A nullstellensatz for ordered fields

By D. W. Dubois

For an ordered field k, a realzero of an ideal P in the polynomial ring $k[X] = k[X_1, ..., X_n]$ in n variables is a zero in $\bar{k}^{(n)}$, where \bar{k} is the real-closure of k, the real-variety $\mathscr{V}_R(P)$ is the set of all realzeros of P, and, as usual, $\mathscr{I}(G)$, for any subset G of $\bar{k}^{(n)}$ is the ideal of all members of k[X] that vanish all over G. Our nullstellensatz asserts:

$$\mathscr{IV}_R(P) = \sqrt[R]{P} = real radical of P,$$

where $\sqrt[R]{P}$ is the set of all f(X) such that for some exponent m, some rational functions $u_i(X)$ in k(X), and positive $p_i \in k$

$$f(X)^m(1+\sum p_iu_i(X)^2)\in P.$$

The proof, which uses Artin's solution of Hilbert's 17th problem, and which grew out of an attempt to find an easier solution to the problem, is straight-forward, inspired in large part by Lang's elegant formulation of various extension theorems, especially Theorem 5, p. 278 [2]. We give a new proof of this theorem, and a generalization to finitely generated formally real rings over k (Theorem 1).

Throughout, k will be an ordered field. For any ordered field K, K is its real closure. A simple consequence of Artin's work (see Theorem 13 and Lemma 1 of Jacobson, Chapter VI [1]) is:

Artin's Theorem. Let k be an ordered field, let $K = k(T) \equiv k(T_1, ..., T_n)$ be a pure transcendental ordered extension of k, with T_i algebraically independent. Let $f(Y) \in k[T][Y]$ have a root in \overline{K} , let $u_1, ..., u_m$ be a finite set of nonzero elements of k[T]. There exists a homomorphism σ over k from k[T] to \overline{k} satisfying

- (i) $\sigma(u_i) \neq 0, 1 \leq i \leq m$.
- (ii) $f^{\sigma}(Y)$ has a root in \bar{k} .

Lang's Theorem (Lang, Theorem 5, p. 278 [2]). Let k be an ordered field, let $k \xrightarrow{\tau} R$ be an order-embedding of k into a realclosed field R. Let K be a field containing k and admitting an order extending the order of k. Then for every finite subset E of K there exists a homomorphism $\psi: k[E] \to R$ extending τ .

Proof. Suppose the theorem is known for the case where τ is the inclusion map $k \subset \overline{k}$. For general τ , the algebraic closure $\overline{\tau k}$ in R is a real closure of τk and also of k, so by the uniqueness theorem for real closures there exists $\psi \colon \overline{\tau k} \cong \overline{k}$ such that ψ is order preserving and $\psi \tau$ is the inclusion $k \subset \overline{k}$. By supposition there exists $\sigma \colon k[E] \to \overline{k}$. Then $\psi^{-1}\sigma \colon k[E] \to R$ extends τ .

D. W. DUBOIS, A nullstellensatz for ordered fields

Hence we consider the case of τ equal to the inclusion of k in \bar{k} . It is obviously enough to prove the claim under the hypothesis that $K \mid k$ is finitely generated. If K is a pure transcendental extension of k then our claim is Artin's Theorem. Suppose K = k(T)(u), where $k(T) = k(T_1, ..., T_n)$, $T_1, ..., T_n$ is a transcendence base and u is algebraic over k(T). Let u be taken as integral over k[T] with monic minimal polynomial m(X) in k[T][X]. Let E be a finite subset of K and let K consist of all denominators of coefficients of K appearing in expressions for members of K as polynomials in K of degree less than the degree of K. Let K be given a fixed order extending the order of K. Then K has a root in the real closure of K. By Artin's Theorem there exists a homomorphism K0 over K1 from K2 to K3 such that

- (i) If $d \in D$ then $\sigma(d) \neq 0$.
- (ii) $m^{\sigma}(X)$ has a root, say z, in \bar{k} .

Suppose $f(x) \in k[T][X]$ vanishes at u. Then f(X) = m(X)q(X), m(X) is primitive, so by Gauss's Theorem, $q(X) \in k[T][X]$. Hence f(X) belongs to the kernel of the homomorphism

$$g(X) \rightarrow g^{\sigma}(z), \quad k[T][X] \rightarrow \bar{k}.$$

Induced is a homomorphism over k

$$\psi: f(u) \to f^{\sigma}(z), \quad k[T][u] \to \bar{k}.$$

For d in $D \subseteq k[T]$, $\psi(d) = \sigma(d) \neq 0$. Thus ψ extends to $\psi': k[T][E] \rightarrow \bar{k}$.

