Acta Math., 195 (2005), 155-196
© 2005 by Institut Mittag-Leffler. All rights reserved

The Serre spectral sequence of a noncommutative
fibration for de Rham cohomology

by
EDWIN J. BEGGS and TOMASZ BRZEZINSKI
University of Wales Swansea University of Wales Swansea
Swansea, Wales, U.K. Swansea, Wales, U.K.

1. Introduction

This paper has three basic purposes:

(1) Developing a cohomology theory for modules with flat connections over non-
commutative algebras, and showing that it has some properties in common with sheaf
theory.

(2) Extending the Serre spectral sequence of a fibration in classical algebraic topol-
ogy to the noncommutative domain.

(3) Examining the differential structure of quantum homogeneous spaces, and show-
ing that many of them are ‘fibrations’ in a noncommutative sense.

In [9] methods of studying algebras by means of their differential calculi were intro-
duced. We will apply Connes’ differential methods to fibrations in algebraic topology.

In usual topology, sheaf cohomology and other methods allow cohomology with
‘twisted’ coefficients, i.e. coefficients which vary from point to point in the space. In
the absence (so far at least) of a full sheaf cohomology construction in noncommutative
geometry, we construct de Rham cohomology with twisted coefficients for algebras with
differential structure. The allowed coefficients are modules with flat connection. Though
there is a considerable similarity between de Rham cohomology with twisted coefficients
in the noncommutative world and sheaf cohomology in the commutative world, it is quite
possible that yet more general constructions, or constructions with additional properties,
corresponding to sheaf theory exist in the noncommutative world. In the spirit of some
developments in operator algebra (for example, see [10]), we show that bimodules can
be used to replace algebra maps in constructing ‘pullbacks’ of the coefficient modules.
In the special case of semi-free differential graded algebras this construction is shown to

have an interesting interpretation in terms of corings.
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In commutative algebraic topology, one of the most useful applications of twisted
coefficients is to fibrations. For a locally trivial fibration, the Serre spectral sequence [14]
starts with the cohomology of the base space with coefficients in the cohomology of the
fibre (in general a twisted bundle), and converges to the cohomology of the total space.
In producing a noncommutative analogue of this result, we not only have to find a proof
which does not require local triviality, but also have to decide what a ‘locally trivial’
fibration should be in noncommutative differenfial geometry. Realistically we should
define a fibration by the conditions which are required by the Serre spectral sequence.
The seeming correspondence between sheaf theory and the cohomology we are considering
leads us to suspect that yet more general ‘Leray-type’ spectral sequences exist.

We then discuss products in the Serre spectral sequence, which requires another
condition to be imposed on the fibration. The product structure is not only important in
its own right, but can frequently help in simplifying the calculation of spectral sequences.

Finally, we study fibrations given in terms of a coaction of a Hopf algebra on an
algebra. As a nontrivial example of such a differential fibration we consider the quan-
tum Hopf fibration v: A(SZ)< A(SLq(2)) with the 3-dimensional differential calculus on
A(SL4(2)). As a further nontrivial class of examples of the fibrations discussed here, we
look at the noncommutative homogeneous space construction with bicovariant differential
calculi. This takes the classical construction of a group quotiented by a subgroup, and
replaces it by two Hopf algebras with a surjective Hopf algebra map n: X — H. We begin
with such a 7 which is differentiable with respect to bicovariant differential structures on
X and H [24]. Note that the bicovariant condition corresponds to the differentiability of
the coproduct map, and it is reasonable to expect that this is the analogue of classical
Lie groups. As in the classical case, some of the definitions can be given in terms of the
Hopf-Lie algebras and their induced vector fields [1], [2]. The first stage is to identify the
differential calculus for the homogeneous space B=X# (see Theorem 9.12) in a form
suitable for calculation. Then it is shown that the inclusion map B—X is a fibration
as defined earlier (see Theorem 10.5). For the development of noncommutative homoge-
neous spaces the reader should refer to [11] and [16]. Again the quantum Hopf fibration
1: A(S2)— A(SLy(2)) is an example of this situation, and we explicitly prove that it is
a differentiable fibration for one of two standard 4-dimensional bicovariant calculi on
A(SLy(2)).

All algebras are unital over a field k. The unadorned tensor product between vector
spaces is over k. A Hopf algebra is always assumed to have a bijective antipode (this is
not the most general situation algebraically, but the most natural from the point of view

of noncommutative geometry).
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2. Flat connections and cohomology with twisted coefficients

The classical Serre spectral sequence uses cohomology with a nontrivial coefficient bundle.
In this section we discuss flat connections on modules in noncommutative geometry, and
how this can be used to define de Rham cohomology with nontrivial coefficient modules.

By a differential calculus on a noncommutative algebra A we mean a differential
graded algebra (d,2*A) such that Q°A=A. The product in Q*A (for x>1) is denoted
by the wedge A (although Q*4 is not graded anticommutative in general). The density
condition says that Q"T14C A-dQ2"A, but we will not require this till later.

The cohomology of (d,2*4) is denoted by H}i(A) and referred to as a de Rham
cohomology of A. Recall that a connection in a left A-module F is amap V: E=5Q*A®4 E
satisfying the Leibniz rule, for all a€ A, e€ E, V(a-e)=daR®e+aVe.

2.1. The construction of the cohomology

Definition 2.1. Given an algebra A with differential calculus (d, 2*A), we define the cat-
egory 4& to consist of left A-modules E with connection V: E—Q'A®4 E. A morphism
¢: (E,V)—(F,V) in the category is a left A-module map ¢: E—F which preserves the
covariant derivative, i.e. Vog=(id®¢)oV: E—>QlAQ4 F.

Definition 2.2. Given (E,V)¢e 4&, define
Vi QrA®s E — QAR E.
w®er— dw®e+(—1)"wAVe.
Then the curvature is defined as R=V{1V: F502A®4 F, and is a left A-module map.

The covariant derivative is called flat if the curvature is zero. We write 47 for the
full subcategory of 4&€ consisting of left A-modules with flat connections.

PROPOSITION 2.3. For all n>0, VI** oV =idAR: Q"A®4 E—~ Q" T2AQ E.
Proof. By explicit calculation,
vt (virl(wge)) = VI (du®e 4+ (—1)"wAVe).
Put Ve=¢;®e; (summation implicit), and then
VIt (wee)) = VI (duge+ (1) wAE Re,)
= (=D dwAVe+(—1)"dwNé; Qe +wAdEi®e; —wAE AV e;

=wA(d§;®e;—EAVe;)
=wAR(e). H
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Definition 2.4. Given (E,V)€4F, define H*(A; E, V) to be the cohomology of the

complex
v 1 i 2 Avat)
E-—5WVAQUE —— Q°AQuFE —— ... .

Note that H(E,V)=TE={e€ E:Ve=0}, the flat sections of E. We will often write
H*(A; E), where there is no danger of confusing the covariant derivative.

PROPOSITION 2.5. Given (E, V)€ sF, the map
AQPAR(VARQUE) — Q" T"AQL E
defined by
NER(WEe)) = (EAw)Be
giwves a graded left Hyr(A)-module structure on H*(A4; E, V).

Proof. First calculate

V(e (w®e)) = VII((EAw) Re)
=d(¢Aw)Re+(—1)EFIIEALAVE
=den(wRe)+(—1)Eleavi(wee).
This equation has the required immediate consequences:
If dé=0 and VI*(w®e)=0 then VI (¢A(w®e))=0.
If V¥(w®e)=0 then déA(w®e) is in the image of V.
If d¢=0 then EAVI*(w®e) is in the image of V¥, O

2.2. Mapping properties of the cohomology

In classical topology, maps on the cohomology can be induced by maps which change
coeflicients over the same topological space. Our analogue of this is the following theorem:

THEOREM 2.6. The cohomology H* in Definition 2.4 is a functor from oF to graded
left Hjg(A)-modules, where the module structure is given in Proposition 2.5.

Proof. Begin with a left A-module map ¢: E— F which preserves the covariant de-
rivative, i.e. Vogp=(id®¢)oV: E—-Q1AR 4 F. First show that the map id®¢: VAR 4 E—
Q*A®4 F is a cochain map:

VH(id®e) (wee) = VI (weo(e))
=dwz¢(e)+(~1) wAVg(e)
=dw®¢(e)+(—1)“lwA(id@ ) Ve

= (id®e¢) VI (wee).
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The functorial property is simply (id®¢)-(id®y)=id®(¢°1), and the left module prop-
erty is just EA(w®(e))=(EAw)®@(e). a

In classical topology, continuous functions between topological spaces also induce
maps on the cohomology. One part of this is the pull-back construction for coefficients.
Given the reversal of arrows which often occurs in considering algebras rather than spaces,
this becomes a ‘push-forward’ construction in noncommutative geometry.

This would be an appropriate time to remind the reader that for algebras A and B
with differentiable structure, an algebra map : A— B is called differentiable if it extends
to a map 8.: Q*A—0*B of differential graded algebras.

LEMMA 2.7. Given (E,V)€ 4€ and a differentiable algebra map 6: A—B, define

V:B@UE — Q'BRBRJE=Q'BRsFE, V(b®e)=b-(6,2id)(Ve)+dbge.
Then 0,(E,V)=(B®4E,V)e g€, with right action of A on B given by baa=b6(a).

Proof. To check that ¥ is well defined, we must show that, for all a€ A, b€ B and
e€E, V(b6(a)®e)=V (b@ae):

V(b0(a)®e) =bb(a)- (0.0id)(Ve)+d(b8(a)) e
=b-(0.®id)(aVe)+db-0(a)Re+b-df(a) e
b-(6.®id)(aVe+da®e)+dbRae
=b-(0,®id)V(ae)+db®ae
=V (b®ae).

