
THE DEFINITE INTEGRAL j ~,,+,~x AND THE ANALYTIC 

THEORY OF NUMBERS. 
f l y  

L. J. MORI)ELL, 
of  ~IANCIIESTER. 

In t roduc t ion .  

Professor  Siegel 1 in a memoir  recently published dealing with the manu- 

scripts lef t  by Rienmnn has pointed out t l lat  Riemann deal~ with some integrals 

of the type 

[ = = j  e~ t+ d d t  

in his researches on the zetafuuction.  Not  only can the usual funct ional  equa- 

t ion be thus found, but  also au asymptot ic  formula  is obtained for  the zeta- 

funct ion of which the first term gives the well known approximate funct ional  

equat ion due to Hardy  and Litt lewood. -~ 

Kronecker ' s  evaluat ion 3 of the Gauss's sums by special integrals of this 

kind is classic. Not  so well known is his evaluation 8 of the integral  

o o  

C ~t'~In 

i Siegel 45--48. 
Hardy and Littlcwood (3), ~4/, ~ ~ '~5z.r 

8 KroneCker (I), (2). 
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in finite terms when n is an integer. The general integral or particular cases 

have also been considered by Lerch 1, Hardy ~, Ramanujan 3, van der Corput ~ and 

myself. My results which included the complete evaluation of the general inte- 

gral, were found in September 1918 and published in I92O in volume 48 of the 

Quarterly Journal. The paper is not well known and has even escaped the 

notice of the editors of the Fortschritte. Further, it is not easily accessible 

outside of Great Britain. I t  seems in view of the interest aroused by Siegel's 

paper that it might be desirable to give a more accessible and fuller account of 

the iutegral, and the considerations leading to it and the results deduced from 

it. These are concerned chiefly with formulae involving the class number of 

definite binary quadratics, many of which are also not easily accessible and 

suggest interesting problems for research. I also include some new and allied 

results dealing with the approximate functional equation of the thetafunction. 

The starting point of my investigations was the theory of the positive, 

definite binary quadratic form 

a x  2 + 2 h x y  + b y  2, 

where a, h, b are integers, so that  the determinant of the form is 

h ~ - a b = - D < o ,  say. 

Let F(D) be the number of uneven classes of forms of given determinant - -D,  

that  is, classes of forms in which a and b are not both even, and let G (D) be 

the total number of classes of forms of determinant --D. I t  proves convenient 

I I 
to assume that  weights - , -  are 

2 3 

respectively, and also that  

F ( o )  = o, 

The formulae 

known that  

factors > I, 

attached to the forms (a, o, a), (2a, a, 2a) 

C (o) = - i / i z .  

for the class number are nearly a century old. I t  is well 

Dirichlet proved that  when - -D is negative and has no squared 

((?) i(?) ) 
F ( J 9 )  = + + 5 . . . .  + . . . .  

t Le rch  (I), (2), (3). 
2 H a r d y  (I). 

a Ramanujan (I), (2), (3), (4). 
4 van tier Corput (2). 



Some Integrals and the Analytic Theory of Numbers. 325 

Another formula published by me l some years ago states that  for all - -  D < o, 

F ( D )  = iv(3) + N(5)  . . . .  

V D  ~ 3 5 

where _N(n) is the number of solutions rood n of the congruence 

x ~ D  (modn). 

These series can be Summed in finite terms, but none of these formulae 

would suggest the existence of the so-called class relation formulae originally 

discovered by Kronecker. One is 

(I. 2) F(n) + z F ( n - - I  ~) + 2_F(n  - -  z ~) + . . . .  J ( n ) - -  l"(n),  

where the summation on the left is continued so long as the argument of the 

function is not negative; F(n) denotes the sum of those divisors of n which are 

<--•n and of the same parity as their conjugate divisors, a weight i being 
2 

attached to l f n  if this is a divisor; J (n)  represents the sum of those divisors of 

n whose conjugates are uneven. 

Kronecker proved his formula originally by comparing two expressions for 

the degree of the modular equations in the complex multiplication of elliptic 

functions. He and Itermite found other proofs from the expansion as Fourier 

series of products and quotients of thetafunctions. The real difficulty here of 

course is the selection of the appropriate functions. Many very important results 

were found by other writers especially Gierster, Hurwitz, who developed his 

theory of modular correspondences, Petr and Humbert. A direct method was 

developed by myself ~ depending upon expansions involving certain integral func- 

tions connected with the thetafunctions. A more detailed account of the whole 

subject and references will be found in Chapter 6 of the third vdlume of Dick- 

son's History of the Theory of Numbers. 

