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Analyticity of fundamental solutions

By KARL GUsTAV ANDERSSON

Introduction

Tréves and Zerner [1] have studied analyticity domains of fundamental solutions
of linear partial differential operators with constant coefficients. They formulate a
general criterion that ensures the existence of a fundamental solution which is
analytic in the complement of a certain algebraic conoid and this criterion shows that
an operator with real principal part and simple real characteristics has a funda-
mental solution which is analytic in the complement of the bicharacteristic conoid.
They also show that a semielliptic operator has a fundamental solution which is
analytic outside a certain linear subspace of R".

In section 1 of this paper we give a criterion (announced in [2]) different from that
of [1], geared to the classical method of constructing fundamental solutions by
integrating over suitable chains in complex space where the Fourier kernel is small
and the characteristic polynomial does not vanish. In section 2 this criterion is
applied to hypoelliptic, in particular semielliptic, operators and to operators with
real principal part and simple real characteristics. Tréves and Zerner remark (l.c. p.
156) that their method does not seem to work in the case of complex coefficients.
In section 3 we give a simple result for such operators. Finally, we generalize
this result to products of operators. In an appendix we have gathered some simple
facts, used in section 3, concerning convergence of distributions.

The subject of this paper was suggested to me by Lars Gérding and I wish to thank
him for his interest and valuable advice. I also want to thank Wim Nuij for contribut-
ing to the appendix.

1. Vectorfields and fundamental solutions

Points in R™ will usually be denoted by =, y or £, 7 and when z =2 + iy € C* we write
Rez=z, Im 2=y and Z =z —ty. On C" we use the duality z-{ =2{ =2, (; +... +2,{, and
the norm |z| =(2-2)}. When P(£) is a polynomial let P(D) be the associated differential
operator, where D, =28[i0x, and D =(Dy, ..., D,). Let P,(&) be the part of P of homo-
geneity k so that P=P, +P,_, +..., where m is the degree of P and hence P,(D)the
principal part of P(D).

Given a differential operator P(D), we denote by V =V (P) the family of vector-
tields

Rres—»w(&)el”
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such that (a) w(&)€CY, (b) w(£) and dw(&)/dé are bounded, (¢) there are positive con-
stants ¢, k, 6 such that

|§] = ¢ = | P(E+w(&))| > k|£] -2

When weV put B, (@) =]g::8(0)P({)1d, { =& +w(§), where df=d; A ... AdL,,
@€CF(R™ and ¢(0)= (23)_"}e””‘-‘(p(x)dx. This defines a distribution £,(x) which
differs from a fundamental solution of P(D) by an entire function (see [1}).

Definition 1. Two elements w,y, w, of V are said to be homotopic, wy~w,, if there is
a bounded C-vectorfield [0, 1] x R™3 (£, &) —>w(t, &) €C™ satisfying (c) above uniformly in
t, such that dw(t, £)/d(t, &) is bounded and w(t, &) reduces to wy, wy when t=0,1 and |&|
large.

Lemma 1.1. If wy~w, then B, — B, is an entire function.

Proof. When 0<t<1, ¢< |£| <N the vectorfield w(t, £) generates an (n+1)-chain
M in R*™ whose boundary dM has four parts, M, and M, corresponding tot=0,1
and M, M, corresponding to |£| =c and |£]| =N. Since d(¢({) P()2d() =0, Stokes
formula gives [a,@(0)P()2d{ =0, provided that M is suitably oriented. Since
@({) decreases faster than any (1+ |Re (|)~% as |Re {| -0, while Im { is bounded,
an easy estimate shows that the integral over M, tends to zero as N —co. The integral
over M, obviously corresponds to an entire function. This proves the lemma.

