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Analyticity of fundamental solutions 

By KARL GUSTAV A~D:ERSSON 

Introduction 

Trbves and Zerner [1] have studied analyticity domains of fundamental  solutions 
of linear part ial  differential operators with constant coefficients. They formulate a 
general criterion tha t  ensures the existence of a fundamental  solution which is 
analytic in the complement of a certain algebraic conoid and this criterion shows that 
an operator with real principal par t  and simple real characteristics has a funda- 
mental  solution which is analytic in the complement of the bicharacteristic conoid. 
They also show tha t  a semielliptic operator has a fundamental  solution which is 
analytic outside a certain linear subspace of R n. 

In  section 1 of this paper we give a criterion (announced in [2]) different from tha t  
of [1], geared to the classical method of constructing fundamental  solutions by  
integrating over suitable chains in complex space where the Fourier kernel is small 
and the characteristic polynomial does not vanish. In  section 2 this criterion is 
applied to hypoelliptie, in particular semielliptic, operators and to operators with 
real principal part  and simple real characteristics. Trbves and Zerner remark (1.c.p. 
156) tha t  their method does not seem to work in the case of complex coefficients. 
In  section 3 we give a simple result for such operators. Finally, we generalize 
this result to products of operators. In  an appendix we have gathered some simple 
facts, used in section 3, concerning convergence of distributions. 

The subject of this paper  was suggested to me by  Lars Ghrding and I wish to thank  
him for his interest and valuable advice. I also want  to thank Wim Nuij for contribut- 
ing to the appendix. 

l .  Vectorfields and fundamental solutions 

Points in R ~ will usually be denoted by x, y or ~, ~ and when z = x + i y E C  '~ we write 
Re z =x ,  I m  z = y  and 5 = x  - i y .  On C ~ we use the duality z .$  =z~ =z l~  1 + ... + Zn~n and 
the norm ] z [ = (z. ~)~. When P(~) is a polynomial let P(D)  be the associated differential 
operator, where D~ =O/iax~ and D = (D 1 ... .  , D~). Let  Pk(~) be the part  of P of homo- 
geneity k so that  P =Pro +Pro-1 + .... where m is the degree of P and hencePm(D) the 
principal par t  of P(D) .  

Given a differential operator P(D) ,  we denote by V = V(P) the family of vector- 
fields 
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such that ( a )  w(6)  E C1, (6)  w(6) and dw(() /d t  are bounded, (c) there are positive con- 
stants c, k, 6 such that 

When w E V put E,,,(gj) = > @([)P(()-Id[,  ( = t + w ( t ) ,  where d5 =dC, A ... A dCn, 
E C r ( R n )  and @(;) = (2iz)-n/~"ip(x)dz.  This defines a distribution E,(x) which 

differs from a fundamental solution of P ( D )  by an entire function (see [l]). 

Definition 1. Two elements w,, w, of V are s a d  to be honzotopic, wo-w,, if there is  
a bounded C1-vectorfield [O: 11 x Rn 3 ( t ,  [) -+ w(t, [) E Cn satisfying (c)  above uniformly i n  
t ,  m h  that dw(t, 5)/d(t ,  6 )  i s  bounded and w(t, 6 )  reduces to w,, w, when t =O,1 and 16 1 
large. 

Lemma 1.1. If wo- w, the,& Ewe -Em, i s  an entire function. 

Proof. When 0 < t G l ?  c < 15 1 9 N the vectorfield w(t, 6 )  generates an (n + 1)-chain 
M in R2n whose boundary aH has four parts, M ,  and M I  corresponding to t =O,1 
and M,, M ,  corresponding to 1 6 1 = c and I = N. Since a(@(() P(5)-ld5) = 0, Stokes 
formula gives Sa,@(()P(;)-ld(=O, provided that aM is suitably oriented. Since 
$([ )  decreases faster than any (1 + I Re c 1 )-Q as I Re 5 1 -+ oo, while Im 5 is bounded, 
an easy estimate shows that the integral over M, tends to zero as N +  a. The integral 
over M ,  obviously corresponds to an entire function. This proves the lemma. 

Defiition 2. Let d=(d,, ..., dn) be a vector whose components are 2 1 and put 
I[ 1 = 2; I & I1ldk. A vectorfield w E V ( P )  is said to belong to W d  = W d ( P )  if there are 

positive constants c, Q ,  b, k such that IP(6 + t w ( t ) )  I 2 k 1 6 I -"hen 15 1 2 c ,  1 G z  GQ 15 1 d .  

