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On a class of Diophantine equations

By Lars FJELLSTEDT

Hurwrrz [1]! has studied the Diophantine equation
i+t =2y Ty T (1)

For n=2 more general equations of this type have been investigated by Bar-
NES [2] and Mimis [3, 4]. This paper deals with the equation

M=

(it @l +e=z 2,2, 2, (2)

i=1

where the numbers ¢; and ¢ are rational integers, ¢=0. We show that with
some alterations the method used by Hurwirz on equation (1) also applies to
equation (2). The results obtained are analogous to those of HUrwITZ.

We note that if any of the polynomials

(r:i+ @) +c=0

is reduecible, equation (2) is solvable for every value of x. Similarly if there
exists a solution in which one at least of the numbers Xy, Ty, ..., Tn 18 ZETO.
In the following lines we consider only solutions in which the numbers
Xy, Xy -vy Tp are all =0,
Starting from a solution
A=(x, 2,2y, ..., Tn)

we can find a new solution A® in the following way. In (2) we solve for wy.
Since the equation considered is of the second degree and since it is satisfied
by z, the other root is

951’c=$‘x1"'xk—lxkn“'xn—zak—xk- . (3)
It is obvious that z; is an integer. Thus

k) 4
A _(x: Lyseees 15 s L1y eens xn)

is a solution of (2). The solutions 4%, k=1, 2,...,n are said to be associated
with the solution A.

! Numbers in brackets refer to the bibliography at the end of this paper.
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A sequence of solutions A,, A,,..., of (2) with the property that every solu-
tion is associated with the preceding one forms a ckain of solutions. It is evident
that x has the same value for every solution in a chain.

The number

z[x,-] ’i=1,2,...,n
i=1

is called the weight of the solution (z, z,, ..., ).
A solution of weight kb is said to be fundamental if the weight of all the
solutions associated with it is =A.
A fundamental solution is said to gemerate the chain to which it belongs.
We have the following result:

Theorem 1. Every solution of (2)
(&, Ty, Tgy .o0s Tn)
with ;, %y, ..., x, all 0, belongs to a chain generaled by o fundamental solution.

Proof. Suppose that a solution A4 of (2) is not fundamental. Then it has
an associated solution whose weight is less than the weight of 4. If the new
solution is not fundamental we can repeat the process. Since the weight is a
natural number we must find a fundamental solution after a finite number of
steps.

To solve (2) completely we have only to determine the fundamental solutions.
Our main result will be that the number of different fundamental solutions is
finite and furthermore we will give inequalities for these solutions.

I (x,2;,...,7,) is a solution of (2) in which the numbers z,, z,,, ..., z,, are
negative, (x,|z,|,|x;],...,]x.|) is obviously a solution of the equation derived
from (2) by changing signs for a,, a,,..., a,. Furthermore it is clear that if we
can prove for this new equation that the number of different fundamental solu-
tions is finite, the same result holds for (2). Hence we suppose in the sequel
that all the numbers z,, z,,..., , are >0.

If the weight of the solution A4 is not greater than that of A®, we get
from (3) on multiplication with z,

n

1
Zp X+ 22+ 2ar =2 ][] %
iol

From (2) we see that z, and x; have the same sign and therefore
n

2xi+2akxk§xﬂxi, 4)

i=1
for k=1,2,...,n.
Let us consider the expression

22,22 2 2
(T 2y Ty Tt Tigr T — 2 (@ + )2 =22 2% - X Xy - 22+
ay 2
+4[x-xlxz-'-xn(1+;)—(xk+ak):|
k
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which can be written

x-zlxg---wﬂ—2(zi—}-akxk):xlxz~--anx2—4tk (5)
where

(1+%) [ S ($i+di)2+ G] —(xk+ak)2
Ly i=1 . 2. (6)

tk=
x%x% re xn

For some index y we have

Va? —4t,<Va?—4t, i=1,2,...,n. (]