The plan of this paper is as follows. In w z, I introduce an integral 

function, f(x), the study of which led me to consider these integrals. I t  is 

shown in w 6 that  the general integral can be reduced to three standard forms 

corresponding to the cases ~ (a/c ~) < o, > o, = o. The first is evaluated in w 3 

1 Mordell (5) II8. 
Mordell (I). 
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by means o f ' f  (x), and the second in w 4 by means of an incomplete theta series. 

These two forms coalesce when ~(a/c ~) ~ o and this is dealt with in w 5 which 

also includes the evaluation of the integral in finite terms when i a / c  2 is a rational 

number. A few miscellaneous results are given in w 7. Section 8 deals again 

with the case when i a / c  ~ is rational and includes the method of evaluation of 

the Gauss's sums, to which I was led and which I published in I9181 The case 

when i a / c  ~ is irrational is resumed in w 9 and it is shown to contain, in partic- 

ular, the result for the approximate functional equation of the thetafunction. 

Finally in w Io, I mention some problems awaiting solution. 

A variation of the first standard form had been considered by Lerch 1 

nearly forty years ago, but I was not aware of this when I wrote my Quarterly 

Journal paper in I918. He evaluated his integral in two entirely different ways. 

In one, it follows as an obvious consequence of some expansions involving func- 

tions similar to f ( x ) ,  which of course are well known in connection with the 

expansions of doubly periodic and allied functions. In the other, it is deduced 

by an application of Poisson's summation formula to ~ series of the type f ( x ) .  

His results require the application of contour integration for the transformation 

of various integrals. He finds from the value of his integrals, the functional 

equations corresponding to (3.3), (3.4) and proves that their solution is unique. 

Some of his results are given in w 7. 

My procedure is fundamentally different. After showing how I was led to 

consider the first standard form, I prove by simple contour integration that  the 

integral satisfies two functional equations which define the integral uniquely. I t  

is now a simple matter to solve these equations. The whole procedure makes 

comparatively little use of detailed results or expansions and is a useful addition 

to the known standard methods of evaluating contour integrals, especially when 

the results permit  of evaluation in finite terms by means of elementary functions. 

Another variation of the first standard form had been considered by Ra- 

manujan ~ about the same time as myself. By expressing it as double integral, 

he finds the functional equations satisfied by the integral. He does not solve 

them except in the particular cases corresponding to my rational i a / c  ~, or when 

the parameters are such that  the solutioa is given by iteration of the equations, 

say the first m times and the second n times. 

These are the only writers on this subject who, as far as I know, have 

1 L e r c h  (I), (2). 
2 R ~ i n a n u j ~ n  (4), 202, 203. 
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considered the first s tandard  form. The others have dealt  with the second 

s tandard  integral.  A variat ion has been evaluated by Ramanujan .  1 His  method  

depends upon knowing the resul t  and proving it  by an application of Lerch 's  
c~ 

theorem tha t  if P(x) is cont inuous for  x ~ o and ~e-a~p(x)dx-~o for  all a --~ O, 
t J  

0 

then P(x)= o for x ~ o. 

An I n t e g r a l  Func t ion  connected wi th  the  8 Func t ions .  

Wr i t e  as the definition of the thetafunct ions ,  

2. I) 

~c ~c 

Olo(X, ~o)- ~q:'%,,,~,,, iO, l(Z, ~) = ~ (-,)~(~-')q:~'%o,,,~. 
m odd m odd 

As usual, q = z~;~ with ~ (~o)> o. 

of Ooo(X, w) when the a rgument  w is obvious and similarly in other  cases. 

write 
a~ 

(2.2) ~| = %0 (o, ~) = ~ ~' .  

Some of the simpler propert ies of these funct ions are typified by 

(~. 3) 

a n d  

integers.  Fur the r  the the ta func t ion  

of which par t icular  cases are 

We  shall sometimes write 8oo(X ) instead 

W e  

o, , (x  + ~ ) =  - 0,,(x), 0,1(x + ~ ) =  - e~ ,~2~+~0, , (x) ,  

so 811(x ) has a simple zero at  the points x - - a  ~- bw where a, b are any 

possesses a simple t ransformat ion  theorem 

( 2 . 4 )  

0 o o  ' - ~o  = :  

1 Ramanujan  (2). 
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where the radical 

positive real part. 

