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Geometric localization, uniformly 
John property and separated 

semihyperbolic dynamics 
Zoltan Balogh and Alexander Volberg(1) 

O. I n t r o d u c t i o n  

Different types of geometric localization are used extensively in analysis. Lo- 
calization grasps fine properties of the boundary which allows one to carry out es- 
timates of harmonic measure, Green's function, etc. In the absence of the Riemann 
mapping theorem, localization may serve as a weak substitute. Examples of such an 
approach can be found in Ancona [A1], [i2], J.-M. Wu [W] for (mainly) Lipschitz 
domains and in Jones [J1], Jerison and Kenig [JK] for non-tangentially accessible 
domains. Carleson's work [C] may be considered as a source for this approach. In 
this paper we are going to deal with a localization property for John domains. Our 
motivation is the following. Denote by A ~  (f)  the domain of attraction to cc of a 
polynomial f .  i recent result of L. Carleson, e. W. Jones and J. C. Yoccoz ([CJY]) 
shows that  A ~  ( f )  is a John domain if and only if f is semihyperbolic. In the first 
section we prove localization for simply connected John domains. In Section 2 we 
give an example showing that  localization fails for arbi trary John domains and we 
prove the localization at a fixed scale. The third section is devoted to some geomet- 
ric properties of the Julia set of a semihyperbolic polynomial. In the fourth section 
we introduce separated semihyperbolic dynamics and prove that  the localization of 
A~(f) is equivalent to the property of being separated semihyperbolic. For exam- 
ple localization works for critically finite f .  In Section 5 we show that  localizability 
is equivalent to uniformity for John domains and Section 6 provides an example of 
semihyperbolic but not separated semihyperbolic polynomials. In the last section, 
we discuss some applications of this property. Commenting on Sections 1-3 let us 
mention that  throughout them we modify ideas virtually present in [BH], [CJY], 
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[HR], [NV], [P]. 

Acknowledgements. The authors are grateful to Clifford Weil and Michael Fra- 
zier for reading the manuscript  and making many  useful remarks. We are grateful 
to the referee whose remarks made us to rewrite Lemma C. 

1. L o c a l i z a t i o n  o f  s i m p l y  c o n n e c t e d  J o h n  d o m a i n s  

Let ~ C_ C be a John domain. This means tha t  there is a point x0 E ~t (called a 
center) such that  any x E ~  can be connected to x0 by an arc ~C_~ such that:  

dist(~, 0gt) > cdist(~, x) for ~ E V, 

for some c>0  independent of x. 

The arc V is called a John arc and the best constant c>0  is the John constant 
of the domain ~t. A simply connected John domain is called a John disk. Let us 
recall that  the internal metric g for a domain ~t is defined by: 

g(x, y) = in f{d iamv : 7 \{x ,  y} C ~ is a curve connecting x and y}, 

for x, yE~. If ~ is simply connected, g can be extended so that  (Ft*, g) becomes a 
complete metric space where ~* denotes the union of the interior points and prime 
ends. In what follows we denote by Be(Q, r) the points in ~t which are r-close to Q 
in the metric ~. 

1.1. Definition. Let ~ be a John domain and QEO~, r > 0 .  A finite collection 
S~l [r~lN of domains t Q~ /Jl=l is called a John prelocalization at the point Q on the scale 

r if: 
(1) ~ t b ( r ) C ~  is a John domain with constant c for l = 1 , . . . ,  N,  

(2) (..Jl EttQ(r)DBe(Q, r), 
(3) diam~ZQ(r)<Mr, l = 1 , . . .  ,N .  

1.2. Definition. A prelocalization is called localization if in addition to (1), (2), 
(3) we have 

(4) ~b(r)n~(r)=O, i#j ,  QEO~, 0 < r < r 0 .  

1.3. Definition. A John disk admits a localization for all scales r<ro if there 
is a localization at any point QEO~ for all scales r< r0 ;  moreover the constants 
N, M, c do not depend on Q and r. 

The main goal of this section is to prove Theorem 1.9 but first we prove the 
following result. 
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1.4. T h e o r e m .  A John disk admits a prelocalization. 

First we give a series of preparatory results. They are known but we include 
them for the convenience of the reader. 

1.5. L e m m a .  Let f :D--~2  be a conforTnal map onto a John disk f~. I f  ~2'c 
D is a John disk and dist(f(O),Of~)>cdiam(f~), then f(~2') is a John disk with 
constant depending only on f~, f~' and c. 

Proof. For zED,  z=re  it, let us introduce 

B(z)  = B(re it) = {Oei~ : r <_ O <- 1, IO-t[ <_ re(I-r)} .  

The proof will be based on the following characterization of John disks (see [P, 
p. 97]): 

T h e o r e m  A. Let C map D conformally onto G such that dist(C(O),OG)>_ 
Cl diam(G). Then the following conditions are equivalent: 

(i) G is a John disk with constant c, 
(ii) there exists c~, 0<c~<1 such that 

f~l-I~l~ ~-1 for~eB(z), z e D ,  IC'(~)l ~ Mlle'(z)l X~ 1 -  Izl ] 

(iii) d iamC(B(z ) )<M2 dist(C(z), OG) for z e G ,  where the constants M1, M2 
and ~ depend only on the John constant c and the constant cl. 

To start the proof of the lemma we consider the Riemann map g: D--*f~' such 
that  dist(g(0), Of~')>c'~ diam(f~') where c~ depends only on c ' - - the John constant 
of f~'. Consider the map h=fog,  h: D--+f(f~'). According to Theorem A we need 
to estimate 

h'(~)=lf '(g(~))llg'(~)l f o r ~ c B ( z ) ,  z c D .  

By Theorem A: 

(1.1) diam g( B(z)  ) <_ M2 dist(g(z), 0D). 

To estimate [f'(g(~))} we distinguish between two cases: diamg(B(z) )> 1 and 
diamg(B(z) )< 1. In the first case define 5--0 and in the second case define 5= 
g(z ) (1 -2d iamg(B(z ) ) ) .  In the first case by (1.1) we have that  dist(5,g(z))= 
dist(0, g(z))<_1-1/M2. Then by the distortion theorem we have 

(1.2) If'(5)l = If'(o)l ~ M3lf'(g(z))l. 
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In the second case dist(5, g ( z ) ) = 2 d i a m g ( B ( z ) ) < M 2  dis t (g(z) ,0D) and again by 
the distortion theorem: 

(1.3) If'(~)l < MjIf'(g(z))l. 

Without loss of generality assume that  fI'C_D is included in a half disk. Then if 
we consider B(~)CD,  we observe that in both cases g(B(z))CB(5). Now we apply 
Theorem A for the function f ,  and for g(~)EB(~): 

( l - ' g ( ~ ) [ )  ~'-1 

If'(g(5))l _<Mal/'(~)l 1-151 " 

Because 1-151<Mb(1-1g(z)l) by the way 2 was defined we get: 

If' (g(r < M6 If' (~)I (1~ Ig(r , ( -1  
Ig(z) l ]  ' 

By the Koebe distortion theorem (considering two cases: either dist(g(z), O~t)_< or 

>~(1-1g(z) l)) 

If '(g(r MTIf'(2)l g'(r a'--i/~ 1-1r 
�9 

If we apply Theorem A for g we obtain: 

If'(g(5))l Ig'(5)l-< Mslf'(2)l \ l~NIz] ] Ig'(z)l, 

and by (1.2) or (1.3) we get: 

Ih'(bll<_M9lh'(zll\l_-:-~l ] , 

which is the estimate we need to conclude that  

h(D) = f(tY) is a John domain. 

Notice that  the constant M9 in the final estimate depends only on the constants of 
f and g and hence the John constant of f(~t') depends only on c and the constants 
of gt and ~ '  respectively. [] 

Following [NV] a John disk f~ has locally connected boundary. If f :  D~VI  is 
the Riemann map, we can consider the continuous extension f :  D--*ft. The set of 
prime ends 0*~t is extremely simple. The impression of each prime end contains 
one point and moreover the prime ends are just the accessible points. 

