly with respect to both Py and P;. Thus we have the regular

case and almost certainly

v,
f(w)=1lim e!

n—+oo

It i1s convenient to use another form. Putting

n

fn(t) = 2 (@b — a3) & @i (1)
1
we get
b

- ffn © [x (t)__ﬂoﬂ),;l"L@] i
lhw)=¢e ¢
and using the result of 4.1 we get the following most powerful region fo test H,

against Hy
b

Lim | fu(2) [x(t) — M;M] dt <k

n—»oo0
a

2]
Suppose mow that Zly (a0 — a3) =oco. Using Tchebychef’s inequality and
1

putting

tn () = fb fa (2) [z (t) — M)%ml (t)] dt

we then have for large »
Py(ta = a) = Py(tn— Egtn < a — Egtn) < Py (|tn — Eotn| = |a — Egta|) <

n
> 1, (@) — al)?
1

= p p
[a —3 DV A (ar— a;)z]
1

which tends to zero for every a when = tends to infinity. Thus I, (w) = e'“’fb(‘“)
converges to zero in probability with respect to P, when » tends to infinity.
In the same way
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PitZa)y=Py(tr—Extr=a—Eit)) < Py(ta — E1ta| = |a — By ta]) <

Z), S —a)?
1

2
[a +1 Z A (a5 — ai)z]
1

which tends to zero for every a when » tends to infinity. Thus I,(w) con-
verges to + co in probability with respect to P; when # tends to infinity.
From this follows as is easily seen by applying the result of 4.2 that we
have Py(H)y=0, P;(H)=1 and thus again come fo the case of extreme
singularity. In the chapter on estimation we will give a more explicit expres-
sion for the true hypothesis. It is interesting to note the two distinct ways in
which the singular case has been met with. The first one appeared already
when only a finite number of the coordinates were taken into account. The
second 1Is essentially dependent on the property of convergence of a sequence
involving an infinite number of coordinates.

=

4.5. Continuation; composite alternatives. Now when we are going to
consider composite hypotheses, we shall only deal with the regular case. Sup-
pose that we want to test

(Hy:Eox(t) =0
\ Hy: Bz (1) = ma(t).

As 21,. a; (@) < co, the best critical regions corresponding to the values of «
1
have the form

lim val ay(a) = ¢ (a)

N—> 00

which follows from the above. It is easily seen that in order to get a uni-
formly most powerful region we must have

where k(a) is of constant sign. If this is true we get the test

hmffn t=c

n—»DOu/

where f,(2) Zava @ (t) if k(a)>0 and the < sign is used if k(a) < 0.

This test has the character of one-sidedness, and is uniformly most powerful
with respect to the alternatives k(a) >0 (or k(a) < 0).
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We now want to construct a uniformly most powerful unbiased test under
the conditions ,
(Hy:Eqz(t) =0
|H,:E,2(t) = aa(l).
We get

oo o0

32V al+aVa 1 a ) £
(9]‘ ((0, a) L] T v Yy .1_4 vty By [ R . ]
— = T—a D Aa, Ty hy Qg+
da | ; ; J
Introducing X = Zavy A, a, which is a normally distributed stochastic variable,

T
we get the domination valid for |a| <1

1(, a)

da

<ke!X|{2am,. : IXI}-
1

As the last expression has existing mean value, the assumptions made in 4.3
are fulfilled. Using the method described there we get the region

et 0*taX > c+ ¢ X.

Exactly as in the corresponding classical case this gives us the uniformly most
powerful unbiased region

| tim fbfn(t)x(t)dt] =3

4.6. Existence and determination of the test-function. As almost certainly
z(t) is quadratically integrable, we should get, assuming that f,(¢) converges
in the mean to a function f(¢) € Ly (T), that

b
im [fu@z@)dt = [f) o) dt

n>ow 4 @

almost certainly. This would be a very convenient form of the test. This
is, however, not always the case. Because of the theorem of Fisher-Riesz
it is necessary and sufficient for the convergence in the mean of /. (f) that

oo

Zaf A, < oo. Assuming this and using the bilinear form of the covariance
1
function we get

b
fr (s, )f(s)ds = Z a, @, (t)

with uniform convergence for t€ 7. Of course, we have

b )
[ [Z @@ (1) — a(t)] dt=0

@
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for all ». If {g,(¢)} is not complete we add as before an orthonormal system
{w,}. I for any »

b b
v [Zav% )]dt——f%,(t)a(t)dﬁco
we consider the region
A
S—lfw dtwafipv a(t)dfm

We have immediately P3(S.) =0 for a=#f and P.(S.) =1 As we have
excluded the singular case we must have

a(t) = D avp.(t)

for almost all t€ 7, and hence

b
f?(t, s)f(s)ds = alt)

for almost all t€ 7. The left hand side is a continuous function of ¢ because
of the properties of the covariance function, and a(f) is also a continuous
function being the mean value function of a process which is continuous in the
mean. Thus we have equality for all ¢€T.

If there is a quadratically integrable solution f(¢) to this equation, we get
immediately '

b oo
[top@dt=at, ()= Daie)

0
so that using the Fisher-Riesz theorem we have 2 ai A < oo. Thus for the

1
evistence of a quadratically integrable best test-function f (1) 4t is necessary and suf-

ficient that the equation
b

fa'(t, 8)f(s)ds =a(t)

&

has a quadratically integrable solution. As the test-function we take the pro-
jection of the solution on the space spanned by {@.}. The question considered
has thus been reduced to finding a “quellenmiissig” representation of the mean value
function by means of the covariance function.

The most interesting case is of course a(f) = 1, especially in the stationary
case. Let us consider a stationary process z(f). Then it seems intuitively that
if the process is of some strongly regular behaviour, e.g. analytic in ¢ =0,
which means that 7(f) is analytic in ¢ =0, usually no best test of the said
simple sort will exist. Using the spectral representation of the covariance
function
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oo

r(t)= [ d F ()

-0

we get because of the absolute integrability

b oo
[rie—s)fs)ds= [ e p()dF(4)

where
b
@A) = [e i f(t)dt

As r(2) is analytic in |z]| << r for some positive r, we know that it is analytic
in |[I(z)|<r (see Litvy 1). Then

[ergmarm=1

b )
for all real 7. As ¢(0)= f]‘(t)dtz Zaﬁ 2y >0, we can write for all real !
[ 1
f ¢t (A)d Fy(2) =
with
£(A)
FiAy=F(Q)—— -

Now using the same method of approximation as Karhunen has done in 3,
p. 64-65, we get @(A) =0 almost everywhere with respect to F () except pos-
sibly for A =0. But as ¢(A) is a non-identically vanishing integral function, it
has a discrete set of zeroes, and F (1) must be a step function

=D\ F,

ip=h

where we have put 4, =0.! Thus if the spectrum contains any absolutely con-
tinuous or singular component no best test of the above type exists. If it is
a pure pointspectrum we form the Hilbert space A, of functions which are
quadratically integrable on (a, ) spanned by the elements

{et*h, g <t =<5, » #0)}.

The frequencies A, must not be so dense that A, includes the constant func-

tion 1, because then
n

1=1im. Z cretthy

n— o0 1

* The A’s do not denote the eigen-values.
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and
b_ n b
0< [f@de=1lim De» [e i f(t)dt=0.
@ o0 a

If 14 A; we can write
L=£&@) +n()
with £(t) € Ay, n(¢) L Ay and 5(¢)==0. Take f(¢f) = (t). Then

b

b b______
[twar=[[e®) +n®lnw dt=[|n@®)]*dt>0

a

and
b ©0 b b )
f7‘(t~8)f(s)ds = ZFvei“'v] e~ ap(t)dt = Foj | 7(2) [P d¢t = const.
4 0 a a

We shall return to similar questions in connection with estimation.

4.7. Test for the “covariance-factor” in the normal case. Another type of
hypotheses for a normal process is the following. Suppose that the mean value
function is known, say, identically zero. The covariance function is known but
for a multiplicative constant. Put

IHO:EOx(t):O; Eyz(s)z(t) =7 (s, t).
\H,:E,z(t) =0; E,a(s)x(t) =o?r(s, 1); o+ 1.

With the same coordinates as before we get the frequency functions in
Ry(xy, ... z0)

V . e . }, . ¥
9o (wla e xn) = F—L"‘Je 1
(27)?
n 2
Vi "Shn
91 (zy, Tn) = ﬁl,;n n T
(2 7Z)2 "

and

n
If H, is true we get, using the fact that lZlv x» converges almost certainly
n
1

to 1, which will be shown later,

12 — log << 0.

1 1 < 1
7 Jog ln (o) 5 12 Ty Ay [02 1] log o — 3 — P
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Thus l.(w) converges against zero with probability one. If H, is true we get
in the same manner that Il,(w) converges against + co almost certainly with
respect to P,. We have the interesting situation that for these hypotheses we
always get the singular case. It is possible to get an explicit expression to
determine what hypothesis is true. Regard the expression

1 ¥ 1y

- 2~ 2

. N;l,,xv N;zv
wit

[4Eozﬁ:1 [E(,zf:a2

| D322 =2 | D222 = 26%

As the 2’s are independent stochastic variables, we can apply the convergence
theorem of Kolmogoroff and get the result that the limit

N

b 2
m — 4, {f 2() g (t)dt}

eV 4

exists almost certainly according to both hypotheses and that its value is 1 or
o? according to whether Hy, or H, is true.
Consider the transformation 7T; operating on the elements of the sample
space with
T,xz(t) = Az(t)

where A4 is a real constant different from one. Then the set E << £2 for which

b

lim liz ffx(t) (t)dtlzzl
N‘*WN 1 I’l L J

a

has Py-measure one. Evidently the set 7;E is disjoint from E and has Py-
measure zero. Take especially the case a =0, b =1 and 7 (s, t) = min (s, ),
and we have the time-homogeneous differential normal process, the Wiener
process. The surprising result that there exists a set K having the said pro-
perties has been shown by Cameron and Martin starting from another point
than that of testing statistical hypotheses.

4.8. Several observations. It is now natural to continue the construction
of best tests for other types of hypotheses, e.g. to test two given covariance
functions against each other, when the mean value function is known, or to
consider a composite null hypothesis and try to find similar regions. In practice
we have often more knowledge about the type of realization, and using this
we can sometimes get simple tests. We want to stress the importance of
choosing an appropriate sample space and shall see the advantages of doing
this in the following. The difficulty of solving the integral equation of the
process can then sometimes be avoided. As the results of the preceding sections
have made clear how to proceed in the manner of 4.4-4.7 we shall restrict
ourselves to consider only a simple generalization of the above before leaving
this topie.
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Suppose that we want to test the same hypothesis as before

(Hy:Eqa(t) =0

\Hy: Byz(t) =a(0)

when the covariance function r (s, #) is known, but that we now have observed
N independent realizations x,(f), z5(f), . . . 25 (f). This sample is naturally
described by the coordinates

() pu(tydt; v=1,2,...N; p=1,2,.

Ly ==

8 —

Forming the approximation to the likelihood function, and still supposing the
case to be regular, we get

n
L ' - 2 N -
pN Y, Bt N Ay T @

h(w)=e 1 12928

32
The most powerful test is thus obtained by using as critical region the set where

b
lim [ [oy(t) + -+~ oy () () dt = &
where f,(f) is defined as above. Uniformly most powerful onesided tests and
uniformly most powerful unbiased tests can be found in the same way.

4.9. A pointprocess with adjoined variables. The method described in the
preceding section leads to integral equations which in practical cases can but
occasionally be solved explicitly, though we shall see in 5.3—5.5 that the problem
can be dealt with in the most important cases. Though approximate numerical
methods are available, it still seems desirable to find tests of simpler structure.
As already briefly mentioned, this might be possible when our knowledge of
the nature of the realizations allows us to consider more restricted functional
spaces than L,(T).