Definition 2. Let d={(d;. ..., d,) be a vector whose components are =1 and pui
[Ela=21]&|" . A vectorfield wEV(P) is said to belong to W¢=W*P) if there are
positive constants c, @, 8, k such that | P(& +Tw(£))| 2 k|&| % when |&| >¢,1<T<p|{]q

Next we shall define Gevrey classes. When « = (ay, ..., a,) is a multi-index and d
as above, we put |a| =Xz, and o =TTk,

Definition 3. If Q< R” is open, we denote by T(Q) the set of all u€C®(Q) such that
supg | Deu(z)| <ClaH1gzd, for all a, where K< Q is any compact set and C =C(u, K)
is a constant depending on u and K. When y € R™ we say that w €I at y if w€T4Q) for
some netghbourhood € of y.

Remark. Definition 3 makes sense also if the components of d are > 0, but we will
always assume that they are >1.

Lemma 1.2, If w€ W? and if there is a constant ¢ >0, such that y-Im w(§) >c¢ for all
sufficiently large &, then E € at y.

Proof. Let us first notice that if p€CE, then |G(C)| Scg(l +[C])-%e™*™® where
¢>0 is any integer, ¢, a constant depending on ¢ and A(Im {)=min z-Im  when «
belongs to the support of @. Choose 0<7(£)€CYR") such that t(§)=1 for small
& and 7(&) =g, X, (1 +&7)¥%% for large £ Here 0<p, <g is small. Put w(f, &) =tw(£)
and let M be the (n-+1)-chain given by the vectorfield & +w(¢, &), when 1 <t<z(§)
and ¢<|&| <N. By Stokes’ formula the integral of ¢()P({)1d( over M vanishes.
Further, if the support of ¢ is close to y, the exponential factor in the estimate for
@(0) is <1 and it follows that the integral over the part of 3} where |&| =N tends
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to zero as N — co. Henee, if »(&) =1(£)w(£), E,— E, is holomorphic close to y and an
easy argument shows that

Ex)= (27I)—"J‘ P&+ 0(8) 1O Q£+ 9(E)) when z is close to y.
1Eize

In fact, since y-Im v(&) >cy(£), the integral is absolutely convergent when z is close
to y and represents an infinitely differentiable function. Multiplying by ¢(») and
integrating, we get | E,(2)p(x)dx=E(p). If d=(1, 1, ..., 1) we have

—Re i(x +12') (§ +7(E)w(§)) = 2'(§ + (&) Re w(£)) +2r(§) Im w(£) >0

when 2 is close to y, 2’ is real and small and £ is large. Hence E,(x) has a holomorphic
continuation obtained by replacing # by x +14z’ in the integral. When d is arbitrary
one has to estimate the derivatives of E,(x) in & neighbourhood of y. It is well known
(see [3] p. 28) that it suffices to verify the Gevrey-estimates when we only take
derivatives with respect to an arbitrary x,. When « is close to y we have

ID? Ev(x)l — (231)_" | P(rf-{- D(S))—leiz-(5+r(5) Re w(E)—z-7(5) Im 10(5)(5+ ,U(E));I

18i=c
Aot 1+ 8/ a6) | < o] 1+ 3 o) 3

where ¢,, ¢, are suitable positive constants and § is the constant from definition 2.
Integration by parts with respect to the different &;:s now gives the desired estimate.
The following theorem sums up the results of Lemmas 1.1 and 1.2.

Theorem 1. If V 3w~wy€ W? and y-Im wy(£) =¢>0 for & large, then E, €T at y.

2. Applications of Theorem 1

1. Hypoelliptic operators. When P is a polynomial, let Z(P) be the hypersurface
given by P({)=0, {=&+1n€C", and Z,(P) the part of Z(P) where ;=0 for i==£.
The following definition is due to Gorin [4].

Definition 4. P is said to be (f, k)-hypoelliptic with exponent a;>1 if there is a con-
stant ¢>0, such that |&;| <c(1+ |n])** on Z,(P).

The following lemma states some simple properties of (7, k)-hypoelliptic poly-
nomials.