The following lemma says more about the boundary of ~. 
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1.6. L e m m a .  Let ft be a John disk with constant c>O, and f:D--*ft a Rie- 
mann map extended continuously to f: D--*f~. Then for Q~Of~, 

# ( f - I ( Q ) ) < _ K  where K = K ( c ) .  

Proof. Let QEOfl, z iE f - l (Q)  for i = 1 , . . .  , K .  Consider the geodesics Vi= 

f([0, zi]). Let us use the convention 7K+1----71. Then 7iUTi+l are closed Jordan 
curves for i---1, ... , K .  Because 7 / i s  not homotopic to 7i+1, there exists yiEint  (7it2 
7/+1) N ft c. Since ftc is connected, there is a continuum Ei C ft ~ Nint (7/U 7i+1) con- 

necting y~ and Q. 
Let r - m i n i  lyi-QI. Clearly E~ intersects OB(Q, r) in certain points which we 

denote again by yi. Similarly let us denote by Yi the intersection 7~NOB(Q, r). 
Consequently we have obtained 2 K  points fll, Yl, ~12, Y2 ,... , YK, YK situated 

in this order on OB(Q, r). 
By the fact tha t  the geodesics 7i are John arcs (see [GHM], [NV]) we obtain 

that  Bi-- B(~i, cr ) Cft. 
Finally if K >  [27r/c]+1, then we necessarily have that  yiEBi for some i, con- 

t rary  to the fact that  B i c f t .  [] 

Before stating the next lemma, we introduce the notation ftr,Q for the union of 
the components of ftNB(Q, r) which have Q in their boundary. Furthermore notice 

the inclusions 

f~r,Q C Be(Q, 2r) C ~2~,Q. 

Before our next result let us introduce some notation. 
Given d > 0 let { zi } K_ 1 = f -  1 ( Q ) for Q E 0ft, zi = ri zi, 0 < ri < 1 where ri is chosen 

such that  dist(f(2~),Oft)=d, i = 1 , . . .  , g .  Let B(2i) be as in Lemma 1.5 and Ti---- 

Of(B(~i))\O~. With this notation we have: 

1.7. L e m m a .  There exists c1>0, Cl=Cl(~)  such that: 

f~d,Q C U f(B(2i)). 
i 

Before the proof let us state the following 

1.8. C o r o l l a r y .  There exists c1>0, Cl=Cl (ft) such that: 

Be(Q, cld) C U f(B(2i) ). 
i 

Proof of Lemma 1.7. It  would suffice to show that  Ti=Of(B(2i))\Oft is far 
from Q. Unfortunately this is not the case but we will construct a subdomain 
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DiCB(2i) such that ~=Of(D~)\O~ is far from Q. To do this denote by I1,/2 the 
two halves of OB(2i)NOD. Because diam f(Ij)>_c2d (see [P, Prop. 4.19]) for j=l, 2; 
there exist Q l e f ( I 1 ) ,  Q2 E f(I2)  such that: 

(1.4) IQj-QI >- �88 j = 1, 2. 

Denote by PjEf-I(Qj) the closest preimage to zi, j = 1 , 2 ,  and consider the ray 
from Pj to the boundary of B(2~). In this way we construct a subdomain DiC_ 
B(2i) bounded by the two rays RI, R2 and arcs C1, C2, where C1 cOB(2~)\OD and 
C2COD. Take a point xEC1 then: 

dist(f(x),  Q) > dist(f(x),  0~t) ___ cld. 

Suppose xER1. Then: 

(1.5) dist(f(x),  Q) > dist(Q1, Q ) - d i s t ( f ( x ) ,  Q1). 

On the other hand f (R1)  is a John arc ([GHM], [NV]) and therefore: 

dist(f(x),  Q1) _< 1 dist(f(x) ,  Q). 
c 

This estimate and (1.5) imply: 

dist(f(x),  Q) > c3 dist(Q1, Q) 

and by (1.4) we get: 

dist(f(x),  Q) >cld. 

The estimate is the same for xER2 and we are done. [] 

We are now in position to give the: 

Proof of Theorem 1.3. The proof is a combination of the previous results. 
z K - 1  Let f :D-+f~  be a Riemann mapping. For QEOFt consider { ~} i= l=f  (Q) as 

in Lemma 1.5. If Cl is the constant from Lemma 1.7, put d=r/cl and define: 
~iQ(r)=f(B(hi)), i = 1 , . . . ,  K. By Lemma 1.5 each is an ~t~(r) John domain with 
constant c depending only on ~. 

It is clear that {~2~(r)}gl satisfies (1) and (3) with N=K, M=l/cl. By 
Corollary 1.8 property (2) holds also. [] 

The following is an easy consequence of the previous results: 
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1.9. T h e o r e m .  A John disk admits a localization. 

Proof. The idea is to enclose two subdomains which intersect each other by 
a slightly bigger domain. So let us start  with ~ ( r ) ,  12{~(r) such that  ~ ( r ) n  

~ ( r ) ~ 0 .  Then with the notation of Lemma 1.7 we have B(2i)NB(2j)r Suppose 
diam B(2i)>diam B(2j) and enlarge B(hi) to obtain a new domain B(z) with B(z)D_ 
B(2i) UB(2j) and diam B(z)_<4 diam B(2i). It is clear that  dis t(f(z) ,  Q) < Mlr. 

Define a new collection {~b(r )}N~ 1 where we replace ~ ( r )  and 12~(r) by 
f(B(z)). The new collection has all the properties (1), (2), (3) but now the constant 
M needs to be replaced by M1M. If the domains are disjoint in this new collection, 
we stop; if not, we replace two by one as above. After at most N steps we either 
stop when we get disjoint domains or we obtain just one domain. 

The consequence of this process is a localization since the domains will be 
disjoint and we changed the constant in (3) to at most M M  N. [] 

In the next section we deal with arbitrary John domains, not just John disks. 

2. L o c a l i z a t i o n  for a r b i t r a r y  J o h n  d o m a i n s  at  a f ixed  s c a l e  

At the end of this section we comment on the comparison of our localization 
and the one in [CJY]. First we present an example which shows that  arbi trary John 
domains do not admit localization. 

2.1. Example. Let ~to={x+iy:xC[-1, 1], yE[O, 2]} and consider ~ = ~ o \ U C n  
where - .  1 2 1 2 ~ 2 ~ 1 ~ 2  ~ 1 Cn={~y.yn<y<y,~}. We choose such that  Yn, Yn Yn Yn Yn+l Yn+l and 

It is easy to see that  ~t does not admit a good localization at the point 0 E0 ~  
because the John constant will tend to zero as the scale tends to zero. 

However, an arbitrary John domain admits a localization if the scale ~>0 is 
fixed. 

Namely we have the following: 

2.1. T h e o r e m .  Let c>0  be fixed and ~ be an arbitrary John domain. Then 
admits localization at the scale e>0.  

Proof. Since we have a localization in the simply connected case, it is natural 
to add boundary pieces to 0~ to obtain a simply connected John domain ~. Using 
a result due to Jones (see [J2, Theorem 2]) we can do this without changing the 
John constant of ft too much. 



28 Zoltan Balogh and Alexander Volberg 

~ l  N Applying Theorem 1.9 to ~ we obtain a collection { Q(~)}z=I of simply con- 
nected John domains with these properties: 

(1) d iam~t~(~)~M0~, /=1 , . . .  ,N,  

(2) U ft~(~)~_Be(Q, c), 
(3) ~ t~(c )n~(~) - -O for i# j .  

Next we are going to eliminate the boundary pieces we have added for the con- 
struction of ~. Let us introduce some notation to indicate the presence of these 
boundary pieces. Let c i be a center of ~ (c). For a pair (i, j )  of indices introduce: 

F(i,j),Q,M = {~ C_ ~ :  7 connects c i, c j, centers of ~tb(e), ~ ( ~ ) ,  diam 7 < 2Mr 

Furthermore we define: 

0 if  F ( i , j ) , Q ,  M = O, 

c(id) (Q, M) = sup inf dist (~, 0~),  otherwise 
~[CF(i,j),Q, M ~C~/ 

and let c(Q, M)=max(id) c(id)(Q, M). 
Let us put M=Mo with M0 from (1). The indicator c(Q, Mo) shows whether 

there might be boundary pieces we need to eliminate. In particular if c(Q, Mo)=0, 
we have: 

(art , n L, \ = 

for any pair (i, j) .  