Let us consider the following process which will also appear in the chapter
on estimation. We are observing a Poisson process with intensity f§ in the
time interval (0, 7'). We get a series of points 0 <#; <, < --- <t, < T. To
every interval ¢ <t = {;;1 1s adjoined a normally distributed stochastic vari-
able x; with mean value m (which is unknown) and standard deviation 1.
Furthermore, these variables are supposed to be independent. This process has
been used in applications of stochastic processes to the theory of servomech-
anisms (see James, Nicmous, Pmmvuips 1). The realizations are of the form con-
sidered at the end of 3.1, and we choose the same set of coordinates. We
want to test the hypothesis m = 0 against the alternative value m. Now of
course 7 has a discrete probability distribution, but as mentioned in 4.2, this
will add no complication when constructing the test. As is easily seen we get
the likelihood function
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n

-1\ —m)2 n
. ‘}‘(T(xv m) mExv—-n+1m2
— — 0
(o) = =
-3 2 z,
e 0

The most powerful critical region then has the simple form
m Z L + ntl m?2 = k.

This set has the same form as the best test of the mean value of » independ-
ent normally distributed stochastic variables z;, %5, . . . . We observe, how-
ever, that this test could not have been obtained in that manner, because
in our case 7 is not a fixed number but a stochastic variable. On the other
hand, one could have got the best conditioned test (by fixing n) of the hypo-
thesis in that way.

To calculate the covariance function which will be needed later we fix £ > s
and get

Elx(s) — m][x(t) —m] = P {no time point ¢ in (s, )} -

-E[z(s) — m]® + P {some time point # in (s, ?)}-0.

As the covariance function of a real process is symmetrical in the both argu-
ments, we have
(s, t) = e~ Fli=sl,

It has to be observed that this is not a normal process, which can be seen
by considering the simultaneous distribution of z(s) and ().

4.10. Tests for pointprocesses. A type of process which is commonly met
with in practice is the point-process. We shall study some of these types in
connection with test problems. Let z(f) be a generalized Poisson process with
probability intensity A () or u(f) according to whether H, or H, is true. The
process is observed in the time-interval (0, T). Using the coordinates (n, &y, . . . ts)
we easily find the likelihood function

T
— [u@—itnat

0

Here we have supposed that A(¢#) is different from zero almost everywhere in
the set where u(f) % 0. Otherwise we should have got a singular part H which

does not appear now, as no question of convergence turns up (we have
Pin <oo)=1).
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We now restrict the alternative hypotheses to be of the form

[H,:the prob. intensity is A(f)
1H «:the prob. intensity is u A(f).

Then we get the critical region
S ={ur =k},

and if we confine ourselves to the alternatives u > 1, (# <<1) we get the one-
sided uniformly most powerful test

S={n=mny} (or 8= {n=ney}).
Because n has a discrete distribution, it may be impossible to solve n, exactly
from the equation
Py(S)=z¢
with an arbitrary choice of &, but as this question is of little practical interest,
we will not deal with it here. _
To get a uniformly most powerful unbiased test we put according to 4.3
#r=c+ o,
and because of the convexity of the exponential function the critical region
has the form
S={n<m} + {n>ny}.
Also here it might be impossible to solve the equations determining n; and n,

exactly, but due to the same reason as above we dismiss the question.
Another choice of hypotheses is the following. Let

Hy  A(t) = e*®
H,:p(t) = et

The most powerful critical region S is easily obtained

= k).

For the one-sided alternative u > 0, we thus get the uniformly most powerful test
n
S:jztiZk,}'
1

n
Here Z t; has a continuous distribution so that we have no difficulty in deter-
1

mining k£ for a given value of .
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Suppose now that z(t) is a Pélya process (see LUNDBERG 1) defined in (0, T)
with parameter . Then the conditional probability intensity when n events
have taken place up to the time ¢ is given by

1+/373‘

Palt) =174 Bt

We want to test whether f =0 against the simple alternative value § > 0.
To do this we form the expression for the probability element corresponding

to the coordinates (n, #y, . .. t,) for n > 0.
fa [ o 1+n(‘
1oy Bv fl-i—ft zf ] Trar”
— 1
gﬁ(w) 1 + ,8t1+16

‘We thus have

IR, 1t p Lt Lanfy 1 BT
log gg(w) = 5log (1+8t) 5 log1 s 3 lbl . +
n—1 n
, A4py 1 _ 1+ Bt I
+ Slogp g, = plog (1+T)— 2 vlog 1+5h-*2 15 Bt

where we have put #,.1 = T. Reducing the second term we get

logg(g(w):—%log(l +/3T)+Zlog(l + Bty —mnlog (1 + BT +
1

n—1 n—1
1+ g
~r210g1+ﬁt]+1 —Blog(1+ﬂT +Zlog (1 + B») —nlog (1 + 1)

This expression is valid for » > 0, and for » = 0 we get immediately
1
log g3(w) =— 3 log (1 + 8 7T).
For the hypothesis 8 =0 one gets

and hence

T i ﬁT" IOI
where the product shall be assigned the value one for n = 0. We get the most
powerful region

8= {f(w) = k}
226
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n—1 .
and as log H (1 + B is a convex function of n, while nlog (1 + fT) is a
0
linear ome, the best region gets the form
S ={n<ny -+ {n>ny}

with ny; <<n,. This implies that we reject H, when we find very small or very
large values of n, which intuitively seems to be in accordance with the fact that

in="T(1+ pT)>T = Din.

It is of interest that the position of the time-points of the events are not used
in the best test. Hence it follows that if we observe only #, we can make
just as strong statements as- when we are considering iy, fs, . . . ¢ also.

4.11. The stationary Markoff process. Tn 4.4—4.7 we have seen how to
construct best tests for the mean value of a normal process. Unfortunately the
b

test functions only occasionally get the simple form f f(tyz () dt, but one can

a
sometimes obtain simple test functions by specializing the sample space in an
appropriate manner. This is true for the perhaps most important type of nor-
mal processes, viz. the stationary Markoff process. Let z(¢) be such a process
with mean value m and covariance function

r(s, t) = e Blt=sl.

We want to test the hypothesis Hy:m = 0 against a simple alternative value
of m to begin with. We shall show that the corresponding test functions fy (¢)
do not converge to a function in L,(7T). We take T'= (0, 1). The kernel r (s, ¢)
is positive definite which can be seen by the same argument as we shall use
to show the divergence of fu(f). Then, if f.(f) converges in the mean to a
function f(¢) € Ly(7'), we must have

1 8 1
fe"ﬁ”—slf(t)dt:feﬂ“—s)f(t)dt + [N f(yde=1
0 0 s

for all s€7. Then for almost all s

s 1

0=— e [eSf)ydt + fets [f(t)e Pt dy,
0 s

and by subtraction

s
1=2e 7 [f(1)e’dt
)
and as both sides are continuous, this holds for every s€7. We get
o=~

20 227
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for almost all s€7. But this function does not satisfy our integral equation.
Now we shall show that it is still possible to get a simple best test.

To this end we choose the set of continuous functions in (0, T) as sample
space, which is possible according to 1.4. As coordinates we use z(fn), n=1,2,...,
where {t,} is a denumerable sequence of points everywhere dense in (0, 7). It
18 convenient to choose #; =0, f, = T and the following as 1T, 17, ¥7,...
and so on by repeated dichotomy. We want to calculate the frequency func-

tion of z(¢), z(ty), . . . (t) under the hypothesis H,. To do this we rearrange
the #’s in their natural order, and using this new numbering we define
z(t) = ; .
{e-ﬁ(tiﬂ_.gi) —o:. 1=1,2,...mn.
We then get
1 ~3 @ —mye— :“1 b ek
]—n :
0 (0) =iy e T 3
222 [[a—eh?
1
and
gg::)(w):mx _Zn_z_;_ Elxi+1:%_m2n:ll—gi=
g (o) e T T Ty 2 214
2 n—1 n—1 0 %;
=may — e m D gy B QT
173 Z‘1+92_1 R
x. 017 m2 S 1 —o
+ m P — =t
1+ on-1 14 01 22" +oi

If » is large A4, = max (ti+1 — ;) is small, and we get
1

: T) 2(0)
og Iy (w) = mx(0) 2 -!—ml_l_anl m1+91+
n—1 n—1
m B 21_@ tiy1—ti+ 0(4%
+3 22]@@12 — 1) + 5 (e — 1) + 0(4 )J 5 22:, i 5

As A, — 0 and as the realizations are continuous, we get almost certainly

T

log /() = lim log Tn(@) =m*5 + m 201 ﬁ’"f nat—""pT.
0

We thus have the regular case, and in the same way as before we get the
following simple form for the uniformly most powerful test of H, against the one-
sided alternative m > 0
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T
z(0) + z(T) + p [a()dt = L.
h

The uniformly most powerful unbiased test is obtained In the same way. We
shall later return to this process in connection with a problem of estimation.

4.12. Approximation of tests. As has already been seen, it may happen
that the form of the best test-function is too complicated to be used in prac-
tical applications. Then one has to construct a simpler but less powerful test,
or, if a test of high power is required, one can approximate to the best test-
function in some appropriate way. Suppose for simplicity that we have the
regular case. Then

91 (xl: e m")
Iy(w) =T
( go (@1, . . . Zn)

converges to the likelihood function f(w) in probability. The best region is
S= {f(w) = ’IC}UJ:
and we can use the following approximation

8y = {ln(0) = klo.

For these regions we have
Pi(Sy) > P;(S); ¢=0,1;

which means that the errors of the first and second kinds corresponding to S,
can be made as near as desired to those corresponding to the best region S.
Choosing # sufficiently large, we thus have a test which from the practical
point of view differs little from the best possible.

We now leave the problem of testing statistical hypotheses regarding sto-
chastic processes. To continue the construction of practical tests it seems im-
portant to consider the demands of the applications.

The problem of estimation

5.1. Unbiased estimates. Suppose now that a process z(¢) has one of the
distributions P,, where a is a real parameter in a finite interval 4 = (a, b).
To avoid the singular case we suppose further that for every pair oy, as €4
there does not exist any set S with P, (S) =0, P, (S) # 0. Using the know-
ledge given by a realization of the process we want to decide which of the
hypotheses is true, i.e. we want to form a function #(w) estimating a. We have
_for an arbitrary set S

Po(8) = [ f(w, @) d Py(w)
S

[SV]
[N
O
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where P, is the measure corresponding to a,, a fixed value of a. We now
regard the likelihood function as a stochastic process given by the random
function f(w, @) with a in the role of a time-parameter, and with a measure
of probability P,. The mean value of this process is easily obtained

Eyf(w, a) = [ [(, a)dPy(w) = Pu(2) =1.

We now make the natural assumption that f(w, a) has a finite variance and
that it 1s continuous in the mean. Putting f(w, s) = f(s), we have the co-

variance function
(s, ) = Eo[f(s) — 1] [f (1) — 1].

Form the usual integral equation corresponding to this kernel and denote its
eigen-values by 4, and its eigen-functions by ¢, (a). We then have for every a€ 4

flw, a) =11 m. Z(pw w;/(;)) + 1,

n—»oc

where {y,(w)} is an orthonormal system in L,({2), and the convergence is
taken with respect to P,.