Also 

(2.5) 

here, and throughout this paper, denotes that  value with a 

000(-:) 

--r(-Tgi0,o(,,), 

~ V(- ,,;)o,,, (,o), 

= V ( - ; ~ i  Ooo (o,). 

The integral function is defined by the series 

q-oo 2 

(2.6) i f ( x ,  w)== ~ I + q'~ 
m odd 

I t  is of a type which can be defined uniquely by two equations such as 

(2 .7 )  
f ( x  + ~) + f ( x ) =  o, 

f ( x  + ~) + f ( x )  = ol, (x). 

For if two integral functions satisfied these equations, their difference d(x) 
would satisfy 

d ( x +  I ) +  d ( x ) = o ,  
(2.8) 

d ( x + w ) + d ( x ) = o ,  

and so unless d ( x ) ~  o, it would have as many poles as zeros in the parallelo- 

gram, vertices at o, I, w, I +co, as is easily seen by considering the integral 

f 
( ( ~ )  
el (z) d z around the parallelogram. 

Some simple properties of f (x)  are 

(~. 9) f ( -  . )  + . f ( x  + ,o) .... o, f (x )  - f ( -  x) = o~, (.), 

2. IO)  f ( a  + b w) - - ( - -  ,)~+t'f(o), 

if a and b arc any integers, as then 0 n(a + bw)- -o .  

Also 
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(2. II) i f ( o ) :  ~ (--I)'~('~ 1 ) q 4 " " - ' 0 o ,  0,o , 
I + qm 2 

m o d d  

329 

I 
as is easily proved by putting x - -  in the expansion 

2 

021 (x) - + ~--~ ( -  cot  -- ~ x  
m o d d  

Hence from (2.5) 

= - -  io~.f(o, ~o). 

~ 0 .  

The importance of functions such as f ( x )  in class number formulae arises 

from two reasons. The first is that the derivative f ' (o)  can be expressed very 

simply in terms of power series whose general coefficient involves F(n). Thus 

if we take another function of the type . f (x)  and define an integral function 

fol (x) by 

fol (x + 1) = fo~ (x), 
( 2 . 1 3 )  

it can be shown t that 
fo~ (~ + ~o) + fo,  (x) = 0o, (x), 

oo 

(~. ~4) Yox (o)/0o, = - 4 ~ ,, 2 ]  v ( , )  q,  = - 4 ~ ;  s~ (,o), 

say. This gives a simple generating function for ,(2.(o)). 

tions e. g. foo (x) which is really fox (x, w + I). 

The second reason is that the function 

There are similar func- 

(2. ~ 5) .fo, (~)a(x)/Oo~ (x), 

where O~(x) is a thetafunction of order s, sometimes permits of a simple expan- 

sion from which formulae analogous to (I. 2) can be found for 

(2. ~6) F( ,~)  + 2 F ( n  - -  s .  ~ )  + 2 F ( ,  - - , ~ .  2 ~) + 2 /~ ' (~  - -  ~.  3 ~) + . . . .  

See also w IO in this connection. 

1 Mordell (I), l l 6 - - x l  9. 

42--3343. Acta mathematlca. 61. Imprim6 Io 9 oetobre 1933. 
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The discovery of such relations should be facil i tated by the study of the 

function ~q(tO) and the application of the theory of the modular  functions when 

possible. Thus the singularities of O.(tO) are given by the expansion ~ 

(2. I7) �9 - a ( ~ ' - ~ ) [ a ) / [ I / l - ~ - ( a T b t O i i l a  ' sa(to):::EE  " b, 

where the double series is summed first for a----o, 4- 2, Y 4 , . . .  and then for 

io (;I b = i , 3 ,  quadratic 5 , . . -  

residuacity. I f  a is not  prime to b, (b-):=-o except tha t  i t  equals i when 

a=:O~ b:-:  I. 

I t  becomes important  now to discover some simple relation connecting 

~(w) and ~ ( - -  I/tO). I found tha t  ~ 

(2. I8) 

r 

]" te~i~ d t  2 I s 
J (~2at__: . . . . .  I " "Q(to) q- 09'~ |"(---7i0) n ( - -  I/to) q- 4000 (O, to), 

- - m  

(2. I9) . ]  e 2at ~- I = Z (--~)n -F(4"n--I)ql(t"--z) + - - l / (  - - t o ,  ito)~ ( - - , ) " - ' F ( . n ) q ' : ,  
- - z  ~'t - : 1  t t - = l  

where  ql -~ e-Z#(~ 

From these can be deduced relations such s as 

I (2. 20) _!2 Z' + ~.(n+~)~ 
~ l - - 1  

| ~ 4 F ( n ) - - 3 G ( n )  
- -  4 ~ = 7 ~ ' ( n ) e  ~'~J'-~ + 2 z 7 ~  ~--- (z,+,,)= , 

n ' - - I  ?~:--0 

2. 21) 
~=o (n-t" -t- 

., 4 ~ E  ( - - I ) ' : - -1 f ( '~ , )e -2nzV '}  -] - 2 z  Z (--  l) ' ttd(4714-3) 

~=l ,~=o z 'a + (4n4-3) 

where .~ (z) > o. 