Let F={QEO~:c(Q, Mo)>O}. The proof of the theorem is based on the fol- 
lowing simple fact: 

2.2. L e m m a .  There is a = a ( f l ) > 0  such that c(Q, 2M0)>a  for any QEF. 

Proof. To see this let Q n e F  be such that  c(Qn,2Mo)-~O. Let f l ~ ( r  ~t~(r  
be such that c~j(Qn, Mo)>O and i ca, c~ be the corresponding centers. We can assume 
that  i __+ i c~--+cJ. Then there is no such that  dist(C~o , i 1 ca) < ~c1r dist (cJ o , c~) < C n C 

lc1r for n>no. Here c ~, cJ may not be the centers. 
[c i c i ] i i -  Let ~=c(Qno,M0) and consider the curve %~=L no, ~j-~noU[C~o,C~] where 

i to C~o with d i a m ~ o  C2M0~ , and dist(~,O~)>�89 for ~e%~ 0. Then ?no connects Cno 
i to cJn, diamZn<4M0e and dist(~, 0 ~ ) > ~  where ~=min(�89 �89 ). "~n connects c n 

Therefore %EF(i,j),Q~,2Mo and c(Qn, 2M0)_>/~ contrary to c(Qn, 2M0)~0.  [] 

Proof of Theorem 2.1. We can now proceed with the elimination of the ex- 
tra boundary pieces. This algorithm will be used in later sections where we do 
localization at any scale. 
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If c(Q, Mo) =0, there is nothing to do for this particular QEO~t. If c(Q, Mo) >0, 
take a pair (i,j) such that  c(i,j)(Q, M0)>0 and hence c(i,j)(Q, 2M0)>a .  Let 7ij be 
a curve connecting c ~ and cJ in ~t such that  d i a m ~ j  ~4M0e and dist(~, 012)> �89 
for ~E~/~j. Let Hij be a neighborhood of ~ij of thickness �88 Then Hij C_~ and we 
can define: 

~2~ j (c) = int ( ( ~  (~)UHij U~JQ (~)) \0~). 

It is clear that  ~t~ 3 (~) is a John domain with the correct constant and by this step 

we have eliminated the common boundary ( 0 ~  ( s ) n 0 ~  ( c ) ) \0~ .  Consider the 

new system of local domains where ~ ( ~ )  and ~ ( s )  are replaced by ~ J ( c )  and 

denote this again by { ~ ( s ) } z .  The new system has all the properties of the old 
one; the only difference is that  M0 in (1) is replaced by 5M0 and we reduced the 
number of domains by one. 

If c(Q, 5M0)=0 for the new system, then we stop. If c(Q, 5M0) >0, we perform 
the above construction again reducing the number of domains. We repeat everything 
at most N times and as a result either we will stop when c(Q, 5kMo)-~0 for some k, 
0 < k < N  or we will have just one domain left. In either case we obtain a collection 
of local domains { ~ ( c ) } t  which is a localization at scale ~. [] 

2.3. Remark. In the proof of Lemma 2.2 we had implicitly that  a = a ( ~ ,  ~) and 
therefore the John constant also depends on s. This in fact happens for the domain 
in Example 2.1. 

2.4. Remark. It is interesting to compare the localizations in Theorem 1.9, 
Theorem 2.1 and the one in (4.1)-(4.3) of [CJY]. Basically (4.1), (4.2), are obtained 
in Theorem 1.9. But not (4.3). The localization of Theorem 4.9 below is much finer 
than (4.1)-(4.2), but again does not touch (4.3). However, one can prove (and we 
use it in subsequent works [BV1], [BV2]) that  the localizations of Theorems 1.9, 
2.1, 4.9 satisfy (4.3) of [CJY]. But here we do not use harmonic measure or Green's 
function, concentrating only on geometry. 

In the next section we present some geometric properties of the Julia set J 
of a semihyperbolic polynomial. A polynomial is called semihyperbolic if it has no 
parabolic periodic points and for any critical point wEJ we have dist(w,a(w))>O 
where a(w) denotes the forward orbit of w. 

Let A ~  (f)  be the domain of attraction to ce for f .  A recent result of Car- 
leson, Jones and Yoccoz states that  A~(f) is a John domain if and only if f is 
semihyperbolic. 

Our next purpose is to show that  in some cases A ~  (f)  admits localization and 
to characterize all such cases. 
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3. G e o m e t r i c  p r o p e r t i e s  o f  t h e  Ju l ia  s e t  

Let f :  U--*V be a polynomial where U c V  are topological disks. Then JC_U 
and we always assume 

(*) J= 5 f-n(U). 
n~O 

Condition (*) means that the Julia set of the polynomial does not split the plane. 

In what follows we are going to describe briefly a method used by Branner and 

Hubbard in studying the structure of cubic polynomials (see [BH]). 

Let ~h,'72 be analytic Jordan curves such that U C_UICU2C_V where U1-- 

int (V1), U2=int (V2). Without loss of generality we assume that if w is a critical 

point for f, then either wEJ or wEV\U2. 
For x E J denote by Cx the connected component of J containing x. Let Pn (x) 

be the component of f-n(U2) such that CxC_Pn(x). It is clear that f:Pn(x)-~ 
Pn--1 (f(x)) is a branched or regular covering and we have the chain: 

C Pn(X) C ... C (x) C U2. 

By (*) it is clear that  Cx=An~__0 Pn(X). 
By the way, this proves that  for r  there is an analytic curve 7 = %  disjoint 

from J and surrounding Cx such that  d iamv_<diamCx+r  In fact, for given ~>0 
we put  ~=OPN(X), and take N to be sufficiently large. 

Let Ao=U2\U1 and An(x) be the annulus surrounding x, An(x)=P~(x)~ 
f-n(Ao). We are going to call An(x) critical if a critical point w is surrounded 

by An(x). In this situation we have An(x)=An(w). Furthermore f:An(x)---* 
A,~_l(f(x)) and we have the chain 

An (x) ---, A~-I (f(x)) ---~... ~ A1 (fn-1 (x)) ~ Ao. 

The map f :  A~_i(fi(x))---*An_i_l(ff+l(x)) is univalent if An-i(ff(x)) is not criti- 
cal. If  this happens, we have that  modA~_i(fi(x))=modAn_i_l(ff+l(x)). If this 
is the case for any i, l<i<n, we get modA~(x)=modAo. 

In case An-i(ff(x)) is critical, the map  

f:An_i(fi(x))-----~An_i_l(fi+l(x)) 

is a regular covering of a certain degree d~ and we have 

mod An-i(ff(x)) = (1/di)mod A n - ~ - l ( f f + l ( x ) ) .  
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For example if there is just one critical point w0 of multiplicity 1, we have that  

mod An-i  ( f i  (x)) = �89 mod A n - i - l ( f f + l  (x)) 

in case An-~(fi(x))=An-~(Wo). If k denotes the number of critical annuli among 
An-i (fi (x)), then mod An (x) = (1/2k)mod A0. 

The following result is very useful in deciding whether Cx={x}  for a certain x 
(see [BH]). 

3.1. L e m m a .  Suppose A is a bounded open annulus and An is an infinite 
set of disjoint open annuli An C A each one winding around the bounded component 
of C\A.  If ~ n  modAn=oC, then the bounded component of C \A  equals a single 
point. 

To apply this lemma notice that  since f-I(U2)cU1, we have that  An(X)C_ 
in tAn_l (x)  where in tAn_l (x)  denotes the bounded component of C \ A n - l ( x ) .  
Therefore {An(x)}n is a sequence of disjoint, nested annuli surrounding Cx. 

If there is no critical point in J ,  then mod An (x) =rood A0 and ~ n  mod An (x)-- 
ec. By Lemma 3.1 we obtain Cx={x}.  This shows that  the hyperbolic Julia set 
which is disconnected is always a Cantor set. Another application of Lemma 3.1 is 
the following result. 

3.2. L e m m a .  Let f be semihyperbolic and C~={w} for any critical point w. 
Then Cx={x} for x � 9  

Proof. The idea is to show that  mod (An(x))>_c and then apply Lemma 3.1. 
Let n � 9  and i(n) be the number of indices i such that  gn_i(fi(x))=An-i(w) 

for some critical point w. We claim that  there exists D � 9  independent of n such 
that  i(n)<__D for any n � 9  If this is true, then we can decrease the modulus at 

most D times and hence mod (An(x))>c. 
Suppose our claim is not true. Then there is a critical point w0 such that  if 

i(n) denotes the number of indices i for which dn-i(ff(x))=gn-i(wo), we have that  
i -+oc as n--+oc. Let il<i2<...<ii(n) be the indices such that  

An_ij(fi~(x)) -~An-ij(wo), ij �9 { i l ,  ..., ii(n)}. 