Lemma 2.1. The best possible ay in definition 4 is rational. Further, if P is (7, k)
hypoelliptic for all j, there are positive constants c, g, 8, k such that |P(& +ive,)| >k|&|°
when |E]>¢, 0<7 <Q|§|d. Here ¢, 18 the kth coordinatevector and d={0, ..., Gny).

Proof. Let p(h) be the supremum of & when |P({)|2=0 and (i —h)?<0. Then
Lemma 2.1 in the appendix of [6] gives that u(h) =A4h%1 +0(1)), b~ oo, with rational
a, and the first part of the lemma is proved. Choose an integer m such that m/a, is an
integer for every j. We notice that if a,, ..., @, are positive numbers then Zag <
(Zap)" <n™XZaj, This together with the (j, k)-hypoellipticity of P implies that there
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is a positive constant g, such that P(£ +17e,) 40 for large £ if 7*" <X |&,[*/** and
that we only need to prove the estimate under this assumption. Let u«(R) be the
supremum of — |P(£ +1ive,)|? when |&,|?=R and ©*" <Z|&,[*"** and apply Lemma
2.1 in [6].

Theorem 2 (compare Grusin [5]). If P s (j, k)-hypoelliptic for k=k,, ..., k, and all j
then every tempered fundamental solution of P(D) belongs to '%(Q), where Q=R"—
{z; 2, =... =7, =0} and d,=max ay when b=k, ..., k.

Proof. Let E be an arbitrary tempered fundamental solution of P(D). The Fourier-
transform E of E then satisfies P(&) B =1. If |£| > ¢, where ¢ is the constant from
Lemma 2.1, we may multiply by the C* function P(£)~! and get E=p¢)1=E,
Here w(£)=0 and E,=E,, . Write E=E,+7T, where T=E—E,. T=E—E, has
compact support, so that 7' = D*f for some continuous f with compact support and
some «, Hence T'(z)=a"(2m) " [f(£)e'*d; is analytic.

When y€Q then y,+0 for some p=k; Put w,(§)=1i(sign y,)7(£)e,, where
0<7(£) ECYR™, 7(£)=0 for [&] <c and v(£) =g, Ty (1 +£¢)t* for large £. In view of
Lemma 2.1 the arguments of the proof of Lemma 1.2 show that E,= Fy, in a neig-
bourhood of y and that E.,, €I at y.

As a corollary of Theorem 2 we get the converse part of the following well-known
proposition (see [6]). The operator P(D) has a fundamental solution in [*(R"—0)
if and only if there is a ¢>0 such that ¢|£|,<1+ |7| on Z(P). Such an operator is
said to be hypoelliptic with exponent d. Combining Theorem 2 with this proposition
we also have the following result by Gorin [4]. If P is (4, k)-hypoelliptic for all (4, k)
with exponents a, >1, then P is hypoelliptic with exponent d, where d;=max aj.
In fact Theorem 2 shows that such a P has afundamental solutionin '(R" — 0). We
can also specialize to semielliptic operators P(D)=X a, D* characterized by the
property that there exists an n-tuple m =(my, ..., m,) of integers > 0 such thata, =0
except when |a:m|=X o;/m;<1 and that XZ.m-18,£* does not vanish when
£+0. Here m is unigely determined by P and m; is the degree of P(D) with respect
to D,. Examples of semielliptic operators are elliptic operators, the heat operator
and more generally the p-parabolic operators of Petrowsky. Semielliptic operators
are (j, k)-hypoelliptic for all (j, k) with exponents a;=max (m,/m; 1)(see [5]).
Hence, by Theorem 2, every tempered fundamental solution of P(D) is analytic
outside the intersection of the coordinate planes z, =0 where m, =min m;.

