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Introduction 

In  the more recent development of the theory of general (linear) partial differ- 

ential equations, the so-called a priori inequalities play a prominent role. For instanc% 

the important  comparison of two partial differential operators P (D) and Q (D) witht 

constant coefficients, studied by  L. HSrmandcr [1], depends on the existence of a con- 

stant  C such tha t  

II Q (D) u l] <~ C II P (D) u ]I 

for all functions u =  u (x) of class ~ (~). (The norms are L2-norms with respect t o  

Lebesgue measure in a given region ~ in a Euclidean space R n. The class ~ (~) con- 

sists of all infinitely diffcrentiable functions of compact support in ~2.) One of HSr- 

mander 's  basic results [1, Theorem 2.2] asserts that,  if ~ is bounded, such a constant 

C exists if and only if the ratio Q (~)//5(~) remains bounded as a function of $ E Rn~ 

Here /5(~) denotes a certain "norm function" associated with the polynomial P (~)ir~ 

terms of which the operator P (D) is defined (cf. w 1 below). 

The present paper is concerned with similar problems for systems of differentiaI 

operators. Such a system is conveniently described as a matr ix  P (D) whose elements 

arc partial differential operators P~j (D). I f  Q (D) denotes another such matrix, we shall 

find a necessary and sufficient condition for the existence of a constant C such tha t  

][ Q (D)nil ~< c lie (D) u II 

for all column vectors u =  u @) whose elements uj (x) are of class D (~). (Theorems 

3.1 and 4.) In  w we treat  a more general problem of the same nature, viz., to 
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decide under which conditions an inequality of the above type holds for all solutions 

u E 0 (~) of a given homogeneous linear system of differential equations, t t  (D)u = 0. 

I f  the L~-norm of Q (D)u is replaced by  the L~C-norm or the L~-norm of the 

restriction of Q (D)u to some affine subspace of R ~, the condition for the validity 

of an estimate of the above kind will be changed in the manner described in HSr- 

mander [1, Theorems 2.6 and 2.8] for the case of single operators. This modification 

is discussed in the last section (w 6). 

I t  is a pleasure for me to acknowledge the valuable interest taken by  professor 

Lars HSrmander in the present investigation, which is so intimately associated with 

some of his important  contributions to the theory of general partial differential 

operators. 

1. The norm function associated with a polynomial 

For any given number n of dimensions we denote by  R n the Euclidean n-dimen- 

sional space. ~he points of R" are denoted (in the present c o n t e x t ) b y  ~ = (~1 . . . . .  ~ ) ,  

and we write I~] = ( ~ §  ... +~) �89  An arbitrary partial derivative of order /c may  be 

denoted by  

~ = ~ , ~ " ' ~ k '  where ~=~/8~.  

Here the multiindex a = ( a l ,  ..., a~) ranges over all subsets of the set (1, 2 . . . . .  n). 

The  length, or order, k, of such a multiindex a will be denoted by  l a I; it equals 

the order of ~ .  

Throughout the paper we denote by  .4 the integral domain C [~1 . . . . .  ~n] of al] 

polynomials P (~) in n real variables ~ = (~1 . . . . .  ~n) with complex coefficients. Equa- 

tions and inequalities between polynomials are always understood to hold in ~4, tha t  

is, identically with respect to ~ E R n. For any multiindex a, we write 

P(~) (~) = ~ P (~) 

for the corresponding derivative of the polynomial P (~). 

The following "norm t rac t ion"  /5(~), associated with any given polynomial P(~), 

plays an important  role in H6rmander 's  investigations of general partial differential 

operators: 

(~) = ( ~  IF  (~) (~)12) ~. (1) 

The summation should be extended over all multiindices :r but  the terms corre- 

sponding to orders ]~] exceeding the degree of P(~) vanish. The derivatives P(~)(~) 
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of order l al = t h e  degree of P($)  are constants, not all zero (unless P ( ~ ) - - 0 ) .  Hence 

P(8)  is bounded away from 0, tha t  is, 

for some constant c > 0, provided P (~) * 0. 

I t  is solely the order of magnitude of the norm function which matters in the 

applications to differential operators. Accordingly, /5(~) could be replaced by any 

function F (~) equivalent to P (~) in the sense that  

c-~ ,5 (8) < F (8) < C_~ (~) (3) 

for some constant C. For instance, ~ ] P(~)(~)l and max~ [P(~))~)] are equivalent to 

/5(~). The following lemma contains further examples of such functions. We denote 

by  C ~ the complex n-dimensional space and write ]~]2= ]~112+ ... + ] ~ p  when 

= (~, . . . . .  ~.) c c". 