Because An-r (if1 (x ) )=An- i l  (wo) we get that  An-c2 (fi2 (x))=An-r (fix-il (wo)). 
On the other hand An_i2(fi2(x))=An-r Hence fi2-i~(Wo)EPn_i2(wo). Let 
jn=i2-i l .  Then ff~(wo)EPn_i2(Wo). It is clear that  n-i2---+c~ as n---*c~ and 
Pn-i2 (wo)---*C,~o. But C~ o ={wo}, and consequently there is a sequence of iterates 
{ff~(wo)}n such that  fJ'~(Wo)----~wo contrary to semihyperbolicity. [] 
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To deal with the critical points w for which C~o r {co} we need the following char- 
acterization of semihyperbolicity due to Carleson, Jones and Yoccoz (see [CJY]). 

First we introduce some notation. For z E C  let B,~(x, e) denote the connected 
component of f - n (B ( z ,  e)) containing x. By the maximum principle Bn(x,s) is 
simply connected and fn: Bn(x, e)--*B(z, ~) defines a branched or regular covering 
and we denote its degree by dg(Bn(x, e)). With this notation we have: 

T h e o r e m  B.  The following are equivalent: 
(A) f is semihyperbolic, 
(B) there exists ~>0, c>O, 0 < 0 < 1  and D< oc such that for all xE J and n E N  

dg(B,~(x,e))<_D and diamB,~(x,e)<cO'L 

Using this result we can prove: 

3.3. L e m m a .  Let f be semihyperbolic and x E J  such that C ~ { x } .  Then 
{Cyk(~)}k is either periodic or preperiodic. 

Proof. Let x E J  such that  Cx~{x} .  First we show that there exists 5>0 such 
that diam Cyk (~) > 5 for k E N. For if not, then there exists a subsequence ki such that  
l i m i ~  diam CSk~ (~) =0.  Then there is an index io such that  diam Cy~ (~) < �89 for i >_ 

i0. This implies that  Cfk~ (~) C_B(f k~ (x), s) for i>_io. By Theorem B diam Bk~ (x, 5) 

cO k~ and hence l im i_~  diamBk~ (x, s)=0.  On the other hand Bk~(x, c)~Cz which 
is a contradiction. 

Suppose next that  {Cy~(~)}k is an infinite sequence of distinct components. 
Take a subsequence ki such that  Cfk~ (x) are all different and choose a further subse- 

quence ki~ such that  fk~j (x)-*x0. In this way we obtain a point x0 such that  there 
is a sequence of distinct components of J of fixed size 5 accumulating at x0. On the 
other hand U2\J is a John domain (see [CJY]) and this leads to a contradiction. [] 

A consequence of this lemma is: 

3.4. C o r o l l a r y .  Let Cx~ {x} be a component of a semihyperbolie Julia set J. 
Then Cx is equal to or is a preimage of a periodic critical component C~. 

Proof. Let us consider the annuli A~(x) as in Lemma 3.2. From the proof 
of Lemma 3.2 we see that  the number of critical annuli i(n) tends to infinity 
as n ~ o o ,  otherwise we would have C~={x}.  Then there exists a critical point 

coo such that  A,~_i~(ffk(x))=A,~_ik(wo) for kE{1, . . .  , i(n)}. Among {Cy~(~)}~>_o 
there are p distinct components and let X1, . . .  , Xp be them. Among {Cs~0}n_>o 
there are q distinct components and let C1 =C~ 0 ,... , Cq =Cf~ -~o  be them. Among 
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f f l ( x ) , . . .  , fi,+l(x) there are two points, say ffkl (x), f~k2 (x), ikl <ik2, belong- 
ing to the same Xp(n), l < p ( n ) < p .  Notice tha t  ikl and ik2 depend on n. Then 
A~-ikl (fikl x) and A~_~k~ ( f i ~  x) encircle Xp(,~). Let us denote the first of these 
annuli by A~ and the second by A~; the corresponding pieces are called Pff and P~.  
Then Xp(n) C P~CP~. Now let A/" be an infinite set of indices n for which p(n)=po, 
for a certain Po, l_<p0-<P, which clearly exists. 

We can write the chain of equalities 

A~ = A~-ik~ (fik2 x) = fik2 -- ik  I ( An_i~:l (fik~ x) ) 

= fik2 -ik~ (A~_ik ~ (w0)) = An-ik2 (f%-ik~ Wo). 

This means that  fik2-ikiOJoEP~. But A'~=An_ik=(wo) and so also woEP~. Thus 
both C~ 0 and Cf~k:-~k~ W0 lie in P~.  Because n--ik2 >_n--ip+l--*oc we can write 

nEAr 

I t  remains to prove tha t  C~ o is periodic. If for a certain n we have fik~-%woEC~o, 
we are done. Otherwise for infinitely many nEAr, f~2-~woECqo for a certain q0, 

2<_qo<q. Thus Cqo lies in P~ for those n and so Cfao ~o=Cqo=[~ne]cP~=C~o 
and we are done. [] 

3.5. Remark. At this point we can see tha t  a conjecture of Branner and Hub- 
bard is true for semihyperbolic polynomials. Namely we can conclude tha t  J is a 

Cantor set if and only if there are no periodic critical components. 

4. L o c a l i z a t i o n  o f  Ao~(f) 

Theorem 4.9 (obtained by the first author) is the main result of this section. 
But  before proving it we are going to give independent proofs of its particular 
cases. This seems to us to be illustrative. In what  follows we are going to use the 
distortion properties of d-valent functions. First let us introduce some notation. 
Given a topological disk W and a closed set FC_W we say that  F is a-admissible 
for a > 0  if 

diam F > a diam W. 

For a given a > 0 we say that  a domain W is a- thick at a point z E W if 

dist (z, OW) > a diam W. 

We will use the following lemma which is in the spirit of Proposition 2.1 of [HR]. 
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L e m m a  C. Let (W1,V1), (Wo, Vo) be two pairs of topological disks VicWi, 
i=0,  1 and O</3<mod (Wo\Vo). Fix c~>O, d E N  and let f: WI-*Wo be a branched 
covering of degree d such that V1 is a component of f - l (Vo) .  Then the following 
holds: 

(a) for any two connected a-admissible sets F', F" in VI: 

diam(F')  diam f (F ' )  
t ~ o  

diam(F")  diam f (F") '  

(b) the same holds for F', F" such that f (F') ,  f (F")  are a-admissible and 
connected, 

(e) for a point xoEV1 and a closed set FC_V1 we have dist(x0, F)~diam(V1) /f 
dist ( f  (x0), f(F))~diam(V0), 

(d) for a point xo eV1 and a closed set Fo C Vo we have dist(f(x0),  F0)~diam 170 
if dist (x0, f - 1 (F0) V/171 ) ~ diam V1. 

4.1. Remark. A consequence is that  171 is c~-thick at a point xoEV1 if and only 
if V0 is a ' - thick at f(xo). 

Proof of Lemma C. Clearly rood (WI\V1)>_IY=I3'(/3, d)>0.  This means that  
we can always assume that  Wo, W1 are unit disks by conformal changes in the 
image and in the preimage. These changes do not affect the conclusion of the 
lemma because collars Wo\Vo, WI\V1 have moduli uniformly bounded away from 
zero. In particular f is just a Blaschke product with d zeros (counting multiplicity). 
A sequence of such functions can converge (uniformly on compact sets) only to a 
Blaschke product with at most d zeros. If we let B g denote the family of Blaschke 
products f with at most d zeros such that  f ( 0 )= 0 ,  then we notice that  B g is closed 
in the topology of uniform convergence on compact subsets of D. 

Notice also that  we can assume that  the modulus of the collar Wo\Vo is 
bounded from above by an absolute constant. If W 0 = D  (as we assumed) and 
0EV0, we can see that  d i a m V l _ < l - C ( / Y ) < l .  

If 0EV1, we use the fact that  sup{lf '(z)l:lzl<_l-c(:) ,  f~Bg}<_K(Z)<oo to 
conclude that  

diam V1 _> k(fl') diam V0 _> kTo. 