We shall now study the existence of unbiased estimates of minimum
variance, i.e. functions f({w) satisfying

{Eat(w) =aqa
E.t(w)? < oo

for every a€Ad. Tf the system {w,} is not complete in L,(£2) with respect to
P,, we add its orthogonal complement

Ly (9Q) © {yo} = {yu},

where {y,} is an orthonormal system. By means of the systems {y,} and {%}
we can develop an arbitrary estimate with the above properties in a series
converging in the mean (with respect to Py)

tw) = Dty (0) + ) tuyu(o)
1 1

We thus obtaln

a=E. t(w) = ft(w)f(a), a)d Py(w) = i £ <p{/(7a_) + Eyt (o).
Q 1 Ly

The convergence i1s uniform because

I i by — 1 | = i ti g‘\ ”L(a)z = i ti !‘Pv"(a)
n n

Vi, |
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and as

SYACK

2 = ¢(a, a)
T A

which is a continuous function of «a, we obtain the stated result. Thus we

can integrate termwise and get

j(a o) Pv a)dfa—vtl_-

In order that an unbiased estimate of finite variance shall exist, it is thus
necessary that X, A,y} < oo,

1
Suppose for simplicity that {g,{a)} is complete in Ly{4). Then the condition

o

Z}w y» << 0o is also a sufficient condition for the existence of an unbiased
1
estimate. For, consider

= 2 V4 yp(0) + 2t (o)
1 1

=

where the ¢, are arbitrary real numbers but for the condition ) #i < oo,

1
This series converges in the mean with respect to P,. We get immediately

==}

E.t(w) = D\t pu(a) + Eot(w).
1

Using the same method as before, we can show that Zt,- @v(a) = a— aq for

1
all a€4. Thus t(w) + ay— Fyt(w) is an unbiased estimate of a. Summing
up we have:

In order that an wunbiased estimate with finite variance shall exist it is nec-

essary that
b

2
A /a~a0 (py(a)da}<oo

a

If the system .} is complete, this condition implies the existence of a family
of unbiased estimates whose dimensionality is given by Dim L,(2) © {y.}.

It there is more than one unbiased estimate, it seems not unnatural to
choose the one for which D, () is minimum, if one has reason to believe that
the true value of a lies in the neighbourhood of g, In some cases it might
happen that in the class of unbiased estimates there is one with minimum
variance for all «.

The method described has certain theoretical advantages and could be ex-
tended, but it is not quite suitable for applications because of which we shall
try to find other ways of estimation in the following sections. The following
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simple example gives a procedure that in some special cases may be appled.
Consider the Poisson process of 4.10 with a constant probability intensity S.
We want to find an unbiased estimate g* of # which has minimum variance.
Putting f* == f*(n, &1, . . . &) we shall have

e el 6—{3 t fAke

B Baf = P =Bl |n =] = 3P g =]

0 0 :

1.e.

per = 300 51—
.

valid for B in a certain interval. The conditional frequency function for
t1, Ly, . . . tn when n 1s known is

e ftgn n!
m%:—ﬁ— (0 <ty <ty <o <ty <)
n!

so that E;[p*|n =v] is independent of B. As fe’’ is an integral function of
f, we get equating the Taylor coefficients

Vv

E‘q[{g*l%:v]:é

But
B =1 = S P Bsl— gl = S| (= 5) [ +

O [ [ L R
sl

the second term vanishes. We thus get the unique unbiased estimate with
minimum variance by choosing B* so that the first term (which otherwise
would be > 0) vanishes

1]} .

5.2. A class of linear estimates. The approach of the preceding section
demands complete specification of the probability distributions P.. It often
happens that we do not want or are not able to specify the distributions
-completely. It may still be possible to find unbiased estimates of minimum
variance in some restricted class of estimates. Consider e.g. the following situa-
tion, where we want to estimate the mean value m of a stochastic process
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z(t) which is supposed to be continuous in the mean with covariance function
7 (s, t). Regard the class of linear estimates

b
= [H)z () dt

where f(t) is quadratically integrable in (a,b). We either take the integral in
the sense of 1.3 or choose a sample-space such that z(f) is quadratically
integrable in the sense of Doob. To get an unbiased estimate in this class we
must demand that

b

[ipde=

a

The variance is then

b b
E(m* —mp= [ [r(s,0)f(s)f(t)dsdt.

Introducing the eigen-values A, and the eigen-functions ¢, of the integral equa-
tion of the process (we suppose that {p,} forms a complete set in Ly (a, b))
and using the bilinear expression of the covariance function we get

E (m* — m)? i
3

]2

where

This should be minimized subject to the condition

&0
chav:: 1,
1

where

b
a, = f . (t) d2.
@

But using the Schwarz’ inequality we obtain, if Z ar A, << 00
1

1:[2.:",0,,%]23“ [im% ] < 29

1 V

2 o0
X}
LS,
1
ie.
E(m* —m)? = —1~;
;T o

Za?;/‘\-v
1
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where the sign of equality is realized by

Gy 2'2
cv == P> m—
Daid
1
Put
N
D anhepu(t)
fr(t) =5 ———
2 as A
1
and

N JU—
Z a Vi, z,
1

N

2 as Ay

1

where {z,} is a set of non-correlated stochastic variables with mean value zero
and standard deviation 1. When N tends to infinity, this sequence of estimates
evidently converges in the mean to an estimate m” which is unbiased and of mi-

3

)
qu=fx(t)f1v(t)dt =m +

. . 1 . . .
nimum variance ———— n the class under consideration (see GRENANDER 1).
dali,
1

If so desired one can extract a subsequence converging almost certainly. It
should be noted that the limit of this sequence is not always of the type in-
troduced above. This obnoxious property of this class of estimates will be
dealt with later.

If on the other hand Zai}w = oo, it is easily seen that there is a sub-
1

sequence sy, converging almost certainly to the true value m when v tends
to infinity. Thus we are able to state, though we know only the covariance func-

oo

tion of the process, that if Z ail, = oo we get the singular case. We have seen

1
in 4.4 that in the normal case this is also necessary if we only consider positive
definite covariance functions.

As seen in 4.6, the convergence of /,(t) to a function in L,(T) implies the
existence of a quadratically integrable solution of the equation

b
[rs0imyde=1

This being seldom the case, we are naturally led to consider the following form
of linear estimates

234



ARKIV FOR MATEMATIK. Bd 1 nr 17

b
m* = [w(t)d F(t)

where F(¢) is a function of bounded variation, and the integral is interpreted
In some appropriate sense (e.g. that of Karhunen).
We demand analogously to the above that

b
Em*=m [dF(t) =

1

b b
IE(m* —mp = [r(s,))dF (s) dF (t) = min.

l

Suppose that F(¢) satisfies these conditions and let « and § be two points in
(a, b). If
G=c(t—a)—e(lt—Pp

and ¢ is a real number, the weight function F (¢) + G () gives an unbiased
estimate, as we have

f d[F () + 66 (1)] =
Further we have, denoting

b
[r(s, )dF (1) = R(s)
that ‘

b b
ffrstd[F +0G () d[F @) + SG(¢ :fbfbrstdF YA F(t) +

+ 25[3(5)(1@(;) + 52”7»(8, 1)dG(s)dG ).

b b
As this is to be larger than f fr(s, t)d F(s)d F(t) for all 4, we must have

[/

[R(HdG () =R(a) — R(p) =0,
so that ‘
b
R(s)= [r(s,dF(t)=c

a

for s€ 7. Evidently the minimum variance is just the constant figuring in the
right member.
Suppose on the other hand that F(t) satisfies this integral equation and that
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a

b
fdG@y:deay—deay:Q
and a a a
b b b b
[[rs0dH@EdH@ = [ [r(s, )dF(s)dF () +
a a a a - .
+2f [r(s, 0dF($)dG@ + [ [r(s, ) dG(s)dG(2).

The last term is non-negative, and further

b b
afrstdF $)dG(t aj

&\3@-

Thus we have
D2 (m¥) = D? (mp).

We have previously seen that the covariance function e~f1#=*! (in the nor-
mal case corresponding to a stationary Markoff process) does not adnn”c any
best test function in L, (T) for the mean. But by considering the equation

r 2
—Blt-sld F(t) = ———
i URERY:

it is easily verified that the function of bounded variation

Lo

Fw:g@_,%?T-%M

satisfies the equation considered. Thus
T
z(0) + z(T) + p [ (1) dt
0
2+ BT

£

m =

is an unbiased estimate of m with minimum variance in the class of estimates
which has been considered. We shall later on see that, if the process is normal,
this estimate is the best one out of a larger class of estimates.

Another case is obtained by considering a time-homogeneous orthogonal pro-
cess z(f) in the time-interval (a, b) with constant though unknown mean value
m and covariance function r (s, t) = min (s, ¢). The equation
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b
[min (s, ) dF(t) =¢
a

evidently has the solution

F(t)=e(t—a)s

a
80 that we get the best estimate

m* =z (a).

5.3. The equidistributed estimate. When the process is stationary, the
problem dealt with in 5.2 shows some special features. If the spectral energy
in A=0 is zero it is known that the estimate

7
e 1
m ——QT.[x(t)dt,
=T

which is a priori unbiased, converges in probability to m (see 1.3), i.e. m™ is
a consistent estimate. This estimate which will be called the equidistributed
estimate of m has another optimal property, which shall be studied in this
section. The result obtained seems to be capable of generalization which the
author wishes to consider in a later publication.

Suppose that the spectrum is absolutely continuous with a spectral density
k(4) which is continuous at the origin and bounded. Consider unbiased estimates
of the type

T

T
mi= [f@)z@)dt; [f@)de=1.
-7
We get, putting

‘that

1
mp = ((g(u)x(uT)du;

‘Thus g¢(u) measures the reiative weight given to different values of ¢. Con-
fining ourselves to the regular class of unbiased estimates obtained, when g (u)
‘belongs to a class €' of functions, which are uniformly continuous and uniformly
bounded in (— 1,1), we shall see that the equidistributed estimate is of minvmun
variance asymptotically n this class when T tends to wnfinity. More precisely,
we define the efficiency of the estimate

-as

237



U. GRENANDER, Stochastic processes and statistical inference

inf DZmb
m* € c
D2 up

er = ; 0<er<=1.

This concept of efficiency is different from the one used in the classical theory,
as it takes only the linear properties of the process into consideration. We shall
show that er tends to unity as 7 tends to infinity. Put _li_m er = e. Then

T—>wx
there is a sequence T, - co and corresponding estimates m7, € C' so that
D2 my,
D? [u?

»

as v —> oo, Introduce the functions

o (A) = fe“"‘gv(u)du.
21

Then
T, T,
2 ® 1 ¢
D (mT'V):iﬁZ 7‘(8, t) A T gy T‘ dsdt:
1_T'V ~T, i

For the equidistributed estimate one gets in the same way

o0

o x 1 sin® u_ [ u
D, = _,r"(ﬁ)d”

and using a property of the Fejér kernel,
T, D ur, — wh(0)

as v tends to infinity. Because of the uniform continuity of the ¢’s 1t is
possible to choose a subsequence converging to a continuous function g ().
Supposing this to be already done we get

1

[lo@w) — g, () Pdu—~0

—1

as ¥ —> oo, because of the theorem of Lebesgue on bounded convergence.
Thus, using the theorem of Plancherel

[

[y —y(w) 2du 0,

-
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and
f (i) V 7@“) — () ]/7@ du=n f! yolat) — () P > 0

as » - oo, Hence

_/ Lye) [ 2 (;) du—~ [ly(m 2 (T“) du — 0.
But - o

l fwly(ﬂ) lzh(%) du— h(0) j?ly(u)]“‘clﬂ } <

< l j [y(u) P lh(i“) _k(O)]dM’ + } f [y (u) 2 [k(%) —h(o)] d’ul
L=ety Ll e,

l u“° =

and choosing & so small that |A(x) — % (0)] < 8 for |u] <e, and then T, so
large that f [7 () Bdu < 6, we get

lulzeT,
[ (F) au—r0 [1rwiax
as » - o0, But according to Plancherel’s theorem

[lv(wldu= Zﬂfllg(u)Pdu

and thus, using the Schwarz’ inequality

-1

According to the definition of ¢ only the equality sign is possible, and we
have thus proved our proposition. '

Corollary: The most important consequence of this seems to be that 7 is
vmpossible to get any asymptotically more efficient estimate of m than the equi-
distributed ome by constructing estimates of the type

T

m” =%[g(%) z(t)dt

~7T



U. GRENANDER, Stochastic processes and statistical inference

where f gtydt =1, and g(u) s a function defined in (— 1,1) not depending

WPOn T The above proof shows further that the best of these estimates
actually is the equidistributed one.
It has to be noted that it is not possible to remove the condition that
g, €C without restricting in some way the type of the process. Take e.g. the
tZ

process with correlation function e 2. If a realization is observed in a non-

degenerate interval we know the realization for all values of ¢ because of the
4

fact that the process is analytic for all ¢&. Then we can form i f z(f)dt which, as

A — oo, tends to m in the mean because the spectrum is continuous. Thus
the equidistributed estimate has efficiency zero.