11. Operators with real principal part and simple real characteristics. Let m be
the degree of P. We assume that P, is real and that P has simple real characteristics,
ie. @P,{£)%0 when £=0 is real and P,(£)=0. Here 8 means the gradient. The set of
all real & such that P,(£)=0 will be denoted, by N =N(P) and the set of P,(&),
where £€EN, by N'=N’(P). A subset 4 of R" is said to be conical if A4 =A for all
0+A€R. The set A —{0} will be denoted by 4.

_Lemma 2.2. For every y¢N' and k>0 there is a conical neighbourhood U= U, of
N, a real vectorfield v € C®(R™), homogeneous of degree zero, and a constant ¢ >0 such that

(@) vE)y>c m B () |v(§)-Pu&)] Zk|0PLE)| n U

Proof. Because P,, is homogeneous, we have mP (&) =0P,(£)-§. Hence oP,(£)+0

if £ER" Put w(E) =8P ()] |0P4()]. Since y¢N’, there is an ¢>0 and a conical
neighbourhood U’ of N such that (1) |y-w(£)| <(1—¢)|y| when EEU'. Let U be a
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an entire function. We suppose that ¢ is chosen so large that everything in the proof
that is true only when & is large is true when |&| > ¢. We also often omit the phrase
|| =e.

Put P(l)=(Re P)({) and P*{)=(Im P)({). Given y€ R"—N’, there is a conical
C"-neighbourhood W' of N where y, 8PY({) and OP¥{) are linearly independent.
Hence locally in U’ we can find a holomorphic solution F to the linear system

oPY()- F(§) =oP¥() - F(0) =0, - F({) = 1.

A sunitable partition of unity gives a global C®-solution ¥ in Y’ such that F({) and
|Z|@F(() are bounded. We solve the system du(t, &)/dt =1 |&| F(u(t, £)), u(0, &) =&
for t real and ¢ in a sufficiently small conical R™-neighbourhood U of N. There is a
>0 such that u(t, &) is a C®-function defined on [0, ,] x U. Let x€C® be homo-
geneous of degree zero, a=1 in a neighbourhood of N, =0 outside Y and 0<a<1
otherwise and extend u by »(f, &) =a(&)u(t, &) +(1 — () (& +it]&|n), where n€R"
satisfies -y =1. Finally we put w(t, &) =v(t8(£), &), where B€C* is choosen so that
f(&)=0 when |&| <c+2 and §(£)=1 when |&]| >c¢+3.

One easily verifies that w(t, £) and dw(t, £)/d(¢, &) are bounded by some constant
times |£|, if #, is small enough. Further the following properties are satisfied

(i) w(0,8) =& if |&|>c and w(t, &) =£if |£] <c+2,
(ii) y-Im w(t, &) >¢|&| if |&] = c+3,
(i) PHw(t, £))=P(&), 1=1, 2, in a conical neighbourhood of N and

[P(w(t, é’))l > Ic|£]”‘> 0
otherwise.

(i) is trivial and for (ii) it is sufficient to note that

t
yoult, £>=y-s+i|5|foy-F(u(s, £))ds = y-£+it£].

To verify (iii) we observe that
dP'(u(t, §))/dt = (0F") (u(t, £))- (du(t, £)/dt) =13|&[(@P") (u(t, &) Flu(t, £)) = 0.
Outside a conical neighbourhood of N we know that
[Pu(@)| = k|E[">0 and |Pn(wlt, £) —Pal&)] <|(@Pn) (w(r, £)) (dw(z, §)/dt)|t,
where 0 <v <{. Thus (iii) is satisfied if £, is small enough.