L]~MMA 1.1. Each o/ the /ollowing /unctions is equivalent to /5(~): 

F~(~)= ( ]P (8+v) ldv ,  d~=d~] l  ... d~n , 

{hE n n, [~[~<1} 

F 2 (~) = max [P  (~ + ~)[, 
~e R n, I'~K* 

Fa (8) = max I p ($ + ~)I" 
~e C n, 1~141 

I t  will follow from the proof tha t  the constant C in (3) may be chosen so as 

to depend only on the degree of P(~) and the dimension n in each of the three 

cases F =  F 1, F ~ F 2 ,  and F = F  a. Note that  

F1 (~) < vn F2 (8) < V. F3 (~) 

if V. denotes the volume of the unit ball in R ~. The inequality F a (~)~< C/~(~) fol- 

lows from Taylors formula 

P (~ + ~)= ~ ([ ~[ !)-* P(~)(~)~, ~ =  ~ , ~  . . . .  (4) 

In order to prove the remaining inequality 

b (~) < r F1 (~), (5) 
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we choose an infinitely differentiable, non-zero function k = ]c (t) of a single real var- 

iable t. This function k should vanish for [ t[ > n -+ and satisfy the following ,m + 1 

conditions: 

f k(t) t~ dt=(~o, At=O, . . . . .  m. 1 

Here m denotes a given integer. I t  follows that, 

f k ( t ) ( s - t ) " d t = s  ~', At=0, 1, . . . ,m,  

and hence k+/9 =/9 for every polynomial /9 =/9 (t) of degree ~< m. Writing 

K (~) = k (~1) k (~) ... k (~n), 

we infer that  K-~P = P  for every polynomial P = P (~) of degree ~< m in each of the 

n variables. Performing a differentiation ~ ,  we obtain P(=)= K<~)-x-P, tha t  is, 

(~) = f K (~) (U) P (~ - U) du. 

Since k(t) = 0 for ]t I > n-�89 K(~) and K (~)(~) vanish for I~l > 1. Consequently 

I P < : ) ( ~ ) l <  m a x  IK<: ' (~)I  �9 IP(~-~)ld~. 
rl E Rn d 

Inl<l 

Substituting -~? for U under the in te~al  sign and summing over ~, we arrive at (5). 

We proceed to establish some properties of the norm function /3 (~). First we 

note that,  in view of Taylors formula (4), 

C-1/3 (~) •/3 (} .31_ ~2) ~< C/3 (}), (6) 

uniformly with respect to U in bounded subsets of the U-space. Next we observe that  

/3 (}) is positive homogeneous and subadditive in its dependence on the polynomial 

P = P ( 8 ) :  

(a P (~))- = l al/3 (~); (P1 (~) -5 Pz ($))- ~< P~ (~) +/32 (~)- (7) 

Less obvious is the following property of approximate multiplicativity: 

LEMMA 1.2. There is a constant C, depending only on the two polynomials PI (~) 

and P2 (~), such that 

C-~ /3~ (~) fo (~) <~ (Pl (~) P2 (~))~ <- C /31 (~) /33 (~). 
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While the latter inequality is quite elementary, t he  former is a consequence of 

an extension of Malgrange's Lemma due to HSrmander [2, Lemma 1.3], in view of which 

I P1 (4) P~)(4)[ ~< C~ $'3 (4) 

for every c~. Here F a denotes the function defined in Lemma 1.1 above, now corre- 

sponding to the polynomial P (4)= P1 (4)P2 (4). Using Taylor's formula (4), or Lemma 

1.1, we obtain 

[P1 (4) 1 /~2 (4) "~ C/1~ (4), 
and hence, for [r II ~ 1, 

[P1(4+~)l/52(4) ~ C' IP1(4+~])lP2(4+~])~ C' G])(4~-~)~ C' CC" P(4). 

The constants C' and C" enter as a result of two applications of (6), first to /52 (4) 

and next to /5 (4). Maximizing over all ~ e R ~ with I~] I <~ 1, we obtain the desired 

estimate of /51(4)/52(4) on account of Lemma 1.1. 

m p LEMMA 1.3. I /  P ( 4 ) =  ~,~1 , ( 4 ) P ,  (4), where P ,  (4), # = 1 . . . .  , m, denote arbitrary 

polynomials, then there is a constant C such that 

C -1 ~ P ,  (4)2 ~.'~ P (~) "~--<"~ C ~ -])u (4) 2. 
H~I ~i 

Again, the latter inequality is elementary (and follows from (7) and Lemma 1.2). 

I t  remains to be proved that  there are constants C, such that  

P~ (4) < c.P(4)�89 (s) 

and this follows from the trivial inequalities I P, (4) I ~ P (4) �89 ~</5 (4)�89 Using (6), we 
obtain, in fact, 

IP , (4+V) l< /5 (4+V) �89  CP(4) �89 

uniformly for I~]1 ~< 1. Hence (8) follows from Lemma 1.1. 

A polynomial P (4) is called stronger than another polynomial Q (4), and Q (4) is 

called weaker than P (4), if there is a constant C such that,  

(2 (4) < c/5  (4) 

for all 4 E R  ~. We write P ( 4 ) ~  Q(4), or Q(4)< P(4), to designate this transitive 

relation. I t  follows from Lemma 1.2 that,  for any polynomial R (4) �9  0, the relations 

P (4) ~" Q (4) and P (4) R (4) N Q (4) R (4) are equivalent. 
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More generally, a polynomial Q (~) is called weaker than a / a m i l y  of polynomials 

Pg ($), /~ = 1 . . . . .  m, if there is a constant C such tha t  

~) (~)~ < c ~ ~ (~)~ (9) 
~=1 

for all ~ E R ~. According to Lemma 1.3, this amounts to the requirement tha t  Q (~) Q (~) 

be weaker than ~ P~ (~) P~ (~). 