That V satisfies the Leibniz rule follows immediately from the definition (and the Leibniz
rule for d). 0

PROPOSITION 2.8. If 0: A— B is a differentiable algebra map and (E,V)€ o F, then
b.(E,V)epF.
Proof. Following the notation of Lemma 2.7 and setting Ve=¢;®e; (summation
implied),
VT (be) = VU (b-(6,®id)(Ve) +dbRe)
=Vl (b-£;@e; +dbse)
=d(b-&)Qe; +ddbRe—b-§;AVe;—dbAVe
=dbA{;®e;+b-dE;®e;—b-§; AV e;—dbAVe
=b-(d¢;®e; —&;AVe;)
=b-Vlve
=0. O
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THEOREM 2.9. For a differentiable algebra map 6: A—B, there is a functor
B.: AE— g€ which is defined on objects as in Lemma 2.7, and where a morphism ¢: E—F
is sent to the morphism id®¢: B E— B4 F. Further this functor restricts to a func-
tor from aF to gF.

Proof. First, given a morphism ¢: E—F in 4€, we need to show that id®¢: B4 E—
B®aF is a morphism in g&. Using the definition of ¥ in Lemma 2.7,

Vb@d(e)) =b-(8.2id) Vo(e)+dbDo(e),
and as ¢ is a morphism in A&,

T(b®d(e)) = b-(0,2id)(id28) Ve+dbRé(e)
= (id®o)(b-(0.®id) Ve+db®e)
= (&) V(bze).

The composition rule is just (id®¢)e(id®1y)=id®@(¢°1). The restriction to flat connec-
tions is shown in Proposition 2.8. a

2.3. Generalised mapping properties

The mapping constructions can be generalised to bimodules rather than algebra maps,
using the ‘braiding’ introduced by Madore [15].

Definition 2.10. A (B, A)-bimodule M€ g M 4 with additional structures

(a) a left B-connection V: M —Q'Bgg M:;

(b) a (B, A)-bimodule map 5: M ®4 Q' A-QBog M
is called a differentiable bimodule if it satisfies the condition V(m-a)=V(m)-a+&(m®da)
for all me M and a€ A.

Ezample 2.11. If §: A—>B is a differentiable algebra map, take the bimodule
B g M4, with the usual left B-action, and right A-action given by baa=b6(a). Also de-
fine V: BQ'Bog B=0'B by Vb=db and 6: B4 Q' A—Q' B B=0'B by 5(b®¢)=
b-6.(¢). Now we check the condition

V(baa) =V (b(a)) = d(b8(a)) = dbb(a)+bb.(da) = V (b)-a+&(bRda).

Hence B is a differentiable bimodule.
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PROPOSITION 2.12. Suppose that (M,V,3) is a differentiable (B, A)-bimodule.
Then the following defines a functor (M,V,5),: A€ = BE:
On objects (E,V)€ A€, define (M,V,5),(E,V)=(M®4E,V), where

%(m@e) =Vm®e+(6®id)(m®Ve)

On morphisms ¢: E—F, define (M,V,5).¢=id®0: M@aE—M®4F.

Proof. First we need to check that ¥V is a well-defined function on M®4E:

V(m®ae) = Vm@ae+ (5 ®id) (maV (ae))
=(Vm)-a®ae+(5®id)(m@aVe)+ (5 ®id)(m@da®e).
By using the differentiable bimodule condition this becomes
§(m®ae) =V(m-a)Rae+(5®id)(m-axVe) =V(m-a®e).

To check that V is a left- B-covariant derivative, as & is a left B-module map,

€7(b~m®e)

(b-m)y®e+(g®id)(b-m®Ve)
V(m)®e+db@mee+b-(6®id)(m&Ve)
V(m®e)+db@me.

i

Vb
b-
b

Next we check the morphism condition:

V(m&s(e)) = Vm@s(e)+ (50id)(meVe(e))
=Vm®¢(e)+(6®0)(meVe)
= (id®id®¢) V(m®e). U

Definition 2.13. The differentiable (B, A)-bimodule (M, V, &) is said to be flat if &
induces a (B, A)-bimodule map &: M®4Q?4A—Q?B®g M so that the following conditions
are satisfied:

(a) as a left B-connection on M, V is flat;

(b) ([dAG)(G®id)=5(d®A): MR4 QA4 VA Q2B M.

For the rest of this subsection we assume the density condition for Q2*A.

LEMMA 2.14. If the differentiable (B, A)-bimodule (M,V,&) is flat, then the fol-

lowing map vanishes:

[(d®id) - (1dAV)]6 — (1dAG)(VRid) -6 (id®d): MaQ'A— Q*Bep M.
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Proof. First note that the displayed formula is well defined, as for all me M, neQ'B
and beB,

[(d®id) - ([dAY)](nbem) = [(d®id) — ([dAV)] (n@bm).

Since QA satisfies the density condition, to prove the vanishing of the displayed
formula, we now only have to apply it to elements of the form m®da, and use the
differentiable bimodule condition on &:

[(d®id)— (1dAV)]6(m®@da) = [(d®id) — (idAV))(V (m-a)—(Vm)-a)

(d2id)— (idAV)]V(m-a)
—[(d®id) - (idAV)] ¥ (m)-a
+(1dAF)(Vm®da)

It

and

[((1dAG) (Veid)+5(ided)](m®da) = (idA&)(Vm®da).

This means that the displayed formula applied to m®da gives R(m-a)—R(m)-a, where
R is the curvature of the left B-connection on M, and this vanishes by Definition 2.13. O

PROPOSITION 2.15. If the differentiable (B, A)-bimodule (M, V, ) is flat, then the
functor {M,¥,5).: A€ — g€ restricts to a functor from aF to gF.

Proof. We need to show that the following expression vanishes, where E is a left
A-module with flat connection V, and e€ E:

VIS (mee) = V(Tmee+ (52id) (meVe))

= (d®id®id)(Vm2e+ (6 ®id)(m&Ve))
—(1dAV)(Vm@e+(52id)(m&Ve))

= (d®id®id)(Vmge+(F&id)(m&Ve))
—(idAVRid)(Vm®e+(6®id)(m®Ve))
—(idA5®id)(iIdRideV)(VmRe+ (5 ®id)(meVe))

= (d®id®id)(Vm®e)+(d®id®id) (5 ®id)(meVe)
—(1[dAV®id)(Vm®e) - (1[dAVEid) (6 ®id)(m®Ve)
—(1dAF2id)(id®ideV)(VmRe+ (6 ®id) (m&Ve)).
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As the left- B-covariant derivative V on M is flat, the first and third terms cancel, giving

VY (m®e) = (d2id®id)(6®id) (meVe) — (1dAV®id)(5®id) (m@Ve)
~(1dAG®id)(id®ideV)(Vmse)
—(idA®id)(id®ideV)(s2id®id)(m&Ve)

= (d®id®id)(¢®id)(meVe) — (IdAVEid) (6 ®id)(m®@Ve)
—(idAs®id)(VRid®id)(meVe)
—(idAg®id)(6 ®id®id)(1d®idgV)(m@Ve).

Using property (b) of Definition 2.13 this becomes

VY (m®e) = (d2id®id)(6®id)(m&Ve) - (idAVSid) (6®id) (m@Ve)
—(1ldAF®id)(Veideid)(meVe)
—(6®id)([d®@A®id)(id®id@V)(m 2Ve)

= (d®id®id)(¢®id)(meVe) - (idAV=id) (5 ®id)(m&Ve)
—(ldAs@id)(VRid®id)(meVe) - (62id)(m® (IdAV) Ve)

= (d®id®id)(6®id)(maVe) - (iJdAVRid)(6 ®id) (m®Ve)
—(idAs®id)(Veid®id)(meVe) — (5 2id)(id®d®id)(m&Ve),

where we have used the flatness of V on E in the last equality. Now Lemma 2.14
completes the proof. O

2.4. The bicategory of differentiable bimodules

A possible way of understanding differentiable bimodules and induced functors between
categories of connections is to construct a suitable bicategory. Recall that a bicategory [3]
consists of three layers of structures: O-cells, 1-cells defined for any pair of O-cells, and
2-cells defined for each pair of 1-cells. There are two types of composition: the horizontal
composition of 1-cells which is unital and associative up to isomorphisms and the vertical
composition of 2-cells which is strictly associative and unital. The following gathers all
the data that constitute a bicategory relevant to differential bimodules.

Definition 2.16. The bicategory DiffBim of differentiable bimodules contains the fol-
lowing data.

(a) O-cells are differential graded algebras (2*4,d); we write A for the zero-degree
subalgebra of (2*A.
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(b) A l-cell 2*A—*B is given by a differentiable bimodule (M, Vs, 0onr), i.e. M
is a (B, A)-bimodule, Vy;: M —Q'B®g M is a left B-connection and oar: M®4 Q1 A—
Q'B®g M is a generalised flip satisfving the conditions of Definition 2.10.

(c) A 2-cell

g e o

HO
QA _—ﬁ(J\r.v,\-.a_\-) QB
is given as a (B, A)-bimodule map ¢: M/ —N that commutes with covariant deriva-
tives and generalised flip operators. i.e. such that Vyo¢=(i1d®¢)°Vas and oy (¢®id)=
(ld®¢) STM -
The horizontal composition

1\[.VA\[. OAr )

O*A ( O*B (N.VN.oN) OC

is defined as a differentiable (C, A)-bimodule (N2gM,VNg . ONgga), Where
VN®BM:VN®id+(03\7’®id)0(id®vi\1) and UNgBM:(O‘N®id)0(id®O’M).

The vertical composition is the usual composition of mappings. The category of 1-cells
Q*A-—-Q*B with morphisms provided by 2-cells is denoted by DiffBim(2*A, Q*B).

It is left to the reader to check that the data collected in Definition 2.16 indeed
constitute a bicategory. Essentially this requires similar computations to those in the
proof of Proposition 2.12. The bicategory DiffBim contains all (left) connections in the
following way:

LEMMA 2.17. View k as a trivial differential graded algebra with the differential
given by the zero map. Then

DiffBim(k. 1*A) = 4€.

Proof. Since Q'k=0, every generalised flip ¢ must be a zero map, and thus an object
in the category DiffBim(k,Q*A4) is a left A-module A with a left A-connection Vas: M —
QA®4 M. As to the morphisms ¢: A/ — N in DiffBim(k, Q2A), the commutativity with
flips is trivially satisfied (as flips are zero maps). and hence only the condition Vyo¢p=
(id®¢)oVys remains. This is equivalent to saving that ¢ is a morphism in 4&. O

In view of Lemma 2.17, the functor (M. Vas.oar)«: a€— g€ constructed in Prop-

osition 2.12 has a very simple and natural bicategorical explanation. Given a con-
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nection (E,Vg)e aE=DiffBim(k,2*4) and a differentiable bimodule (M, V. op)€
DiffBim(Q*A, Q*B) one can construct a differentiable bimodule in DiffBim(k, 2*B)=pg¢&
as the horizontal composition of 1-cells

k (E,VE) Q*A (A[,VAI,UA\I) QXB'

By the functoriality of the horizontal composition. this results in a functor 4€— g€
described in Proposition 2.12.