Next we shall define Gevrey classes. When a =  (a,, ..., m,,) is a multi-index and d 
as above, we put la1 = Z z k  and aad=II&kdk. 

Definition 3. If fig Rn is  open, we denote by rd(L2) the set of all uEC*(fi)  such that 
sup= I D%(x) I 9 C1al+l t ~ l ~ ,  for all a ,  where K E L2 i s  any compact set and C = C(u ,  K )  
is  a constant depending on u and K.  when y E Rn we say that u Erd at y if u E rd@) for 
some neighbourhood R of y. 

Remark. Definition 3 makes sense also if the components of d are 2 0 ,  but we will 
always assume that t.hey are 2 1. 

Lemma 1.2. If w E W d  an.d if there is a constant c >0, such that y - I m  w ( t )  2 c  for all 
sufficiently Earge 6 ,  then E, E rd at y. 

Proof. Let us first notice that if y E C r ,  then I @(() 1 <c,(l -t 15 1 )-~e-~""' where 
q > O  is any integer, c, a constant depending on q and h(Im 5)  =min x.Im [ when x 
belongs to the support of y. Choose 0 <z([ )  EC1(Rn) such that z(6) = 1 for small 
5 and z(E) =el X k  (1  + [;)lzdk for large 6. Here 0 <el <e is small. Put w(t, 5 )  = tw(6) 
and let M be the (n + 1)-chain given by the vectorfield 6 +w(t, t), when 1 <t G t ( 5 )  
and c < < N .  By Stokes' formula the integral of $( f )P( f ) - ldc  over aM vanishes. 
Further, if the support of g, is close to y, the exponential factor in the estimate for 
@(5) is < 1 and i t  follows that the integral over the part of aM where It ( = N  tends 
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to zero as N-~ ¢¢. Hence, if v($)=z(~)w(~), E , -  E~ is holomorphic close to y and an 
easy argument shows that  

E~(x) = ( 2 g ) - ~ |  P(~ + v(~))-le~(~+'(~))d(~ + v(~)) when x is close to y. 
J 

In  fact, since y . I m  v(~) ~>CoZ(~), the integral is absolutely convergent when x is close 
to y and represents an infinitely dffferentiable function. Multiplying by ~(x) and 
integrating, we get ~E~(x)q~(x)dx=E,(c~). If d=(1,  1 ..... 1) we have 

- R e  i(x +ix')(~ +z(~)w(~)) = x'(~ +v(~) Re w(~)) +x~(~) Im w($) >0 

when x is close to y, x' is real and small and ~ is large. Hence E,(x) has a holomorphic 
continuation obtained by replacing x by x +ix' in the integral. When d is arbitrary 
one has to estimate the derivatives of E,(x) in a neighbourhood of y. I t  is well known 
(see [3] p. 28) tha t  it suffices to verify the Gevrey-estimates when we only take 
derivatives with respect to an arbitrary x~. When x is close to y we have 

[ D~ EJx)]  = (2~)- ~ ]fl~l~>o p($  + v($))-le*~ ('~÷*(~) ~ ~(e))-*'*(~)~m w(~)($ + v(~))~ 

det  (I + dv(~) /d~) d~ I < e'; fe-°'~e~(I ~, I ~ + E ] $~ ]~'~)1 ~ ["+Od$, 

where Cl, c2 are suitable positive constants and (~ is the constant from definition 2. 
Integration by parts with respect to the different ~k:s now gives the desired estimate. 
The following theorem sums up the results of Lemmas 1.1 and 1.2. 

Theorem 1. I /  V 3 w ~ w o E W a and y. Im w0(~ )/> c > 0 / o r  ~ large, then E~ E F ~ at y. 

2. Appl icat ions  o f  T h e o r e m  1 

I. Hypoelliptic operators. When P is a polynomial, let Z(P) be the hypersufface 
given by P(~) =0, ~=~+i~?eC n, and Zk(P) the part  of Z(P) where W=0 for i:~k. 
The followi~ug definition is due to Gorin [4]. 

Definition 4. P is said to be (], k)-hypoeUiptic with exponent aj~ >~ 1 i/there is a con- 
~tant ~>0, ~ h  that ]~] <~(1 + ]~])°~* on Z~(P). 

The following lemma states some simple properties of (?', k)-hypoelliptic poly- 
nomials. 