Now let us prove (c). We can assume that  xo=O=f(xo). Let x,~eV~, f nEB d 
be sequences such that  [xn[/diamV~-~O but If(xn)l/diamVd~>_7>O. Our re- 
marks show If(Xn)l>_~o. But the derivatives of f~ are uniformly bounded on 
B(0, d iamV1)cB(0 ,  1 -c ( f l ' ) )  and we come to a contradiction. 

To prove (d) we connect 0 = f ( x o )  with the closest point Yo of FoCVo by a 
segment "Y0. Then there is a lifting "Y1 of ~0 to V1 that  connects x0=0 with a 
Yl E f  - I (yo)  ef -1 (Fo) n V1. 
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Suppose that  we have sequences fnEB d and Y0, Yl as above and such that  

ly~i/diamV~-*O, ly~I >k~-0. 
Then for at least half of rE  [0, kTo] the circle T r = { z :  [zl=r ) intersects 7~ at a 

point where If~l<10e,~. But {f~n) are holomorphic functions, uniformly bounded 
on compact sets. As fn converge to a certain function from B0 d which cannot be a 
constant, we come to a contradiction. 

It is now easy to see that  (b) and (a) follow from (c) and (d) respectively. [] 

We are grateful to the referee for pointing out a mistake in the original state- 
ment of this lemma. 

There are a number of particular cases when we can achieve a localization. The 
first case is: 

4.2. T h e o r e m .  Let f be semihyperbolic and assume that C~={w} for any 
critical point wE J. Then Am(f) admits a localization. 

Proof. By Lemma 3.2 J is a Cantor set in this case. Moreover the annuli 
A,~_k(fk(x)) can be critical only for a finite number of indices k. Let Pn(x) be 
the component of f-n(u1) containing x. The degree of the map f~: Pn(x)--+U2 is 
bounded by D, where D E N  is independent of n and x. It is easy to see that  P~(x) is 
c~-thick at any point zEOP,~(x). Therefore dist(0P~(x), ~P~(x))~diam P~(x). Con- 
sider an analytic Jordan curve %~ in A~ (x) such that  dist (~/n, OAn (x))~diam Pn (x) 
and let ~,~(x) be the domain containing x with O~n(X)=~/~. It is clear that  ~n(X)\J 
is a John domain with the right constant. From Lemma C it follows also that  
diamP~(x)~diamPn+l(x) and hence d i a m ~ ( x ) ~ d i a m ~ , ~ + l ( x ) .  Now for given 
xEJ, r > 0  put ~(r)=~n(x) \J  where n is chosen to be the largest integer for 
which diam 12n (x) >_ r. [] 

The next case is C~r for all the critical points ~ E J .  In this situation 
we add extra boundary pieces to obtain a simply connected domain ~ as in Sec- 

s ~  rr~N of simply connected John domains tion 2. We consider the collection t Q~ JJz=l 
and introduce: 

F(i,j),Q,M,r={~/:~/ connects c i, c 5, centers of f l~(r) ,  f l~(r) ,  diam'y_< 2Mr} 

As in Section 2 we introduce the control: 

0 if F ( i , j ) , Q , M ,  r : O, 

c(i,j) (Q, r, M) = sup inf dist(~, g)/r, otherwise 
~EF(i , j )Q,M, r ~E"~ 

and put c(Q, r, M) =max(i,j) c(i,j)(Q, r, M).  
Let F(r, M) = {Q E J: c(Q, r, M) > 0} and we have the following: 
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4.3. L e m m a .  Let f be semihyperbolic and assume that C~r  {w} for each crit- 
ical point w. Then there exist M'>O, a > 0  independent of Q and r such that 

c(Q, r, M') > ~ for any Q E F(r, M). 

4.4. T h e o r e m .  Let f be semihyperbolie and assume that C ~ { w }  for any 
critical point w E J. Then A ~  (f) admits localization. 

Proof. Lemma 4.3 is a key step and the localization now follows by the algo- 
rithm described in Theorem 2.1. [] 

Proof of Lemma 4.3. Suppose the statement is false. Then there is a sequence 
{Qn},~, {r~}n of points and scales such that  Q~EF(rn, M) and c(Qn,r~, n)-+O as 

2 be centers of ~ (rn), g t ~  (rn) and % be a curve connecting n--~oc. Let c I ,  c~ 
c~1, cn2 with diam%<2Mrn._ Let 5>0 be small and Ml>M2>2M3 large constants. 
Denote by W / the component of f -k~(B( fk~  (Qn), Mih)) which contains Q~ and 
kn is the largest integer such that  diam(W 3) >KMr~.  By the semihyperbolicity of 
f we can choose 5 so small that  the map fkn: W~___~B(fk~ (Qn), M15) has degree 
< D where D is independent of Q~. We can apply Lemma C and conclude that W~ 
is a '-thick at Q~. Now choosing K big we conclude that  7n C_ W 3. 

Without loss of generality we can assume that  fk~(Qn)--~P and let Wi~,p, 
i=1 ,2 ,3 ,  be the component of f -kn(B(P,  2Mih)) containing Q~. Let bn-f l  __ kn (cn) , 1  

2 kn 2 b~=f  (cn) and without loss of generality again we say that  b l= l imbl ,  b2=limb 2. 
If n is large enough, say n ~ no, w~ C w /  i = 1, 2, 3, and by Lemma C dist (P, b 1) w n - -  w n , P '  

dist(P, b2)~5, dist(b~, J )~5~dis t (b~,  J). Let F~=fk~(Vn ) connect b I to b~. As 
%CW3CW3,p ,  we have FnCB(P, 2M35) and hence diamFn~4M3& By the al- 

gorithm of Lemma 2.2 there exists F,~ connecting 51 and 52 (n>no) such that  
diam F~ <_8M3 5 and dist(~, J) _>c~" for ~EFn. 

Let Ln=F~UFn. Let us recall that by Lemma 3.3 there exists 5~>0 such that 
diam(Cfk(w))>5 ~ for any kEl~I and any critical point w. Choosing 5 small with 
respect to 5 r we obtain that the index of Ln with respect to any critical value is 0. 

This implies that there is an fk~-lifting ~n of Fn which has endpoints c I and C2n . 
On the other hand by Lemma C diam ~n <-2M~rn and dist({, J)>_ arn, ~ E~n, which 
contradicts the fact that C(Qn,rn, n)--+O. [] 

4.5. Coro l l a ry .  Let f be semihyperbolic with only one critical point on J. 
Then A ~  (f) admits a localization. 

4.6. Coro l l a ry .  If  f is a cubic semihyperbolie polynomial, then A ~ ( f )  admits 
a localization. 

In fact, there are three possibilities: (1) both critical points escape to infinity 
and then hyperbolicity implies localization; (2) both critical points are on J,  so J 
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is connected and localization follows from [CJY] and Theorem 1.9; (3) one critical 
point is on J,  another escapes, then Corollary 4.5 implies localization. 

4.7. Remark. In Section 5 we introduce the notion of a uniformly John domain 
and prove that  uniformly John domains are exactly localizable John domains. After 
that  we can reformulate the results above as follows: under certain condition (e.g. 
only one critical point on J)  A ~  (f)  is a John domain if and only if it is a uniformly 
John domain. 

4.8. T h e o r e m .  Let f be critically finite. Then A~( f )  admits a localization. 

Proof. We use the notation c(Q, r, M), JZ(r, M) of Lemma 4.3. And we are 
going to prove as before that  

3M', a>O:c(Q,r ,M')>a foranyQEf ( r ,M) .  

Recall that  this statement implies Theorem 4.8 by the algorithm used in Theo- 
rem 2.1. 

First we repeat the proof of Lemma 4.3 word by word. If the statement is false, 
then there is a sequence {Qn}, {rn}, Q~ e~'(r~,  M) and c(Q~, rn, n)--*O as n--+cc. 

1 2 1 2 with diam 7~-< We consider cn, c,~, ~ ( r n ) ,  gt~,~ (rn) and ~,n connecting c~, c n 
2M~r~. We construct kn and W~, i - -1 ,2 ,3 ,  with the help of Ml>M2>2M3 and a 
small 5 which we are going to choose from the condition that  

in any disk of radius 2M15 centered at J there is at most one critical value o f f .  

