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On the asymptotic behaviour of the number of 
distinct factorizations into irreducibles 

Franz Halter-Koch 

A b s t r a c t .  For an integral domain R and a non-zero non-uni t  a E R  we consider the number  

of distinct factorizations of a n into irreducible elements of R for large n. Precise results are 

obtained for Krull domains  and certain noether ian domains. In fact, we prove results  valid for 

certain classes of monoids which then apply to the above-mentioned classes of domains.  

1. Throughout  this paper, a monoid H is a multiplicative commutat ive and can- 
cellative semigroup with unit element 1CH. For any a l , . . . , amCH,  we denote by 

[al, ..., am] the submonoid of H generated by al , . . . ,am.  We denote by H • the 
group of invertible elements of H,  and we use the notions of divisibility theory 

in H as introduced in [6], w 6 or [9], ch. 2.14. A monoid H is called reduced if 
H x ={1}. By a factorization of an element a E H \ H  • we mean a relation of the 

form a~'~Ul'...'Ur where u i C H  are irreducible elements. Two such factorizations, 
say a ~ u l ' . . . ' u r  and a~u~. . . ,  i �9 ur,, are called not essentially different if r = r  ~ and 
u~(i)~u~ for some permutat ion aC@r and all iE{1, ...,r}. We denote by f (a)  the 
number  of essentially different factorizations of a. We shall be concerned with the 
behaviour of f (a  n) as n--~co. The corresponding question concerning merely the 
lenghts of factorizations of a n as n - * c o  has been dealt with in [1] and [5]. 

A monoid H is called an FF-monoid (finite factorization monoid) if 1 _~ f(a)  < co 
for all a E H \ H  • ; see [8] for a detailed discussion. Our main results are the following 
two theorems. 

T h e o r e m  1. Let H be an FF-monoid, a E H \  H x, and suppose that there exist 

(up to associates) only finitely many irreducible elements u l , . . . , u m C H  dividing 

some power a n of a. Let r be the maximal number of Q:linearly independent vectors 
kl km ( k l , . . . , k m ) E N ~  such that u 1 .....um E[a]. Then there exists a constant A c q > 0  

such that 
f (a  n) = A n r - l + O ( n ~ - 2 ) .  
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T h e o r e m  2. Let H be an FF-monoid, a E H \  H • and suppose that there exist 

infinitely many mutually non-associated irreducible elements u E H  dividing some 
power a n of a. Then we have 

f(aD >>n" 

for  every r C N .  

The proofs of these two theorems will be given in Section 5. They are based on 

a general finiteness result for finitely generated monoids (Proposition 1) to be dealt 

with in Section 4. In the following two sections we discuss arithmetical applications. 

2. Let us call a monoid H an SFF-monoid (strong finite faetorization monoid) 

if, for any a c H \ H  • there exist (up to associates) only finitely many irreducible 
elements of H dividing some power a n of a. Thus in an SFF-monoid H Theorem 1 

applies for all a E H \ H • 

Every Krull monoid is an SFF-monoid. More generally, every saturated sub- 

monoid of a monoid with nearly unique factorization is an SFF-monoid (see [5], 
Proposition 2 and Corollary 1). 

For an integral domain R, we denote by R" = R \  {0} its multiplicative monoid; 

we study the arithmetic of R by means of the monoid R' .  We call R an SFF-domain 

if R" is an SFF-monoid. In an SFF-domain, every non-zero non-unit satisfies the 

assumptions of Theorem 1. 

If R is a Krull domain, then R" is a Krull monoid (cf. [7], Satz 5), and therefore 

R is an SFF-domain. In general, a noetherian domain need not be an SFF-domain; 

see the subsequently discussed example R--Z[~L--7]. Criteria for a noetherian do- 

main to be an SFF-domain may be found in [5], Theorems 4, 5 and Corollary 2. 

3. In this section we present four examples, two for each theorem. 

Example 1. Let K be an algebraic number field, R its ring of integers, and 

assume that the ideal class group G of R is an elementary abelian 2-group of rank 

N > 2 .  Let cl, ..., r be a basis of G, and let P0 Eel -... "ON, Pl COl, . . . ,  pNECN be prime 
ideals. Then there exist elements u, uo, ul,  . . . , uNCR such that (u)----P0Pl'... 'pN 

and (u~)=p~ for 0 < i < n .  Obviously, u, u0,...,UN are irreducible elements of R, 

and they are (up to associates) the only irreducible elements of R dividing some 
power u n of u. From the unique factorization into prime ideals we see that all 
factorizations of u n are of the form 

u n ~ ~ 13 ~ =a+2 /3 .  ~ u  UoU 1.. . . .uN, where n 

This implies 

2 
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and indeed, r = 2  is the maximal number of linearly independent vectors in the 
system 

{ ..., 9) e i +2 e No }. 