Lang's Corollary [2]. If $u_1 < ... < u_m$ are arbitrary members of k[E] then the ψ of the theorem can be chosen so that $\psi(u_1) < ... < \psi(u_m)$.

Definitions. Let k be an ordered field, let A be a unitary commutative ring containing k.

$$S(A) \equiv S(A \mid k) = \{1 + \sum p_i a_i^2; a_i \in A, 0 < p_i \in k\}.$$

"A | k is formally real", "A is formally real over k" mean that if $\sum p_i a_i^2 = 0$, $0 < p_i \in k$, $a_i \in A$, then $a_i = 0$ for all i.

Examples of formally real rings over k: If $K \mid k$ is a field extension then $K \mid k$ is formally real if and only if the order of k extends to K. If $A \mid k$ is formally real so is $A[X] \mid k$, where $A[X] = A[X_1, ..., X_n]$ is the polynomial ring.

Proposition 1. If $A \mid k$ is formally real then $S(A \mid k)$ is a multiplicative set containing no zerodivisors. The total ring of fractions is formally real over k. Thus we have

$$k \subseteq A \subseteq S^{-1}A \subseteq A_1 = total \ ring \ of \ fractions,$$

each formally real over k.

The proof is routine and is omitted.

Definition. Let A be formally real over k, let A_1 be the total ring of fractions of A. We set

$$S_1(A) \equiv S_1(A \mid k) = A \cap S(A_1).$$

Clearly $S_1(A)$ is a multiplicative subset of A containing no zero divisors, since A_1 is also formally real over k.

Lemma. Let $A \mid k$ be formally real, let P be an ideal of A which is maximally disjoint from $S_1(A)$. Then $A \mid P$ is a formally real integral domain over k, and the order of k extends to the field of quotients of $A \mid P$.

Proof. Since $S_1(A)$ is multiplicative, P is prime and A/P is an integral domain. Let P be any ideal disjoint from $S_1(A)$ and suppose A/P is not formally real over k. Then there exist a_i in A, $p_i > 0$ in k, a_1 not in P, such that

$$a = \sum_{i=1}^{n} p_i a_i^2 \text{ belongs to } P.$$
 (1)

Now we shall show that $P+a_1A$ is also disjoint from $S_1(A)$ from which follows the Lemma. Suppose $P+a_1A$ meets $S_1(A)$. Then there exist u in P, d in A, b_i in A_1 , $q_i > 0$ in k, such that

$$u + dp_1 a_1 = 1 + \sum q_i b_i^2 \in S_1(A).$$

Squaring both sides gives $(r_i > 0 \text{ in } k, c_i \text{ in } A_1)$:

$$u(u+2dp_1a_1)=1+\sum_{i}r_ic_i^2+d^2p_1\left(-a+\sum_{i=2}^np_ia_i^2\right),$$
 (2)

where we have substituted from (1) for $p_1a_1^2$. Now a belongs to P, so after transposing d^2p_1a , we have a member of P on the left side of (2) and a member of $S_1(A)$ on the right side, contradicting our hypothesis that P is disjoint from $S_1(A)$.

Theorem 1. If $A \mid k$ is a finitely generated formally real ring then any order-embedding ψ of k into a real closed field F extends to a homomorphism of $A \mid k$ into F.

Proof. Let P be an ideal of A maximally disjoint from $S_1(A)$. Write $A = k[x] = k[x_1, ..., x_n]$ let σ be the canonical map $A \to A/P$:

$$k[x] \xrightarrow{\sigma} k[\sigma x_1, ..., \sigma x_n] = k[\sigma x].$$

Since A/P is finitely generated, the Lemma allows application of Lang's Theorem to yield a map $\bar{\psi}: k[\sigma x] \to F$ extending ψ . Then $\bar{\psi}\sigma$ also extends ψ .

Corollary. Let A be formally real over k, let $u_1, ..., u_n$ be elements of A which are not zero-divisors. Then there exists a homomorphism $\psi: k[u_1, ..., u_n] \to \overline{k}$ over k with $\psi(u_i) \neq 0$, i = 1, ..., n.