We introduce i W~,p, i=1,  2, 3, exactly as before and b 1 = l imb 1, b 2 =l imb 2 where b n-1 __ 

fk~(Cln), _,~h 2 ----fk~(C2).j By Lemma C dist(b 1, J)~5~dist(b 2, J). Let F~=fk~  (Tn). 
It connects b I to b 2. As ~nC_W 3 3 CW~n,p, we have FnCB(P, 2M35) and hence 

i 1 d i a m F ~ 4 M 3 5 .  Modify Fn to F~=[b , 1 2 2 b 1 bn]UFnU[bn, b ], curves connecting and 
b 2. Then d i a m F ~ 5 M 3 5 ,  n>no. 

Let y be the (possible) critical value of f in B(P, 2M15). For the sake of 
simplicity we assume in what follows that  all critical points of f are simple and 
their orbits do not intersect. However the reader can easily see how to modify the 
considerations to obtain the general case. 

Consider the loops Ln=F'n0 UF~. If there is a subsequence {Ln~ } of loops with 
even index at y, then we come to a contradiction because this would mean there 

1 exists an fknb-lifting ~,~ of F~j d---eli b l n -  j ' bl] UP/no U[ b2' b2j] which has endpoints cn~ 

and c 2 On the other hand by Lemma C, d i a m ~  <Mrrn~ and dist(~, J)>ar~j U s �9 
which contradicts the assumption that  c(Q~, rn, n)--+O. Otherwise all indices of L~ 
at y are odd, n>m. Consider Lm=L~-Lm and observe that  L~  has even index 
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at y for n>m. Put  F,~= b 1 1 i 2 2 - I n ,  b ]UFmU[b ,bn], n>_m. The fact tha t  the index of 
L ~  at y is even shows that  there exists an fkn-lifting 7n of Fn, n>_m, which has 
endpoints c~ and c 2. But by Lemma C diam~<_M'rn and dist(G J)>ar~, ~E~,  
n>m, since dis t (~,J)>c~' ,  ~ _ 1 1 , 2 2 ~CF~-[bn, b ]UFmU[D ,b~], n>_m. 

Thus the assumption c(Qn, rn, n)---+O leads to a contradiction in any case and 
this proves Theorem 4.8. [] 

All these results above served as illustrations. Now Theorem 4.9 gives a neces- 

sary and sufficient condition for the localization property of Aoo(f). This criterion 
was obtained by the first author. First we introduce some notation: 

a 1 = {~ �9 J:~d is a critical point and C~ = {w}}, 

a2 = {w e J : w  is a critical point and C~ • {w}}. 

With this notat ion we have the following definition. 

Definition. Let f :  (J--*C be a polynomial. We say that  f is separated if there 
exists fl>O such tha t  

dis t (fk(wl) ,  C~2) > fl for k E N,  Wl E •1 and w2 E f~2. 

Here is the characterization of the uniformly John property for Aoo (f):  
A A 

4.9. T h e o r e m .  Let f: C--*C be semihypcrbolic. Then Aoo(f) admits a local- 
ization if and only if f is separated semihyperbolic. 

Proof. Suppose f is not separated semihyperbolic. Then there exists wl E~tl, 
w2Ef~2 and a sequence {nk}k such that  

d i s t ( f n k ( W l ) , ~ 2 ) - ~ 0  as k -~oo .  

Without  loss of generality we can assume that  fnk(wl)---~y where yCC~. Let 
B=B(y,  is) and C=BAC~ 2. Denote by Wk the component of f-nk(B) which 

contains wl. Because wl is a critical point and fnk(wl)~C,~2, there are at least two 
disjoint components {C~}i of f-nk (C) contained in Wk. The degree of the map: 

fnk: Wk --+ B 

is D by Theorem B. Consequently diamC~diamWk for i=1 ,  2 by Lemma C. Also 
by Lemma C we have that  for certain two disjoint components C~, C2: 

dist(C~, C~) ~_ C(k) diam Wk 
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where C(k)--*O as k--~oc. 
Now it is easy to see that  in this situation the uniformly John property is 

violated (see Section 5). So localizability fails. 
Conversely, suppose that  f is separated semihyperbolic. We show that  Ao~ ( f )  

is localizable. The idea is to consider two cases which are similar to the situation 
in Theorem 4.2 respectively Theorem 4.4 above. First we introduce some notation 
and prove a somewhat stronger version of the separation property. For WE~l, t > 0  
and n E N  we introduce: 

T~ (t) = {C C J :  C is a connected component of J, d is t ( f  n (w), C) < t} 

and set 
d~ (t) = sup{diam C: C E T~ (t)}. 

With the above notation we have the following claim: 

Claim. If f is separated semihyperbolic, then there exists K >O  such that  for 
t<r  wE~i ,  and kEN,  

(4.1) dk(t) < Kt. 

Proof of the claim. Assume the statement is false. Then there exists wl Ef~l 
and sequences {nk }k, {tk}k and {Ck }k, nkEN, tk >O and Ck C_J such that  

1 dist(fnk(wl)'Ck) < for k E N .  
diamCk 

Let lk denote the smallest integer (which exists by Lemma 3.3) such that  fzk (Ck) = 
C~ where 0;2 E ~u. Without  loss of generality we can assume that  o~2 is the same for 
each k. Since f is separated semihyperbolic, there exists No EN  such that  Pgo (w2) 
does not contain any critical values except for the ones situated on C~ 2 . Then there 

is an fZk-lifting denoted by PZk+No of PYo (0)2) such that  Ck cPzk+No and the map: 

flk: Plk+No --+ PYo (0)2) is univalent. 

By the distortion theorem for univalent maps we have 

dist (0Plk+Yo, C k ) ,~ dist ( O P No , C~ 2 ) 
= a > O ,  

diam Ck diam C~ 2 

where a does not depend on k. Thus fnk(Cal)EPlk+No if k is large enough. Again 
by the distortion theorem: 

dist (fnk (Wl), Ck) ~ dist (f~k +zk (Wl), C~)  
diam Ck diam C~ 2 
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This implies that  d is t ( f  nk+tk (COl) , C2)--+0 which is contrary to the assumption that  
the dynamics is separated semihyperbolic. The claim is proved. [] 

To continue the proof we introduce some notation: 

r /=  inf{diam Cf~(~) :w E ~22, n C N}. 

By Lemma 3.3 we have that  rl>0. For a reason which will become clear we choose 

( ~  ~ )  (4.2) 5 = m i n  3 '  2 " 

We also fix a large constant M1 >0 which will be determined later. 
For xEJ  and r > 0  introduce: 

(4.3) n(r, x) = max{n:  diam Wn )_ M1T}, 

where W,~ is the component of f - k (B( f~(x ) ,  5)) which contains x. Denote by Wn,k 
the component of f - k (B( fn (x ) ,  5)) which contains fn-k(x)  and let y=fn(~'X)(x). 
To separate into cases similar to the ones in Theorem 4.2 and respectively Theo- 
rem 4.4, for r > 0  we introduce: 

J2(r)={xeJ:W~(r,~),kNf~l = 0  for any k = 1 , 2 ,  ... ,n(r,x)}, 

and put Jl(r)=J\J2(r).  
Take first x EJl(r). This is the case similar to the one in Theorem 4.2. 
Let us recall the topological disks U C U1 C U2 C f(U) from Section 3. Denote by 

fin(z), P~(z) the components of I-~(U1) and f -n(u2) respectively which contain 
the point zEJ.  For zCJ let N=N(z )  denote the first integer n with the property: 

(4.4) diam Pn (z) _< diam Cz + 15. 

Let us consider the open covering of J by the sets {PN(z)}zeJ.  Since J is 
compact, we can choose a finite subcovering {/hN~(zi)}L_ 1. There is an index i0e 

{1 , . . . ,  L} such that  fn(r'X)(x)=yePN~o (Zio). We claim that in this first case (i.e., 
xeJl(r))  we have: 

diam PNi0 ( Zio ) < l e. 