Example 2. Let K be an algebraic number field, R its ring of integers, and 
assume that  the ideal class group G of R is cyclic of order N > 2 .  Let r be a 
generating class of G, and let Pl,  ..., PN E r be distinct prime ideals. Let ,4 be the set 
of all vectors ~ = (a l ,  ..., aN) C No N such tha t  N= al +... + aN. For any a C A, there 
is an irreducible element u~ ER such that  (u~)=p~l . . . . .p~v  N. We set a=u(1 ..... 1) e R ,  
and we use Theorem 1 to determine the asymptot ic  behaviour of f(an).  Obviously, 

{u~ I c~ E.A} is a complete system of mutual ly not associated irreducible elements of 
R dividing some power a n of a. The factorizations of a n are of the form 

an~ 1-I k(~) 
~ C A  

where the exponent vectors (k(c~))c, cA e N 0  A satisfy the relations 

E k(a)ai = n for all i E {1, ..., N } .  
e, CA 

By Theorem 1 we obtain 

f (a  n) =An~-l+O(n~-2), 

where A E Q>0, and r is the maximal number of linearly independent vectors 

(k(c~))~c~4 C No A 

satisfying the relations 

E k(c~)(ai-al) = 0, (i = 2, ..., N) .  
aE.A 

These N - 1  relations are linearly independent: Indeed, if A2, ..., ANEQ are such 
that  

N 

E A ~ ( a ~ - a l ) - - 0  for a l l a E A ,  
i=2 

then the vectors a = ( 0 ,  ..., 0, N, 0, ..., 0) E.,4 show that  A2 . . . . .  A~v=0. This implies 

(2 1) N§ 
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Example 3. We consider the multiplicative monoid H- -{1}U2N.  The irre- 
ducible elements of H are the numbers u - 2  mod 4, H is an FF-monoid,  and any 
two factorizations of an element a E H \ { 1 }  have the same length. For an odd prime 
number p, we consider the element a=2p. The irreducible elements of H dividing 
some power a n of a are the elements u~=2p '~ for a E N 0 ,  and the factorizations of 
a n are of the form 

n 

an -- E ( 2 p ~ i ) ,  where n=cel+...+Cen, 
i = l  

whence they correspond bijectively to the partions of n, which implies 

1 r 2 ~ I  f(a n) =p(n) ..~ = e x p < T r , ,  - - . ;  
4nx/3 [ V 3 J 

see [11], Theorem 6.10 and [12], w 

Example 4. We consider the ring R=Z[xflL7] which is the simplest example of 
a noetherian domain not being an SFF-domain. We shall prove the estimate 

1 r 
f(2n) >>  exp . V T f' 

which is substantially stronger than Theorem 2. 
For i_> 1, the elements 

and ~i = 2 1 -  

are irreducible in Z[v/-L--7], and the elements 2, u~, f i i ( i~ l )  are (up to associates) the 
only irreducible elements of Z[v/-L--7] which divide some power 2 n of 2 in R (to see 
this, consider the factorial ring Z [(1 + ~/L~)/2], where 2 -- (1 + ~rL~)/2. (1 - ~L--~)/2). 
The factorizations of 2 n in Z[x/-L--7] are of the form 

n- -2  

2n ~- 2~ I ~  (~ti~ti)ai' 
i=1  

where a,  ~1, . . . ,  O~n--2 EN0 are the solutions of the equation 

n--2  

(*) n = . +  ; 

i=l 
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~ ~ ..-  " l~Tn - -  1 consequently, f(2 ~) is the number of solutions (a, al  ..., n - 2 ) ~ ,  0 of (*). The 
�9 N n partition function p(n) counts the number of solutions (a, s0, ..., an -2 ) � 9  0 of the 

equation 
n = a + 2 a o + 3 a l + . . . + n a n _ 2  

(see [11], Lemma 6.12), and therefore 

[n/2] 
p(n) = y ~  f(2 n-2i) < nf(2n), 

i=0 

which implies 
1 f 2/ 1 

f(2n ) --> p(n)n >> n- exp ,zrV -3- 

by [11], Theorem 6.10 and [12], w 

4. The following finiteness result is of interest in itself 

Propos i t ion  1. Let H=[al ,  ..., at] be a finitely generated torsion-free monoid 
and F:H--+N0 a function with the following properties: 

(1) F ( x y ) = F ( x ) + F ( y )  for all x, y e l l  ; 

(2) l = F ( a l ) < F ( a 2 ) < . . . < F ( a t ) .  
For nEN0, we set 

An - -  • F - l ( n )  = # { x  �9 H IF(x ) = n} .  