R e m a r k .  In  order tha t  Q(~) be weaker than the family P1 (~), ..., P~ (~), it is 

(necessary and) sufficient tha t  there be a constant C' such tha t  

1 

for all ~ E R  n. This follows from (6) and Lemma 1.1, applied to each P , (~)  and to 

Q (~), respectively. 

2. A priori inequalities for certain special systems of differential operators 

To every polynomial P(~), ~ =  (~1 . . . . .  ~n), corresponds a (formal) partial  differ- 

ential operator P ( D )  (with constant coefficients), obtained by the substitution 

~ -~ Dr = i -1 ~ / ~  X~. 

Here x = (x  1 . . . . .  xn) ist the set of Cartesian coordinates of the generic point x E R n. 

For any non-void open subset ~ c R  n we denote by 0 ( ~ )  the linear space of all 

infinitely differentiable functions u =  u (x) whose supports are compact and contained 

in ~.  The above formal differential operator gives rise to a linear transformation 

P (D) of O (~) into itself, and the mapping P(~)--> P (D) is an isomorphism of the 

ring A of all polynomials P (~) and the ring of all partial differential operators (with 

constant coefficients) acting on D (~). (1) A differential operator Q(D) is called weaker 

than  another such operator, P (D), if the polynomial Q (~) is weaker than P (~) in the 

sense described at  the end of the preceding section. If  this is the case, we write 

also Q (D) < P (D). 

We shall now study two cases of a priori inequalities for certain simple systems 

of differential operators acting on 0 (~), where the open set ~ c  R ~ is supposed to 

be b o u n d e d .  The norms in question are L%norms: Ii/11 = S I/(x)I dx The first system 

(1) The only point in need of comment is the known fact that P(.~)~0 if P(D)~0=0 for all 
functions r E ~ (~). This may be shown by use of Laplace transforms. 



A PRIORI I N E Q U A L I T I E S  183 

to  be considered consists of operators denoted by  

P~(D), P2(D) . . . . .  Pm(D) and Q(D). 

T i t E O R E ~  2.1. In  order that there be a constant C such that the inequality 

rn 

II Q (D)u II 2 <~ C~,~ II P.  (D)u l[ ~ (10) 

holds /or all /unctions u E 0 (~), it is necessary and su//icient that Q (4) be weaker than 

the /amily P1 (~) . . . . .  P,~ (4); that is, /or some constant C', 

(4) 2 ~< C' ~ / 5  (~)2. (11) 
/~=1 

For  m =  1, this theorem is due to H6rmander  [1, Theorem 2.2], whose proof of 

the necessity par t  m a y  be carried over to the case m >  1. The sufficiency par t  m a y  

be reduced to t ha t  of H6rmander ' s  theorem, or ra ther  to the crucial case thereof 

[1, Lemma 2.8], asserting tha t  

II p(~) (D)u II ~< k ] lp  (D)u  ]] (12) 

for some k independent  of u E ~  (~). The reduct ion to this case is simple and pro- 

ceeds as in [1, p. 185] by  application of Parseval 's  formula to both  sides of (10). 

Denot ing the Fourier  t ransform of u = u (x) by  ~ = ~ (~), we obtain under  the hypo-  

thesis (11) 

=c' } E, IlP(.~)(D)u]12<e E [IP,(D)u][ ~. 
t * - 1  o~ , u - 1  

The last step follows from (12) applied to P = P , .  

Before describing the second case of a priori inequalities to be considered in the 

present section, we recall t ha t  a /undamental solution of a differential operator P (D) 

(with constant  coefficients) is defined as a distr ibution in the sense of L. Schwartz [3] 

such tha t  

P (D) E = ~0, 

the Dirae measure at  the origin. This definition m a y  also be expressed as follows: 

E~eP (D) u = u for every u E 0 (Rn). 
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I t  was shown by  H6rmander  [2, Theorem 1.2] that  every non-zero differential oper- 

ator P(D)  has a fundamental  solution which is proper in the sense tha t  there cor- 

responds to any pair of non-void bounded open subsets ~ and ~ '  of R n and to any  

differential operator Q (D) weaker than P (D) a constant C such tha t  

I] E ~ Q  (D) u I1~" < C II u II for every u e ~0 (~). (13) 

(We , te Ilfll  for If( )l d  .) In  the sequel we shall always take a ' = a .  

Consider now a system of operators P (D) and Q1 (D) . . . .  , @~ (D). 

THEOREM 2.2. 

relation 

Let P(~)~O.  In  order that there be a constant C such that the 

P (D) u = ~ Q. (D) v,, u, v. E P (~), (14) 
/*=1 

m 

implies II u II 2 < C ~ II v, II 2, (15) 

it is necessary and su//icient that each Q~(~) be weaker than P (~). 

The necessity follows immediately from t tSrmander 's  theorem (i.e. the above 

Theorem 2.1 for m = l )  applied to the two operators P(D)  and QA(D), ~ = 1  . . . . .  m. 

In  fact, for any w E O ( ~ )  the functions u=Q~(D)w  and v ~ = ~ P ( D ) w  satisfy (14). 

In  the proof of the su//iciency we apply a proper fundamental  solution E of P (D). 