Define E,(¢) = [z ) P(C)2dE, {=w(t, &). (i) implies that E,€§'. Using (ii)
we find, just as in Lemma 1.2, that E,, is analytic at y. It remains to prove that
E, =E, near y. Integrate ¢()P({)! over the boundary of the (n+1)-chain M
given by w(t, £), when 0 <t<#, ¢<|&| <N and |P(£)| >¢. Because of (iii) ¢() P({)~2
is holomorphic on M and Stokes’ formula may be used. (i) and (iii) give that the
integral over the part of &M corresponding to |£] =N tends to zero when N—co.
Further d{ vanishes on the part of 9M given by |P(£)| =¢, because in U’ we may
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locally define holomorphic bijections z=6() such that 8,(5)=P¥(), ¢=1, 2. The
fact that 61 is holomorphic implies that

dE =60 (8-1)* AL =0%(Gy(2)dz) = Gy(0) APYE) A dPAL) A ..o A dBL(D),

where ¢, and G, are holomorphic functions. But this gives that d =0 on the boundary-
piece corresponding to |P(£)| =¢, because here we have, according to (ii), that
Piw(t, &)y =Pi(%), i=1, 2 and PY&), P%£) are connected by PYE)2+P2(£)=¢e% We
end the proof by letting N — oo and after that ¢—0.

Finally we shall generalize Theorem 4 to the case of “regular” products. If P
is a polynomial P will denote the principal part of P. We are going to suppose that
P =P} . PRe@f ... QF, where the P;s and Q,s have real and complex coefficients
respectively. Further the following condition shall be satisfied.

It EER" and Py(d)=...=P(5)=0u(&)=...=0u(H=0
then  8PB; (&), ..., 0P (£), 8 Re ;,(&), ..., 8 Im {;,(§) are linearily independent. (1)

_ When £€N(P) and Py, .., P, @, ..., , are precisely the factors of B, .. P,
)y ... Q; which vanish at &, then N; is defined as the real vector space spanned by the
vectors on the right side of (1). N’ = N'(P) is the union of 0 and all the N¢.

Theorem 5. If P satisfies the conditions above, then P(D) has o fundamental solution
which is analytic outside N'(P).

Proof. In order to define some distribution P(£)-! it suffices to do it locally. Further
we are only interested in the restriction to {&; |&] = ¢}, ¢ large, so it is sufficient to
consider division by %' ... 2fk- (y, +1i2,)® ... (y,+12,)¥, where 2y, ..., Ty, Yy, +ons 2y BTE
coordinates in R™¥*"" and k<n', I<n”. This division is always done as in the
appendix. Let ¢ € C™ be a fixed function such that y(£)=0if [§] <c+1and () =1
if |&]>c+2. Then y(&)-P(&) €S and E(p)= <P(&)7L, p(&)@P(£)> defines a fun-
damental solution of P, modulo an entire function. Put Pia;(&)=(Py(&)—A.)" "
(P&} —An) and Q11;(8) =(@;(&) —7y)* < (@) —7q;), where the As and as are different
real numbers. It is a consequence of the results in the appendix that p- Pl =
P (P, Qo) t=y-Plin §, when A, TI-0, and that Py} is defined asa Cauchy
principal value. . .

Given y€ER"—N’ and £€N suppose that P, ..., P, @,,, ..., @, are exactly the
factors in P,--P,Q;- -, which vanishes at £. Solve locally for |Z| >¢, ¢ large, the
following linear system, in a conical C"-neighbourhood of the line through 0 and
£ 0P(E)- F(Q)=+- =0Py(0)- F(0)=0(Re @) (£)- F(0) = - - =8(Im 1) (©)- F(0) =0, y°
F(£)=1. Proceed then as in the proof of Theorem 4 to find a w satisfying (i), (ii)
and (iii) with the first part of (iii) modified to: P,(w(f, £)) =P,(&) in a conical neigh-
bourhood of N(P;) and (Re @))(w(t, &))=Re Q,(&), (Im @;) (w(t, §)) =Im @,() in a
conical neighbourhood of N{(Q,). This modified (iii) implies that the following scalar
products are defined Ef(p)= <P(w(t, £))1, p(&)P(w(t, £)) det (dw(t, &)/dE) >, 0<E<t,.
Suppose that the support of ¢ is so close to y that z-w(t, &) >¢|&|/2 when x€supp
@. Then the Fubini law for distributions (see e.g. [7] p. 109} gives that

hlp) = < Plwlty, £)77, p(&) € D det (dwlty, £)/dE) > p() da.