In a similar way one constructs a bicategory FlatDiffBim of flat differentiable bimod-
ules with differential graded algebras (2*A.d) such that QA satisfies the density con-
dition as O-cells, the 1-cells are given as flat differentiable bimodules (M, Var, 0k, 03,),
where o, and o3, are flip operators of order one and two (cf. Definition 2.13), and the
2-cells are (B, A)-bimodule maps commuting with V,;, ¢}; and ¢3,. The horizontal
composition is given by

VNesM =VN ®id+(011\7 ®id)=(1d®Var),

O-}-V@B]W:(U§V®id)o(id®0{:\1)f 2:127

and the vertical composition is the usual composition of mappings. One easily shows
that 4F=FlatDiffBim(k, 2*4) and then identifies the functor in Proposition 2.15 as the
horizontal composition of 1-cells in FlatDiffBim.

2.5. The case of semi-free differential graded algebras

Recall that 2*A is said to be semi-free if and only if *A is isomorphic to the tensor
algebra of the A-bimodule Q!'A. As observed in {19] there is a bijective correspondence
between semi-free differential graded algebras over A and A-corings with a group-like
element (cf. {7, §29.8]). The constructions in §§2.1-2.3 have very natural interpretations
in terms of such corings and comodules. For more information on corings and comodules
we refer to [7].

Starting with an A-coring € and a group-like element g€€, we define Q'A=ker e,
where g¢: €— A is the counit of €. The differential is then defined by d(a)=ga—ag, for
all a€ 4, and, for all c'®...@c" € (kereg)®4™,

d(c'®..0c") = gRc'®...9c" +(~1)"T ! g .8 Ry

i3
—I—Z (-1)id®..2d ' 2Ae(c)2cTR...RC,
i=1
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where A¢:€—5C€®4€ is the coproduct in ¢. The density condition for Q'A, ie. the
requirement that any 1-form is a linear combination of ada’, is equivalent to the require-
ment that the map A®A—€, a®a’+raga’. be surjective (note the similarity with the
definition of a space cover in [12]).

Let E be a left A-module. As explained in |7, §29.11], connections

V:E— VAR E =kerce®a E

are in bijective correspondence with left A-module sections of ¢ ®id: ERUE—E, i.e. left
A-linear maps ¢%: E—€®4 F such that (¢¢ ®id)-oF =id. Furthermore, flat connections
are in bijective correspondence with left €-coactions in . This correspondence, explicitly
given by

oF(e)=goe—V(e)., foralleck,

establishes an isomorphism between the categories of flat connections on A and left €-
comodules.

Let € be an A-coring with a group-like element ge, and ® be a B-coring with
a group-like element gp. Recall that a morphism of corings consists of an algebra map
fp: A— B and an A-bimodule map 6;: €D that respects the coproducts and counits (cf.
[7, §24.1] for more details). Any morphism of corings (6p,8:) such that 6,(ge)=gp is a
differentiable algebra map. Incidentally, such a morphism of corings is termed a morphism
of space covers in [12]. Let V: E—QAZ4E be a connection, and 0¥: E—~C€R4E be
the corresponding section of e¢®id. Then the section gP®4E: EDRpE of ep®id

corresponding to the induced connection in Bg4 E comes out as
QB®AE(b®€) = b91(€[_1})®€[0],

where oF (e)=ej—1)®e[ (summation implicitly understood). In view of the isomorphism
AF =M, the corresponding functor between the categories of flat connections described
in Theorem 2.9 can be identified with the induction functor between categories of left
comodules (cf. {7, §24.6)).

For differential graded algebras corresponding to an A-coring € with a group-like
element ge¢ and a B-coring © with a group-like element gop, differentiable bimodules
(M,V,0) are in bijective correspondence with pairs (M, ®), where M is a (B, A)-bi-
module and ®: M®,€—DRpM is a (B, A)-bimodule map rendering commutative the
following diagram:

]\I@ACW-%@@BM’

ld% /&d (2.1)
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Furthermore, differentiable flat bimodules (M, V, o) are in bijective correspondence with
pairs (M, ®) such that in addition to (2.1) also the diagram

M@aC ki DM
id®A¢J( J'Ag@d
MR4ER4C DD M (2.2)
DRpMRE

is commutative. The correspondence is given by c=®|as5 ,kere, and
®(m®c) =gp®mee(c)—V(m)ee(c)+o(m®(c—gece(c)))

for all meM and c€€. An interesting point to note here is that the map ® is well
defined, i.e. factors through the coequaliser defining M ®4 €, thanks to the last condition
in Definition 2.10 (the compatibility between the connection and o).

A pair (M, ®) satisfying conditions (2.1) and (2.2) constitutes a l-cell in the left
bicategory of corings LEM(Bim) defined in [5] as the bicategory of comonads in the
bicategory Bim of rings and bimodules following the general procedure in [21] and [13].
In view of the discussion in §2.4 and the present section, LEM(Bim) can be understood
as a subbicategory of DiffBim.

3. The long exact sequence

Consider a short exact sequence 05 E— F—G—0in 4F, and suppose that the modules
{)*A are flat (i.e. tensoring with them preserves exactness). We assume these conditions
for the remainder of the section. From this we form the following diagram, where the
rows are exact, and the columns form cochain complexes (i.e. the vertical maps compose
to give zero):
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What follows is standard homological algebra, but not all readers may be familiar
with it. Note that for (e.g.}) v: F—G we write v~ !(g) for g€G to mean a choice of
feF for which ¢¥(f)=g. Tt will turn out that the maps eventually defined by using
such potentially multivalued maps will turn out to be unique, and we have no wish to
introduce the complication of topologised cochain complexes, and so have no need to
worry about the continuity of the resulting operations. It is merely notation used to try
to clarify the definitions and proofs. Again take [E={e€ E:Ve=0}.

ProrosiTION 3.1. The sequence 0->T'E—TF—=I'G is exact.

Proof. Tt is immediate that ¢:TE—I'F is one-to-one, and that the composition
TE—TF—TG is zero. To show that TE—TF—TI'G is exact, take f€I'F with ¥(f)=0.
As E—F—G is exact, there is an e€ E with o(e)=f. By following the top left com-
mutative square in the diagram and using the fact that id®dé: QARAE—Q'AR4F is ‘
one-to-one, we see that Ve=0. U

PropPoSITION 3.2. The {multivalued) map
(id@o) Vo L.TG — QAQLE

quotients to a well-defined connecting map TG—H'(A: E).

Proof. Begin with g€I'G. and take an f&F with ¢(f)=g. By using the top right
commutative square in the diagram. Vfcker(idg v: Q*Ag4 F —+Q'A®4G). Then by the
exactness of the rows, there is an r€Q'4 24 E with (id®¢)(z)=Vf. By exactness of the
second row, to show that ¢/—zcker VIl we only have to show that VIU(id®¢)(z)=0,
i.e. that VIV f=0, which is true. Then [z]€ H'(A: E), but now we ask if it is unique.

Suppose that we have f'e F with ¥(f')=g. and 2'€ P*A®4 E with (id®¢)(z")=V{".
Then f'—f=¢(e) for some ecE, and (idgo)(z' —z)=V(f' —f)=V(e)=(id®)(Ve).
As id®¢ is one-to-one we deduce that 2’ —z=Ve. O

Remark 3.3. As this is not a text on homological algebra, we will now merely quote
the result of continuing with the methods outlined: Given the conditions at the beginning

of this section, there is a long exact sequence

HY(A,E)~— H°(A,F) — HY(A,G) — H'(A.E)
— HYA.F)— HY(A,G) — H*(A,E) — ...
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4. Noncommutative fibre bundles

We consider a possible meaning for a differentiable algebra map «: B— X to be a ‘fibration’
with ‘base algebra’ B and ‘total algebra’ X. From here we will require that the differential
calculi satisfy the density condition.

Definition 4.1. Define the cochain complexes

=0 v_  om on oy LOMBAQRX
EnX=u0"B-X and ZIX= O TBAGTTX (n>0).

with differential d: 27 X -Z7"1X defined by dw]m,=[dw],,, where we, Q™BAQ"X and
[ ]m is the corresponding quotient map.

The maps ©,,: Q"B®pZf X —Z" X defined by 6,,(w&[€]o)=[tswA&]m are cochain
maps if Q"B®pZf X is given the differential (—1)™id®d.

Remark 4.2. To see that the differential in Definition 4.1 is well defined, note that
for all m,n>0, d maps t.Q7BAQ™X into 1, QBAQ?T1X. This is because dQQ"BC
Q™IBCQ™BAQ'B (note the use of the density condition here).

There is a left B-module structure for Z% X given by b-£=u(b)¢. As d(u(b)-0)=
Ly (db)AG+1(b)-db, we see that d: 7, X —+E21X is a left B-module map, so the cohomol-
ogy H™(Z!,X) inherits a left B-module structure.

In this degree of generality, this construction might be merely curious, but consider
an example:

Ezample 4.3. Let X=B®F, where F is an algebra with differential structure, and
give X the tensor product differential structure. By definition, +(b)=b®1 and

Q"X = (CBRO"F)&...a (0" BRO°F)

so there is an isomorphism of cochain complexes B&Q"F —=2 X given by b@§—¢(b)€. It
follows that H™(Z5X) is just B& HJ (F), the fibre cohomology module. Also this module
has a flat left B-connection V: B& H}i(F)—Q'BgpB®Hip(F) given by V(b®z)=
db®1®z. The de Rham cohomology of B with coefficients in this module with flat con-
nection is Hjg (B)® H}g (F), which by the Kiinneth theorem is just the cohomology of
X=B®F.

