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A nullstellensatz for ordered fields
By D. W. Duso1s

For an ordered field k, a realzero of an ideal P in the polynomial ring A[X]=
kX, ..., X,] in n variables is a zero in k™, where % is the realclosure of %, the real-
variety ¥ 5 (P) is the set of all realzeros of P, and, as usual, #(G), for any subset
@ of =™ is the ideal of all members of k[ X] that vanish all over . Our nullstellensatz
asserts:

R
IV o (P) = VP = realradical of P,
R
where VP is the set of all f(X) such that for some exponent m, some rational func-
tions %,;(X) in k(X), and positive p,€k

HX)™1+Z p,u(X)2) EP.

The proof, which uses Artin’s solution of Hilbert’s 17th problem, and which grew
out of an attempt to find an easier solution to the problem, is straight-forward,
ingpired in large part by Lang’s elegant formulation of various extension theorems,
especially Theorem 5, p. 278 [2]. We give a new proof of this theorem, and a generali-
zation to finitely generated formally real rings over k (Theorem 1).

Throughout, & will be an ordered field. For any ordered field K, K is its real closure.

A simple consequence of Artin’s work (see Theorem 13 and Lemma 1 of Jacobson,
Chapter VI [1]) is:

Artin’s Theorem. Let k be an ordered field, let K =k(T)=k(Ty, ..., T,) be a pure
transcendental ordered extension of k, with T'; algebraically independent. Let f(Y)€
E[TILY) have o root in K, let uy, ..., u,, be a finite set of nonzero elements of k[T].
There exists a homomorphism o over k from k[T] to k satisfying

(i) o(u) =0, 1<i<m.

(ily f°(Y) has a root in k.

Lang’s Theorem (Lang, Theorem 5, p. 278 [2]). Let k be an ordered field, lot k—R
be an order-embedding of k into a realclosed field R. Let K be a field contasning k and
admitting an order extending the order of k. Then for every finite subset E of K there
exists & homomorphism y: k[ E]- R extending .

Proof. Suppose the theorem is known for the case where 7 is the inclusion map
k<k. For general 7, the algebraic closure 7k in R is a real closure of 7k and also of k,

so by the uniqueness theorem for real closures there exists yp: Tk =k such that p is
order preserving and 7 is the inclusion k< k. By supposition there exists o: k[ £]— .
Then y~lg: k[E]—~ R extends 7.
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Hence we consider the case of T equal to the inclusion of % in %. It is obviously enough
to prove the claim under the hypothesis that K|k is finitely generated. If K is a pure
transcendental extension of % then our claim is Artin’s Theorem. Suppose K=
k(T)(u), where ¥(T)=k(T,, ..., Ty), T, ..., Ty, i8 a transcendence base and u is alge-
braic over k(7'). Let % be taken as integral over k[7'] with monic minimal polynomial
m(X) in ¥[T][X]. Let E be a finite subset of K and let D consist of all denominators
of coefficients of ! appearing in expressions for members of & as polynomials in »
of degree less than the degree of m(X). Let K be given a fixed order extending the
order of k. Then m(X) has a root in the real closure of {7"). By Artin’s Theorem there
exists a homomorphism o over & from {7'] to % such that

(i) Ifd€D then o(d)+0.
(i) m°(X) has a root, say z, in k.

Suppose f(z) EE[T][X] vanishes at . Then f(X)=m(X)qg(X), m(X) is primitive, so
by Gauss’s Theorem, ¢(X)€k[T][X]. Hence f(X) belongs to the kernel of the homo-
morphism _

9(X)~>9°(z), k[T][X]—k.

Induced is 2 homomorphism over %
p:f(w)>f(2), kT][u]—k.
For d in D<K[T), p(d)=0(d) +0. Thus y extends to ¢ :k[T][E]~k.

Lang’s Corollary [2]. If u,<...<wu,, are arbitrary members of k[ E] then the w of the
theorem can be chosen so that p(u,) <...<y(uy).

Detinitions. Let & be an ordered field, let 4 be a unitary commutative ring contain-
ing k.
S(4) =8(4|k) ={1+Z p,af; a,€4, 0<p;€k}.
“A|k is formally real”, “A is formally real over k” mean that if ¥ p,af =0, 0<p,€k,
a;€4, then a,;=0 for all 4.
Examples of formally real rings over k: If K|k is a field extension then K|k is

formally real if and only if the order of k extends to K. If 4|k is formally real so is
A[X]|k, where A[X]=A[X,, ..., X,] is the polynomial ring.

Proposition 1. If A |k is formally real then S(4|k) is a multiplicative set containing
no zerodivisors. The total ring of fractions is formally real over k. Thus we have

kc A<=814 < 4, =total ring of fractions,
each formally real over k.

The proof is routine and is omitted.
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Definition. Let 4 be formally real over &, let 4, be the total ring of fractions of 4.
We set

8,(4) = 8,(4 k) = 40 8(4,).

Clearly S,(A) is a multiplicative subset of A containing no zero divisors, since A,
18 also formally real over k.

Lemma. Let 4|k be formally real, let P be an ideal of A which is mazimally disjoint
from 81{A). Then A[P is o formally real integral domain over k, and the order of k
exiends to the field of quotients of A[P.