To see this, recall that  there exist w C f~l and k < n(r, x) such that  dist (y, fk (w)) < 5, 

diam Pg~o (zio) <_ diam Cz~0 + �89 5, and therefore 

dist(fk (w), Cz,o ) < 35. 
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By condition (4.1) we obtain: diamCz,o <K~6. Finally, we use (4.4) and (4.2) to 
get: 

diam P ~  o (zio) < (3K+1)�89 < �89 

which proves the claim. 
Let us consider now the annulus AN~ =PN~ (zi)\Pg~(zi) and an analytic arc 

~/iCAN~ with the property that: 

dist(~/i, OAN~) > 6' >O for i=1,... ,L, 

where 6r>0 is a fixed constant. Denote by ~i the topological disk with 012i=7i, 
i=l,... ,L. 

Let us summarize the chain of constructions: 

i x, r )  ~ ?'t(l', x )  ~ y .~ f n ( r , x ) ( X )  ~ i 0 -~- go(r, X) ~ ~'~io(r,x). 

Let ~ ( r )  be the component of f-n(~,~)(gtio(~,~) ) which contains x. Furthermore we 
denote by U~(r) the component of f-n(r'~)(Pg~o(r,~)(Zio(r,x))) which contains x. 

We have that 5~ (r) C_ Ux (r). Because diarn PN~o(~,~ ) (Zio (r, x)) < �89 the covering: 

fn(~,x): Ux(r) -+ PN, o(~,~ ) (zio(r, x) ) has degree _< D, 

by Theorem B. 
We can now apply Lemma C to conclude that: 
(al) d i a m h ~ ( r ) ~ r ,  
(a2) 5~(r)  is (~-thick at x for c~t=~'(f), 
(a3) dist(Jnh ( ), 

As in the proof of Theorem 4.2 we define ~ ( r ) = ~ ( r ) \ J .  By [CJY] and by the 
properties (al), (a2), and (an) we see that (~ ( r )  is a local John domain at xEJl(r) 
with uniform John constant. 

The second case is x~J2(r). The proof is similar to that of Theorem 4.4. 
We take xE~(r,M)MJ2 and we are going to prove the statement of Lemma 4.3. 
Namely we will show that for any M there are M1 (defining J~(r)) and M' ,  a > 0  
independent of x and r such that 

(4.5) c(Q,r,M')>ar for xE~(r,i)MJ2(r).  

If (4.5) is proved for all M<_M(N, M0, D), where N, Mo are from (1) of Theorem 2.1, 
then localization follows by the algorithm described in Theorem 2.1. 

Suppose (4.5) is false. Then there exist sequences {Xk}k, (rk}k of points and 
scales such that xkEF(rk,M)MJ2(rk) and c(xk,rk, k)--+O as k-*co.  Let c kl, ck2 be 
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centers of f~l k (rk), f~2 xk (rk) which are domains of prelocalization described in (1), 
(2), (3) of Theorem 2.1. Let 7k be a curve with diam 7k < 2Mrk. By our assumption 
given any positive c~ for all sufficiently large k, there is no curve ~k connecting c~ 
and c 2 with the properties: 

(4.6) diam ~k < 2krk, 

(4.7) dist(~k, J) > ark. 

We obtain a contradiction and we will be done if we construct ~k with properties 
(4.6) and (4.7). 

Let nk=n(rk, Xk) and yk=f  nk (Xk). Consider fixed small constants 51, 52 with 
52<51<5. We denote by W 2, W 2 and Wk the components of f-nk(B(yk,52)), 
f-nk (B(yk, 51)) and f-nk (B(yk, 5)) which contain Xk. It is clear that  the map 

f,~k: Wk --~ B(yk, 5) has degree < D. 

For any k E N  the disks W 2, W 1 and Wk are a~-thick at xk for some a t>0.  We 
choose M1 large enough (depending on M) so that  we have 

B(xk, 4Mrk) C_ W:. 

Then 7k C_W~, and we define Fk=fnk(Tk), b i --~nkrci ~ k--J  ~ k/' i=1 ,2 .  B y L e m m a C w e  
obtain that  for any k 

�9 i c152 <_ dlst (bk, J) <_ 252, 

for some cl=cl(f)>O. 
Then the curves Fk connect b~ and b 2 and FkC_B(yk, 52). For the same reason 

as in the proof of Lemma 2.2 we can find a curve FkCB(yk, 51) connecting b~ and 
b 2 with the property: 

dist(Fk, J)  > a where a = a ( f )  > 0. 

Because Xk �9 J2 (rk), the ball B(yk, 5) is free from critical values coming from ~1. 
On the other hand: 

diam(Fk UFk) < 251 < r/ 

by (4.2), and therefore the index of Fkt2Fk with respect to critical values coming 
from ~2 is zero�9 Consequently there is an f~k-lifting ~k of Fk connecting c~ and c~. 
Another application of Lemma C shows that ~k satisfies (4.6) and (4.7). This 
contradiction completes the proof�9 [] 

Remark. Obviously critically finite polynomials are separated semihyperbolic 
and thus A ~  (f)  is uniformly John if f is critically finite. We preferred to provide 
an independent proof of the last assertion for illustrative purposes. 
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5. Uniformly John domains 

Recall that  Q means the internal metric in a domain. 

5.1. Definition. A domain ~ is called a uniformly John domain if there are 
constants Cl and c2 such that for any two points Xl,X2E~ there exists a curve 
7=7xl,x~ connecting Xl to x2 and lying in ft which has two properties: 

(i) V~ET:dist(~, 0ft) _>cldist(~, {Xl, x2}); 
(ii) diamv~c2Lo(Xl, x2). 

5.2. Remark. Condition (i) is just the John type condition; that  is, the existence 
of a "cigar" connecting xl  and x2 inside ~. Condition (ii) means that  we can connect 
xl to x2 by a path which is the best up to a constant. 

5.3. T h e o r e m .  A John domain is localizable if and only if it is uniformly 
John. 

Proof. We have seen that  in the simply connected case localization holds. It 
turns out that  in this case the uniformly John property holds as well. This is based 
on the fact that  we can choose 7 with property (i) to be the hyperbolic geodesics 
(see [NV] or [GHM]). On the other hand geodesics satisfy (ii) by a theorem of 
Gehring and Hayman. So we are going to deal with the non-simply connected case. 

(a) Let ~ be a localizable John domain and xl ,  x2E~t. Let Q1 be a point of 0~t 
which is a closest point to Xl and let r l  = [Q1-Xl[.  If Q(Xl, x2)~  �89 one can choose 

to be [xl,x2]. So assume that  r=~(Xl,X2)>�89 Let ~tQl(4r) be a local John 
domain which contains the curves Vx~,~, diam V~,~ ~ 1.01r, and [Xl, Q1]. Let c be 
a center of ~Q~ (4r) and V ~, i=1,  2, be two John arcs in ~tQ~ (4r) connecting c with 
xi, i=1,2, respectively. Put  y=~/1U~/2. Proper ty  (i) follows immediately because 
the John constants of local domains are uniformly bounded. As for (ii) we have a 
simple estimate 

diam V -< diam 71 +diam ~/2 _< 2 diam ~Q1 (4r) <_ 8Mr = 8MaO(Xl, x2). 

(b) Let ~ be a uniformly John domain. First we use only the John prop- 
erty. Applying Theorem 1.9 to a simply connected John domain ~C~t constructed 
in [J2] we obtain a collection { ~  (r)} of simply connected John domains with John 
constants uniformly bounded by Co which satisfy the properties: 

(1) diama~(r)<_Mor, l = l , . . .  ,N;  

(2) U (r) Be(Q, r); 
for i j. 

As was done several times before, we introduce the control c(Q, r, M), M>Mo, and 
the sets 9r(r, M)={Q:c(Q, r, M)>0} .  
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Now we are going to prove the statement: 

3M ~, a > 0 independent of Q and r : c(Q, r, M p) > a for any Q E $'(r, M). 

Recall that  this statement implies that  ~ is localizable by the algorithm of Theo- 
rem 2.1. 

So let QEJ:(r, M), which gives a curve ,yC~ connecting centers c i, cJ of f ~ ( r ) ,  

f l~(r) respectively and such that  diam-~<_2Mr. Now use the fact that  fl is a 
uniformly John domain. We know that Q(c i, cJ)<diam~/_<2Mr. Using (i) and (ii) 
we obtain ~, diam~<_2C2Mr such that  

dist(~, 0~) > cir. 

The statement above is proved with M~=C2M and a--c1. [] 

5.4. Coro l la ry .  Let f be a polynomial. Suppose J does not split the plane. 
Assume that either C~ = {w} or C~ ~ {w} for all critical points w E J simultaneously. 
Then the following assertions are equivalent: 

(a) A ~ ( f )  is a John domain; 
(b) Am(f )  is a uniformly John domain. 