The consideration 

f ( x / < o , - - I / t O )  in terms 

' Mordell (5). 
" Mordell (4"- 

Mordell (4). 

of such questions obviously suggests the evaluation of 

of f ( x ,  co) and led me to the theorem (3. i) of the next 
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section and then to the general integral. The result (2. 18) follows on diffe- 

rentiating both sides of (3. I) for x and putting x = o. The integral (2. I8) had 

been previously considered by Ramanujan 1 and he proved the characteristic 

property 

te -~it'/~ dt ( V ( : - i @ )  3 f te~'~ 
e 2 ~ t -  I J e  2 z t  - -  I 

- - o o  - - ~  

in a slightly different form and in an entirely different way. l-[e also gives 

some applidations to the Riemann zetafunetion, but naturally the connection of 

the integral with the class number was unknown to him. 

w 

The First Standard Form. 

(3-i) 

I now proceed to the proof of the 

Theorem. 

oo 

J- e 2 ~ t Z  I -= O~011(X, (9) 

where the path of integration may be taken as either the re~l axis of t indented 

by the lower half of a small circle described about the origin aS centre, say the 

path (--oo, 9, oo ), or as a straight line parallel to the real axis of t and below 

it at a distance less than unity. Such a path may be denoted by P0,=l. We 

remark again that  ~ (o~)> o. The case ~ (~o)= o will be treated in w 5. 

For consider the function (9 (x) defined by 

(3.2) 0tl (x, w) 0 (x) = f ( x /w ,  -- 1/co) + loaf(x, w). 

I t  is a meromorphic function of x with apparently simple poles at the  points 

x = a +  bo where a and b are any integers. But~ when x = a + b c o ,  the nume- 

rator of O(x) i s  

x Ramanujan (3). 
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f ( a  -1- 1), -- I ) q - i o f ( a - t - b  o, o )=  (--I) a+b If(0, -- .Io)-}-iof(o, o)] ==O 

from (2. :2), and so O(x) really defines an integral function of x. 

The function O(x) satisfies two simple functional equations, namely, 

( 3 . 3 )  O(X-- I) -- (O(X) : i v y - -  i0) 6 :ir2/c~ 

(3.4) 

~or 

o (x + o )  - :~(=' =- ' )  o ( . )  - :  - i o : . ~ . ' + ~ ) .  

__OIl(X, f.O)(Z)(;E__i)~_:f(X_= I, I) -[-iof(x--I, 0), 
\ 0 0 

.... iV(- i~,)e"~":'~ (x, o) - o. (~, o) o(~:), 

and gives (3.3). 
Next 

-- e-'i:2x+'~ (x, o) O(x +o) = f (  x-+--w-, - - ; ) + i w f ( x +  o ,o ) ,  
\ w 

C :) . . . .  f r --  + i o  [0 n(x,  o ) - - j ' ( x ,  o)], 

= - o .  (., o ) O ( x ) +  ioO,,  (x, o), 
and gives (3-4). 

These equations define uniquely the integral function O(x). For if d(x) is 

the difference of two integral functions satisfying these equations, then 

(3. S) 

d ( x - - : ) - - d ( x ) = o ,  

d ( x  + o) - -  : ' ( ~ = ~ ) d ( x )  = o. 

Hence if d(x) is not identically zero, it must have at least one pole in the 

parallelogram, vertices at o, I, o, i + o ,  as is easily seen from f f  d(z) d z. 

Another form for the solution of (3.3), (3.4) can be found on noting that 

if a and ~xTa-have positive real parts, 
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co 

[ a ' 

where the path of integration is P(o,-~/. Hence (3.3) can be written as 

co 

a /  

- - o C  

This is evidently satisfied by the following value for O(x), 

f 8  zi~ d t  
(3.7) o ( x ) : w  j e2-~t---- I 

the integral being taken along Pco,-a). But the integral is obviously an integral 

function of x, and it will now be shown that it also satisfies the equation (3.4), 

so that  the integral is really another form for O(X). 