Under the hypothesis (14) we obtain 

u = E~eP (D) u = ~ E~Q~ (D) v~,, 
,u=l 

from which (15) follows on account of (13). 

3. The regular ease 

Let P (~) and Q (~) denote two matrices over the ring M of all polynomials in 

= ($1 . . . . .  ~) ,  and let P (D) and Q (D) denote the corresponding matrices over the 

ring of all partial  differential operators (with constant coefficients) acting on functions 

of class ~ (~). where ~ is a given non-void bounded open subset of R n. We propose 

to decide under which conditions the inequality 

IIQ(D)ulI < CIIP(D)ull  

holds (with a suitable constant C) for all column vectors u of class ~ (~) (i.e. with 
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elements of class ~ (~ ) ) .  Here Ilfll denotes the L2-norm of a column vector f, defined 

in terms of the elements ]j of f by 11tflI2=S 5 j l / j ( x ) l ~ d x .  Theorem 3.1 below is con- 

cerned with the regular case, i.e. the ease where P (~) is a non-singular, square matrix. 

The general case is studied in the subsequent section (Theorem 4). Theorem 3.2 below 

deals, in the regular case, with a kind of dual problem to that  of Theorem 3.1. The 

extension of Theorem 3.2 to the germral case is contained in a result (Theorem 5) 

concerning "conditional" a priori inequalities, cf. w 5. 

In the regular case, where P (~) is a square matrix whose determinant P (~)does 

not vanish identically, we denote by ]? (~) the square matrix over ~4 whose elements 

are the cofactors of the corresponding entries in the transpose of P (~). Then 

P (~) I~ (~) = P (~) P (~) = P (~) I, 

where I denotes the identity matrix. I t  follows that  

P (D) P (D) u = P (D) P (D) u = P (D) u 

for any column vector u of class ~ (~). 

THEOREM 3.1. Let P(~) denote a non-singular square matrix over ,.4 with r rows 

and columns, and let Q(~) denote any matrix over .,4 with r columns. I n  order that 

there be a constant C such that the inequality 

]1Q (D)u I] ~< C ]] P (D) u ]] (16) 

holds /or all r-dimensional column vectors u =  u(x) o/ class D (~), it is necessary and 

su/]icient that 

Q (~) P (~) < P (~), (17) 

i.e., each element of Q(~)P(~) should be weaker than the determinant P(~) of P(~). 

Proo/ o/ the necessity. Applying (16) to u = P ( D ) w ,  where the column vector w 

is of class D(~) ,  we obtain 

]]Q(D)P(D)w]]< CI]]P(D )P(D)w]] = C]]P(D)w][.  

Writing, for brevity, Q (~) P (~) = R (~), and putting w~ = (~m % where ~ E ~ (~) and 

k=  1 . . . . .  r, we conclude that,  for arbitrary indices i and ] ,  

l] R~r (D).T [[ ~< C II P (D)q II, 

and hence from H6rmander's Theorem (=Theorem 2.1 for m =  1) that  Ri j (~)~ P(~), 
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Proo/ el the su//ieiency. For any column vector u of class ~ (~), write v = P (D)u, 

w = Q (D) u. Then 

P (D) w = P (D) Q (D) u = Q (D) P (D) u = Q (D) 1) (D) P (D) u = R (D) v. 

Explicitly, we obtain for every i, 

P (D) w, = ~ R,, (n) vj, 
i 

and hence it follows from Theorem 2.2 under the hypothesis (17) tha t  

IIw, ll <c, Ilvjll . 
i 

Summing over i, we arrive at  (16) with C z= ~ Ci. 

TnWOREM 3.2. Let P(~) denote a non-singular square matrix over ,.4 with r rows 

and columns, and let Q (~) denote any matrix over A with r rows. I n  order that there 

be a constant C such that 

P (D) u = Q (D) v implies II u II < c II v II (18) 

when u and v denote column vectors o/ class 0 (~), it is necessary and su//icient that 

(~) Q (~) -< P (~). 

Pros/ o/ the necessity. For brevity,  write P(~)Q (~)= S (~). For any column vector 

w of class ~ ( ~ ) ,  pu t  u = S ( D )  w, v = P ( D )  w. Then 

P (n) u = P (D) P (D) Q (D) w = P (D) Q (D) w = Q (n) P (D) w = Q (D) v, 

and hence the hypothesis (18) implies ]] S (n) w II ~< C IIP (D)w ]1- As in the necessity 

par t  of Theorem 3.1, we conclude tha t  each S~j(~) is weaker than  P(~). 

Pros/  o/ the su//iciency. From P (D) u = Q (D) v follows 

P (D) u = P (n)  P (n)  u = P (D) Q (n)  v = S (n)  v. 

As in the sufficiency par t  of Theorem 3.1, we conclude that  Ilul[~<CIIv]l under the 

hypothesis S (~) < P (~). 

Remark 1. The restriction P ( ~ ) ~  0 in Theorem 3.2 is necessary for the validity 

of the implication (18), even in the case v = 0 .  In  fact, if X(~) denotes any column 

vector over A such tha t  P (~)X (~)= 0, and if ~0 E O (f2), then the relation P (D)u = 0 
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is fulfilled b y  u = X (D) ~. H (18) subsists, we infer t h a t  X (D) ~0 = u = 0, and hence 

X (~)= 0. This shows tha t  P(~) is non-singular. 

