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A nul l s te l l ensatz  for  o r d e r e d  fields 

By D. W. DUBOIS 

For an ordered field k, a realzero of an ideal P in the polynomial ring k[X] = 
k[X 1 ..... X ,]  in n variables is a zero in ]~(n), where k is the realclosure of k, the real- 
variety ~e'n (p) is the set of all realzeros of P,  and, as usual, J(G),  for any subset 
G of ~(n) is the ideal of all members of k[X] that  vanish all over G. Our nullstellensatz 
asserts: 

B 

J~CfR (P) = VP = realradical of P, 
R 

where I/ff is the set of a l l / (X)  such that  for some exponent m, some rational func- 
tions u,(X) in k(X), and positive p~ ek 

/(x)m(1 + Z p,u,(X) 2) E_P. 

The proof, which uses Artin's solution of I-I_ilbert's I7th problem, and which grew 
out of an a t tempt  to find an easier solution to the problem, is straight-forward, 
inspired in large part  by  Lang's elegant formulation of various extension theorems, 
especially Theorem 5, p. 278 [2]. We give a new proof of this theorem, and a generali- 
zation to finitely generated formally real rings over k (Theorem 1). 

Throughout, k will be an ordered field. For any ordered field K, K is its real closure. 
A simple consequence of Artin's work (see Theorem 13 and Lemma 1 of Jacobson, 

Chapter VI [1]) is: 

Artin's Theorem. Let k be an ordered /ield, let K = k ( T ) - - k ( T  1 ... .  , T,)  be a pure 
transcendental ordered extension o/ k, with T~ algebraically independent. Zet ](Y)E 
k[T][Y] have a root in K ,  let u 1 ... .  , Urn be a ]inite set o/ nonzero elements o/ k[T]. 
There exists a homomorphism a over k / t o m  k[ T] to k satis/ying 

(i) a(u,)-~e0, l<~i<~m. 
(ii) f ( Y )  has a root in lc. 

Lang's Theorem (Lang, Theorem 5, p. 278 [2]). Let k be an ordered/ield, let k~-f-*R 
be an order.embedding o ] k  into a realclosed ]ield R. Let K be a ]ield containing k and 
admitting an order extending the order o / k .  Then /or  every ]inite subset E o / K  there 
exists a homomorphism to: k[ E ] o  R extending T. 

Pros/. Suppose the theorem is known for the ease where • is the inclusion map 
k c  ~. For general T, the algebraic closure ~k in R is a real closure of Tk and also of k, 
so by  the uniqueness theorem for real closures there exists to: vk ~ k such that  to is 
order preserving and toy is the inclusion k c  ~. By supposition there exists a: k[E]-->lc. 
Then to-in: k [ E ] ~ R  extends v. 
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Hence we consider the ease of ~ equal to the inclusion of/c in ~. I t  is obviously enough 
to prove the claim under the hypothesis that  K[/¢ is finitely generated. If K is a pure 
transcendentM extension of k then our claim is Artin's Theorem. Suppose K =  
k(T) (u), where/c(T) =/c(T 1 ..... Tn), T1 ..... T~ is a transcendence base and u is alge- 
braic over/c(T). Let  u be taken as integral over/~[T] with monic minimal polynomial 
re(X) in/c[T] [X]. Let  E be a finite subset of K and let D consist of all denominators 
of coefficients of u'  appearing in expressions for members of E as polynomials in u 
of degree less than  the degree of re(X). Let  K be given a fixed order extending the 
order of/c. Then re(X) has a root in the real closure of k(T). By Artin's Theorem there 
exists a homomorphism a over/c from k[T] to k such that  

(i) I f d e D  then a(d)~=O. 
(ii) m~(X) has a root, say z, in k. 

Suppose/(x)  E/c[T] [X] vanishes at  u. Th e n / (X )  =m(X)q(X),  re(X) is primitive, so 
by  Gauss's Theorem, q(X)E k[T] [X]. Hence / (X)  belongs to the kernel of the homo- 
morphism 

g(x)-+g~(z), ~[T] [X]-~. 

Induced is a homomorphism over k 

~:l(u)-~r(z), k[T][~]-*~. 

For d in D ~  k[T], ~a(d)=d(d)=I=0. Thus ~a extends to ~':]¢[T] [E]-+ k. 

Lang's Corollary [2]. 1 /u l< . . .  <um are arbitrary members of k[E] then the T~ o/the 
theorem can be chosen so that ~(ul) < ... <~(um). 

Definitions. Let  k be an ordered field, let A be a unitary commutative ring contain- 
ingk. 

S(A) - S(A ] k) = {1 + Z  p,af; a, eA, 0 <T, ek}. 

"A lie is/ormaUy reed", "A is formally real over lc" mean that  if Z pta~ = O, 0 <p~ E 1¢, 
a~EA, then a,=O for all i. 

Examples of formally real rings over k: If  K [ k  is a field extension then K I/c is 
formally'real if and only if the order of/c extends to K. If A I k is formally real so is 
A[X] I/c, where A[X] =A[X1 ..... Xn] is the polynomial ring. 

P r o p o s i t i o n  1. I f  A [ Ic is tormally real then S(A [ 1~) is a multilolicative set containing 
no zerodivisors. The $otal ring o t fractions is formally real over k. Thus we have 

k c  A c S-1A c A 1 = total ring o//factions, 

each/ormally real over k. 

The proof is routine and is omitted. 
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Definition. Let  A be formally real over k, let A 1 be the total ring of fractions of A. 
We  set 

SI(A) -= SI(A I k) = A n S(A1). 

Clearly SI(A ) is a multiplicative subset of A containing no zero divisors, since A 1 
• is also formally real over k. 