In topology fibrations can be built from open covers of the base space, and a trivial
fibration over each open set. Our example has just dealt with what would be a non-
commutative trivial fibration, so we might ask what a more general noncommutative
fibration would look like. By analogy we might consider =X to be the ‘vertical’ or
‘fibre’ forms, and its cohomology to be the cohomology of the ‘fibre’ of the map. In
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the topological case, this cohomology can form a nontrivial bundle over the base space.
We have seen that for noncommutative de Rham cohomology it is reasonable to have
coefficient bundles with flat connection, and this is the route that we will take for our
version of a fibration.

PROPOSITION 4.4. Suppose that ©,:Q'Bgp=5X —E1X (as defined in Defini-

tion 4.1) is invertible. Then there is a left-B-covariant derivative
V:H"(Z3X) — Q'Bgg H"(E5X)

defined by [w]— (id®[-])O; dw];.

Proof. If [w]o€ Z" =ker(d: Z X —Z71'X), then dw e, Q' BAQ™X . Thus [dw] €ETX
is a cocycle, so (id®d)O7 dw], =0€Q' B2 X, ie. O] [dw],€QV'BRpBZ".
Now suppose that [w']o=[w]p€Z™. Then W —weLSMBAQLX, so we get

O W —w €A BREE; X,

As ©~ ! is a cochain map, —(id®d)O] o' —w); =07 [dw’ —dw]; =07 ' [dw']; —O7 }[dw]:
Thus
o7 ', —6; ![du] € Q' BEpd=; X,
so we get a well-defined map Z" - Q'Bgg H"(Z5X).
To finish showing that V is well defined, we show that d=} X maps to zero, which
we see as V[df]=(id®[-])O7 ' [d?¢};1=0.

Finally we need to show the left connection condition:

V(i) -w] = (id®[-])©; ' [t(db) Aw+u(b) - dw] = t(b) Afw] +b-V[w]. O

PROPOSITION 4.5. Suppose that ©,,: Q"B2gZX —Z5X (as defined in Defini-
tion 4.1) is invertible for m=1,2. Then the curvature of the connection on H™(Z5X)

described in Proposition 4.4 is zero.

Proof. Take [w]o€ Z"=ker(d: 25 X —Z77'X). and write

@fl[dwh = Z§i®[ni]0€ QIB®BZTL.

Likewise write 6;1 [dni]lzzj Xij [ 1iz)o eN'Bg g Z™. Now write the composition vily
as

[w] — Z & ®mi] — Z <d& [ ~Z fi/\xz'a@[ﬂij]) :
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Inserting the definition of ©7!, we get [dw];=Y",[t.&;An;]1 and [dm]lzzj {Laxis Atij)a-
This means that
a’w~z L&A € LPBAQTTIX

so we write

dw—z L& AT :Z LT A AE.
%

k2

where 7, €Q02B and M\, €Q"7*X. Applying d to this, we get

D (T AN+ 1T AdA) = D (1a€i Ay — LedE A1)
% i
Then we obtain 37, [t.mik AdAela =37, 5 [ex (€A Xi5) Aptijl2 =22, [e<(d€i) Anil2. Thus the two
elements ), 7x®[dAg]o and 2 &M ®lijlo— 2, d&i o of Q’BpZy " map to
the same thing under 65, so by our assumption they must be equal. Now as [dAg]o is a

coboundary, the curvature must vanish. ]

5. Spectral sequences

The reader should refer to [14] for the details of the homological algebra used to construct
the spectral sequence. We will merely quote the results.

Remark 5.1. Start with a differential graded module C" (for n>0) and d: C™—C™*!
with d>=0. Suppose that C has a filtration F"CCC=@, 5,C" for m>0 so that

(1) dF™CCF™C for all m>0 (i.e. the filtration is preserved by d);

(2) F™TICcF™C for all m>0 (i.e. the filtration is decreasing);

(3) F°C=C and F"C"=F™CNC™={0} for all m>n (a boundedness condition).

Then there is a spectral sequence (E}*,d,) for r>1 with d, of bidegree (r,1—r) and

ker(d: FPCP+a/FrriCpta  ppOpratl/ ppHioptatl)
im(d: FPCpra—1]FpriCpta=1 — FpOP+a/[FrriCpra)’

EP?=HPTYFPC/FPTIC) =
In more detail, we define

Zf»q — chp+qﬂd—1(Fp+GC+q+1)7
BPY = PPOPHand(FPT P,
BEt= 209/ (Z2H 0 4B

The differential
dy: BP9 — ppiramrH
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is the map induced on quotienting d: ZP9— ZP+7-a=7F1,

The spectral sequence converges to H*(C.d) in the sense that

pran FPHPHIC,)
> = Frrigrra(C.d)’

where FPH*(C. d) is the image of the map H*(FPC,d)—H*(C,d) induced by the inclu-
sion FPC—C.

Now take the case of a differentiable algebra map ¢: B— X. We can give the following

example of a spectral sequence:

Remark 5.2. Define the filtration FQ* "X =, QmBAQ"X of Q*X. This obeys
conditions (1) and (2) of Remark 5.1 as

L QTHBAQYX C 1, O BALQBANX C L, QTBAQTIX.

We have boundedness as 1, Q°BAQ"X=0"X . and by convention, "X =0 for n<0. Note
that J—— .
—— =3 X
FrtlQrtaX P
and we obtain a spectral sequence with EY?=H9(Z* X ) which converges to Hjg (X) in
the sense described in Remark 5.1. The differential di: HY(Z;X)—H?(E;,,X) is the

map given by applying d to cocycles in =7 X, taking care over the domains!

Definition 5.3. The differentiable algebra map ¢: B— X is called a differential fibra-
tion if ©,: Q"BRpE X —Z5, X (as given in Definition 4.1) is invertible for all m2>0.

THEOREM 5.4. Suppose that «: B—X is a differential fibration. Then there is a
spectral sequence converging to Hig(X) with

EP9= HP(B: HI(Z3X), V).

Proof. We note that ©,,.: ®WBgp HY(Z§X)— H?(Z; X ) is an isomorphism, and that
it commutes with the differential in the spectral sequence if we use the flat connection
cochain complex on PB®g H1(Z5X). u

6. The multiplicative structure

Even if one is not a priori interested in a multiplicative structure on the cohomology
theories, in algebraic topology a knowledge of the multiplicative structure can help to find
the differentials in the spectral sequence. In this section we suppose that the differentiable
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algebra map 1: B— X is a differential fibration, that each Q™B is flat as a right B-module,
and that the following condition holds:

Definition 6.1. The map «: B—X will be said to satisfy the differential braiding
condition if Q"XA, Q"BCt,QmBAQ"X for all n,m>0.

Remark 6.2. Note that the condition in Definition 6.1 means that the wedge multi-

plication preserves the filtration in the construction of the spectral sequence, as
(L VBAYX) A (L BAQX) C X BALQ BAVXAQX C L, O BAYHX,

so there is a multiplicative structure on the spectral sequence. However, we have gone to
considerable trouble to show that the Es-page of the spectral sequence can be expressed in
terms of a cohomology bundle with connection, so we shall look at what this multiplicative
structure means in these terms.

PROPOSITION 6.3. Define a map 6:Z0X%gQmB—-0"Bgp=X by 6([flo®uw)=
w,®[&ilo (summation implicit), where [LawiNE]m=(~1)""[EAtsw]m. For the cochain
structure on =§,

&((ker d)@Q™B) C "By (kerd) and  6((imd)£sQ™B) C Q"Bop (imd),
so there is a well-defined mép o: HM(Z X))@ QmB—->O"Beg H™(Zf).
Proof. First suppose that [¢]o€ker dCZRX. We write 6([€]o®w)=w,®[{;]o, where
L AE 2 (=1 EALw  mod 1, QMTIBREOMTIX.
On applying d,
LW AN A (= 1) ™ Wi AdEL 2 (— 1)V dEALww+ (= 1) T EA L dw
mod Q"' BgpQ"X.

As d€€1, QB®pQ™X, this shows that [t.w|AdE!],,=0, and therefore the fibration con-
dition gives w,®p[df!]o=0. The result follows by flatness.
Now take [7]o€Z§ X, and then find

Lwi AT, ZnALw  mod L, Q™ B Q"X
Applying d gives
LW AT+ (=) awiAdn: 2 dnAew~(—1)"nAtudw  mod OB X,
which reduces to

(=)™ wliAd, 2 dnAtew  mod Q" TIBgp Q"X a
T 1 T’
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PROPOSITION 6.4. If the differential braiding condition holds, then there exists a
well-defined map N:Z[XQREEX +Z[7°X defined by [loA[nlo=[EAn]o, and this gives a
well-defined map N: H"(E5X) @ H*(E5X )~ H ™5(25X).

Proof. To show that the map [€]o&[n]o— [€An]o is well defined we need to show that
both t,QQ'BAQ I XAQX and Q"X AL QIBAQS~1X are contained in ¢, Q' BAQTTS71X.
The first inclusion is automatic, and the second follows from the differential braiding
condition. The rest is left to the reader. U

PROPOSITION 6.5. For all x€e H"(Z5X) and weQ™B,

(A®i1d)(idgo)(Vzew)+o(zgde) =[d2id+(—1)" (1dAV)]o(zQw).

Proof. For all weQ™B and £€Q™X. we have defined §({®w)=w; &&;, where
(VI)nmg/\L*»d = L A§i+b*éiAni
for some ¢;€Q" B and n;€Q" !X, Taking d of this gives

(=1)"MdENLew+ (= 1) EA L dw = 1o dw; A+ (1) Lewi AdE;

1 (6.1)
+iedoi A+ (=)™ 0 Adn;.