For consider the integral 

f e~i,,,r---2 ~t~ d t 

taken along the sides of a rectangle with vertices A, B, C, D at the points 

• X - - i ) . ,  T X + i ( I - - ) . )  where Z is any fixed real number with o < Z <  I. 

Make X --* ~ .  The integrals along the sides A D, C B  ~ o, for writing t--- + X +  i v 

so that  -- ~ -- ~ --< I -- ),, the modulus of the integrand is 

O x [ 

where tt is independent of ~]. The integral along B A ~ O(x), and that  along 

D C to -- e -'~(2~+~') O(x + to) on writing t + i for t and noting that  

z ioJ(t + i)~-- 2~r(t + i ) x  = tr icot  ~ -- 2~rt (x  + w ) - - ~ r i ( 2 x  + w). 

The integrand is analytic in A B C D  except for a simple pole at t - ~ o  

with residue I/2Z. 

Hence by Cauchy's theorem 

and the identification of O(x) with the integral is completed. 
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The integral  arising when - - I  in the denominator  is replaced by any 

constant  d== e ~-'~, say, has its value given by 

(3. s) 
f e.~io, t~-o. , t~ d t e-~i ~.~,+2 ~,~ 2 ~..f.(x ~ ~. c,~)/~,,, - -  iAo] + i ~o f ( x  + ). ~,,, ,,) 

co 0~1 (x + ).~o, ~o) 

where there is no loss of generality in assuming tha t  o--< 9~ ()0 < [. The path 

of integration is the real axis, but  if ). is purely imaginary,  i .c.  ,9~ ()0 = o, the 

real axis is indented by the lower half of a small circle described about the 

point t = ilt. 

For  on writing iE + t for t, the integral becomes 

ac--i2 
f e~i(,~t'-'--2 ,~t(x ! 2@ d t 

- ~ - i  ;r 

The path of integrat ion is of the type /~(0,-1) and the result  is given at  once 

by (3. I). 

w  

The Second Standard Form. 

I t  will be shown in w 6 tha t  the general integral  (I) can be reduced to 

two s tandard forms of which (3. I) is the first. The second is the integral 

f e~ic, F----2 .~tx d t 
(4) . ]  

along the path (-- •,  o; r162 or (-- = ,  6, ~) ,  and which we now evaluate. We 

still suppose ~ ( w ) > o .  The case , s (~o)=o will be dealt with in w 5. The im- 

aginary axis of ~o is a line of essential singularities of the integral considered as 

a funct ion of w, so tha t  it  will be necessary to distinguish the cases when 

(r  9~(w)<o ,  and ~ ( w ) - :  o. 

Wri te  ff = e =i~, 

(4. I) O(x, w)=-: qe 2"~ix + q4e'~ix + q'~e 6~i~ + . . . ,  

(4. 2) q~ (x, w) = I + qe -2=i'~" + q4e-4nix  + q'e -6" ' ' '  + " " ,  



Some Integrals and the Analytic Theory of Numbers. 335 

so that 0 (x, r 9 9 (x, r are p~rts of the series for 0oo (x, co) and 

(4.3) o (~, o~) + ~o ( . ,  ,o) = Ooo (. ,  0,). 

Then, if {R(r for the path ( - -  ~r o, ~r 

(4.4) J ~ I ] /(--  ~OJ) (.0 ' ~ ' 

which on noting (4. 3), (2.4) can be written as 

f eZirot~--2 zctx ~ I 

(4" 5) J ~ t - -  I --  V(--  if, O) , co 9~ 70, 

It  is shown in w 5 that if  ~ (r = o ~nd r > o, then (4.4) holds when ~ (x) > o, 

and (4. 5) when ~ ( x ) <  o. 
If  ~(co) < o, for the path ( - -  m, 6, m), 

;ezitot*--2nta'~lt - - I  eai,~/m (,, fo) q_ ~ o(X I )  
(4.6) j 7 h~/~t--- i - l f l ~  ir 9~ ~o ' g ' 

co 

(4. 7) j 7 ~ , , ~ - I  - V ( _ i ~ , )  g ~  ~ '  - " 

If  ~ (o~) = o, w < o, then (4. 6) holds when ~ (x) < o and (4. 7) when ~ (x) > o. 
Finally i f  ~ (~o) = o, 

e•i~ 
e ~1~~ 0 (x, oJ), 

~tx d t I 
(4.  8)  e 2 ~ €  - -  I - -  ] / - { - -  i(,O) 

where the path of integration is the real axis of t indented by the lower h~lves 

of small circles described around the points ni/r (n = o, +_ I, + 2 , . . . ) .  