Lemma. Let A { k be formally real, let P be an ideal of A which is maximally disjoint 
from SI(A ). Then A /P  is a formally real integral domain over k, and the order of k 
extends to the field of quotients of AlP. 

Proof. Since SI(A ) is multiplicative, P is prime and A/P is an integral domain. 
:Let P be any  ideal disjoint from SI(A ) and suppose AlP is not formally real over k. 
"rhea there exist a~ in A, p~>0 in k, a 1 not i nP ,  such tha t  

n 

a = ~ p~ a~ belongs to P.  (1) 
i ~ l  

:Now we shall show tha t  P+axA  is also disjoint from SI(A ) from which follows the 
Lemma.  Suppose P + a x A  meets SI(A ). Then there exist u in P,  d in A, bt in A1, 
.q~ >0  in k, such that  

u +dpaa 1 = 1 + Z q~b~ESI(A ). 

;Squaring both sides gives (r~ > 0  in k, c~ in A1): 

u(u+2dplc~)=l+~r~e'~+d~pl - a  ~a , (2) 

where we have substi tuted from (1) for pla~. Now a belongs to P, so after transposing 
d2pla, we have a member  of P on the left side of (2) and a member  of SI(A) on the 
right side, contradicting our hypothesis tha t  P is disjoint from SI(A ). 

Theorem 1. I f  A I k is a finitely generated formally real ring then any order-embedding 
y~ of k into a real closed field F extends to a homomorphism of A ] k into F. 

Proof. Let P be an ideal of A maximally disjoint from SI(A ). Write A =k[x]= 
k[x 1 ..... x~] let ~ be the canonical map A ~ A / P :  

]dx] "-~k[ax~ . . . . .  ax.] = k[~x]. 

Since A/P is finitely generated, the Lemma allows application of Lang's  Theorem to 
yield a map v~:k[ax]-~ F extending v 2. Then v~ also extends ~. 

Corollary. Let A be formally real over k, let u 1 ..... u, be elements of A which are not 
zero-divisors. Then there exists a homomorphism yJ: k[u 1 ..... Un]-~ k over k with ~fl(u~) 40,  
i = l  ..... n. 

Proof. Apply the theorem to the finitely generated formally real subring k[u 1 ... .  , u~, 
1 1 u~ .... .  u ;  ] I k of the total  fraction ring of A. 
Let  A =k[X] =k[X~, ..., X,]  be the ring of all polynomials in n variables over the 

ordered field ]~. Let  P be an ideal of A. If  f(X) is a polynomial and if there exist 
m > 0, 0 < p ,  e l c, and polynomials ok(X), h,(X) such that / (X)~(1 + Zp,g,(X)2h,(X) -~) E 
P, then f(X) clearly vanishes at  every realzero of the ideal P.  Thus 
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R 
VP c J ~ R  (P)- 

a 

I t  is easy to verify that  P n  SI(A) = ~ * ~ V P . A .  

R 
Nullstellensatz. For an ordered field k, J~¢'a (P) = V-P /or every P in b[X 1 ..... Xn]. 

Proo]. Following the argument of Zariski-Samuel vol. II ,  p. 164 [3], we first show: 
a 

I f  V-P is a prolzer s'u]oba o//c[X] then ~/,fa(P)=i=d?. H P= M, where M is an ideal, then 
obviously ~ a  ( M ) c  "Irk (P), so it is quite enough to verify the claim when P is maxi- 
mally disjoint from S 1. According to the Lemma, b[X]/P is a finitely generated for- 
really real integral domain which admits a homomorphism ~0 over /c (by Lang's 
Theorem) into k. Denoting the eoset of X~ in ]c[X]/P by x~, the point (~o(11) . . . .  , ~(x,)) 
is a member of "f'a (P), since i f / (X)  belongs to P then 

o = ~( l (X)  + e )  = 1(~0(11) ... . .  ~o(~.)). 

This proves the italicized assertion. 
Now to prove the theorem, let P be any ideal, say P = (/I(X) ..... /q(X)), and suppose 

/(X) belongs to J ~ a ( P ) .  The ideal in ]¢[X][T] generated by  {/I(X) ..... /q(X), 
1 - T / ( X ) }  has no realzeros. By  the italicized claim there exist polynomials h(X, T), 
h~(X, T), and rational functions g~(X, T) such that  

1 + Z  p,g,(X, T ) ' = h ( X ,  T ) ( 1 - T / ( X ) ) + Z  h,(X, T)/,(X), 0<10,6/c). (1) 

Suppose/ (X)  -1 can be substituted for T on the left side. The fight side has only 
powers o f / ( X )  in the denominators so for some m > 0, we get an expression, with 
polynomials for ut(X), 

/ ( x ) ~ o  + Z  p , g , ( x ,  /(x)-~)~) = Z u , ( x ) / , ( x ) ,  
a 

and the right side belongs to P.  Hence / (X)  fi l/ft. The proof will be completed by  
showing tha t / (X)  -1 can be substituted for T on the left side of (1). Observe that  

It(X, T) = b(Xa .... X, ,  1 - T/(X)). 

Set Y = 1 - T/(X). Extend the order of b to K(X, T) so that  1 - T](X) is inlinitesimal 
relative to b(X). Suppose ](X) -1 cannot be substituted for T in (1). Then for at least 
one gi(X), the denominator is divisible by 1 -  T/(X)= Y, hence the left side is in- 
finitely large relative to b(X 1 ..... X,)  while the right side is not, since it is a poly- 
nomial in T =/(X)-I(1 - Y) (coefficients in ~(X)) which has the same order of magni- 
tude as / (X)  -1Ek(X). The contradiction completes the proof. 
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