Let 
r =dimQ Q| > 1 

be the torsion-free rank of a quotient group Q(H) of H.  Then we have 

~ A n t  n = / ( t )  
(1--t)(1--td2)... . .(1--td~) ' 

n=O 

where f ( t )eQ[t] ,  f (1)~0 and d2,. . . ,dreN. In particular, there is a constant 
AEQ>o such that 

An = An  r-1 +O(nr-2).  

The proof of Proposition 1 depends on two Lemmata; the first one belongs to 
commutative algebra, the second one is of combinatorial nature. 

5-935212 Arkiv f'6r matematik 
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L e m m a  1. Let 

R = ( ~  R~ = k[xl , ..., xt] 
n>_O 

be a graded domain, where Ro=k is a field, X l , . . . , x tER  are homogeneous ele- 
ments, O#Xl ER1 and r = t r .  deg( R / k  ) >_ l. Then there exist homogeneous elements 

t x'2, ...,x" ER such that xl ,  x'2, ...,x~ is a transcendence basis of R /k ,  and R is inte- 
gral over k[xl, x' 2, ..., x']. The Poincar4 series of R is of the form 

o o  

E ( d i m k  Rn)t n = f ( t )  
n=o (1-- t)(1-- td2) '""(1--t&)'  

where f(t)EQ[t],  f (1) •0  and d2, . . . ,drEN. 

Proof. See [13], w 6. [] 

L e m m a  2. Let dl, . . . ,dr be positive integers such that gcd(d l , . . . , d r )= l  and 
lcm(dl, ..., d , ) = d E N .  Let f ( t )eQ[t]  be a polynomial, f ( 1 ) ~ 0 ,  and set 

f ( t )  = E Antn E q ItS. 
(1-- tdl) '""(1-- t&) n=o 

Then there exist polynomials PO,...,Pd-I EQ[z], all of degree r - 1  and with lead- 
ing coefficient f(1)[dl. . . . .dr(r-1)!] -1 such that An=P, (n )  for all sufficiently large 
n - y  mod d and 0 < ~ < d .  In particular, 

An f(1)  
li~m~nr-1 dl ' . . . 'dr(r-1)!  

Proof (following a suggestion of R. Tichy; a weaker result is in [3], 2.6). We 
start with a preliminary remark of general nature. For a E C and m E N, we consider 
the binomial series 

( l _ a t ) - m =  ~-~ ( n + m - l ' ~ t  ~ 
n=0~ m--1 / E C [ t l .  

For a polynomial g(t)--Co+clt+.. .+cst s EQ[t] we obtain 

g(t) 
- 5 1 U n t  

(1 - a t )  m n=o'-" 
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where, for n>_s, 

and 

B ~ [ n - ~ + m - l ' ~  n - - u  

= L J = 
-=0 \ m - 1  ] 

g(c~-l) zm- l+ . . .  E C[z]. Q(z)- ( m -  1)! 

Now we are well prepared for the proof of Lemma 2. We set 
8 

(1  - - t a l l )  �9 . , ."  (1 -tdQ ---- ( l - t )  r. H (1 __ ~ ; l t ) r j  

j = l  

where 1, ~1, ..-, ~8 E C are distinct d-th roots of unity, and 1 < rj < r for all j E { 1, ..., s}, 
since gcd(dl, ..., dr)=1.  We use the partial fractions decomposition in the form 

8 
f(t) _ fo(t) + E  f j ( t )  

(1--tal)'""(1--td~) (1--t)~ j=l (1--r - l t)~j '  

where fo(t)cQ[t], f0(1)r  and f l ( t ) ,  ..., fs(t)cC[t]. Now we expand the fractions 
into power series and obtain from the formulas derived above: 

8 

An = Qo(n)+ E Qj(n)r n 
j = l  

for all sufficiently large n, where 

fJ(~J) C[z]. f0(1) z~_l+.. ,  and Qj(z)-- (rj_l)!Z~r247 �9 Q0(z) = ( r - i ) !  