From (5) we get on addition

n

n n n
ne[[x—22 (2F+aim)= Hw,(z Vz2—4t,-),
i=1 i=1 i=1

i=1

or
n

(n—2)x []z+2T= Hxi-(zvxz—etti), (8)
i=1 i=1 i=1
where '

n
T= 3 (x;a+af)+ec.
=1

We distinguish two cases according as T is =0 or >0.
Suppose first that 7'<0. Then we get from (8)

n e mrmsn.
m—2xz 3 Va®~4t,.
i=1

As is easily seen, it is sufficient to consider the case #,>0. In fact, if <0 we
must have ¢ <0 for all . It then follows from the left-hand side of (5) that

xk(ak+xk)<0, k=1,2,...,n.
This, however, means that z, <|ax| for all k.
If t, is =0, we must have <t¢, for all . Thus we get as before z;<|a|.
On squaring and introducing #, instead of # we get

nit,=(n—1) 2%

Substituting in this inequality the expression for f, given by (6) we find

2 n )
—5 [ «f. )

x
Ty =1

n? [(1+?ﬁ) ( i (xi+a,-)2+c—(x,4+a,,)2)] z(n—1)

mu j=1

We now distinguish two cases according as a, is >0 or 0. If a, <0 we get
from (9)
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2 n
n? [ > (w+a)® + c] ;(n—l)x—2 I =2
is=p Xy i=1
Suppose now that (zp+am)Z(xm+a), t+pu.
Then we have
PN T
n?[(n—1) (a?,,-i—l)-i-C]Z(n—l)—?;z—- (10}
uLm

If on the other hand a,>0 we have

n 2 n
n? [(n—l)(a?,,+1)x?,,+c+25x]f]xi] ;(n—‘l)m—2 I 4.
Tu i=1 Lyt i

Here either
n n

guxm =z [[m or muam<z[]a
ie1 i

However, in both cases we have the inequality

[(n—1) (@5 + 1)+ | au| +c]. (11)

=1 ZuTm n—1

Comparing with (10) we find that if 77<0, (11) is always true.

We turn now to the case T'>0, and start with a few observations. If
n

n
> (af+aim) is <0, we must have ;< D |a;|. Thus we can assume that this
=]

sum is >0. From (2) it follows that we have either

n

(@F+az)< Y (mx+af)+e (12)
=1

M=

i=1

or

2": (af + as ;) > i (as 2+ af) +c. (13)
1

i= =1

v

If (12) is true

i

n
Sat< Y al+e,
{=1 i=1

and thus all the numbers z; are bounded. If on the other hand (13) is true
we deduce from (8) and (7)

(n—1)z=nVa®—41,.
On squaring we get

We now proceed exactly as in the case 77=0. The result is

x I 4n?

[Ta<
TuTom i1 2n—1

[(n—1) (@ + 1)+ |au] +cl. (14)
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Combining this inequality with our previous results we have that every funda-
mental solution of (2) satisfies the inequality

n 2

[1z<

Ty T i1 2n—1

x

[(mn—1)a*+a+n—1+c]=0C, (15)

where a=max |a;|.
The following theorem is an immediate consequence of (15):

Theorem 2. The number of different fundamental solutions (chains of solutions)
is finite.
(15) gives at once an upper bound for x. Furthermore it is possible to deter-

mine explicit bounds for all the z;. In fact, the following inequality is easily
derived from (4):

|2 — (@m+an) | <@ +ah+ 5 (@+a)+e.
itu,m
Since, according to (15), the product
1 n

2
Ty XTm 1=Hl !

is bounded the same is true for the sum » (x;+a;).
iku,m
In fact, we have

12 @+ @< (C+a +(n—3) (a+1)%

Thus we have for z, a;, 2=1, 2,..., n the inequalities

{ z=C,
|z <V({C+af+m-1)(@a+ 1)’ +c+a.

Equation (2) with ¢<0 may be treated in the same way as when ¢=0. How-
ever, the details are more complicated. I shall return to this case in a following
paper.
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