Lemma 2.1. The best possible ajk in definition 4 is rational. Further, i / P  is (], k) 
hypoelliptic /or all 1, there are positive constants c, e, ~, k such that I P(~ ÷ iTek) l >1 kiWI -~ 
when ]~1 >~c, O<~<~e[~la. Here e~ is the kth coordinatevector and d=(alk ..... a~k). 

Proo]. Let  /~(h) be the supremum of ~ when IP(~)]2=O and ( ~ - h ) ~ < 0 .  Then 
Lemma 2.1 in the appendix of [6] gives that  $~(h) =Aha(1 +o(1)), h-~ ~ ,  with rational 
a, and the first part  of the lemma is proved. Choose an integer m such that  m/ajk is an 
integer for every ~'. We notice that  if a 1 .... , am are positive numbers then Za~ ~< 
(Zak) m <~nmZa~, This together with the (?', k)-hypoellipticity of P implies that  there 
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is a positive constant Q, such that  P(~ +i~e~)~ 0 for large ~ if ~2m ~ Z I~ [2~/a~ and 
tha t  we only need to prove the estimate under this assumption. Let  ~(R) be the 
supremum of - I P(~ +i~e~) I ~ when I~  l ~ = R and ~ ~< Z I~ I ~ ' ~  and apply Lemma 
2.1 in [6]. 

Theorem 2 (compare Gru~in [5]). I / P / 8  (?', lc)-hypoeUiptic /or k =bl, ..., kr and all ] 
then every tempered/undamental solution of P(D) belongs to Fd(~), where ~ = R "~- 
{x; xkl= . . . .  xk,=0} and d~=max a m when k=lcl, ..., l¢ r. 

Proof. Let E be an arbitrary tempered fundamental solution of P(D). The Fourier- 
transform /~ of E then satisfies P(~) ~ = 1. If  ] ~ I ~> c, where c is the constant from 
Lemma 2.1, we may multiply by the C ~ function p(~)-i and get ~ =p(~)-I = Ew. 
Here w(~)-0  and E,=Ew.c. Write E=E,~+T,  where T = E - E w .  ~ = J ~ - ~  has 
compact support, so that  ~ = D~'/for some continuous / with compact support and 
some ~ .  Hence T(x) --x~(2~)-"S/(~) et~ d~ is analytic. 

When ye~2 then y~=0 for some p=kz. Put w~(~)=i(signy~)v(~)%, where 
0 ~<T(~)E 5U(R"), ~(~)= 0 for [~1 ~< c and ~(~)=~lZk (1 +~)½d~ for large ~. In view of 
Lemma 2.1 the arguments of the proof of Lemma 1.2 show that  Ew=Ewp in a neig- 
bourhood of y and that  Ewp E 1TM at y. 

As a corollary of Theorem 2 we get the converse part of the following well-known 
proposition (see [6]). The operator P(D) has a fundamental solution in Fd(R~-0) 
if and only if there is a c>0  such tha t  c[~[d~<l + [~1 on Z(P). Such an operator is 
said to be hypoelliptic with exponent d. Combining Theorem 2 with this proposition 
we also have the following result by Gorin [4]. If  P is (?', k)-hypoelliptic for all (],/c) 
with exponents a~k~> 1, then P is hypoelliptic with exponent d, where de=max ajk. 
In fact Theorem 2 shows that  such a P has a fundamental solutionin Fa(R ~ -  0). We 
can also specialize to semielliptic operators P ( D ) = Z  a,D~ characterized by the 
property that  there exists an n-tuple m = (m 1 ... . .  m.) of integers > 0 such thata~ =0  
except when [~:m[ = Z  ~j/mj<<.l and that  Zl~:m~_ta~ does not vanish when 
~4=0. Here m is unlqely detet~nined by P and m~ is the degree of P(D) with respect 
to D,. Examples of semielliptic operators are elliptic operators, the heat operator 
and more generally the p-parabolic operators of Petrowsky. Semielliptic operators 
are (~, k)-hypoelliptic for all (~, k) with exponents am=max (m~]m~, 1)(see [5]). 
Hence, by Theorem 2, every tempered fundamental solution of P(D) is analytic 
outside the intersection of the coordinate planes x~ = 0 where m~ = min m~. 