5.4. Doob’s elementary processes. We have seen that in order to test the
mean value of a process it is not sufficient to consider estimates of the type
f x{t) f(t)dt where f(¢) 1s quadratically integrable, but we have had fo introduce
Stieltjes integrals. We shall see that in other cases the best test 1s not even
of the Stieltjes integral type. Because of this it is appropriate to consider
this problem from another point of view.

We observe the process y(t) = m + z(t) during the time (a, b) and suppose
that Ewx(f) =0. It is required to find an unbiased linear estimate of m with
minimum variance. If m* i1s an unbiased estimate and

n
m* =Lim mi; my= D ey (EM); (M€ (a, b);
fn—> 00 1
we have
n
Eme:chff‘)-»m as n —> oo,
1
Thus we can write

m* =1.1.m. {2 ™y (1) + [1 — Z Oi")] y(a)}
n—> o0 1

1

because the quantity in rectangular brackets tends to zero as » tends to in-
finity. In this way every unbiased linear estimate can be regarded as the limit

of finite sums
n

n
Z ¢™y(1™) with 2 o = 1.
1 .

1

Consider the set My < Ly (X; a, b) consisting of all elements of the form

n

Devx(t) with Xe.=1, t,€(a, b).
1

i
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Closing this set with respect to convergence in the mean we obtain a set
M < Ly(X; @,b). As this set is closed and convex there exists at least one

element u* with -
Il " | = inf ||z |-
Z€M

There cannot be more than one such element for suppose uf is another one.
Then also B—; €M and

2 =]|2 #*
__:”ﬂ “ _I_“/“” +2ReE’u4‘u1<||M*||2

'
>

which contradicts the definition of u*. Thus there 1s a uniquely determined
estimate of minimum variance in the class of unbiased linear estimates.

Denote this estimate by m* and regard the expression Em* z(¢) as a <t < b. If

Em*x(a) =~ Em*z(B); a <a, p <b;
we introduce
mi =m" + ¢[z(a) — z(B)]

which is also unblased. Then
lmi — ml2 =[{m* —m]f + 2 R (s E [m* — m] [w(a) — 2 (B} +
+ ez (a) —2(8) |?

and it is possible to choose & such that Dmi < Dm” contrary to the definition
of m*. Hence the function Em*x(t) is a constant for t in the interval (a, b)

Em*z(t)=c; t€(a, b).

But as m* =1.i.m. m; with
n-» o

n
my = 2 ™ y (£)
1
we get
D2m* = ||m* — m | = lim Em* mis —m =¢ Z &M =c
- oo
so that the comstant ¢ is equal to the variance of the estimate m*.

The solution of this equation olways gives us the uniquely determined unbiased
estumate of manimum vartance. For if

Em*z(t)=c

Emezcl
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we see that if ¢=¢; the two estimates coincide. If ¢ # ¢; we can suppose
that ¢ 0 and we then have

and as both estimates are unbiased we get ¢; =c.

Let us apply the above to the important class of stationary processes in-
troduced by Door (5). We shall deal with the non-deterministic type of these.
The correlation function can then be written as
/ Git? da
. [@n (1) + @ne1 (AL + - 4 a2

r(t) =

where the denominator has its zeroes A, in the upper half plane and the
coefficients @, are real

an (@A + o+ ag = an i || (2
1

This process can also be obtained as a solution of a linear differential equa-
tion with constant coefficients (see Karmunen 2). For n =1 we get a correla-
tion function of the type e~ 81tl,

It is immediately seen that the process has strong derivatives up to the
order n — 1. Consider the estimate (where z(f) is the observed process)

Z {ar 2 (0) + B2 ( +a0fw ds
0
20y + ag T

o, = (— 1) a1 ] C oy
ﬂv = Gyl

m" =

where

This is possible because

iotl=(—~1)”‘]@'”an21L 'A”}mz—aoqu———a Z }'
1 v 1 1

V

s0 that zf(ao # 0) has positive imaginary part, i.e. ; > 0. The estimate is,
0
of course, unblased and we shall show that it has minimum variance. Consider

the expression
n—1 T
Danr® (— 1) + B (T — )} + ap [r(s —t)dt
Em*a(t) —m— 0 )

2a, +ay T
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But

a gl"r(t) +
ST P!

A . r P an(il +-tag

_felt/ ;

n
—oo —z”H A— )
1

which according to Cauchy’s theorem is equal to zero for ¢ > 0. For ¢ <0
one gets in the same way

T A
d n—1 dep—1 ( 1) aOT() 0.

Thus
aof (s —t)ds=a, lim f s—tds+frs—t s]:
e~>0l t+e I

=lm {g [r(—e) —r(—t)] —as [’ (— &) —# (— )] + - (— 1)**la, [f"D (—e)

&0
=D ()] [ (=) =1 (@] = [ (T —t) — 7' ()] — - — a2 (T =)
— 1PV} = 2a,7(0) + 2a377 (0) + -+ + 2a, "V (0)
—or (=) —a (T —t) + agr’ (— &) —ag?’ (T —1t) +—-+-
+ (— 1" an 7™ (— 1) — @ r @D (T — 1).
Here we have put = n if n is odd, otherwise u=n— 1. We have

2ay7(0) + 20577 (0) + -+ + 2,1 (0)

= const.
2 aq + Qg T

Em*z(t) —m=

As the right hand member does not depend upon ¢ we know that m* is the
unique unbiased estimate of minimum variance. To find the variance we only
have to calculate the constant. We get

A

2 ayr(0) + 2azr” (0) + - 2a, r®D(0) = lim aq [ () dt

Ao Ty

by integrating the two differential equations for r(t) between — 4 and A4 and
letting 4 tend to-infinity because the functions 7(t), 7 (£), . . . ¥® D (¢) tend to
zero as ¢ tends to infinity according to Lebesgue’s theorem on Fourier coeffi-
cients. Henee the variance is

1
a027za—3 97

2ay +ag T ay (20, —l—aoT)'

21 243
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5.5. Purely non-deterministic processes. We have seen that if the process
can be completely extrapolated when we know the realization on an intecval
of length 4, the equidistributed estimate has efficiency zero if the length of
the interval of observation exceeds 4. To avoid this it seems natural to
consider the purely non-deterministic processes (see HaANNER 1 and KARHUNEN 4).
Then the spectrum is absolutely continuous and there is a quadratically inte-
grable function f(A) with

lF R =F 2

and such that the function ¢(a) defined by

A
. 1 o
=lLim — et f(A)da
s@=Lim = [ e
-4

vanishes for negative arguments. We shall suppose that for small values of 4
f(A)=/fy + HAL + 0(A)

where f, is real and different from zero.
Consider functions of A with the inner product

(=]

(@.9)=[e(Hp(2)dG(2) where G(3)=F () + &(A).
The function
e—im_,l; — eiTfol}T
)
A= — ® )
A
clearly has a finite norm. The functions €it?; — T <¢ =< T; also have finite

norms. The Hilbert space spanned by these will be denoted by A, (7). Put

1 1
1) HO)  emiTi il
H — —zT/.f( S D
H=e 7 (0) +
1 1
. HO ! .
o O IO — gy = 00 + 10,
T .
where H,, H, and H; have finite norms and H, Z{/}((i)) [ei“dtelg(T). Put

(Hi,r= Py Hy
| H5 7 = P, Hs
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Hr(2) = Hi,r(A) + Hy(4) + H3 r(2) € 2 (D).

If
x(t)zfooe“’-dZ(}L)
then o
y@ty=m+ z(t) = fwe"“dZ' (A) where Z'(2) = Z (1) + me(A).

As we have observed y(¢) in the interval (— 7, T) we can form

my= [ H% () dZ' (3).

For if
i
Hy () =Llim. DMy, — T <y <T;
n-> oo 1 v
we get
"
mo =1.1.m, Z ™y (1),
Cnae &
We have

Emi = mH7(0) = m[H} r(0) + Hy(0) + H3 7(0)].

(P,
Aljay  1H0)
on the space spanned by {*0%; — T <t=<1T;} is ¢!T*Hi r(3) and as T
tends to infinity Hi 1 () tends to a limit Hi o (4). Thus

(Hy; 1) = Hi,r;1) = (e T Hy,r (A) — e~ T2 H} o (A); 1) + (e7? T2 Hj o 1).
When 7 tends to infinity the left member

5 AP

- = (2)
= [mmaen - [ —— 1O iriar om0 > 10 =

But the projection Hi r(4) of

A fo

and the first term of the right member
Wem T i, p — e " Hi oo )| < |1 | Hi, 2 — Hi e || > 0.
The second term
(e~ T Hy w3 1) = wai,w(l) e T FA)PdA + Hi oo (0) ~ Hi, e (0)

from which follows
lim HY 7 (0) = lim Hi,7(0) == Hj, » (0) = Hy(0).

T T 0
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In the same way it is shown that

lim HE 7(0) = H4(0).

T—>o0
Hence
[Hizyaz ()
m* = -
2T .
Hi 7 (0) + oM H3, 7 (0)

where the denominator is different from zero when T is sufficiently large, 1s
an unbiased estimate. We shall show that it has minimum variance.

We have

Em*z(t) = E[m* — m] x()
and

[HT,T(O) + % +H§,T(O)]E[m* — m]x(t) =

= fHT (A e=it2 Fr () d A = fH; () e~ d G (3) — Hy(0) =

— [H@e i d@ () — Hp(©0) = [ e HAW F' () dA+ H(0) — H(0).
But putting
n(t) = [ H(3)e it F' ()dA
we get for — T < ¢, t, =T
~ (=T —t) A . i (—T—t)1 ” P(T—t) 3 __ i (T—4)yA___
nitg —nie = [C ST g [ R

The first term is according to Plancherel’s theorem

—T—t;

@'fg(a)dazo

—T—ty

'_"T._<_t2
"‘Tgtl.

because

The other term is also zero because

[ta=T
\ =T
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Then
n(t)y=C(T) when — T =¢=<T

and hence m* has minimum variance. In the same way it is shown that C (1)
is independent of 7. To calculate the variance we regard

e g T .
C= [H ANdi =24 [cos Tllf( 7—2@'/%'/;***'Ref(/»)dl.

The first integral tends to zero as T tends to infinity (it is the Fourier-coef-
ficient of an integrable function) and the second one tends to — 277 f(0).
The variance of the unbiased estimate of minimum variance is then

D2t — — 20007+ H(0) — Hi(0)  wf(0)* _ «F'{0)
HT,T(O) ZL;(Z(;) + H3 T(O) T r

Hence we have shown that for the purely mon-deterministic process the equi-
distributed estimate s asymptotically efficient without having restricted the class of
estimates as 1 5.3.

5.6. Efficiency of estimates. In this and the following sections we shall
deal with the method of maximum likelihood. Though 1t is possible to transfer
this method to the case of a stochastic process with a continuous time-para-
meter, some very interesting and essential complications will turn up. A first
step in the direction of solving these problems will be taken in 5.7—5.9.