Now we suppose that [€]o€ker(d: Zp X —Z77'X ). and then we also have [d€;],, =0. This
means that all the terms of (6.1) are in .Q™"!BAQ"X, and using the quotient map

[ ]m+1 we obtain

(1) [dEA LWt + (= 1) [EALdw] s 62)
= [L*dwi/\ﬁi}m+1 + (*l)m {L*u}i Adgi]m+1 + (—1)m+1 [L*(éi /\dni]m+1- ’
Now write VE=1; ®[(iJo€MBRZR and VE; =4 2 [(ix]o. Substituting this in (6.2) gives

()" i NG AL W]t = [tadwi A& a1 + (= 1)™ [tewi Absik AGik mt1 (6.3)
+ (=) EA L dw] a1+ (= 1) ™ 0 A mg -
On passing to the cohomology the last term in (6.3) vanishes, giving the result. O
PROPOSITION 6.6. For z.yc H*(Z5X). V(zAy)=VzAy+(cAid)(z®Vy).
Proof. Suppose that z and y are given by [£]p€Z5X and [njo€=5X, respectively.
Set Ve=w;®[¢;] and Vy=0;2[n;] for [&;]o€=5X and [n;Jo€Z§X. Then

d(EAN) =dEAN+(—1) Endn = Lawi A AN+ (=1)T EALL D AT, O
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PROPOSITION 6.7. For all z€e H*(E5X) and w.0€Q*B,

(idho)(o(z@w)R0) = o(z & (who)).

Proof. Set z=[£]o. We will use explicit summations in this proof. We obtain

i

(idAo)(o([Elo@w) ) =D _ (dro)(wig[Eloz0) = wirdi; Bl
where

D lwi Ao = (D AL w] L and Y ol AE o = (1) E A L] g
7

i

From this we obtain

D A T wttol = D (= 1) e () AG ALl o)

%7 i

:(‘1)r£z<ro‘c+wKA,/XML*@]MHW ]

The reader will recall that in the construction of the spectral sequence the vector
spaces Q"B®p H™(Z5X) appear. This is not such a simple thing as a tensor product
differential complex, as the derivative involves a connection which does not map H*(=5X)
to itself. It is therefore not surprising that the product structure has to be rather more
complicated than the graded tensor product. In fact. we have already given all the
ingredients required for the product, it only remains to state them in a more coherent

manner:

Definition 6.8. Take (E™. V)€ 4F for all m20, and suppose that each E™ is an
A-bimodule. Give e E™ the grade |e|=m. A product structure on this family consists
of

(1) A-bimodule maps 0: E™®4Q"A— QAR E™:

(2) a product A: E™®4 E™ — E™™ which satisfy the following conditions, for all
e, fEE* and &, neQV*A:

(a) the product (é®e)A(n@f)=(-1)letMeno(ezn)Af on QAR E* is associative;

(b) (idAo)(Ve®é)+o(e®d)=[did+(—1)E (1dAV)]o(ezf);

(c) V(enf)=VeAf+(onid)(e@ V)

() (dA0)(o(e®E)@n)=0(e@(EAD)).
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PROPOSITION 6.9. In Definition 6.8 the derivative V¥ is a graded derivation over
the given product structure on QLA E*. i.e.

VE((g@e)A o) =V (Ese)A(nz f)+(~1) e (E@e) AVE (2 ).
Thus there is an induced product structure on the cohomology,

AH™Y(A.E™ V)2 H"(A. E™ V) — H"™ (A, E™™ V).

Proof. Begin with

(DM ((ERe) Az f)) = (d2id+(-1)SF T (dAV)) (EAa(e®m) A f)
=dénalezn)Af+(—1)ElEn(dRid)o(e@n)Af
(=1 A(dAV ) o (e@n) A f
+(—1)EFeA([dAoAId) (o (e®n) RV F).

Using property (b) of Definition 6.8, this becomes

(D ((ege) A f)) =dena(ezn) Af+(~1)FEA(dAG) (VeRn)A f
+(~Dllena(e@dn)Af (6.4)
+(=1)ETMieA(idAoAid) (a(e@n)RVS).

Next we calculate
(=DM E@e) Az f) = (-1)9 1" (dgge+(~1)FIEAVE) A0 ),
which is the same as the first two terms of (6.4). Next

(=1)lellnl+lel+el (e ey AT I (ng f)
= (1) ini+leltlel (e e) A (dp2 f+(=1) " nAVS)
= (1) ena(ezdn) A f+(=1)TEN (0 Ad)(e®nAVS),

so to prove the result we only need to verify
(idAoAid) (o (ezn) 2V f) = (o Aid) (eRNAVS),

which is given by property (d) of Definition 6.8. 0
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7. Coactions of Hopf algebras

In classical topology, fibrations arise whenever there is a continuous (compact) group ac-
tion on a (compact) Hausdorff space (e.g. a free action gives rise to a principal fibration).
A base of the fibration is then identified with the quotient of the total space by this
action. In noncommutative geometry this corresponds to a coaction of a Hopf algebra.
on an algebra. This is the case that we consider in this section and, indeed in all the
remaining sections.

7.1. Differential calculi on Hopf algebras

For more details on this subject, the reader should see [24]. Suppose that a Hopf alge-
bra H with coproduct Ay, counit ¢ and the invertible antipode S has a differential cal-
culus Q*H. We write the coproduct in H as Ay (h)=h, k(). A% (h)=hayQh2)yRhs),
etc., and the left H-coaction on Q'H as £ £_1) 2£jg) (summation understood). If there
is no danger of confusion we will simply write A and ¢ for Ay and g (this convention
applies to all other Hopf algebras as well). In this section we shall not assume that the
coproduct is differentiable (this would give a bicovariant calculus), but only that the left
H-coaction X: O*H — H®Q*H is defined. L™H denotes the space of left-invariant n-forms
on H, that is,

L'H = MO H) = {Le Q"H : £_1) 0/ = 1g R}

The Hopf-Lie algebra h of H is defined to be
h={a:Q'H = k:a(nh)=a(n)e(h) for all nc Q'H and he H}.

Note that defining h as a vector space only requires a ‘classical point’, that is, an algebra
map €: H—k.

LEMMA 7.1. If, for a left-invariant ncQ*H, a(n)=0 for all ach, then n=0.

Proof. For any k-linear map T: L'H —k, define ar: Q'H —k by
ar(€) =T (&0 S (E-1)))-
Then for he H,
ar(§h) =T (& h(z)S_l(hu))S"l(f{—l])) =ar(&)e(h),

so ar€h. For a left-invariant n€Q'H, choose T so that T(n)#0, and then ar(n)#0. O
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7.2. Differentiable right coactions

Suppose that the algebra X has a differentiable right coaction p (written on elements
as Q(z):x[()]@:t[l] € X® H, summation understood) by the Hopf algebra H which makes
it into a comodule algebra. This means that o: X —X® H is a coaction and a differ-
entiable algebra map, so we obtain a map of differential graded algebras (under the
A-multiplication)
0 X — QM X2 H)= P UXO"H.
0<r<n

Write II,,, »—m for the corresponding projection from Q*(X@ H) to QmX Q" ™H. Note
that the maps II,, g 0. define the right coactions of H on "X. These are also denoted
by ¢. The subalgebra BC X is defined to be the coinvariants for the right H-coaction, i.e.
B=XH":={hecX:p(b)=b®1y}. We now define the calculus on B by Q'B=B-dBCQ'X
and Q"B=A\"Q'BCQ"X. It is immediate that Q"B (27X )°¥, the H-invariant n-forms

on X. However, we can be rather more restrictive:

Definition 7.2. Define

H'X= (] ker(ILypmos: Q"X — Q"XKQ"H).

n>mz0
The elements of H"X are called horizontal n-forms.

Remark 7.3. It is immediate that Q"B CH"X. and we might conjecture that in ‘nice’
cases we should have Q"B=(0"X)°#N7{"X. The reader should note that in the case of
a bicovariant calculus on H, the differential algebra Q*H is itself a graded Hopf algebra
(see [4]), and then the conjecture is that Q"B is the invariant part of "X under the right
Q*H-coaction.

Remark 7.4. As in the classical case. it is possible to define horizontal 1-forms with
reference to the Hopf-Lie algebra. Remember from [1] that the vector fields on X are the
right X-module maps from QX to X. Everv a€h gives a vector field & on X defined
by a(€)=(id®a)ly 1 0.(£) for everv £cQIX.

PROPOSITION 7.5. H!'X=(, ., ker(a: 'X — X).

Proof. First the reader should recall the definition of the cotensor product UOgV of
aright H-comodule U and a left H-comodule V' [17]. This is the subset of U®V consisting
of all u®v (summation implicit) where ug B uj 2 v=uRv_1) Qg cURH®V. Note that
we can restrict the codomain to get Iy j0,: 2'X - X Oy Q'H. Now there is a one-to-one
correspondence between X Oy Q'H and X® L'H given by 0y &z ®ESTH (x1)) and
y®n—=y)Urnyp). This combines with Lemma 7.1 to prove the result. (]
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7.3. When the algebra coacted on is a Hopf algebra

A special case of interest, corresponding to homogeneous spaces, is when the algebra
X is itself a Hopf algebra. Suppose that the Hopf algebra X has a differentiable right
coaction p of the Hopf algebra H which makes it into a comodule algebra. We shall also
assume that g commutes with the coproduct Ax of X. ie.

(d®o)Ax =(Ax®id)g: X — X XQH.
This is the case if and only if the map m: X —H defined by n(z)=(ex®id)o(z) is a
bialgebra map, and then o(z)=(id®7)Ax(z). Let B:=XH.
LEMMA 7.6. AxBCX®B.

Proof. By the definition of coinvariants, for all b€ B. p(b)=b®1y, so

(Ax®id)g(b):b(1)®b(2)®lg :b(l)®g(b(2)). 0

Lemma 7.6 means that the Hopf algebra X left coacts on B. Thus B can be viewed
as a noncommutative generalisation of a homogeneous space of X [18].

8. The noncommutative Hopf fibration with a nonbicovariant calculus

In this section we give an explicit example of a noncommutative differentiable fibration. It
is well known that the underlying algebra inclusion is a quantum principal bundle [6]. Our
aim, however, is to show that it is a differentiable fibration in the sense of Definition 5.3.

8.1. Example: The quantum Hopf fibration

This is an example of the type of coaction discussed in §7.3. Consider the complex Hopf
algebra X=A(SL,(2)) generated by {«, 3,7, 8} with the relations

af=qpfa, ay=qya, Py=~0. B6=qi8. I=qdv,

. (8.1)
ad =da+{(g—¢~ )8y and ad—glBy=1,

where ¢ is a complex number which is not a root of unity. On this level of algebraic
generality, there is no need to make further restrictions on g, although geometrically most
interesting is the case 0<g<1, whereby X can be made into a *-algebra and extended
to a C*-algebra of functions on the quantum group SU,(2) (cf. [23]). The coproduct is
given by

Aa=a®a+pRy, AB=a®3+384.