Proof. Since §;(4) is multiplicative, P is prime and 4/P is an integral domain.
Let P be any ideal disjoint from §,(4) and suppose A/P is not formally real over k.
Then there exist a, in 4, p;>0 in k, a; not in P, such that

a= Y p,a? belongs to P. (1)
i=1

Now we shall show that P+a,4 is also disjoint from 8,;(4) from which follows the
Lemma. Suppose P+-a, 4 meets S;(4). Then there exist 4 in P, d in A4, b, in 4,,
¢;>0 in %k, such that

u+dpya, =1+X ¢;b7€8,(4).

Squaring both sides gives (r;>01in %, ¢; in 4,):
u(u+2dp1a1)=1+Zric12+d2p1(—a+ Zp,-a?), 2)
i=2

where we have substituted from (1) for p,a?. Now a belongs to P, so after transposing
d*p,a, we have a member of P on the left side of (2) and a member of 8;(4) on the
right side, contradicting our hypothesis that P is disjoint from S,(4).

Theorem 1. If A |k is a finitely generated formally real ring then any order-embedding
y of k info a real closed field F extends to a homomorphism of A |k into F.

Proof. Let P be an ideal of A4 maximally disjoint from 8,(4). Write 4 =k[z]=
kzy, ..., z,] let ¢ be the canonical map 4A—4/P:

k[x] > k[o%y, ..., 0%,) = k[ox].

Since A/P is finitely generated, the Lemma allows application of Lang’s Theorem to
yield & map ¢:k[ox]->F extending y. Then o also extends y.

Corollary. Let A be formally real over k, let w,, ..., u, be elements of A which are not
zero-divisors. Then there exists a homomorphism p:k[w,, ..., u,]—k over k with p(u;) %0,
1=1, .., n.

Proof. Apply the theorem to the finitely generated formally real subring klu,, ..., %,,
ur?, ..., %y ]| k of the total fraction ring of 4.

Let 4 =k[X]=Fk[X,, ..., X,] be the ring of all polynomials in n variables over the
ordered field k. Let P be an ideal of 4. If f(X) is a polynomial and if there exist
m >0, 0<p,€Ek, and polynomials ¢,(X), »(X) such that f(X)™(1 +Zp,g,(X2h(X) )€
P, then f(X) clearly vanishes at every realzero of the ideal P. Thus
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R

VP< £ o (P).
R
1t is easy to verify that PNS,(4) =¢p=VP+A.

R
Nullstellensatz. For an ordered field k, ¥ »(P)=VP for every P in X, ..., X,]
Proof. Following the argument of Zariski-Samuel vol. II, p. 164 [3], we first show:
R

If VP is a proper subset of k[X] then ¥ 5(P)+¢. If P< M, where M is an ideal, then
obviously ¥, (M)< ¥ 5 (P), so it is quite enough to verify the claim when P is maxi-
mally disjoint from S,. According to the Lemma, k[ X]/P is a finitely generated for-
mally real integral domain which admits a homomorphism y over & (by Lang’s
Theorem) into k. Denoting the coset of X, in k[ X]/P by ,, the point (y(x,), ..., p(x,))
is a member of ¥, (P), since if f(X) belongs to P then

0 =9p(H(X) +P) = f(y(@y), .., p(,))-

This proves the italicized assertion.

Now to prove the theorem, let P be any ideal, say P = (f,(X), ..., f,(X)), and suppose
f(X) belongs to J¥(P). The ideal in k[ X][7] generated by {f,(X), ..., f(X),
1—T(X)} has no realzeros. By the italicized claim there exist polynomials A(X, T),
hy(X, T), and rational functions ¢,(X, T) such that

1+2 pigd X, TP = MX, T)(1 - TfX)) +Z h(X, T)f(X), 0<p,€k). (1)

Suppose f(X)~! can be substituted for 7' on the left side. The right side has only
powers of f(X) in the denominators so for some m >0, we get an expression, with
polynomials for u,(X),

HX)"A+Z pigy X, ((X)1)?) = X u(X) 14 X),

R
and the right side belongs to P. Hence /(X)EVI—J. The proof will be completed by
showing that f(X)~* can be substituted for T on the left side of (1). Observe that

k(Xr T) = k(Xl, ey Xm 1 "Tf(X))

Set ¥ =1—Tf(X). Extend the order of k to K(X, T') so that 1 — Tf(X) is infinitesimal
relative to %(X). Suppose f(X)! cannot be substituted for 7" in (1). Then for at least
one ¢,(X), the denominator is divisible by 1 —T'f(X) =Y, hence the left side is in-
finitely large relative to k(Xj, ..., X,) while the right side is not, since it is a poly-
nomial in T'=f(X)-Y(1 — ¥) (coefficients in (X)) which has the same order of magni-
tude as f(X)-1€k(X). The contradiction completes the proof.

Department of Mathematics and Statistics, University of New Mewico, Albugquerque, NeM.
87106, U.S.A.

REFERENCES

1. Jacosson, N., Lectures in Abstract Algebra, vol. ITI, Van Nostrand, 1964.
2. Lawg, 8., Algebra. Addison-Wesley, 1965.
3. Zagriskr, O., and Samuzr, P., Commutative Algebra, vol. II. Van Nostrand, 1960.

Tryckt den 18 december 1969
Uppsala 1969. Almqvist & Wiksells Bokiryckeri AB

114