We still suppose that for a in the finite interval 4 under consideration we
have the regular case, and that f(w, a) almost certainly has a derivative which
is dominated

Iof (w, @)

da (@)

where F(w) is a stochastic variable of finite variance with respect to P,, and

further that
2
E. ((7 log f(w, a)) < oo
da

Considering estimates a*(w) of finite variance and using theorem 15.1 in
Saks 1, we get an expression of the minimum variance which is analogous {o
the one obtained in the finite dimensional case (see CRAMER 4).

It b(a) is the bias of the estimate, we have

a+ bla) =EFE,a* = E,[a" () f (0, a)]

and
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because the integrand is less than |o”(w)|F (w) in absolute value, and this
majorant is according to Schwarz’ inequality integrable with respect to Py. In
the same way we get

1=E,1=E,f(w,a)

and
o)
Thus
db\2 . 9/ (w, a)|?
o+ 2= [ — 2] =

= Ey[(¢® — a)? f(w, )] B, [(i)lorgb%gﬂy f (o, a)] =FE.(a" — a)*E, (“(:977)27

which gives us

Bo(a"—ap= — .

E, (d;———IOgof (i ’_.))2

Passing by we want to point out the formal similarity of this result when
using coordinates of the type used in the study of point-processes with adjoined
variables, to a theorem on minimum variance of sequential estimates by
Worrowirz 1.
As is easily seen we obtain the equality sign in the above formula if and
only if
J log , .
ﬁ_o,,_a%([‘?’k‘i) =k(a) [a* (0) — a].
In the same way as in the classical case we thus see that if there is an effi-
cient estimate it is obtained as the unique, non-identically constant, solution
of the maximum likelihood-equation.
Consider now the estimation problem studied in 5.2, and suppose we have
the normal, regular case. We get

, o
M2 " R
S NaiiimNa, i,

Ho,m)=e 1

which satisfies the regularity conditions. If m® is an unbiased estimate of
finite variance of m, we thus have

Dpm* = 1 S

o0 o0 2 oo
N\ W Py
E, [Z @y by —m Dy Ay a?] Dal i,
1 1 1

But as

248
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0 log_:f&o, m)
am

we therefore have an efficient estimate

&0
Z Ay Ay Ty
S
— _
laid,
1

as 1s easily verified by direct calculation.
We are especially interested in the case of a stationary Markoff process. Then

m*

" [x O+ D)+ sz(t)dt]—qf;i (1+ ?j)

2
flow,m)=rc¢ 0
and in the same way we obtain the estimate

T
2(0) + 2(T) + 8 [z (1) dt
0 N

m =

29+ BT

which is unbiased and of minimum variance. Hence it is the best in this sense
in the class of all estimates of finite variance.

5.7. The method of maximum likelihood. It is now possible to prove pro-
perties of estimates by methods quite similar to those of the finite dimensional
case: e.g. if two estimates of the same parameter are efficient, they coincide
with probability one. Also the case of several parameters can be treated in
the same way. On the other hand, we shall encounter some difficulties when
trying to apply the maximum likelihood method to stochastic processes. But
the following result is easily sbtained:

Suppose that the conditions 1--3 are satisfied.

; v=1, 2, 3; exist almost certainly.

52
2) For every a€d we shall have ]%' < Fi{w), Pt < Fy(w) and
&% log f ~ .
Ry < H(w) where EqF, << co, EyF, < oo and E,H <k.

0 log

3) For every aed Ea( ’
da

2
) shall be positive and finite.

249
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We consider the case when we have observed N independent realizations of
the process and want to estimate a. Denoting the realizations by wy, w,, . . . 0y
we form the simultaneous likelihood function

f(oy, @, - . . ox; a) = f(wy; @) f(we; @) . . . fwx; a).
Then it is possible to show that the likelihood-equation

d log f (e, co2,...coN;a):O
da

has a solution a* (wyq, . .. wxy) which is a consistent, asymptotically normal and
asymptotically efficient estimate of ¢ as N tends to infinity.

This is proved in the same manner as in Cramfr 4 p. 500-503.

As an application of this we consider the stochastic process used in KIN-
STEIN 1 to describe the movement of pebbles on the bottom of a water
channel. The stone which is observed during the time interval (0, I'), has two
possible states: either it rests or moves. The movement takes place without
loss of time. At t=0 the stone is supposed to be in movement. The other
time points of movement i, ¢y, . . . %, are distributed according to a Poisson

process with probability intensity . As is easily seen, ¥ is the mean resting

time. In the movement at the time instants 0, £, . . . f, the stone is transported
over lengths gy, @y, . . ., #,. Here the 2’s are independent stochastic variables

. .. . A .
taking positive values with the frequency function ée i. &1is the mean length

of transport. N stones are independently observed. We want to estimate 7.

X2'_“ -
X,
Xo
+ + +
o t, t, th T

We get the probability element
1 fnte-1 _n I
¢ dip-e Sdrpe v =

. ;9’6 §
X T

== E—(n+1) e‘?ﬁ—ne—?dﬂfo PPN dxndtl P dtn,

le
&

n 4
Tidmy e odty ..
019. 1

where we have put X =2, + 2; + -+ + x,. Labelling the coordinates of the
different realizations with the index 7 =1, 2, ... N, we get the simultaneous
probability element

250
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N h' n "
N\ , Nt S _.Nl'
- }_ (;+1) —V— — L ng m

g1 e 179 T

leaving out the differentials. From this it is possible to calculate‘the distribu-
tion of X. We shall need only the first four moments, which, using the usual
symbols, are

w=¢(1+7) n— (125
a2:§2(2+4%+§:) g = £ 2*6%)
a3*§3(6718§ %9§:,gz) #4:549+36%+12g)
a4=§4(2479 %+72§2 : 6?4 %)

The maximum likelihood estimate is easily obtained

N
If Z n; =0, we get 9" = oo, but when N tends to infinity, the probability

1
of this tends to zero. This detail is of small practical importance. We have

1Nﬂ( z)
N &

1
1N
N;"’

. . . T
where n; has a Poisson distribution with mean value e Because of the central
9

limit law —= Z (m ——) is asymptotically normal with mean value zero and
T 13 T
standard deviation ] / 7 As ¥ ; n; converges to 3 in probability when N

tends to infinity, we have (using theorem 20.6 in CRAME’:R 4) that 47 is asymp-
3

. . . 19
totically normal with mean value ¢ and variance — for large values of N.

i NT
To calculate the efficiency we form
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9 log f(w, 9\* _ (ﬁ_i)z_ﬁ
E*’"( 09 =By~ ) T

and thus find that 9% is asymptotically efficient.

Our observable coordinates have been the time points and the lengths of
transport, but in the best estimate only the number of time-points is used. In
Eimxstemw 1 X;, X,, ... Xy are the only variables that have been observed.
Presumably it would have been practically impossible to observe the numbers
n;, but as this might be possible in other applications of this process, i1t is of
some interest to investigate the loss of efficiency when only observing the X’s.
Einstein uses the method of moments to estimate & and gets (p. 38)

1
):;”ihl
9 =T l/ L™ ’
R
where
r a —li X;
|
18
My =—— > Xi—a:
P
Regarding 95 — @ as a function H (ay, my) of the sample moments, we obtain
H (ay, 1) = 0 £2(1+20
[ (a1, ps) g (a1) ~ ( )
[(2) — 2w no .
1\0ar/, §T2( - 29) (2 + 60)

H“11 (al, mZ) ~ N

E'(8 4320 -+ 867

Nz(m2)~ N
T
0——‘57

where the index 0 is used to denote the value obtained when putting a; = «ay,
fs =My, in the expression in the brackets. Using theorem 28.4 in CRAMER 4,
we see that 95 — ¥ is asymptotically normal with mean value zero and with
variance

6
Nip(l + 60 + 100% + 86 + 264,
Then the efficiency is
3
e(9) = - 6

1 +664+ 1062 +86% +20%

The following similar process has been met in connection with a problem of
medical statistics. We investigate the occurrence of a phenomenon 4 in an
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interval which we denote as usual with (0, 7) although the parameter does not
denote time but location. At ¢=0 we suppose that A* always occurs. As
the sample-space we take functions taking the values 0 (for 4*) and 1 (for 4)
and having the value 0 for ¢=0. As coordinates we take the numbers
Ny, Mg, b1, bay - « tny+n,, Where the 's denote the time-points when the states
change and 7, denotes the number of starting points for the state A4 and n,
the number of end points for A-intervals. Hvidently n; = n, or n; =mny + 1
according as the state at 1 =7 is 4* or 4. We suppose that the length of
an A*- (or A-)interval has the frequency function e?¢ ¢t > 0 (or ae~%%, t > 0)
with independence in the wusual manner between different intervals. We get
the probability element

e~ fh ‘8 dtl et o dtz e eyt - g dtnl-g-m e B (T—t"ri'nz) ==
= G-ﬁl'ﬁfh C_al” a"2dtl P dtnl +n
if my =n, and similarly
e"Pupfdty .. e T lyin) = =34 frg=c i gudt, . . . dityin,

if ny; = ny + 1. Here we have put

[V =ty +ta—ty -+ + T — tuin, {/1' =t + bpyng — b1

l” = tz - t]_ + - tn1+nz - tnl-{-n2~1 2,” = tz - tl + - T — tn1+n2.
Introducing the total length of the A*-intervals L, we see that L =1’ in the
first case and L =1 in the second case. The analogous is true about the
total length A of the A-intervals. In both cases we thus have the probability
elements

Bre 3l gre=cAdt, ... dbyin,.

Repeating this experiment N times independently we get the maximum likeli-
hood estimates

N N
N Q'
2 D nei
Lo s 1
B* = ¥ oAl =y
O \
3o Sa
1 1

The quantities in the denominator are the times of risk of the event that
one state changes to the other, and the quantities in the numerator are the
numbers of times this has happened.

5.8. Metric transitivity — consistent estimates. We have hitherto considered
the case when N independent realizations of the process have been observed.
As seen it is then possible to use the maximum likelihood method to obtain
consistent and asymptotically efficient estimates when N tends to infinity. In
the important case when the process is stationary one might hope that it would
be possible to get such estimates by the maximum likelihood method using
only one realization of length T, when T tends to infinity. This seems prob-
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able, because, for large T, we can split up the interval (0, T) into a large
number of intervals I,, separated by other intervals [,,, where the latter ones
have negligible length in proportion to the former ones, but still so large that
the values of the process in two different I, are approximately independent.
The validity of this statement seems to demand some condition of asymptotic
independence between values of the process observed at timepoints which are
separated by a long interval. The following example is intended to illustrate this.

Let y(t) be a normal process of the kind studied several times before with
mean value zero and covariance function p(s,t) and z a normal stochastic
variable independent of y(f) for all ¢ « shall have mean value zero and
standard deviation 0. We are observing the process

x(t)=m+c+yt); 0=t=1T;

where m 1s an unknown real parameter. As has been shown the maximum
likelihood estimate m7 has a variance given by the expression

T T
[Dzm;=:nﬁj‘fr@,nf@)ﬂndsdt
0

- 0
1fﬂ@ds:1,
1]

where 7 (s, t) is the covariance function of z(¢). Thus

r(s,t) = p(s,t) + o*

and
D2 mip = o2,

Hence m7 is not a consistent estimate of m when T tends to infinity. This
depends evidently on the fact that the autocorrelation of the process is too
strong. In order to avoid this we want to tmpose some condition on the process,
which ensures the existence of a consistent estimate. The property we are going
to use for this purpose is metric transitivity.