) (8.2
Ay=vRa+8y, Af=000+7275, )
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and counit and antipode by

e(a)=¢e(8) =1, &(8)=¢e(y)=0.
Sla)=6, S8 =a. SB)=-¢ '8 SW=-g7.
We will take H to be the group algebra of Z, which we take as generated by z and z™*
with AzFl=2*1@z%1 §(2%1)=2%" and =(z*!)=1. The Hopf algebra map 7: X —H is

given by
ma)=z, w(8)=z"' and w(B)=n(y)=0.

The right H-coaction g on X is then given by
ole)=a®z, o(B)=p82z"". o(v)=y®z and o(§)=d®z"".

The invariant part of X, B=X# =A(S2). is generated as an algebra by {af3, 0,6}
and is known as (an algebra of functions on) the standard quantum 2-sphere [18].

8.2. The 3D nonbicovariant calculus on A(SL,(2))

This left-covariant differential calculus on X=A4(SLy(2)) was introduced by Woronowicz
in [23] and is generated by three left-invariant 1-forms {w° w',w?}. The differentials of

the generators are given by

da=oaw'—¢duw®. di= aw® —qz/BWI»

1 v 2 0 251 (8'3)
dy=vyw —qdw’. dé=ryw’—q“dw".
We have the commutation relations
WLa=g¢law’. W'8=q8u°,
wa=g%aw!, Ww'B=¢*fuw, (84)

Wia=qlow?, WB=qBu?

and similarly for replacing o with « and 3 with 4. For the higher forms we have exterior

derivatives
dw® = (P +1D) Wl  do'=qulA? dw? =g (1) WAL’ (8.5)
and wedge multiplication

wo/\wozwlAwlzu}Q/\w2=0, (8.6)
wirw® = —qzwo/\wz, WAl = —q4w0/\w1, WA = —q4w1/\w2.
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8.3. The differentiable coaction

We need the map 7 given in §8.1 to extend to a map . of differential graded algebras.
Such an extension of 7 exists, provided there is a suitable differential structure on H,
which can be constructed as follows. From (8.3) we obtain dz=zm,(w!), 0=zm,(w?),
O0=—gz " 'm.(w?) and d(z71)=—¢?2 'x.(w"). This can be summarised by

(W) =m (W) =0, m(w)=z"1dz and z.dz=q%dz 2. (8.7)

(To see this, note that from z-z7!=1 we use the derivation property for d to get
d(z~Y)=-~271dz-2z7%) It is easily checked that the map =, defined in this fashion
satisfies all the relations and that the constructed differential calculus on H is bicovari-
ant. However, the cost of differentiability of =, is that the commutative algebra H is
given a noncommutative differential structure!

To find g, we look at (8.3), and use g.(da)=d(o(a)), etc., to give
0. (W) =w’®272 o (W) =19z ldz+w'®1 and . (w?)=w?R2% (8.8)

To check that this gives a well-defined map on Q! X, one needs to check that it is con-
sistent with the relations in (8.4)—this is left to the reader. Then to define g, on the
higher forms by using the wedge product, we only have to check the relations in (8.5)
and (8.6), which is easily done by a straightforward calculation.

To find the horizontal 1-forms we apply Iy to (8.8) to get

I, g*(wl) =1®z 'dz and Iy 1 04 (wo) =TIlg1 g*(wz) =0.

It follows that the horizontal 1-forms are precisely those of the form aw®+bw? for a,be X.
We can also calculate the right H-coaction by applying II; o to (8.8) to get

Hlyog*(wl):w1®1, Hlvog*(wo):w0®z‘2 and Hl,og*(w2)2w2®z2.

Then the invariant horizontal 1-forms are precisely those of the form aw®+bw?, where
ola)=a®z? and o(b)=b®2z"2.

8.4. The corresponding calculus on B=4(S2)

We can calculate
d(af) = oW’ —? %2,

qd(Bv) = ayw® —¢*Bow?. (8.9)
d(y8) = 7w’ —g* 6%,
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From this we get

sd(aB)—q13d(3v) = au®,
q0d(8~)—q " 3d(78) =y’

i

By left multiplying these last equations by a and +, we see that a®w®, ayuw® and y?w®
are all in B-dB. From (8.9) we deduce that 3%w?, 836w? and §%w? are also all in B-dB.
Given a monomial a in the generators {a. 3.v,8} with g(a)=a®z?, we can reorder

it as either a=za?

, a=zay or a=x~?, where z€ B. Thus we have aw’€ B-dB. Likewise
for a monomial b with o(b)=b®2z 2 we have bw?€ B-dB. From this and the discussion
in §8.3 we conclude that Q!B is precisely the horizontal invariant 1-forms on X.

Now we shall consider the 2-forms. Since o, is a graded algebra map, we immediately

obtain

0 (WAW?) =wlAw?®1  and . (WiAW?) = W28 drrulawt® 2?72 1=0,2.

2

Hence the horizontal 2-forms are multiples of w®Aw?. Then the invariant horizontal

2-forms are B-wPAw?. To see that Q2B is all of this, we use the relation
a?0*—(g+q N ay80+¢**57 =1.

By using a?w®A82w? =¢2a26%w Aw? and similar calculations, we see that w®Aw? is con-
tained in Q'BAQ!B.

All 3-forms are multiples of wAw!Aw?. but none of these (except zero) are horizon-
tal, so we conclude that Q3B=0.

8.5. An easy example of a spectral sequence

We will use the notation (...) to denote the right X-module generated by the listed
elements. Then as right X-modules, Bgp X=X, O'Bgp X = (w w?) and *Bop X
{(wAw?). We can calculate the =" X as shown in the following table:

=X n=>0 n=1 n>1
m=0 X {wh) 0
m=1| (W% w?) | (WohLl w?Awl) | O
m=2 | (WAw?) | (WOAwAW?) 0
m>2 0 0 0
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It follows that
O, QBRI X =0"Bog X@x =X — En X

(as defined in Definition 4.1) is an isomorphism, and that the quantum Hopf fibration
1 A(S2) = A(SLy(2)) is a differential fibration for this differential structure.

Now we shall calculate the E,-page of the spectral sequence in this case. The first
thing to do is to look at H*(Z3X). Recall that we consider only the generic case, where
¢ is not a root of unity. Note that the coaction g makes X into a Z-graded algebra with
the grading deg a=deg~y=1, deg S=degd=-1 and deg 1=0.

LEMMA 8.1. For any homogeneous x€ X, the differential
dEX =X — T X =X/ (w0 w?)

gives
]

dz =[degxz:qg Y zw'

where [n;q 3 =(¢" % ~1)/(¢"%~1) is a ¢~ >-integer.

Proof. This is most easily proved by checking the formula on the generators of X,
and then showing that if the formula holds for homogeneous a,b€ X then it also holds
for z=ab. This uses the Leibniz rule and (8.4). g

PROPOSITION 8.2. As left B-modules, H(Z;X)=B, H (Z3X)=B-w' and, for
n>1, H™(Z5X)=0.
Proof. This comes from Lemma 8.1 and Z} X =0 for n>1. 4

Remark 8.3. We now have to find the left B-connection V described in Proposi-
tion 4.4. As each H"(Z§X) is a finitely generated B-module, it is enough to find V on

ra— —_—

the generators. Choose generators 15 and w' in H°(Z3X) and H'(Z3X), respectively;
an explicit calculation then implies that V1g=0 and Vw!=0. Now we can calculate the
V-cohomology of the H™(Z§ X }-module, which is given by the cochain complex

HY(Z5X) — Q' BepH"(Z5X) — Q*Bgg HM(Z)X) — ... .
Using the generators, we identify this with the usual de Rham complex
B—QB—Q?B— ...

and so we get E5" =HZ. (B) for r=0, 1, and E5" =0 for other values of r. This gives the

Es-page of the Serre spectral sequence (we display only potentially nonzero terms):
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r

1| Hep(B) Hge(B) Hig(B) Hir(B)

0| Hig(B) Hir(B) Hig(B) Hix(B)
0 1 2 3 P

The only possibly nonzero differentials on this page are dy:(0,1)—(2,0) and
dg: (1,1)—(3,0). All further pages have all differentials zero, just from considering the
indices. From this we see that H3p(B)=H3,(X), but Hip(X)=0 as Q*X =0, and so
H3:(B)=0. Using this, we get H2;(B)=H3s(X). Also we obtain Hg(B)~H3g(X)

and the more complicated cases
Hig(X) = Hig(B)©ker(dy: Hig (B) = Hir(B)),
HiR(X) = Hgp (B)&coker(dz: Hig (B) — Hig(B)).
To get any further, we would have to use additional information about either B or X.

However, this is one of the primary reasons why the Serre spectral sequence is useful, it

turns information about one space into information about the other space.

9. A construction for bicovariant calculi

In this section we consider Hopf algebras X and H with bicovariant differential calculi.
We assume that there exists a differentiable surjective Hopf algebra map m: X —H. The
right H-coaction on X is given by o=(idg7)A: X > X® H (cf. §7.3). Since the calculus
on X is bicovariant, the coproduct A in X is a differentiable map, and hence also the

coaction g is differentiable (as a composition of differentiable maps).

9.1. Left-invariant forms and coactions

We first study the covariance properties of the spaces of horizontal n-forms (see Defini-
tion 7.2).

PROPOSITION 9.1. H"X is preserved by the right H-coaction, i.e.

o(H"X) CH'Xg H.

Proof. Start with any n€H"X. To check that o(n) e H"X @ H we need to show that
(ILy, n—m 0+®id) 0()=0 for all n>m>0. Inserting the definition of the right coaction,
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we need to show that (IL, n—m 0.®1d)I1, g 04 (n)=0, for all n>m>0. This, using more
projections to forms, is the same as I, ,—m,0(0«®id) 0. () =0 (here we have extended
the projection II to three factors in the obvious manner). By the coaction property this is
I, nem,0(1d®A,) 04 (n)=0. However, as n€ H"X we know that p.(n)€Q"X®H, giving
(Id®AL) 0. (M) €N XQRH®H, and applying the projection gives zero. O

PROPOSITION 9.2. The space of horizontal n-forms H"™X is preserved by the left
X-coaction, i.e. g n AL (H"X)CXQH"X.