Remark 2. When the square matr ix  P(~) is non-singular, the differential operator  

P(D) = (P~j(D)} has a fundamenta l  solution with properties similar to those of the 

proper] fundamenta l  solutions discussed in HSrmander  [2]. I n  fact, if E denotes a 

proper fundamenta l  solution (as described in [2]) for the  differential operator P ( D ) ,  

where P (~) = det  P (~), then the matr ix  

E = 1) (D) E = (P,j (D) E} 

is a fundamenta l  solution of P (D) because 

1 ~ (D) E = P (D) P (D) E = P (D) E I  = O0I. 

Note also that ,  for any  column vector u of class D (Rn), 

Q (D) E-x-u = Q (D) P (D) E->eu = R (D) E ~ u  

and E~eQ (D) u = E%1 ) (n)  Q (n)  u = E~-S (D) u 

with the notat ions R(D)  and S(D) from Theorem 3.1 and Theorem 3.2, respectively. 

Hence E is proper in two senses (left and right) corresponding to these two theorems. 

4. Extension of  Theorems 2.1 and 3.1 to the general case 

We shall need the following lemma, which m a y  be viewed as a generalization 

of the sufficiency par t  of Theorem 2.2. As usual, ~ denotes any  given non-void 

bounded  open subset of R n. 

L~MMA 4. Let P~ (~). not all zero, and Q~, (~) denote given polynomials (2 = 1 . . . . .  l; 

~u = 1 . . . . .  m), and suppose each Q~, (~) is weaker than the/amily P1 (~) . . . . .  Pl (~). Then 

there is a constant C such that the relations 

_m 
P~ (D) u = ~ Q~, (D) v,, 2 = 1 . . . .  , l, 

/t=l 

(with u, v~ E ~ (~)) imply 

II u If 2 1 II % II 3. 

Proo/. Writ ing 

from (19) 

(19) 

P (~) = ~ P~ (~) P~ (~) and Q, (~) = ~ P~ (~) Q~, (~), we obtain 
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P (D) u = ~ Q. (D) v.. (20) 
/~=1 

The desired inequali ty now follows from (20) b y  application of Theorem 2.2 because 

each Q, (8) is weaker than  P(8) .  I n  fact, 

Q~ (8) < cl  (E~/'~ (8) Q~ (8)) < cl  (E~/'~ (8)~) ~ (E~ ~)~ (8)~) ~ 

< c~ ~ P~ (8) 3 < o~ b (8) 

by  vir tue of (7), w 1, and of Lemmas  1.2 and 1.3. 

The extension of Theorems 2.1 and 311 is concerned with two rectangular  ma- 

trices P (8) and Q (~) over A which are arbitrary,  save for the obvious requirement  

t ha t  they  have equally many ,  say s, columns. Let  r denote the number  of rows in 

P(8) and r '  in Q(8). and let Q denote the rank of P(8) over A.  We shall decide 

under  which conditions the inequal i ty  

II q (D) u II < c II r (D) u [I (21) 

holds (with a suitable constant  C) for all column vectors u = u (x) of class ~ (g2) (and 

of dimension s). I n  view of a later application (w 5) we prefer to s tudy  the following 

slightly more general problem, in which A (8) denotes a (single) non-zero polynomial:  

Under  which conditions do the relations 

A (D) v = P (D) u, A (D) w = Q (D) u, (22) 

in which u, v, and  w are of class V (~2), imply  Ilwll < O Ilvll with a suitable constant  

C ? I t  turns out  that ,  in the affirmative case, the constant  C m a y  be chosen so as 

to be independent  of A(8)  (as long as A ( 8 ) ~ 0 ) .  The preceding problem (21) corre- 

sponds to A (8) = 1. 

I n  order to formulate the solution of these two problems, we shall consider cer- 

/ P ( 8 ) /  A minor  of P(8) has the form rain minors of P(8) and of the matr ix  [Q(8)J" 

P~,a,(8) ... P,,~k(8) , 

P~.a (8) . . . . . . . . . .  

P~ka,(8) ... P~ka~ (8) 

where k~<min (r, s). Here ~ =  ( g l  . . . . .  gk) and  /~=(/~x, ".-,/~k) are ordered sets con- 

sisting of l a ] = [/~[ = k distinct numbers  selected among the integers 1, 2 . . . .  , r and  



A P R I O R I  I N E Q U A L I T I E S  189 

1, 2 . . . . .  s, respectively.  In  addi t ion to these "pure" minors P~Z(4), we shah need 

"mixed"  minors ,  in which the last  row is t aken  f rom Q(4) instead of P{~): 

Pwa, (4) ..- Pv, ak (4) 
. . . . . . . . . .  k 

(4) P v a - l f l k  (4) 
R~q, ~ (4) = ... j=~ ( - 1) k-~ P~.~(J)(4) Qq#j (4). (23) 

Here  7 ~  (~'1 . . . .  ,7k-1)  denotes  any  ordered set  of k - 1  dist inct  numbers  selected 

among  the integers 1, 2, .. . ,  r, whereas the  number  q ranges over  the integers 1 . . . .  , r ' .  