To avoid unessential difficulties we consider the situation dealt with in 4.1
where we had only two simple hypotheses corresponding to the probability
distributions P., and P, a; << ay,. We shall now show the existence of a
consistent estimate of a (or rather a consistent test) when the length 7 of the
interval of observation tends to infinity. Consider all finite dimensional inter-
vals {I,} where n denotes the number of dimensions. If for all I€{l,}

P, (I) = Pey(I)

the distributions are equivalent which case is trivial. In the other case there.
must be some interval I with

Pﬁx(I) 7& Pa’z(I)’ say Pflx(l) > sz(l)

We shall see in 5.14 that, using the property of metric transitivity, it is pos-
sible to construct a consistent estimate mz(I) of P(I). Forming the real func-
tion f(x) defined by
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f@) =a, for xgm;_&m

f(w) = g for ;1;>€£‘1_(IL|2‘£(;@

we thus see.that f[nr(I)] is a consistent estimate of a.

5.9. The method of maximum likelihood. Besides the metric transitivity
we shall need another condition to ensure that the method of maximum likeli-
hood gives optimum estimates. This condition will restrict, not the degree of
dependence of the process, but the type of dependence. Regard the values of
the process during the time subsequent to # When the realization is known
for a <s=0b, (b<t), we get a conditional distribution for the process z(s),
s =t>0b. If there is a number T such that this conditional distribution only
depends on the values observed during the time b — 7T < s < b, (a<b—T),
we shall say that z(f) is of generalized Markoff type. To this type belong inter
alia the usual Markoff process and the processes where the knowledge of the
derivatives of some order suffice to determine the conditional probabilities.
In the case of discrete time we have the Markoff chain of finite order.

In the following we shall suppose that the conditional distributions can be
5o defined that they almost certainly are probability distributions and that the
likelihood functions satisfy conditions analogous to those stated in 5.7 (we still
suppose that we have the regular case). Let us regard the process during the
time (O, NT), where N is a positive integer, and denote the realization during
(0—DT,»T) with w,,v=1,2,...N. The type of coordinates used shall
not depend upon ». The space corresponding to w, is called 2Q,.

Consider an arbitrary set 4 < 2y and another S < 2, X --- X Qy_1. Then
introducing the likelihood functions and using the definition of conditional
probability, we get

P, (S4) = fPa{w'NEA|wl, v 0N} APy, . .. wy-1) =
§

= fPa{wNEA |ox-1} d Po(wy, ... 0x-1) = fPa {ov€d|oy-1}f(w;...0on150).
8 8

dPy(@1. .. on1) = [flon, ... ox; Q) dPy (o, . . . o).
Denoting .
Aff(wl, . ox; a)dPy(wx|w . .. wx—1) =
= !f(col, co.on; a)d Py (ox|oy—1) = g(wy, 0y, . . . wx-1,4; q)

we get (see Doos 2)
fPa{CONEA |oy-1} (w1, . .. wx—1; @) dPy(wy, . . . Oy_1) =
§

= fg(wl, cooon—1,d; a)dPy(wy, . .. wx-1)
§
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for every set S << £2; X - X Qy-;. Thus almost certainly

P.(oy€A|wy_q) = ffc(:;’l" af;i ))dPO (wy | wx-1)

from which can be deduced that

f(wy, ...on;a)
fwy,...0o8-1; )
almost certainly does not depend upon wq, @, ...wxy—2. As we have supposed

the regular case the denominator is different from zero with probability one.
We write

f(or; )f(wlawz;a)_“ oy, ... ox;a) .

floy, ... o§;a0) = f(wy; a) f(wy, ... 08-1;0)

In the same way as above one shows that the ratios depend only on the two
last w’s entering into the expressions. Thus we can write

oy, ... ox; @) = [ (015 0) fo (0p | 015 a) . .. [ (05 | 0x-1; a).
Because of the stationarity of the process we can leave out the indices of the f’s

oy, ... o8;a) =f(w1;a)f(w2|w1;a)...fN(wNIwN_l;a).

Hence

1 0log f(wy,...0on;0) 1 0logf( wl,a) Z 0 log f wvlw._I, a)
N da N da TN

and now we use the method in Cramir 4 p. 501—503 and have, with anal-
ogous notation, the likelihood equation

By + By(a — ag) + 1 0By(a—ap)? =0
with

0 log f(w,; a) 1
o= gy (MEG)
0 N 0

(() log f(w, | ®v-1; a))
da 0

da

2]

N d o2 J o?

>
>

B 1 {62 log f(wy; a) 1 92 log f (0. | w,-1; Q)
1= % (‘*m v ),

——H (1) ZH(cu,|wv1

Because of the ergodic theorem and the metric transitivity these expressions
converge to their mean values in probability when N tends to infinity. But
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d log f(w,| ws—1; a)) _ (0 log f(wy, . . . 0y a)) .
EO( da O—Eo 0a 0

d log [ (wy, . . W] a))
—_— = (.
EO( da 0

Putting

0 o

— &, (02 log f(ws| s ; Ot))0 7

(we have to suppose that k # 0, otherwise we would get a trivial case), we get

E, (0 log f(wy, . . . oy; oz))2 & (52 log f(wy, . . . on; a))

da 0 a®

0 (¢]

0? log f (o @) _
-— &, (”—a“az“*_)o +(N—1) k.

Thus
By —+ 0, By = -k, By~ M < co in probability.

In the same way as in CraMmir 4 we can show that there is a consistent
maximum likelihood estimate and we have

where uy converges to unity in probability. But B, has mean value zero and

variance
1 3% log f(wy; @) N—1
MN2E°( 0 a? )0+ N

k.

Using the definition of asymptotical efficiency which has been given by WaLD '1
we have thus proved that there s o maximum likelshood estimate which is
consistent and asymptotically efficient.

5.10. Criteria of metric transitivity. The concept of metric transitivity
seems to be important in the problem of estimation in the case of a stationary
stochastic process. The results given in DooB 2 dealing with Markoff pro-
cesses may be useful in this connection. We will give two other criteria of
metric transitivity.

Theorem: In order that a stationary mormal process with @ continuous correla-
tion function r(f) shall be metrically transitive, it ts necessary and sufficient that
the spectrum of the process is continuous. .

For the proof we shall utilize ideas due to Doos 1 and Ito 1. We suppose
the process to be (D)-integrable. Let

oo

r(t) = [e*dF(2), r(0) =1,

— o
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where F (1) is the spectral function, which we have supposed to be continuous.
If the process is not metrically transitive, there exists a set S which is in-
variant and has P(S) = g, 0 <p <<1. We approximate S with a finite sum [
of finite dimensional intervals in such a way that

([PI)<p + ¢
\P(SI") <
where ¢ is a positive number given in advance. It is evident that we can

choose intervals of finite sides. Let 771 = I;. Denote the time points cor-
responding to I: by 7; + ¢, ... 17, + t. Introduce

[zi=2z(m); i=12...n
\Znri=2(m+0); =12 ...n0

These stochastic variables have a 2x-dimensional normal probability distribu-
tion determined by the moment matrix

1 T{ty —T) o [r(m—1—1)
I
I
r(th — 77) " 1{ A B(t)]
A=  ——— — — — o —— — = ,
“ r(ty +t— 1) :1-~ {B(t) AJ
l
r(th +t— 1) - | 1

where the matrix 4 does not depend on . Now it is evident that no moment
matrices can be singular because of the spectrum being continuous. We have
(large values of t)

PIL)="= f [ ] [ e 0@ dy, ... daza,
o Zy) €1 (Tpy1s-- T2n)€It
where @ (z) is the quadratic form in z,, z,, . . . 224 corresponding to the inverse
of A(t). We arrange all numbers of the form 7;— 7; as #;, %5, . . . ty. Then

using the absolute integrability we get

N =] -]
2Tf2|r &+ oPdt - Z f fei“”‘”_“’"“"‘dl'"(l)dF(u)dt=
1
T —00 — 00

N ooei(ti+T)(i.—,u)__ei(ti—T)().—‘u)d NOF
-2 [ S s T ware,
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By an argument of the usual type (see e.g. Hopr 1, p. 16) we get

TN
. 1 [ o 2 _
}ﬂszzlr(tzkt)| 0,
-T
and thus
N
lim D\ |7t + ) F = 0.

t-oo 1

Hence there is a sequence ¢, tending to infinity when » tends to infinity such
that B; — 0 and

4 0
s 0

Using Lebesgue’s theorem on bounded convergence we have

P(II)— P>
Thus for large values of »

e+ &2>P(II,)=P(SIL)=P(S)—P(SI")— P(SI})> o — 2.

But in order that this shall be possible for an arbitrarily small &, we must
have p =1 or 0 contrary to our assumption, which proves the sufficiency of
our condition.

To see that it is also necessary we consider the process z(¢)2. As the normal
distribution has a finite moment of the fourth order this process has finite
variance and further

g(t)=E[x2(s)—Ex2(s)][x2(s+t) Ez?( t] = 27%(1).
We know that the limit
T
1 ) 2 —
Jm g7 [ 20ty

exists almost certainly and has the variance

T
D%y = lim 2—11; [@(t dt = hm 517 / 27%(t) dt
-7

T o
“r
But the last expression is according to CRAMER 1
Dy =204, F
1
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where A, F denote the saltuses in the points of discontinuity of F(4). In order
that z(t) shall be metrically transitive it is thus necessary that F (1) is contin-
uous which completes our proof.

When we do not suppose the process to be normally distributed, we do not
get complete knowledge of the process by specifying just the correlation func-
tion. It is still possible to give a criterion of metric transitivity which essen-
tially is a generalization of the above.

The process is sald to be mixing, if for every pair of measurable sets 4, B
1t 1s true that

lim P (4 B;) = P(4) P(B) where B; = I:B.

{—> 00

One knows that the mixing property implies metric transitivity but the con-
verse is not true (see Hopr 1). In the theorem just proved we have seen that
if the process has no point spectrum it is metrically transitive. The spectrum
can then consist of an absolutely continuous part and a singular part. If also
the singular part disappears, Ito has shown in the normal case that the pro-
cess is mixing. But we have seen, again in the normal case, that the process
is metrically transitive even in the case of the spectrum having a singular
component. But then there is a sequence ¢, — oo such that lim 7 (¢,) = 0. This

leads us to the following weakened concept of a mixing process. )
The process is said to be partially mizing if for every measurable set 4 it
is true that there is a sequence ¢,(4) such that
lim P (4 4,) = P(A4).

V>R

Theorem: In order that a process shall be metrically transitive it 1s necessary
and sufficient that it is partially mizing.

If z(t) is partially mixing, it is shown in the same way as above that it is
metrically transitive. We only have to show the necessity of the condition.
Take an arbitrary set 4 and call the characteristic function of A4: for c (¢, w).
This is a stationary process with correlation function

74(t) = Ec(s,w)c(s + t,w) — Ec{s,w)Ec(s + ¢, w) =
= P(AsAsit) — P(A45) P(Asys) = P(AA) — P(4)>

Because of the ergodicity we must have
T

T

.1 .1 f

}’{I’I:oﬁfm(t)dt —;1207./ ra(t)dt = 0.
- 0

As the process is supposed to be (D)-integrable and -measurable, P (4 4¢) is a
continuous function of ¢ (see e.g. Hopr 1). Either r4(f) has a sequence of
zeroes tending to infinity, or it is of constant sign for ¢ >1f,. In both cases
we can find a sequence ¢,(4) for which

lim P(4 4;)) = P(4)?,

which proves the theorem.
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Remark: In the definition of the mixing property a certain condition is to
be satisfied for every measurable set 4. This is not a quite convenient formula-
tion for applications. We shall show that it is sufficient to consider only finite
dimensional intervals. Suppose that

lim P (IJ:) = P(I)P(J)

{00

for every pair of finite dimensional intervals I, J. If 4 is an arbitrary measur-
able set, we can approximate to it by a finite sum ¥ = Y I, of disjoint inter-
vals so that
PA*Y) + P(AY) <e.
Then
|P(4)—P(X)|<e,
and

P{AA(SS)} + PUAA) LY} = P(A4¥) +
+ P(AYY) + P(AITY) + P(AAY) S PAY) + P(A™Y) +

+ P(ASF) + P(AF ) <26
But
P(LX)=P(SL,XIY) = X P(LI)

v 0w Ly

which tends to ¥ P(I,)P(I,) as t tends to infinity and thus

Ly

lim P (X X)) = P (%)%

t—+ o0

We get
[P(Ad4)) —P(AP|<|P(Ad4)—P(X¥)| + |P(XY) — P (22| +

+|PEP—P(AP|=4e+ |[P(EX)— PR3]
so that
limn P (A 4;) = P(A)>.

t—oc

5.11. Applications. We shall ‘proceed to apply the method of maximum
likelihood to two simple stationary stochastic processes. If z(f) is a stationary
normal Markoff process with mean value m and covariance function e—#1¢-¢1,
we know that the spectrum is absolutely continuous and hence the process is
metrically transitive. The likelihood function is

T
4 (1+ 807 {x Oz [20 dt}
f (a), m) =e 0 >

and the maximum likelihood estimate is
T
2(0) + x(T) + p [=(t) dt
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which thus is a consistent and asymptotically efficient estimate of m. In this
case this is true a fortiori because we have seen in 5.6 that m™ is efficient
for finite T'.