Proof. One needs to check only (a) =~ (b). By [CJY] (a) implies that  f is 
semihyperbolic. An application of Theorem 4.3 or 4.5 combined with Theorem 5.3 
finishes the proof of (b). [] 

5.5. Coro l la ry .  Let f be a separated polynomial. Suppose J does not split the 
plane. Then the following assertions are equivalent: 

(a) Am(f)  is a John domain; 
(b) Am(f )  is a uniformly John domain. 

5.6. Remark. It seems rather probable that  uniformly John domains are Gro- 
mov hyperbolic. At least from discussions with Juha Heinonen and Mario Bonk we 
strongly believe this assertion for Am(f )  of separated semihyperbolic f .  

5.7. Remark. The condition (*) (that is " J  does not split the plane") is not 
essential. One can replace components of J by components of the filled-in Julia set 
K f  everywhere and get the same results for A ~ ( f ) = C \ K f .  

6. Example  of  a semihyperbol ic  po lynomia l  
which is not separated semihyperbol ic  

Let U0, U1, U2 be topological disks such that  UicUo, i=1,2 and U1NU2=0. 
Let fi:Ui-~Uo, i=1 ,2  be branched coverings of degree 2. We can take fi to be 
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second degree polynomials with critical points wi and Julia sets Ji C Ui for i=1,  2. 
Choose f2 in such a way that  w2EJ2 and orb (w2) is finite. Hence J2 is a dendrite. 
Choose f l  such that  f~(wl)--*oc and therefore J1 is a Cantor set. 

Using quasiconformal surgery we find a fourth degree polynomial f3 which is 
conjugated by a quasiconformal mapping ~a to our dynamics. Two of the critical 
points of f3 are escaping and the third one is in J3 with finite forward orbit. Let 
us denote this critical point by w3. It is clear that  w3=~(w2). 

Before we continue the construction let us state the following: 

Claim. There exist yoEJ3 and { n k } k _ N  such that  Cyo={Yo} and 

dist(f~'k(y0),C~)---~0 as k--*c~. 

Assume for the moment that  the claim is true. Choose topological disks U3 C U4 
such that  J3CU3 and f3:U3--*U4 is a branched covering of degree 4. Let us take 
another topological disk U5CU4 with U3NU5=O and a quadratic polynomial f4 
which is a branched covering f4:U5-*U4 with J4cU5 and the critical w4 escaping. 
More exactly we are going to choose f4 in a way that  f4(w4)=Yo. Making another 
surgery we obtain a polynomial f of degree 6 with three escaping critical points. 
Let us denote by 31 and 32 the other two critical points which are in J=J(f). 

If r denotes the new quasiconformal conjugacy, we have 31 =r and 32 = 
r It is clear that  orb (31)Cr and we have that  dist(31, orb (31))>0 since 
31 Er Consequently f is semihyperbolic. 

By our claim we obtain that  

dist(f~k+l(31),C~2)--+0 as k--*cc, 

which shows that  f is not separated semihyperbolic. 
This finishes the construction, we only need to prove the claim. 

Proof of the Claim. Instead of f3, w3, J3 we are going to use the notation f ,  w, 
J and let V, W be two topological disks (corresponding to ~(U2), ~(Uo) in previous 
notations) such that  wEVnJ and 

f :  V --~ W is a branched covering of degree two. 

Also, without loss of generality we can assume that  the escaping critical points 
of f are in W\V. Fix xoEV and consider the sequence {#k}k of probability 
measures: 

1 (6.1) Z 
uc/-k(~o) 
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A well-known result of Lyubich [L1], [L2] and Freire, Lopes and Mafi~ [FLM] states 
that  {#k}k converges weakly to the measure of maximal entropy m of the polyno- 

mial f .  
As before let us denote by PN(W) the component of f - Y ( Y )  which contains w. 

Then the map 

fN: PN(W)~ V is a branched covering of degree 2 N. 

Using (6.1) we have 

= 

Put  k=lN and observe: 

#{y  �9 fk(y) =x0}  
4 k 

#{y �9 PN(W): fiN(y) _-- X0} = 2N#{y  : f(1-1)N(y) = X0}. 

Consequently we have: 

plN(PN(W)) = 2N#{Y : f(Z--1)N(y) = X0} 1 
4l N = ~ .  

Because FtlN--+m weakly, we obtain that  

(6.2) m(PN(W)) = ~N for N � 9  N.  

If we change w to any x � 9  J, we obtain similarly: 

1 
(6.3) m(PN(X)) <_ ~-~ for N �9 N and x �9 J. 

Let Jl={XCJ:ex={x}} and J2=J\Zl. A consequence of (6.3) and Corollary 3.4 is 
that  m(J2)=0.  By Birkhoff's ergodic theorem, there exists a set XN C_J such that  
m(XN)=I and for any yEXN w e  have: 

(6.4) lim ~ { k :  k <_ n, fk(y) E Py(w)} 
n - - - + ~  n 

Since PN+I (w) C PN (w), we obtain that  XN+I C_ XN. 

1 
2 N'  

Let X* =NNeN XN" Then 
re (X*)=1  is not empty. Let yoEX*NJ1. Then Cyo={Y0 }. On the other hand 
C~=NNe N Ply(w) and for Y=Yo in (6.4) we obtain a subsequence {nk}k such that 

dist(fnk(yo),C~)--,0 as k--*c~. 

We are done. [] 
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7. More general holomorphic repellers 

Let V be an open finitely connected set and U be a finite union of open finitely 
connected sets, UGV. Let f :  U--~V be a branched or regular covering and we 

always assume 

(,) jdef  N f - n ( u )  does not split the plane. 
n>O 

We call (f,  U, V) a semihyperbolic holomorphic repeller (HR) if dist (w, a (w))>  0 
for each critical point w E J of f .  We call (HR) critically finite if the orbit of each 
critical point w e d  is finite. 

With obvious changes of statements Theorems 4.2, 4.4, 4.8, 4.9 and Corolla- 
ries 5.4, 5.5 hold for (HR). 

These results have many applications to the study of harmonic measure on J. 
First of all let wa denote harmonic measure of ft evaluated at oo (we always consider 
ft such that  Oft does not split the plane). One of the basic good properties of such 
a measure is the doubling property. In [JK] it was proved that  harmonic measure 
of NTA domains in R "  (simply quasidisks on the plane) has the doubling property. 

This statement can be very easily proved on the plane but there is no hope to 
have it generalized for John disks. Here is a simple picture. 

/ / f - ~ B 2  

In this picture ft is the complement of three segments meeting at the origin. Then 

wn(B1)~r ~/(~-c~) and wn(B2)~r>>r ~/(~-~). 
However harmonic measure of John disks satisfies a certain doubling condition. 

One needs to replace the balls in Euclidean metric by the balls in internal metric: 

QEOft, Be(Q,r)={xE~:3"yQ,x such that  ~/Q,x\{Q,x}Cft and diam'~Q,x _< r}. 

7.1. T h e o r e m .  Let ~ be a John disk. Then 3C~ < ce such that 

VQ E Oft Vr > 0: wa(Be(Q, 2r)) < Caw~(Bo(Q, r)). 

This theorem is a particular case of 
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7.2. T h e o r e m .  Let ~ be a localizable John domain. Then the conclusion of 

Theorem 7.1 holds (that is harmonic measure has the doubling property with respect 
to internal metric). 

The proof is quite technical (because of possible infinite connectivity of ~t and 
because of the use of ~ instead of the usual metric) and it is carried out in [BV2]. 

Again there is no hope tha t  this holds for arbi trary John domains. A change 
of metric helps only if we can localize ~. 

The next example is an easy modification of the example above. We are grateful 
to Juha  Heinonen for pointing out this example to us. Our initial one was more 
complicated. 

The domain gt now is the complement of three segments united with [.J(xn,xn) , 1  2 
2 1 1._.+ where ( x n - x ~ ) / x ~  0. It  is a John domain and it is not localizable. The picture 

shows why its harmonic measure does not have the doubling proper ty  with respect 
to the internal metric. 

[A1] 

[A2] 

[BV1] 

[BV2] 

[BH] 

[c] 

[cJY] 
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