II. Operators with real principal part and simple real characteristics. Let m be 
the degree of P. We assume that  P~ is real and that  P has simple real characteristics, 
i.e. ~P~(~)=~0 when ~4=0 is real and P~(~) =0. Here ~ means the gradient. The set of 
all real ~ such tha t  P~(~)=0 will be denoted, by N = N ( P )  and the set of ~P~(~), 
where ~ N ,  by N'=N'(P) .  A subset A of R ~ is said to be conical if ~IA =A for all 
0~:2~R. The set A - ( 0 }  will be denoted b y / / .  

Lemma 2.2. For every y~N'  and k > 0  there is a conical neighbourhood ~ = ~  o/ 
_gr, a real vector/ield v ~ C~(R~), homogeneous o/degree zero, and a constant c > 0 such that 

(i) v(~).y>~c in ~ ,  (ii) Iv(~).OP,,(~)l>~klOPm(~)t in 

Proo/. Because Pm is homogeneous, we have mPm(~)=OP~(~)'~. Hence OPm(~)~=O 
if ~ R ' .  Put  w(~)=~P,,(~)/]OP,,(~)]. Since y~N',  there is an ~>0 and a conical 
neighbourhood 7,/' of N such that  (1) ly.w(~)[ <(1 -e ) ]y ]  when ~ e ~ ' .  Let %/be a 
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an entire function. We suppose that c is chosen so large that everything in the proof 
that is true only when 6 is large is true when 1 51 2 c. We also often omit the phrase 
151 2 c .  

Put P1(5) = (Re P) (5 ' )  and P2(Q = (Im P) (5). Given y E Rn - N', there is a conical 
Cn-neighbourhood 'U' of N where y, aP1(() and aP2([) are linearly independent. 
Hence locally in 'U' we can find a holomorphic solution F to the linear system 

A suitable partition of unity gives a global Cm-solution P in U' such that F(C) and 
1 CIaF(5) are bounded. We solve the system du(t, [)/at = i 151 F(u(t, t)), u(O,6) =5  
for t real and 5 in a sufficiently small conical Rn-neighbourhood tll of N. There is a 
to>O such that u(t, 5) is a Cm-function defined on [0, to] x '24. Let aECm be homo- 
geneous of degree zero, a = 1 in a neighbourhood of N ,  a =O outside % and 0 < a < 1 
otherwise and extend u by v(t, 5) = a(E)u(t, 5) + (1 - a(E)) (5 +it 1 5 lq), where 7 E Rn 
satisfies q .  y = 1. Finally we put w(t, 6) =v(tp(t), t ) ,  where p E C* is choosen so t11a.t 
b(5)=0 when (51 < c + 2  andp([)=l  when (51 >c+3.  

One easily verifies that w(t, 5) and dw(t, f)/d(t, 5) are bounded by some constant 
times 1 5 1 , if to is small enough. Further the following properties are satisfied 

(ii) y- Im w(t, E)>tJ[I if 151 3 c + 3 ,  

(iii) Pi(w(t, 5)) =Pi([), i = l , 2 ,  in a conical neighbourhood of N and 

(i) is trivial and for (ii) it is sufficient to note that 

To verify (iii) we observe that 

Outside a conical neighbourhood of N we know that 

where 0 <t Gt. Thus (iii) is satisfied if to is small enough. 

Define E,(v) = jlclac $(C)P(C)-ldC, 5 =w(t, 6). (iii) implies that E, E S'. Using (ii) 
we find, just as in Lemma 1.2, that Et, is analytic a t  y. It remains to prove that 
Et, = E, near y. Integrate $(()P(()-1 over the boundary of the (n + 1)-chain a! 
given by w(t, t ) ,  when 0 <t <to, c G 16 1 < N and 1 P(5) I 3 e .  Because of (iii) $(5) P([)-l 
is holomorphic on M and Stokes' formula may be used. (ii) and (iii) give that the 
integral over the part of aM corresponding to 1 5 1 = N tends to zero when N -+ m. 

Further d[ vanishes on the part of aM given by I P(5) I = E ,  because in a' we may 



locally define holomorphic bijections z=$([) such that $,(;)=Pi([), i = l ,  2. The 
fact that 8-I is holomorphic implies that 

where G,  and G2 are holomorphic functions. But this gives that d; = 0 on the boundary- 
piece corresponding to IP(&)I =&, because here we have, according to (ii), that 
Pi(w(t, 6) )  =Pi(8), i =1, 2 and P1(t), P2(5) are connected by P1(5)2 +P2(5) = E ~ .  We 
end the proof by letting N-. oo and after that &+0. 