Proof. Apply the theorem to the finitely generated formally real subring $k[u_1, ..., u_n, u_1^{-1}, ..., u_n^{-1}] \mid k$ of the total fraction ring of A.

Let $A = k[X] = k[X_1, ..., X_n]$ be the ring of all polynomials in n variables over the ordered field k. Let P be an ideal of A. If f(X) is a polynomial and if there exist m > 0, $0 < p_i \in k$, and polynomials $g_i(X)$, $h_i(X)$ such that $f(X)^m (1 + \sum p_i g_i(X)^2 h_i(X)^{-2}) \in P$, then f(X) clearly vanishes at every realzero of the ideal P. Thus

D. W. DUBOIS, A nullstellensatz for ordered fields

$$\sqrt[R]{P} \subset \mathscr{IV}_R(P).$$

It is easy to verify that

$$P \cap S_1(A) = \phi \Leftrightarrow \sqrt[R]{P} \neq A.$$

Nullstellensatz. For an ordered field k, $\mathcal{IV}_R(P) = \sqrt[R]{P}$ for every P in $k[X_1, ..., X_n]$.

Proof. Following the argument of Zariski-Samuel vol. II, p. 164 [3], we first show:

If VP is a proper subset of k[X] then $\mathscr{V}_R(P) \neq \phi$. If $P \subset M$, where M is an ideal, then obviously $\mathscr{V}_R(M) \subset \mathscr{V}_R(P)$, so it is quite enough to verify the claim when P is maximally disjoint from S_1 . According to the Lemma, k[X]/P is a finitely generated formally real integral domain which admits a homomorphism ψ over k (by Lang's Theorem) into k. Denoting the coset of X_i in k[X]/P by x_i , the point $(\psi(x_1), ..., \psi(x_n))$ is a member of $\mathscr{V}_R(P)$, since if f(X) belongs to P then

$$0 = \psi(f(X) + P) = f(\psi(x_1), ..., \psi(x_n)).$$

This proves the italicized assertion.

Now to prove the theorem, let P be any ideal, say $P = (f_1(X), ..., f_q(X))$, and suppose f(X) belongs to $\mathscr{IV}_R(P)$. The ideal in k[X][T] generated by $\{f_1(X), ..., f_q(X), 1 - Tf(X)\}$ has no realzeros. By the italicized claim there exist polynomials h(X, T), $h_i(X, T)$, and rational functions $g_i(X, T)$ such that

$$1 + \sum p_i g_i(X, T)^2 = h(X, T)(1 - Tf(X)) + \sum h_i(X, T) f_i(X), \ 0 < p_i \in k). \tag{1}$$

Suppose $f(X)^{-1}$ can be substituted for T on the left side. The right side has only powers of f(X) in the denominators so for some m>0, we get an expression, with polynomials for $u_i(X)$,

$$f(X)^m(1+\sum p_ig_i(X,f(X)^{-1})^2)=\sum u_i(X)f_i(X),$$

and the right side belongs to P. Hence $f(X) \in \sqrt{P}$. The proof will be completed by showing that $f(X)^{-1}$ can be substituted for T on the left side of (1). Observe that

$$k(X, T) = k(X_1, ..., X_n, 1 - Tf(X)).$$

Set Y = 1 - Tf(X). Extend the order of k to K(X, T) so that 1 - Tf(X) is infinitesimal relative to k(X). Suppose $f(X)^{-1}$ cannot be substituted for T in (1). Then for at least one $g_i(X)$, the denominator is divisible by 1 - Tf(X) = Y, hence the left side is infinitely large relative to $k(X_1, ..., X_n)$ while the right side is not, since it is a polynomial in $T = f(X)^{-1}(1 - Y)$ (coefficients in k(X)) which has the same order of magnitude as $f(X)^{-1} \in k(X)$. The contradiction completes the proof.

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NeM. 87106, U.S.A.

REFERENCES

- 1. Jacobson, N., Lectures in Abstract Algebra, vol. III, Van Nostrand, 1964.
- 2. Lang, S., Algebra. Addison-Wesley, 1965.
- 3. ZARISKI, O., and SAMUEL, P., Commutative Algebra, vol. II. Van Nostrand, 1960.

Tryckt den 18 december 1969

Uppsala 1969. Almqvist & Wiksells Boktryckeri AB