Proof. For neH™X and all 0<m<n we need to show that
(1d®id®m.) (i[dQm n-mA) Il n Ay
vanishes. By coassociativity, this is the same as
g, m,n—m (A@id)(id®@7, } Ay

Now (id®7, ) AmeQ"X®H, so applying the projection gives zero, as n—m>0. d

9.2. The 1-forms on the base B

To identify the differential forms on the base B, we require that 7: X —H satisfies an
additional condition, and this is best phrased in terms of the space

K =ker(m,: L'X — L*H). (9.1)

Note that K is simply the space of horizontal left-invariant 1-forms on X.
Definition 9.3. We say that m: X — H satisfies Condition K if KCdB-X.

Note that checking that 7 satisfies Condition K is easier than it might seem, as often
the left-invariant 1-forms on X form a finite-dimensional space (see the explicit example
in §11.3).

PROPOSITION 9.4. If m: X —H satisfies Condition K, then H'X=dB-X.

Proof. Take any n€H!X. By Proposition 9.2 on the left X-coaction,
N-11 ¥ M0)[—1] @ Mojj0] € XQXQH'X.
Remember, for any 1-form ¢, that £p)-S™1(£/_y)) is left-invariant. It follows that

-1 @m0 S (Moj(-1]) € X®dB- X,
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o)
n="0]10"S ™" (Moj—1)) M1 € dB-X.
The other inclusion is immediate. 0

Definition 9.5. ([22]) A normalised left integral for H is a map [:H—k with
([d®[)Ag=1y [t H—H and [15=1.

A Hopf algebra H has a normalised left integral if and only if it is cosemisimple.
One easily checks that if f is a normalised left integral for H, then, for any right H-
comodule Y with coaction ¢:Y = Y®H. the map (id® [)0:Y =Y is a projection onto

the coinvariant subspace Y°H:={ycY:o(y)=y31}.

PROPOSITION 9.6. Suppose that H has a normalised left integral, and that m: X - H
satisfies Condition K. Then Q'B=dB-B=(H'X)®H,

Proof. Apply the left integral to the result of Proposition 9.4. a

9.3. Bicovariant calculi on Hopf algebras using left-invariant 1-forms

In the case where the coproduct is differentiable. there is a construction of the calcu-
lus on a Hopf algebra X in terms of the left-invariant 1-forms L'X which is due to
Woronowicz [24].

There is an isomorphism of X-modules and -comodules (the module/comodule struc-
tures indicated by the dots)

WX (LX) %X,

1 (9.2)
E— &1 ST (G 12) B - 111

with the inverse given by the product map. It is also a left X-module map, but with the
left action on L'X®X given by zb(nQy)=z >n®z1)y, and zon=r2nS~'(z)) for
ne€L'X and z,ycX.

The relation between the left X-action on L'X and the right X-coaction gx: L'X —
L'X®X is summarised in the equation ox (z0n)=z(2)>n0 @z EmyS ™ (zq)). This fits
the left action/right coaction version of a Yetter-Drinfeld module (cf. [8, §5]). By
the standard results on Yetter—Drinfeld modules there is a braiding o: L'X®L'X —
L'X®L'X defined by o(£@n)=n)®S(ny))>E, with inverse 0~ (£@n)=En >n®E)-

We define the wedge product on L'X as a quotient

L'X2L'X

L'XAL'X = ;
ker(c—id®id: LIX®L1X —» LIXQL'X)
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and extend this to higher wedge products. We choose to do this extension by quotienting
pairwise in each adjacent factor in (L'X)®™ rather than using Woronowicz’s antisym-
metriser, and in general this might give a different choice of higher differential calculi.
There is (as a matter of definition of the higher forms) an isomorphism

"X — (L'X)"® X, (9.3)

with wedge product defined by (({®z)A(nRy)=EA (x> B2 (1) Y-

9.4. 1dentifying the higher-dimensional calculus on the base algebra
PROPOSITION 9.7. Using the isomorphism (9.2), H'X corresponds to K&X .

Proof. Begin with a horizontal 1-form £€M'X, and apply the isomorphism (9.2) to
get £10)S ™ H(€1—1)(2)) ®€[=1)(1)- We need to show that m(g[O])W(S“l(5[_11(2)))69{[_1](1)=0.
As £eH'X we know that §-1;®7+(€0)=0, and the required result follows from this.

For the other direction, take n®@z€K®X. Then applying the left X-coaction to nx
gives Z(1)®7%(2), and applying id®, to this gives z(1)@m.(n)7(z(2))=0. a

PROPOSITION 9.8. The usual right H-coaction on L'X restricts to one on K. Also
the usual left X-action on L'X restricts to one on K.

Proof. For the coaction, for €K we need to show that II; o(id®w,)AneX®H. To
do this we need to show the vanishing of IT; o(m. ®m.) A =Il; 0 A7, (1)=0 (using the
fact that = is a coalgebra map).

For the action, we have

mo(abn) =m(zynS~ (zqy)) = m(z2) 07(S ™ (2(1))) =0 a

COROLLARY 9.9. If m: X —H satisfies Condition K, and H has a normalised left
integral, then, using the isomorphism (9.2), Q'B corresponds to (K®X)°H,

LEMMA 9.10. If H has o normalised left integral [, then for all a,c€H,
e [(aStea)) =aq [(a S(e)).

Proof. For all a,be H the left integral property gives

a<1>®a(2>b<1)/(a(3>b<2>)=a<1)®1H/(a<2>b)~
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Applying S~ to the last factor gives

a(1)®5_1(b(1))5_1(a(Q))/(a(B)b(Z))=a(1)®1H/(a(2)b)-

Now multiply the second factor on the right by the first to get

S_l(b(l))/(ab(z)) :a(l)/(a@)b)‘

Finally, putting b=S(c) gives the result. U

LemMMmA 9.11. If H has a normalised left integral, then there is a projection
p: L'X - L'X with image K which preserves the right H-coaction (i.e. p is right H-
colinear, i.e. pp={(pRid)g).

Proof. Take any linear projection py: L'X — L'X with image X, and define (using
square brackets for the H-coaction)

(&) =po(&0)) (0] /(Po(&[o])m S(&))-
First we show that p is a projection to K. Since the image of pg is K, and K is coacted on

by H, it is obvious from the formula that the image of p is contained in K. Now suppose
that £€XC, and then

p(&) =£0)0) /(E[o]m S(€n1)) =& /(5[1](1)5(5[1](2))) = em) =¢.
Finally we need to show the H-colinearity of p:
(&)1 ®p(€) ) = Po(€0)) 0110 ®Po o) 011) /(po(ﬁ[ol)[l]s(f[u))

= po(&j0)) 0] ©Po (€0} 1) /(100(5[0])[2} S(&m)),

P(&0) ®€11) = Po(&joi0)) 0] R €[ /(po(é[o}[o])m S(&ony))
=po(£[0])[o]®€m/(Po(E[o])m S(¢n)))-

Now Lemma 9.10 gives the equality of these expressions. O



THE SERRE SPECTRAL SEQUENCE OF A NONCOMMUTATIVE FIBRATION 189

THEOREM 9.12. If m: X = H satisfies Condition K, and H has a normalised left
integral, then, using the isomorphism (9.3), Q"B=(K""®@ X)°H (with the tensor coac-
tion).

Proof. We shall prove this by induction on n, starting at Q'B=(K®X)*°#, which
has been done in Corollary 9.9. Now assume the statement for n.

To show that Q"B (KNP g X)0H we use Q" 1BCO"BAQIB, the formula for
the wedge product given in §9.3 and Proposition 9.8.

To show that (KN D X ) Hc Q1B take (EAD) Rz (KN D@ X)™H (summa-
tion indices omitted for clarity), with £€K and €KX ™ Then

(EAm©x = (p(&0) @S (€nj0)) AMEme) > (1®T)), (9-4)

where we use square brackets for the right X-coaction on L'X and p: L'X —L'X is the
projection given in Lemma 9.11. In (9.4) the first factor in the wedge product is in K& X,
and the second is in K*"®X. We use the colinearity of p to rewrite (9.4) as

(EAn)®z = (p(&0)0)) ®S o)) A > (1®2)), (9-5)

and now it is evident that the first factor is in (K® X)°H#=0Q!B. It is not obvious that
the second factor is H-invariant. However, we can integrate both sides of the equation
over H, and this averages the second factor to be H-invariant, without changing the
left-hand side. O

10. Homogeneous spaces as fibrations

In this section we still consider Hopf algebras X and H with bicovariant differential cal-
culi. We assume that there exists a differentiable surjective Hopf algebra map 7: X — H.
The differentiable right H-coaction on X is given by p=(id@m)A: X > X®H.

10.1. Checking the definition of fibration

LEMMA 10.1. Suppose that H has a normalised left integral. For any right H-comodule
and right X-module V such that the right action < V®X =V is an H-comodule map
(with the tensor product coaction), the action 4:V°Hgg X —V is a bijective correspon-
dence.

Proof. Call the coaction g:V—-V®H. Take a linear map ¥: H— X so that wet)=
id: H— H. Now define an inverse map 7: V—= Vg5 X for «: veeHg e X 5V by

((d®[) o) (ajg<aS(¥lan)m))®s¥lan) @)
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The purpose of the operation (id®[)pe is to ensure that the result lies in Vetdgp X
rather than just V®gX. The reader may verify that these two maps are inverse by
direct calculation. The reader familiar with the Hopf~Galois theory may recognise this
result as a consequence of [20, Theorem IJ. O

COROLLARY 10.2. If m: X —H satisfies Condition K, then, under the isomor-
phism (9.3), Q™B-X corresponds to K ""@X.