Since ~d----1, the factors ~-~ depend only on the residue class of n modulo d. Ob- 
serving rj < r, An �9 Q and 

f0(1) = l im.  f ( t ) ( 1 - t )  ~ _ f(1) 
t ~ l ( 1 - t  1) . . . . . (1- t  dr) dl.....dr' 

the assertion follows. [] 

Proof of Proposition 1. Since H is torsion-free, the monoid ring R=Q[H]  is a 
domain by [6], Theorem 8.1, and clearly r--tr ,  deg(R/Q).  We make R into a graded 
ring by setting 

R = ( ~ R ~ ,  whereR~--  ( ~  Qx;  
n>_O xCF-l(n) 

since An=~CF -1 (n)=dimQ Rn, the result follows from Lemma 1 and Lemma 2. [] 

Next we show how Proposition 1 implies factorization properties. 
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P r o p o s i t i o n  2. Let H=[ul, . . . ,um] be a finitely generated reduced monoid, 
l~{u l , . . . ,Um} and l ~ a C H .  FornENo ,  we set 

k,~ An = ~ { ( ] ~ 1 ,  . . . ,  k m )  �9 N ~ n  ] U l  k l  "... "u rn  = an}. 

Let r be the maximal number of Q-linearly independent vectors (kl, ..., km ) E N ~  
km such that u k~.....u m �9 Then there exists a constant AEQ>o such that 

An = A n r - l  +O(nr-2).  

Proof. For m E N ,  we write the elements of N ~  in the form k=(k l , . . . ,  km). 
For k, k ' E N ~ ,  we define k_~k' by kj<kj, for all jE{1 , . . . ,m} .  Then ( N ~ , + , < )  
becomes an ordered additive monoid, and we shall use the fact that  every non-empty 
subset M c N ~  has only finitely many minimal points, cf. [2], Theorem 9.18. The 
set 

km F = {k �9 N ~  I u~ ~ ' ' ' ' 'um �9 [a]} 

is a submonoid of N ~  with the property that m, nCF, m_>n implies m - n C F .  
Therefore F is generated by the minimal points of F\{O}, say k (1), . . . ,k (t). We 
define F:  F--~ No by 

F(k)  n i f u  k~ k ~ = a ~ "  . ... "U m , 

Proposition 1 implies the assertion. [] 

5. Proof of Theorem 1. Passing from H to H / H  • we may assume that H is 
reduced. Then there exist only finitely many irreducible elements ul,  ..., um in H 
dividing some power a n of a. The result follows by applying Proposition 2 to 
[ul,..., Um], since 

km f (a  n) = # { ( k l ,  ..., kin) �9 N ~  l Ukll....'u m = an}. 

Proof of Theorem 2. We may again assume that H is reduced. Since H is 
an FF-monoid, every power a n of a is divisible by only finitely many irreducible 
elements of H. Therefore, by assumption, there exists a sequence (ui)i_>l of irre- 
ducible elements of H and there exist sequences 1 ~ ml < m2 <...  and l_~nl < n2 <... 
such that  ul, ..., Uml are all irreducible elements of H dividing a ni. For i>  1, set 

Fi {(kl . . . , k , ~ ) e N ~  ~ ]Ul kl k,~ = , , ,  �9 [ a ] } ,  

and denote by ri the maximal number of Q-linearly independent vectors in Fi ; then 
we obtain 

kml nri--1 f (a  n) _~ •{k �9 Fi l Ul ~1 ",.. " U r n  i - - -  a n } >> 
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by Proposition 2. If  ( k l , . . . , k , ~ ) e r ~ ,  then (k l , . . . ,km~,0 , . . . ,0 )eF~+l ;  however, 
there exist elements kEF~+I such that  k j > l  for some m j < j ~ m i + l ,  and there- 

fore ri+l >ri. Now the assertion follows. [] 

Remark. It is possible to give a proof of Proposition 2 using geometrical meth- 
ods instead of those of commutat ive algebra (Lemma 1). These geometrical proofs 
either rely upon [10], Ch. VI, w Theorem 2, or on the combinatorial ideas outlined 
in [4]. In both  cases it is ra ther  difficult to prove that  A is a rational (and not only 
a real) number and to give a precise description of the exponent r. However, we 
do not know of a proof of the (stronger) Proposit ion 1 without using commutat ive 

algebra. 
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