Moreover,  we obta in  fl(J) f rom ~ = (ill . . . . .  /~k) b y  deleting fla. We shall main ly  consider 

the case k = o ,  the r ank  of P(4)- 

T HE o RE M 4. I n  order that there be a constant C such that t i Q (D) u ]l ~ C ]l P (D) u It 

/or all column vectors u o/ class ~ (~), it is necessary and sufficient that the following 

two conditions be fulfilled: 

Iv(4)  
1 ~ The rank of the matrix [Q (4)J over ,-4 equals the rank ~ o/ P (4) over ,4. 

2 ~ Every mixed minor R~q,~ (4) o/ order e is weaker than the /ami ly  o/corresponding 

pure minors Prp.~(~), P=  1 . . . . .  r. Explicitly: There is a constant C' such that 

]~q.~(4)2<C ' ~/Sv . ,~  (4)2. (24) 
q -1  p - 1  

More generally, the joint conditions 1 ~ and 2 ~ are necessary and su/]icient /or (22) 

to  mply Ilwll  llvll  ith a suitable co.start 

Remarks. Ad 1 ~ This condition s ta tes  t h a t  every  row in Q (4) af ter  mult ipl icat ion 

b y  a suitable polynomial  m a y  be expressed as a l inear combinat ion  (over .4) of the  

rows in P(4).  In  other  words, if a column vector X ( 4 ) f o r m e d  b y  s polynomials  

X~ (~), k = 1 . . . . .  8, fulfills~ the  relat ion P (4) X (4) = 0 (identically), t hen  likewise the  

relat ion Q (~)X (4)= 0. Ad 2 ~ The following weaker  condition remains  sufficient (when 

combined with 1~ E v e r y  mixed  minor  R~q.~ (4) is weaker  than  the  sys tem of all pure  

minors P~.~(4) fo rmed  b y  means  of the  same column numbers  fly "-,/~Q" I t  suffices, 

moreover ,  to cheek this condition for one single set  fl of column numbers  provided 

the  corresponding columns in P (4) are l inearly independent  over  A.  

Proof o/ the necessity of 1 ~ and 2 ~ Suppose (22) implies Ilwll < Cllvl l  in ease of 

some given non-zero polynomial  A (4). Then II Q (D) tll < C II v (D) t II for all column vec- 
tors t = t (x) of class O (~) because (22) is satisfied b y  u = A (D) t, v ~ P (D) t, w ~ Q (D) t. 

13 - 61173051. Acta  mathematica. 105. I m p r i m 6  le 28 ju in  1961 
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I t  suffices, therefore, to prove tha t  1 ~ and 2 ~ are fulfilled under the hypothesis tha t  

(21) holds for all u of class O(g2). Ad 1 ~ Let  X(~) denote any column vector over 

14 such tha t  P ( ~ ) X ( ~ ) = 0 .  For any function ~v6O(~) ,  write u=X(D)~v.  Since 

P(D)u=P(D)X(D)cf=O, we infer from (21) tha t  Q(D) X(D)cf=Q(D)u=O. Conse- 

quently, Q (~)X (~)= 0. Ad 2 ~ Again, let 99 E ~ (~), and put  

uk=(--1)q-n Pr.a(h)(D)q9 if k=fln, 

and uk = 0 

minors tha t  

if k q. fl. Then it follows from (23) and the analogue thereof for pure 

Q 

(P (D) u)v = ~ Pv~. (D) uah = Prv,~ (D) q, 
h = l  

0 

(Q (D)u)q = ~ Qqz,(D)u~,=Rrq.a(D)q~. 
h = l  

Hence we infer from (21) tha t  
r 

IIR:,~.a(D)q~ll ~ < c ~  II P~,,.a (D) q~ II ~, q ~O(f~). 

I t  follows now from Theorem 2.1 that  

~r (~)~ < c~ ~ ~, .~  (~)~, 
p = l  

~t 

where Cq is independent of ~. This implies (24) with C ' =  ~ Cq. 

Proo/ o/ the su//iciency o/ 1 ~ and 2 ~ According to 1~ 

for any set ~=(~1 . . . . .  ~Q) of ~ distinct row numbers for P(~), any row number  

q = 1, 2 . . . . .  r '  for Q (~), any set fl = (ill, .-., fie) of distinct, column numbers (for P(~) 

and Q (~)), and any additional column number k = 1, 2, .... s. In  fact, if k r fl, the 

above determinant equals the mixed minor R~q.~k (~) of order ~ + 1, and hence van- 

ishes on account of 1% And if k Eft, t.wo of the columns are equal. Developing t.he 

determinant  according to its last column, we obtain 

Q 

P~.~(~) Qqk(~) = ~ ( -  1)h-OR~(h)q.~(~ e) P~he (~)- 
h = l  
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Applying the associated differential operators to the kth component uk of a column 

vector u ~ u ( x )  of class ~ (~), and summing over b =  l,  2, .... s, we obtain 

o 
P~.a (D) (q (D)u))~ = ~ ( - 1) h-~ R~,,,q. a (O) (P (h) u)~,. 