Finally we shall generalize Theorem 4 to the case of "regular" products. If P 
is a polynomial p will denote the principal part of P .  We are going to suppose that 
P = P f l  ... PakQP1 ... QPz, where the Pis and Qjs have real and complex coefficients 
respectively. Further the following condition shall be satisfied. 

If 5 E Rn and pil(t) = . . . = &(f) = a,(() = . . . = QiS(5) = 0 

then @i1(5), . . . , a p d t ) ,  a Re Q1(5), . . . , a Im Qi,(6) are linearily independent. (1) 

When E€$(P) and Pi,, ..., Pi", Qj,, ..., Qj8 are precisely the factors of p1 ... pk 
0, ... Q, which vanish a t  5, then N; is defined as the real vect,or space spanned by the 
vectors on the right side of (1). N' =N'(P) is the union of 0 and all the Xi. 

Theorem 5. I f  P satisfies the conditions above, then P(D) has a fundamental solution 
which .is analytic outside N'(P). 

Proof. I n  order to define some distribution P(Q-1 i t  suffices to do i t  locally. Further 
we are only interested in the restriction to (5; 161 > c), c large, so i t  is sufficient to 
consider division by xl;l ... xik. (9, +izl)ql ... (y, + i ~ ~ ) ~ ' ,  where x,, ..., x,., y,, ..., zn,, are 
coordinates in Rn'+2n" and k Gn', 1 Gnu. This division is always done as in the 
appendix. Let y E Cw be a fixed function such that y(5) =O if (5  ( <c + 1 and y(5) = 1 
if 15 1 >c +2. Then y ( t )  .P(E)-l E S' and E(y) = <P(5)-1, y(5)@(5) > defines a fun- 
damental solution of P ,  modulo an entire function. Put pi,& (5) = (PI(5) -4). . 
(pi(5).-&,) and Qi,nj(E) = (Qi(5) -nl). . (Q1(5) -no!), where the I s  and ns are different 
real numbers. It is a consequence of the results in the appendix that y-P-l A I I "  

y ~ '   PI,^, . -&r.nl)-'+y in S', when A, II +O,  and that P-& is defined as a Cauchy 
principal value. 

Given y E Rn -N' and 5 EN suppose that p,,, ..., Fir? Q ~ ~ ,  .. ., Qi, are exactly the 
factors in 9,. .pkQl- - Q, which vanishes a t  5. Solve locally for 1 [ 1 3 c, c large, the 
following linear system, in a conical Cn-neighbourhood of the line through 0 and 
5: aPt,(C). F(5) = - =aPir(C)- F(t) =a(Re Qj,) (t) . F(5) = - . =a(Im Qj,) (5). F(5) =0, y. 
F(5) = 1. Proceed then as in the proof of Theorem 4 to find a w satisfying (i), (ii) 
and (iii) with the first part of (iii) modified to: P,(w(t, 5)) =Pi(5) in a conical neigh- 
bourhood of N(P,) and (Re Qi) ( ~ ( t ,  5)) =Re Q,(5), (Im Qi) ( ~ ( t ,  & ) )  = Im Qi(E) in a 
conical neighbourhood of N(Qi). This modified (iii) implies that the following scalar 
products are defined EP(y) = <P(w(t, 5))-1, y([)@(w(t, 5)) det (dw(t, t)/df) > , 0 Gt <to. 
Suppose that the support of p, is so close to y that x-w(t, 5) a t  12 when xEsupp 
y. Then the Fubini law for distributions (see e.g. [7] p. 109) gives that 

EE(p,) = < P(w(l,. [))-I. y(5) eix'w"opO det (dw(to, 5)/dt) > y(x) dz. 
SUPP B 



K. G. ~.ND~rtSSON, AnaIyticity of  fundamental solutions 

But  P(w(to ,~)) -~p(~)e$  ' and e~(~+~')'~a"'~)~$ 

when x E supp ~ and  ]x'[ is small. Fur thermore ,  we m a y  different iate  wi th  respect  
to (x + ix') under  the  integral .  Hence  E~, is analyt ic  a t  y. 