Proof. Put V=K"™®X in Lemma 10.1, and use Theorem 9.12. O
COROLLARY 10.3. For integer n>1, we have that QmBASQ"X corresponds to
(KNA(LPX)NM)® X, and then
2 X=Q"B-X=K""®X,

o SYTBAQX KMPA(LIX)N
T QmAIBAQrLX T KA DA (LIX)A (1)

®X, nx=l

Proof. Note that Q"BAQ"X=0Q™B-XAQ"X and use Corollary 10.2. O
LEMMA 10.4. For integers m>0 and n>1, there is an isomorphism

,C/\m/\(LlX)/\n (le)/\n
~ K:/\m®
]C/\(m+1)/\(L1X)/\(n—1) - ’C/\(LIX)/\(n—l)

induced by the map

(9. @y DELD ... Dn] > (BOA N )R [61R... 0],

for €K and &€L'X, and where [-] denotes equivalence class.

Proof. First we must show that the map given in Lemma 10.4 is well defined, and
to do this we must use the braiding ¢ in the definition of wedge product. The space on
the left-hand side is defined to be the quotient of K®™®(L1X)®" by a subspace spanned
by elements of the form s ®...®,®68...Q&, where at least one of the following
statements is true:

(a) &EK;

(b) for some 1<i<m—1, 0(56@:41)=#:;Q11;

(€) 0(s#m®&1)=xm®&y;

(d) for some 1<i<n—1, 0(§®&i+1) =& ®Eiv1-

We need to show that all these elements are mapped to zero. In cases (a) and (d) we
have [£,®...8&,]=0. In case (b) we have s A... A, =0. In case (c),

o(3m®&1) = 51[0] ®S(§1[1])Dxm € L1X®IC,
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since the left X-action restricts to K. It then follows that we are in case (a).

The inverse map is

[41®... 85, )R [E1®...06,] > 30,8 .. @3 RED... Rk,

and showing that this is well defined is rather easier than for the forward map. [

THEOREM 10.5. Suppose that X and H are Hopf algebras with bicovariant dif-
ferential structure, and that m X —H is a surjective differentiable Hopf algebra map.
Additionally suppose that

(1) m: X > H satisfies Condition K (see Definition 9.3);

(2) H has a normalised left integral.

Then the inclusion B=X" 5 X is a differentiable fibration (see Definition 5.3), where
o=(1d®m)Ax: X —>X®H. Here B has the differential structure given by Theorem 9.12.

Proof. From Definition 5.3 we need to show that the map 6,,: Q"BQpZ;X =55, X
defined by £®[n]o—>[EAN)m is invertible for all m>0.

We begin by using the fact that Q"BRpE; X=0"BRp XQ@xE;X. Since we have
OmB=(K @ X)°H Lemma 10.1 gives Q"B®pE3X=(K "X )®xE5X. From §9.3
the right X-action on K"™® X is just multiplication on the second factor, so

O"BRpEi X 2K \"@X@x X 2 K\ QELX,

and the result follows from Corollary 10.3 and Lemma 10.4. 0O

10.2. Identifying the fibre of the fibration

Assume the conditions of Theorem 10.5.
LEMMA 10.6. L' XAKCKALX.

Proof. From Corollary 10.2, X-dBC X -dB- X=X -(K®X)=(K®X)=dB-X. Apply-
ing d to this gives dXAdBCdBAdX. From this we conclude that dXAdB-XCdBAdX X,
so from Condition K, dXAKCdBAdX-X. Multiplying again by X,

X dXNKCX-dBAdX- X CdBANX-dX X,

so MXAKCdBAQX. From Proposition 9.7, dBCK-X, so QIXAKCKAQ!X. Then
LIXAKCKAQYX. Note that L' XAK is left-invariant with respect to the left X-coaction,
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and consider £ A€ X (KAQ'X). Then, by invariance of {An and &,

Enn=S((EAD)—1)(EAN) )

(m-17)(§A))

(=113 EAS (S (M=11)2)) S(M=11) (1) Mo]
(M=111))ES™H(S (-1 ) AS (m-1)(3)) Mo
(m

(m

I

N=1)(1))>EAS (M=13(2) )Mo}

S
S
S
S
S(m-1))>EAS (Moy(-17) Mojjo} -

As the left X-action restricts to K, this is in K& L'X. O
PROPOSITION 10.7. The map 78™: (L'X)®"— (L'H)®" induces an invertible map

(LlX)/\n

~, NS 1 An
7 KA (LX) "D — (L"H)"™™.

Proof. The domain of 7 is the quotient of (L'X)®™ by a subspace spanned by ele-
ments of the form £®...Q¢,, where at least one of the following statements is true:

(a) &:eK.

(b) For some 1<ig<n—1, (& ®E€i11)=&REi+1.

The codomain of 7 is the quotient of (L'H)®™ by a subspace spanned by elements of the
form 7, ®...®n,, where the following statement is true:

(c) For some 1<i<n—1, o(n;®@ni+1) =1 &Mig1-

Case (a) maps to zero under 7" by definition of K. Case (b) maps to case (c) as 7 is a
Hopf algebra map. Thus 7 is well defined.

Given the hypothesis, it is automatic that 7 is onto.

To show that # is one-to-one, it is sufficient to show that the subspace quotienting
(L'X)®™ in the domain contains all elements of the form £;®...®¢,, where the following
statement is true:

(d) For some 1<i<n, §€eK.

This follows from repeated application of Lemma 10.6. 0

11. Example: The noncommutative Hopf

fibration with a bicovariant calculus

In this section we return to the algebras X, H and B discussed in §8.1, but now we
consider a (minimal) bicovariant differential calculus on A(SL¢(2)). In view of the results
of §§9 and 10 our task will be to construct a suitable calculus on H so that the map
7: X — H is differentiable and then to check that 7 satisfies Condition K in Definition 9.3.
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11.1. A 4D bicovariant calculus on A(SL,(2))

This differential calculus on X=.4(SL,(2)) was introduced by Woronowicz in [24] and is
generated by four left-invariant 1-forms {w? w? w*,w™}. The differentials of the gener-
ators are given by

-1 2 -1
q—q ~—q 1 24 4+, 4 2
do="—""—""ow —g “Puw +—aw*,
g+1 a8 qg+1
2
q 1 -2 - 4 2
df=——fpw —q “‘aw” —— Jw*,
g q+1ﬁ 1 q+1ﬁ
o 1 (11.1)
9—q9 —q 125 +, 9 2
dy="————"—yw — dwh 4+ ——yw?,
7 g+1 i 1 q+17
_2
q 1 2 - 9 ¢ 2
df= ——dw'— W ———0dw"
g+1 ¢ T
We have the commutation relations
wWra=gow’—(q—q¢ ") Bt +qlg—g ) ow!, wB=g¢ B’ ~(g—¢ Haw,
wia=aw ~(¢~1)Bu’, w B =B, n2)
wra=aw™, wtB=puw—(¢*-1)aw’, .
wa=q lawl!, w'B=qBul,

and these relations with the replacements a—~ and 4.

11.2. The differentiability of m: X — H

We use the Hopf algebra map 7 from §8.1, and assume that the map 7: X — H is differ-
entiable, i.e. that it extends to a map . of differential graded algebras. Applying 7. to
the expression for d3 in (11.1) gives zm,(w™)=0, and since z is invertible we deduce that
me{w™)=0. Likewise the expression for dvy in (11.1) gives 7.(w*)=0. Now the sixth equa-
tion in (11.2) gives (¢®~1)zm, (w!)=0, so if g#+1 we get m.(w')=0. Then the equations
for da and dé in (11.1) give

—1 -2
dzzq—zm(wz) and ——z_l-dz-z‘lz—q——z—lﬂ*(w2)-
q+1 g+1

From this we get
ﬂ-*(w2) :Q(Q‘f‘l)z_ldz a.nd dZ~Z_1 :q—lzﬂl.dz'

Just as in the case of the 3D calculus, we must have a noncommutative calculus for the
commutative algebra H. Note that K, the left-invariant forms which are in the kernel

of 7., has basis {w!, w*,w™}.
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11.3. Verifying Condition K

PROPOSITION 11.1. All of w™, w* and w* are in dB-X.

Proof. Begin by calculating

dB2)-S™ (B)) =dB-6—qds -3

= B g aw - gt

q+1 g+1
——q2—5w16+q'1’yw_,3+——q_1 dw?s
g+1 q+1

S S Uy S N
=—q *adw ———pg bw —(g—¢" )W)

g+1

-1
g 8w+ 5(g7Buw?—(g—g V) aw")

qg+1
—2/.2
-2 _ ¢ %g*-1) -1 -
=— ab—qyv3w ————(ba—q  By)w
q “(abé-gy8)w | (ba—q~"Bv)
:—q‘lw-’
and also
dy(2) S™H (vw)) = dy-a—gq N da-y
1 -2 -1
a—q "~ —q 1 —25 .+ q 2
=y — a+ "YW
qg+1 TwaTg 0w q+17
=1 -2 -2
—g L Tl bty - S awy

g+1 g+1
— 0 25wt g’ 2 o —lyg 4 —g 1 awh)
=—q “daw +q~+~17(qaw —(g—q " )Pw +qlg—q w
—2
+q“357w+—#a(qw2—(q—q‘1)5w++q(q—q‘l)2w1)
=—q‘250w*—£(q—q“1)vﬁw+
g+1
3 g ? 1
+q~ = (g—¢ Hadw”
g Byw q+l(q q )

—37,.2
o 4,91
=—q Wt
q g+1
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Now we have

d(aB)z)-S™H((@B) 1)) = dagz)- S~ (o)) e(8) =4 egyw ™S Haq))
=yw f—q taws
=—q Yab—qB)w™

—qvlw_>

It

dv8) @) ST (vB) (1)) = dv2y ST vy ) e(B)—a Meyw ST Hvwy)

=q¢ faw y—q 1w a

= ¢ 20(yw —(? = 1)éw) —¢ v (aw™ —(¢*=1) fuw)
=q¢ (¢~ 1)yBw' ¢ (g* 1) aduw!
= (q’2 — 1)(a5—q,87)w1

= (q42_1)w1>

d(57)2)- S 1 ((87) (1)) = db(2)- ST (61y) e(7) —q * 82w * ST (8(ny)
=q *Buwiv—q 3w a
=—q 3 (ba—q By)w"

=—q 3wt

This proves the claim since, for all b€ B, Abe Xg B. O
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