Suppose now (22) is fulfilled. Since A ( D ) 9 = 0  implies ~ = 0  when ~ E ~ ( ~ ) ,  we get 

the result 
0 

P~,~ (D)wq = 5 ( - 1)h-eR~,h,,,a (D)v~,,. 
h - 1  

We shall now keep fl = (/51 . . . . .  /55) fixed in such a way tha t  the corresponding columns 

in P(~) are linearly independent over .,t. Moreover, we fix q temporarily. Introducing 

the abbreviations P~ (~) = P~,~ (~) and 

Q~,p(~)=(--1)h-QR~(h)a.a(~) if i0=~h for some h, 

whereas Q~.r (~)= 0 ff io r ~, we obtain the following relations 

P~(D)wq= ~ Q~.~(D)v~. 
p = l  

Now Lemma 4 is applicable (with u replaced by  wq, # by  p, and 2 by the multi- 

index a = (~1 . . . . .  ~) .  Our choice of /5 guarantees, in fact, tha t  the polynomials P~ (~) 

are not all = 0, and Condition 2 ~ implies, in its weak form, tha t  each Q~.~ (~) is 

weaker than  the family of ~11 P~ (~). We conclude tha t  there is a constant C~ such tha t  

p = l  

Summing over q = l  . . . .  , r', we obtain the desired inequality IIwll < c IIvll with 

C 2= ~.~ Cq. This completes the proof of Theorem 4 and the remarks to it, as well 

as the fact tha t  C may  be chosen to as to be independent of the polynomial A (~) 4= 0. 

Remark. Despite the close analogy between Theorems 3.1 and 3.2, there is a 

considerable difference between the extensions of these two theorems to the general 

case. Though expressible in t e r m s  of certain minors in the compound matrix 

{P (~), Q ($)} (of order equal to the rank of this matrix), the condition in order tha t  

the relation P (D)u = Q (D)v imply II u II < c I] v 11 for a suitable constant C is not in 

general a mat ter  simply of comparing each of these minors with a family of other 

such minors. I t  turns out tha t  the extension of Theorem 3.2 to the general case is 

best understood as a special ease of conditional a priori inequalities, the subject of 

the following section. 
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5. Conditional a priori inequalities 

In  the present section we s tudy  a case of a priori inequalities containing all the 

preceding cases. Le t  F (~), G (~), and  H(~) denote three given matrices over the ring 

A of all polynomials in ~ = (~1 . . . .  , ~n)" The only restriction imposed on these matrices 

is t ha t  they  should have equally many,  say s, columns. As before, ~2 denotes a given 

non-void b o u n d e d  open subset of R n. We propose to  answer the following question, 

in which u = u ( x )  ranges over all s-dimensional column vectors of class O (~): Under 

which conditions is there a constant C such that 

H (D) = 0 implies II (D) u II < II r (D) u 

We shall reduce this problem to the "free" case H ( ~ ) = 0  studied, in its general 

form, in Theorem 4. I t  is convenient  to rephrase the question as follows: W h e n  is 

there a constant  C such tha t  the system of simultaneous differential equations 

F (D) u = v, (~ (D) u = w, H (D) u = 0, (25) 

imply  ]]w]l ~ C[tvll ~. I n  order to answer the question in this latter form, we begin 

b y  reducing the system (25) to a simpler system to which Theorem 4 is applicable; 

We  m a y  assume wi thout  loss of generali ty t ha t  the rows in the "relation matrix"  

H (~) are linearly independent over A.  If  not,  choose a base for these rows, and caned  

the  remaining rows. This does not  affect the manifold of solutions of t I  ( D ) u =  0. 

I n  fact, each of the rows to be cancelled is expressible (after multiplication b y  a 

suitable non-zero polynomial) as a linear combinat ion (over A) of the basic rows, 

and  hence the relations H j l ( D ) u x +  ... + I-I:s (D)u~ = 0 corresponding to the basic rows 

imply  the remaining relations. (Recall that ,  for any  polynomial  P (~) ~ 0, P (D) q = 0 

implies qv = 0 when ~0 E D (f~).) 

Having  thus achieved tha t  the rank s' of H (~) equals the number  of rows in 

H(~), we select a base for the columns in H (~). I n  this way  we obtain a non-singular 

square matr ix  H '  (s of order s'. The remaining columns in H (~) form a mat r ix  H "  (s 

with s'  rows and s"  = s - s '  columns. There is a corresponding decomposit ion of the 

s-dimensional column vector n =  u (x) into two column vectors  u '  and u"  of dimen- 

sions s '  and s", respectively. Likewise, F (~:) splits into two matrices F '  (~ )and  F "  (s 

and  (~(~) into G' (~) and  1]" (~). The system (25) is now equivalent to  the following 

system: 
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F' (D)u' + F"  (D)u"  = v, 

G' (D) u' + G" (D) u"  = w, 

it' (D)u' + it" (D)u" = 0. 