To show t h a t  E~.(~) = E ~  (~) it  suffices to show t h a t  E~.A.~(~) =E~A,H(~) for all 
A, H and  then  t ake  limits. We therefore  in tegra te  ~(~)PA.r~(~) -1 over  the  b o u n d a r y  of 
the  ( n + l ) - e h a i n  M given b y  w(t, ~), when  0~<t ~<t o, c+2~< I~l ~<Nand IP~(~)-21] >/ 
e . . . .  , [Q~(~)-u~] ~>e. Use Stokes '  formula  and  let AT t end  to infinity.  E x a c t l y  
as in the  proof of Theorem 4 we no te  t h a t  d~ vanishes on the  par ts  of 0M which 
corresponds to  a condit ion IQ~(~)-g[  =e .  I n  the  case when  the  boundarypiece  is 
given b y  IP~(~)-21 = e  the  s i tuat ion is even simpler because here we have  d~= 
G~(~) dP~($) A . .  Ad0,($) and  P~(w(t, ~)) =P~(~) --2_+ e. We can now make  ~-~ 0 because 
PA.r~(w(t, ~))-1 is defined as a Cauchy  principal  value and  the  proof is finished. 

4. Appendix 
x 1 . . . . .  x~,, Yt . . . . .  y~-, z 1 . . . . .  z~,o are coordinates  in R ~'+2~''. We shall give a definit ion 

of the  dis tr ibut ion 

p-1  = x~v, . . x ;vk  (Yl + izl) -q' " " (Yz + izz) -qz, k <~ n',  l ~ n" .  

I f  • . . . . .  ~ are different real numbers  and  ~ e G~ (R), pu t  

[ (x  - ~ ) .  • (x - , t , ) ] -~ (~ )  = . ~o(x) [ (x  - ~ ) .  • (x  - x , ) ] - ~ g x ,  

where M~ is the set  g iven by  ] x - 2r [/> e, 0 ~< r ~< p. Define also 

x -~-1 = lim ( p ! ) - l f  x-l(d/dx)Pq~(x) dx. 
e.-3.0 d lzl>>-e 

I t  is easily verified t h a t  x ~ ÷ l . x - ~ - l = l .  Fur thermore ,  we have  t h a t  

[(x - 2 0 ) "  (x - )~) ] - l -~x-P-1  in $' ,  

if 20 . . . .  , )~ are different real  numbers  tending  to zero. 

Proo] (due to W i m  1Vuij). We have  

f 
t ['st P s p - 1  (P) A 

p 

= ~ ~ ( x +  2~) [VI  (2~ - k ) ]  -~, 
k =0 t~k 

where A o = )~, A 1 = 21 - )~, Ap = )~ - ~p-1. Hence  

e--~0 

" dx lim I = lim t ~-l~0~(;~k- + 2k) [ ~  (2k - -  2 i ) ] -1  = x - l "  (P!)-I~0(P)(X) dx. 
e..,4Lj lzl~s i ~ k  s-~Q . Is:i>~ 

8O 
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In the same way we define 

[(y + i z  - zro) " (y  + i z  _gq)]-I (~) = S~(Y, z) [(y + i z  - ~ro) . . ( y  + i z  - r~q) ] - l  d y d z ,  

where ~0 ..... ~rq are different real numbers, and 

(y  + i z ) - q - 1  = ( p ! ) - i  S ( y  ÷ i z ) - Z ( a / a y ) r q ~ ( y ,  z)  d y d z .  

One proves the same results as above, by the same argument. Pu t  now 

p - z  = x ~ ~' ® ... ® x ;  ~ k ® (Yl + i z l ) -~ '  ® (Yz + izz )-qt ® 1 ® ... ® l .  

The continuity of the tensorproduct $'(R ~) × $'(R n) -~ $'(R "+m) gives that  

P~,.1 N = [(xx - 21)" " (Xl - ~ , )  " • ( y ,  + izz - z q )  " • (y~ + i z  z - ~qz)]-l(~ 9) = 

= lim f [(xl - ~1)" " (Yz + iz l  - ~rqt)]-l~(x, Y ,  z)  d x  d y d z ,  
8..,.~0 J Me 

where M~ is the set given by 

and that  P ~ . n - ~ P  -1 in $', if A, H-~0. 

R E M A R K  

After the set t ing of this  article L. H6rmander  pointed out  to me the  existence of the paper  
[8], where i t  is proved t ha t  to an operator P(D) wi th  real coefficients and  simple real charac- 
teristics and  to an  arbi t rary  half-one F containing one point  on every bicharacteristie there is a 
fundamenta l  solution E with sing. supp E ~ F. 
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