Consider now the process in 4.9. It is stationary and of the Markoff type.
The covariance function is also now e~#!¢=%! but as the process is not normally
distributed we can not apply the same result as before to show that it is
metrically transitive. But consider an interval I with the correspondlng time-
points £, %, ...t, and another interval J with the time-points &1, . . . tm.
Let ¢ be a large positive number. Then

P(IJy) = P,(t) P(IJ:|0) + Py(t) P(IJ:|1)

where the index O is used to denote the condition that no change has occurred
during the time £, £; + ¢ and the index 1 for the alternative condition.

Py(t) = e F&tt-td) > 0
when ¢ > co. But

P(IJ.|1) =PI P(J)

which by the aid of the remark in the preceding section shows that z({t) is
metrically transitive. The maximum likelihood estimate has the simple form

n
m* = 1 > x
n+ 147

which can be considered as an integral with a weight function depending upon
the realization. It is unblased because

Em* = Z P.E[m*|v] =m Z P, =
0 0

The variance is easily calculated

\ Z , = (BT) 1 _1—eft
E (m ——m)2=%’P"E[(m"—m)ﬂy]:;(ﬂw)e—ﬁTv—i-lz BT

And as

E(m%n‘—"m) iP,E [; -(v+1)m]2IV}=

we get the following expression for the efficiency

pT ,
1+ 8T)(1—efT)

e(m*) =
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For T =0 we get the efficiency 1, and when T increases e(m”) decreases at

first, but for large values of T e¢(m*) tends to 1 again. If we had used the
best linear estimate of m, we should have got

T
2(0) + z(T) + B [w(t) dt
0

L= 2+ BT
with the variance
2
2% 4
Dimi =51 87
We then have the efficiency
BT
1+5
i) =y g

For T =0 we have e(m]) = e(m”) = 1, and the two estimates must coincide.
For T =0 we get with probability one # = 0 and m* = z,, and of course we
have mi = x, from the expression for mi. When T tends to infinity we get
e{mi) - §.

The equidistributed estimate

has the variance

asymptotically when 7 tends to infinity, and the asymptotic efficiency

lime(mg) = 3.
T—+o00

By using some of these linear estimates we thus loose about 50 % of the
efficiency if T is large.

5.12. Distribution of a type of estimates. When we consider stationary
point-processes with adjoined stochastic variables, we may sometimes meet with

n
estimates involving expressions of the type Z z;. To study the asymptotic
1

distribution of these when T tends to infinity we suppose, without any attempt
to generality, that the z’s are independent with mean value zero and standard
deviation 6. We suppose further that n — oo in probability when I — co. Then
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1s asymptotically normal (0, 1) when 7' — oo, because

pl2= -3 plo=

— < Zaly=mn
laVn laVn |
and
2@ .
Plif<a|v=n = Pla); v oo
cVn

where @(z) 1s the normal distribution function, because of the central limit
law. For & > 0 there is a number v(¢) such that

sz

—f<a vy =n
aVn |

— @(a)| < e for v >v(e).

v (&)
Choose T' so large that 2 Prp(v) <e. Then
1

n

Péxi a — D (a) Z Y| P :xl }—@(a) <

- I/\

———=Za|ln=v
1
| leVn oVn

<=2c+¢ 2 Pp(») < 3e
v (e)+1
which 1s the stated result.

If %Z{T; tends to zero when T tends to infinity, the sum Zwi 1S asymp-
1

totically normal {O oVEn(T } because

n

En(T)

But the stochastic variable N has mean value 1 and standard deviation

En(T)
Dn(T) . e . .
ET@(T)’ and hence converges to 1 in probability when T — co. With the aid

of theorem 20.6 in CRAMER 4 the result immediately follows.
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n
D @
Finally, '""1—7:* is asymptotically normal {0, ]7—_(_7—:} which is seen in the
En(T)
same manner because

VEn(T) — = L ] En(D)
nao

oVn

n
5.13. Approximation of estimates

We shall now give a result concérning
estimates analogous to 4.12. To obtain the regular case we have supposed that
P, is absolutely continuous with respect to P,

. We now demand that this
holds uniformly for a€4. Then, if o*(w) is an estimate with

E.a” (0) = v(a),
which we suppose to be a continuous function of a, it is possible to approximate
a* by estimates o (;, i

Z») involving only a finite number of the ecordinates
The approximation will be uniform for a€4
Form the stochastic variable

() - fa'(w) if [a"(0)] <N
lo if |o*(0)]=N.
Then
B (ty— ') = [(ty — a*)?d P = ( a*?d P, 0
2. le*|=N
when N tends to infinity. But

[ a®{t(, a) — flo

la*| <N

@)} dPy(w)| = N2V [T (@, %) — f (@, a)]d Py ()

which according to the assumption on f(w,a) in 5.1 tends to zero when a
tends to «,. Thus

[ a*(w) f (o, a)d Py(w) = v( { o’
le*|zN

ja*|<N

) f (o, a) d Py{w)

is a continuous function of a. Because of Dini’s theorem the above conver-
gence will be uniform, so that for every &> 0 there is a N, = Ny{e) with

E.ftv —a’2P<e for N> N,

Consider now the stochastic variable

aN (Ty, . .- xa) = Bylty |2y, . - . zal.
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When # tends to infinity af (xy, . . . zx) tends to {y(w) almost certainly. In-
troduce the set

ak (1, . . . x0) — ty ()| < &}y = Bn < Q.
We get

Bolay (zg, . .. 20) — ty (@) = [ [af (@1, . . . 20) — ty(@)PdP.(0) =
) < &P, (E,) + 4 N2 P (Ey).

But Py (E:) > 0 when n — oo and because of the uniform absolute continuity
of P, with respect to P, we obtain

E(z [alff (xl, e Z'n) — in (CU)]2 <d if n> Mo (N, 6).
Using the triangular inequality we get the wanted result
E.[ax(®y, . . . ) —a*(w) ]2 <e for all a€4

if N and n are chosen sufficiently large. We can then get an estimate depending
on a finite number of coordinates which has mean value and variance arbi-
trarily close to those of a*(w) uniformly for a € A.

If we form estimates involving a finite number n of coordinates and choose
the best one a*(zy, ...z, of these, the above shows that when we increase
n sufficiently, a* (z,, . . . z,) Is practically as good an estimate as any estimate
depending on all coordinates.

5.14. Estimation of functions. We have hitherto mainly considered the case
when the probability distribution of the process is known but for a real para-
meter. The problem dealt with in 5.2—5 is of another type, because we deal
there with processes about whose probability distribution nothing is known ex-
cept the covariance function. Another type of problems of similar nature is
obtained when the distribution of the process depends upon an wnknown function,
which we want to estimate by the aid of our observations. The two following
sases are illustrative.

Let z(t) be a real, stationary, normal and (D)-measurable process with mean
value zero and correlation function 7 (f) which is supposed to be continuous as
usual. The process is observed during the time (0, 7) and we want to estimate
r(t). It is possible to give a consistent estimate, if the process is metrically
transitive, i.e. if the spectrum is continuous (see 5.10.). We known (see HorF 1,
p. 54—55) that almost certainly for all ¢

T

0

As the process is real and the correlation function symmetrical, we have to
consider only ¢ > 0. But

T t

7
—]lez(s)m(s—t)ds—Tl./x(s)x(s—t)dSZ% /x(s)x(SMt)ds

b 1 0
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which almost certainly tends to zero for all ¢ when T tends to infinity. Hence

the expression
T

50 %/w(s)x(s—t)ds for 0=<¢<T
rril) = .

t

0 for =T,

which depends only upon observations during the time (0, T), is a consistent
estimate of 7 (¢).

Consider now a process that is still stationary, (D)-integrable and metrically
transitive. We want to find a consistent estimate for the distribution function

F(a) =Plz(t) <a}, — o0 <a< oo,
To this end we introduce the stochastic process
(1 if 20 =a
e (w) = .
[0 if z(t0)>a

For a fixed value of ¢ this is a stochastic variable. e (w) is measurable and
integrable on the product space T X £2 where T is an arbitrary finite interval.
We thus have with probability one

T—o

7
[im %,.[et(w)dt = Ee(w) = Plx(t) < a} = F(a).
By

T
But f e:(w) is the time belonging to the interval (— T, T) when z(t) < a.
=7
Denoting
1
ﬁm{w(t, w) =a; {t|<Th = F%(a, w),

which is possible almost certainly according to Fubini’s theorem, we get

lim F7 (a, w) = F(a).

T—oc
Let {a.,; v =1,2,...} be a sequence of real numbers that is everywhere dense
on the real axis. Because of the denumerability we have

lim F7 (a,, w) = F (a,)
T o

almost certainly for all ». But F% (e, w) is a non-decreasing function of a. If
@ is a point of continuity of F (x) and «, | @ and a, t @ we have

, Fi(a), w) < Fi(a, 0) = Fi (d), o)
and it follows that
lim F%(a, w) = F(a)

T+ o0
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almost certainly for all points of continuity of F(z), i.e. F7 is a consistent
estimate of F. In the same way we can construct consistent estimates for the
multi-dimensional distribution functions.

It is easily seen that the estimate in the latter case is unbiased and that
the estimate in the former case can be made unbiased by multiplication with

T . . . ..
the factor v It seems desirable to define concepts like efficiency and to

investigate properties of estimates of functions in such terms.

Before we leave the problem of estimation, we want to point out that the
definition of a confidence region can now be translated almost word for word
to the case of a stochastic process.

The problem of regression

6.1. Regression in function space. Besides the problem of testing and
estimation we will just shortly deal with two other types of inference and show
how they belong to the theory of regression which is since long familiar to the
statisticlan. In the following we shall have to deal with conditional distribu-
tions, and assume, as some times before, that these can be defined with prob-
ability one in such a way that they are probability distributions.

We observe a stochastic process z () during the time-interval T', and desire
to make a statement about a stochastic variable y, when we know the simul-
taneous distribution of {y, x(¢t); ¢€T}. Denoting the observed realization by w,
we have a conditional probability distribution P {y|w} for y. We want to give
a probable value of y knowing w, and we can take some central value of the
distribution P {y|w}. If y has a finite expectation, it seems reasonable to take
the condifional expectation as an estimate of y

v = Ely|o]

To be able to proceed further we must specify the distribution. Suppose
that the process and y are normally distributed with mean value zero and that
x(¢) is continuous in the mean. Denote the Hilbert space generated by z(),
teT, by Ly(X) and form

=P,y
and put
Y =1 + 2

Then zLlz(t); t€T, and because of the normality of the distributions z (¢), (t€ T),
and z are independent stochastic variables. We have almost certainly

Ely|o] = Ely1|w] + Elzlo] = y1(0) + Ez = y;(o).