(non-zero) determinant of H'(~) 
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(26) 

(27) 

(2s) 

and by  I]' (~) the matrix 

formed by  the cofactors of the transpose of H' (~), we have, as in w 3, when I de- 

notes the unit matrix of order s', 

v v 

H' (~) H' (~) = H' (~) H' (~) = A (~) I. (29~ 

Writing B (~) = It '  (~) H"  (~), we obtain 

n '  (~) B (~) = A (~) H" ($) = H" (~) A (~). (301 

Applying the operator I{' (D) to both sides of (28), we obtain in view of (29) 

A (D) u' + B (D) u"  = 0. (31) ~ 

Conversely, (28) follows from (31) by left application of H' (D) under observation of  

(30) and the fact tha t  A (D) ~v = 0, r E ~ (~), implies ~v = 0 because A (~) * 0. 

Applying A(D) to both sides of (26) and (27), and eliminating A(D)u' by means 

of (31), we get the following new system 

P (D) u" = A (D) v, (32) 

Q (D) u" = A (D) w,  (33) 

- B (D) u" = A (D) u', (34)~ 

where the matrices P (~) and Q (~) over ~4 are defined by  

P (~) = - F' (~) B (~) + F" (~) A (~), (35)' 

q (~) = - G' (}) B (2) + G" (}) A (~). (36), 

This new system (32), (33), (34) is our reduced system. Since A (2)~ 0, the reduced 

system is equivalent to the preceding system (26), (27), (28), and hence to the origi- 

nal system (25). 

The problem is now to decide under which conditions the reduced system (32), 

(33), (34) implies ]l w ]] ~< C I] v I[ for a suitable constant C. In order to obtain a necessary" 
condition, we observe that  the reduced system is satisfied by v = P ( D ) t ,  w =  Q (D)t,  

u ' =  - B  (D)t, u " =  A (D)t, when t = t (x) denotes an arbitrary column vector of class 
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O ( ~ )  (and of dimension s"). Hence, necessarily, 

IIQ(D)tlI<ClIP(D)t]I for all t of class O ( ~ ) .  

The "algebraic" content of this condition was described in Theorem 4. Actually, this 

necessary condition is likewise suHicient to ensure tha t  the reduced system (and hence 

also the given system (25)) implies Hwll~<C]lvll for a suitable constant, which we 

denote again by  C. I t  follows, in fact, from the final assertion of Theorem 4 that ,  

if conditions 1 ~ and 2 ~ of tha t  theorem are fulfilled, then (32) and (33) alone imply 

IIw]l< C IIvll for a suitable C. - -  The content of the present section may  be sum- 

marized in the following theorem, in which P(D) and Q(D), as above, denote the 

differential operators (in matr ix  form) associated with the matrices P ($) and Q (~) 

over A defined by  (35) and (36): 

THEOR~M 5. In  order that there exist a constant C such that,/or u o/class ~ (~), 

H ( D ) u = 0  implies HG(D)ulI<.CIIF(D)ulI,  

it is necessary and su//icient that there be a constant C' such that II Q ( n ) t  H ~< C' IIP (D)t H 

/or all column vectors t o/ class ~)(~). (Cf. Theorem 4 for the "algebraic" content 

of this condition.) 

6. Ex tens ions  to certain other n o r m s  

In  this final section we indicate briefly how Theorems 2.6 and 2.8 in H6rmander  

[1] may  be extended to systems. Like [1, Theorem 2.1], these theorems give condi- 

tions in order tha t  II Q (D) u II ~< C II p (D)u II for all functions u e ]0 (~), but  the norm 

of Q (D) u should now be understood either (i) as the L ~-norm supx I Q (D) u (x) I or 

(ii) as the L2-norm of the restriction of Q (D)u to some given affine subspace ~ of R n. 

The norm of P ( D ) u  is the L2-norm over R n in both cases, as before. H6rmander ' s  

conditions are necessary and sufficient. In  each of the two eases the condition in 

question involves the ratio Q (~)//5 (~), or equivalently Q (~)/P (~); and the condition 

states tha t  this ratio should be (i) of class L 2 (Rn), (ii) of class L ~ (~) |  L 2 ( ~ ) ,  tha t  

is, uniformly square integrable over all affine subspaces perpendicular to ~ and of 

dimension n - dim ~. 

All the results of the present paper can be carried over to these two eases. For 

instance, the only change to be performed in Theorem 3.1 is tha t  the stated condi- 

tion (24) should be replaced by  the requirement tha t  each element of the matr ix  
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/5 (~)-1 Q (~) ~) (~) be (i) of class L ~ (R~), (ii) of class L ~ (5) | L 2 (ZI).  The proofs of 

this and  related results proceed as before under  observat ion  of the following comments :  

P rope r ty  (13), p. 184, of the  proper  fundamen ta l  solution E of P (D) constructed 

b y  H h r m a n d e r  [2] remains  in force in each of the  two cases (i), (ii) wi th  the  new 

norm of E*Q(D)u under  the  new hypothesis  concerning the rat io (~(~)/~5(~). This 

follows f rom Theorem 1.3 in H h r m a n d e r  [2] b y  appl icat ion of the me thod  described 

on p. 30 of [2]. We omi t  the details. 

Our Theorem 2.2, with one of the new norms of u, is p roved  in the same way  

as Theorem 2.6 and  Theorem 2.8, respectively,  in H h r m a n d e r  [1]. There is no diffi- 

cul ty  in modifying the  proof  of L e m m a  4. The rest of w 4 and all of w 5 can now be 

t aken  over  to the  case of the new norms wi thout  any  fur ther  changes. 
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