Supp @
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But P(wlty, ) p(§) €S’ and et vtedeg

when z€supp ¢ and |2'| is small. Furthermore, we may differentiate with respect
to (x +1z’) under the integral. Hence Ef, is analytic at y.

To show that Ef(p)=FE§(p) it suffices to show that EfAI(p) = E§AI(gp) for all
A, I and then take limits. We therefore integrate ¢(Z) P, 11({)~* over the boundary of
the (n+1)-chain M given by w(t, &), when 0 <t <ty, c+2<|&| <Nand |P,(§)-4,}| >
& vy |@i(€) —n®] >e. Use Stokes’ formula and let N tend to infinity. Exactly
as in the proof of Theorem 4 we note that d{ vanishes on the parts of oM which
corresponds to a condition |Q,(£)—7n| =¢. In the case when the boundarypiece is
given by |P,(£)—1| =¢ the situation is even simpler because here we have d{=
GO AP(OYA - - AdB, (L) and P(w(¢, £)) =P,(&) =A+¢. We can now make ¢—0 because
Py (w(t, &)~ is defined as a Cauchy principal value and the proof is finished.

4. Appendix

Ty, ooy Ty Y1y ooy Yooy 245 ony 2y BT cOOTdinates in B +2"”. We shall give a definition
of the distribution

PlagiPre g Ph(y, +12) "0 - (g, +12) 0 k<n', I1<2”.

If 4, ..., 4, are different real numbers and ¢ € C7’(B), put
(2= Ao (2= )] )= li_n,% fM @) (2~ Ao) - - (2 — A,)] dw,
where M, is the set given by |z — A,| >¢, 0 <r <p. Define also

2P 1=lim (p!)_lf Y d/dx)"p(x) dz.
|z]=e

&30

It is easily verified that x**'-z-?-1=1. Furthermore, we have that
(@A) - (=Rl 2 in §,
if Ay, ..., 4, are different real numbers tending to zero.

Proof (due to Wim Nuij). We have

1 En sp-1
f J Of noq;“’>(x+A0+Alsl+ vt A,8)ds,. . dy,
S1= Sa= sp

=3 plo+ ) (]G40,

K=o i
where Ag=Ag, A, =2A;— Ay, Ay = A, —~ Ap—_1. Hence
tim || glo) a1 - (o= &) e
»
=lim 2713 oz + A) [[T(A— A4)] tdz=1lim { z71 (p)) e P(x) dx.
50 J |z}>e k=0 itk =0 Jrize
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In the same way we define
[y +iz —mo) - (y +iz~7) |71 (@) = [ @(y, 2) [y +52 —705) - - (y + iz —m,) Ly dz,
where i, ..., 71, are different real numbers, and
(y +iz)~2 = (p!)2 f(y +4i2)~2(2/2y)P ply, 2) dy dz.
One proves the same results as above, by the same argument. Put now
Pl=o"® ... @27 @y +12;) 2 ® (4, +72;) " R1® ... ®1.
The continuity of the tensorproduct §'(R™)x §'(R")— §'(R™™) gives that

Pl—\.ln =@ —A) @A) (t+iz—m): - (y,+1z “ﬂal)]-l(?’) =

=lim Wy = A) " - (ya+ 92, — ma)] (=, y, 2) de dy de,

&0 J Mg
where M, is the set given by
|2, =2 =6, 0<i<k 0<r<p,

and that Pylg—~P1in §', if A, [[-0.

REMARK

After the setting of this article L. Hormander pointed out to me the existence of the paper
[8], where it is proved that to an operator P(D) with real coefficients and simple real charac-
teristics and to an arbitrary half-one F containing one point on every bicharacteristic there is a
fundamental solution E with sing. supp £ < F.
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