But y; can also be considered as the point in Ly (X) which makes ||y — z]|;
z € Ly (X); as small as possible. If nothing is assumed about the distributions,
y; seems still to be a reasonable estimate of y. This is nothing but a general-
ization of the fact that the regression of the multi-dimensional normal distribu-
tion is linear.
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6.2. Prognosis as regression. Suppose that z(¢) has the properties demanded
in the preceding section and is normally distributed. As y we take z(c) with
c¢T. The question of how z(c) shall be estimated by the aid of z(t), t€T,
Is known as the problem of prediction or prognosis. The result of 6.1 is im-
mediately applicable to this problem. As several times before we represent the
process by the following series which converges in the mean

o

% (¢) Z;Zr(ﬁ;}('——i); teT,

where the involved quantities are defined in 1.3. It is easily seen that L,(X)
coincides with the space Z spanned by the orthonormal vectors 2., v = 1,2, ...,
so that in order to obtain the prognosis of the process to the time ¢, we just
have to form

x7(c) = Prx(t) = izq.Ezm:(c).
1

But
Erz()=ViEx() [ o) dt = Vi, [r(c, 1) p. (1) dL.
T T
For se€T we have

L [r(s, ) @0 dt = pu(s)
T

and so 1t is natural to put

Ezx(c) = (pé; )

where ¢l{c) are the continued eigen-functions of the process. Hence the best
prognosis is given by

< | P e)
x" (¢) = 2o T

T Vi
This representation is due to Karhunen, defining the best prognosis as the point
in Ly (X) which has the smallest distance to x(¢). For the important case of

a stationary process observed during the interval I = (— oo, q), WiENER 1
has obtained a technique of finding the best linear prognosis.

6.3. An example. If the process is not normally distributed we can either
use the best linear prognosis, or we can try to calculate the conditional ex-
pectation. Let us consider the simple process of 4.11, which is not normally
distributed. Putting T = («, b) we get the conditional distribution function for x (c)

Fzlw) =e P09z —x®)] + [1 — e #C-9] D (z).
The conditional expectation is then

Elz(c)|w] = z(b) e # @,
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which is the same result that would have been obtained by constructing the
best linear prognosis.

6.4. Regions of prognesis. It may happen that we want to give, not a
single point, but a region into which the values of the process at some future
time-points may be expected to fall. This is quite analogous to the case of
estimation by confidence regions (see 2.3).

Suppose that we have observed the process during the time (a, b), and denote
the realization by wq €2, 5. We want to determine a region 7 depending
upon wg,p in the space of all realizations w4 during the time (¢, d), @ < £ q,
such that w,, ¢ can reasonably be expected to fall in a, i. e. such that P (7| wa,»)
is large. In order to be able to choose between different regions, we introduce
a measure m in £, 4 with the property that . ; is the denumerable sum of
sets of finite m-measure. For a fixed w4 » we have the conditional probability

P(S|we); S< Qe a,

which is a probability distribution with probability one. According to the
theorem of Lebesgue on decomposition of additive set functions we obtain

P(S|was) = P(XS|wa0) + [ f(wealwns)dm(o,a),
S

where X = X (w, ) is the singular part of the distribution. We want to find
a set w < 0, 4 with fixed m () and with maximum P (7| wa, ;). This is formally
the same problem that we have considered in 4.1 and we get

7 =X (wq,p) + {f(wc,,z l Wa, b) = k}“’c,d < L g,

where the constant % is determined to give m (7) the required value. = s
called the best region of prognosis with respect to m, and ts thus oblawned by
using a sort of maxvmum likelthood principle.

It is evident that the obtained best region of prognosis will depend upon
the choice of the measure m. We will just sketch two possible ways of choosing
m, applied to a Markoff process.

Consider the following case, where z(n) is a stationary, normal, Markoff
process observed in the integral time-points (--- — 1,0, 1, ---), with mean
value zero and standard deviation 1. The correlation function is then

r(n) = e firl B >0.
Here we have left out the trivial cases § =0, f =+ oco. Let

(@,b) = (—N, —N + 1, ---0)

and let the interval (c,d) be the point ¢ = 7 > 0. Because of the Markoff
property the conditional probability of z(r) with respect to
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depends only on x(0). As the measure m we take the Lebesgue measure on
the axis — oo < (1) << co. The singular part X does not appear and

[m(z) ¢ ﬂ’x(O)‘I2
1— e~2/£t

f=ce
Thus we get the best region of prognosis
—k<z(r)—e Pz (0) <k

If instead the interval (¢, d) is (z, 7+ 1,...7 + »), we get in the same way
a (v -+ 1)-dimensional ellipsoid in the Kuclidean space with coordinates x (7),
z(t+1),...z(r +»). Such a region of prognosis is not fit for applications,
but we can instead confine ourselves to consider intervals

la<m(v +p)<bu; p=0,1,...%

and among them try to find one of maximum probability under the condition
that its Lebesgue volume is fixed. We have the conditional frequency function

2‘ (Fit1-6 y’t)
2

f=ce o lta
where
[y(,:x(())
Iyi=w(r~f»4}—l),7}=1,2,...v+1.
and

[00 = e f"

1Qi=6413,?;=1,2,...1/.

The problem is now reduced to finding the (v + 1)-dimensional interval with
fixed volume and with maximum probability with respect to the given fre-
quency function.

Another possibility is to take as m the absolute (non-conditional) probability
P in 0,4 We still consider a process with a discrete time-parameter and
suppose for simplicity that the distribution is of the continuous type. If then
S < £2; 4 we have

[P(slwa,,,)= [ (e, a] wa 5 dv
S

]P(S) = [ f(we,a)dv
and we get the best region of prognosis & with respect to P

_ [H(@e,a] @a,0) _ [H{wa,0) f (e, a| wa,3) _
{ 7 (e 4) 2’“} { f(wab)f(wcd) Zk}“

@, cd
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so that for a given wq,» we obtain 7 (w,, ;) by choosing points in Q. 4 for which
the conditional frequency function f(ws,»|we,¢) is large.

Take especially the Markoff process that we have just considered. We get
with the same notation

[ -3 \‘ (¥i+1—0i ¥i)?
{ f (we,a]l we,p) =ke LI
l 1y %2. y’“_om)
- 1™
1-
[F(we,a) =Ey e -
and
f wc d'wa é{(1/11 00;!0) 2}
it Bt A ¢
f(ewe, a)
Thus

7= {|lz(r) — &7z (0)| < klzco),...20c4n)

which is different from the best region of prognosis with respect to Lebesgue
measure and does not contain any restriction on the values of z (v +1), ...z (v +¥).

6.5. Filtering as regression. Finally we shall apply the method of 6.1 on
the problem of filtering of stationary processes. This problem has been treated
in WIENER 1, where the filters considered are one-sided, i.e. depend only on
the past. Though this is a very natural assumption in many cases, it is still
plausible that in the filtering of statistical data we have usually no cause to
use only the values of the process in the past. We consider the case when
the realization is known in a long time-interval that can be considered infinite
with regard to the effective breadth of the spectrum of the process.

Either by supposing the process to be normally distributed and using the
conditional expectation, or by finding the best linear filter, we get formally
the same result. Suppose that y(f) is stationary with mean value zero and
with the correlation function

ry(t) = [ € f,(A)dA

— o

where f,(1) 1s a non-negative function integrable over (— oo, c0). On y(t) is
superimposed a noise term 4() which is a stationary process with mean value
zero and correlation function

o0

rs(t) = [ €t fy(R)dA.

—0o0

The observed process is then z(f) = w(t) + 6(¢). We suppose, at first, that the
noise is incoherent, i.e.. that 6(¢) and y(¢) are non-correlated. By the aid of
z(f), —oo <t<<oco, we want to form an estimate of y (7). We consider the
linear combinations

(=]

Zn = Zc(n)x #m) = f Zcin) i ™ dZ() = fyn(/'l)dZ(X)

—o0 1 — 00
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where Z (1) is the orthogonal process belonging to z(f) (see 1.3). In order that
a sequence z, shall converge in the mean to an element z € Ly (X), it 1s necessary
and sufficient that y, (1) converges in the mean to a function y (1) € L, (F), where

F(3) = E|Z(2) f [fu (D) + fs(2
and
2= [y(2)dzZ().

In accordance with the method of 6.1 we shall take z = Pr,x)y(T) which
makes ||z — y(T)| minimum subject to the condition z€ L, (X). But

*® o0 o

e—y(l) = [y(WAZ,M) + [y(NdZs(h)— [€77dZ,(3)

— e — 0 —

and hence
le=v(MIE= [ly() =T Rh@di+ [ly@Ffs2)da
But o o
fly@)— T2 2f{0) + [y(D (A} dA

is minimized by

fy (4) T

N A )
AV

because for each value of 1 the integrand is minimized by this value of y(4).

Further this y(A) belongs to L,(F), because |y(4)| < 1. The variance of the
error of this filter 1s given by

Y (1
Iz y(T)|f = jfy +f()z°“

The best filter is then

Yot (T) = /,,,T(,).emdzu).

It may happen that this expression is too complicated and we can then try
to approximate to yg“pt(T). This is easily seen to be the same as to approximate

to the function W ) fu(2) f@ with the quadratic metric corresponding to the
K . J§

weight function f, + /5. If e.g. we use an approximation of the form

N
A Q0. iy o f?f( ),___
Zc“e fy () + fe(3)
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s0 that

o0

N
flzc‘em/
1

we get the approximate filter

)+ fe(A)]dA<e,

N
varor (T) = D eva(T + @)
1
with
” yopt (T) — wapor (T) ”2 <e.
6.6. A more general problem of filtering. ILet us consider the following
case which is completely analogous to the usual problem of regression in a

finite-dimensional space. z{¢} and y (¢} are stationary processes with the correla-
tion functions
f 6”’ f

- e”’ f,(A)dA.

We suppose that they are stationarily correlated with the cross-correlation
function
ryz(t) = Ey(s)z (s + 1) = [ 1 (D dA.

The only restriction made here is that the cross-correlation spectrum shall be
absolutely continuous. We want to estimate the value y(7) by a linear filter

operating on z(¢). Putting
= [y(WdZ:(a

we have

lo* (1) —y(D)2 = lv* (D> + (D) P —2Re Ey™(T)y(T) =

=_f|y Y2 fe(A)dA+ ff,, d/l——2Refy( Ye~iT4 fy o (A) d A

— o0

We choose y(4) so as to minimize the error |[y*(T) — y(7)|| and get

f’“’( ) W77
v (4) = e
because of
Iylzfx_’2Re}’6_iT}'fyz2 ]fy}z]
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which follows from

— z 2
2Reye it o = 20y VE e | < s Lol
and because of the choice
o _tuz @) g
A) =2 gt T
, _ Y=
leading to the equality
. (A ]2
ly* () 12 fo(3) — 2Rey™ (M) e T4 fyr(d) = — Lf?}x&; |
This filter function can be used because
(17 wermar- (=B < [ma<e
using theorem 3 in Cramir 2. The error of the filter is
lly* (1) —y(T HZ‘P’ Hy(@ )“‘”‘ War=o.

The problem in 6.5 can be considered as a special item of this. The case of co-
herent noise can be treated in the same way. Let the cross-correlation be given by

o0

ryo (1) = [etifya(Rydr = Ey(s)d(s + 0.

—o0Q

We get the spectral intensities

[96(75) () + fo(A) + 2Refya(A)
Y1) fy(4)
lw(t) Xy(): fy(A) + fys()

and the filter function

. fy() + fye(3) vy

(A) = ! T,
VA TLO T @+ 2Refrs )
For f,3 =0 we have the previous result.

It is of some interest to note, that if 7 is considered as a parameter, the
filters obtained are stationary transformations according to the definition of
Karnunew (2).
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