For suppose first {R (to)> o, and write 

I e~i~ d t e-ni(zY-ic~176 dt 
(4. 9) Z (x) = ~--~;~'~ . !  ~ __ ~ - -  e~ ~,t _ 
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where we take the paths to be ( - -m,  9, m). We now find the functional equa- 

tions similar to (3.3) and (3.4) satisfied by Z(x), namely, 

- -  I e~ i (2x+w ) (4. z(* + o,) - z ( x ) =  V ( -  ;o,) 

(4. i i)  
For 

(4. m') 

Z (X - -  I) - -  Z (X) = ir -1  e - z i ( x - 1 ) % J .  

c ~  

from (3.6), whence (4. m). 

Next 
ar  

; e -a i ( z - l - i r176162176  d t  

Z (x - -  I) 3 ~ =  I ' 

which on writing t + i/eo for t, becomes 

--il~ 

Z(x - -  I ) = j  ~ - - - - i  

the path now being the indented line ( - - ~ - - i / w ,  

below the real axis of t since ~ ( w ) >  o. 

Consider the integral 

J 
" e -z~i(x- i~t)~/w d t 

~2 z~ vJ t I 

- - i / w ,  ~ - - i / w )  lying of course 

taken around the parallelogram with vertices A, B, C, D at the points • X - -  i /w ,  

X and small lower indentations at t = o and t = -  i/~o. The integrand is 

regular within this parallelogram except for a simple pole a t  t = - -  i / w  with residue 

--~--- e --~i(~-1)2/~. Make X --* ~ ,  then as in w 3, the integrals along A D, B C--* o, 
27gO) 

and (4. I I) follows. 

The integral solution of the equations (4. IO), (4. 1 I) is not unique. I t  in- 

volves an arbitrary additive multiple of 0o0(X, w)as  is obvious on considering 

the equations analogous to (3.5). I t  can be found by putting 
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2 
For writ ing A(x) for A(x,  co), and .B(x) for  B(x ,  ~o), the equations (4. IO), 

(4. i i) will be satisfied by taking 

(4. i2) 
A (x + i ) . = A ( x ) ,  

I _ _ _ _  r x+w) 

(4. ~3) 

i, I), 

i -k -- e -~/(x-  1)2/~ 
0J 

The lat ter  are equivalent to 

(4. I4) 
B (x + ~) = B (.),  

e . . ~  x+,ol B (x + ~o) = g (x) - -  i ~  e "~(~ ~+~>. 

The functional  equations for A (x), B (x) can be solved immediately by power 

series in e ~i~ or e -~ and integral  solutions are given by 

A ( . )  = 0(~,  ,o) / l : ( - -  i , , ,) ,  B ( . )  = i , , , O ( . ,  ,,,), 

as is easily seen from (4. I). 

Hence 

(4. ~5) z(x)  = n O0o (*, ~,) + 
0 (~, o)) 

f~ 

where L is independent  of x. Pu t  x = o, then 

o~ 

: 8ziwt~d~ 0oo(o~ (.o)-- I ~ [000(o: - - I )  - - I ]  
j : ~ - ~ i - - )  = L 0oo (o, o)) + 2 V ( -  i o)) ~ ,~ 

along the path ( - - ~ ,  9, oc). W r i t e - - t  for t, then the left hand side becomes 
43--3343. Acta mathematfca. 61. Imprim~ lo 9 octobre 1933. 
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(4. 15') 
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e~Yiat. + e ~i'~t~) 
- f i dt 

along the  pa th  ( - - ~ ,  6 ,  ~ ) ,  or by addi t ion 

I 12:zi f 2 ~2 ~VW eniC~ - -  2 o) 
~ V ( - i o ) '  

since the  in tegrand  has a simple pole at  t =  0 with residue I/2~w. Then  from 

(2.5), L = o, and  f rom (4. I5), 

f eni~t~-2 utx d t  _ I 

along the  pa th  ( - - ~ ,  o, ~ )  and this is (4.4). 

To prove (4.6), (4. 7) where ~ (r o, we still denote  the integrals  (4.6), 

(4. 7) wi th  the upper  pa th  ( - - ~ ,  6, ~ )  by Z(x). Then (4. Io) still holds while 

in (4. II), the  iw -1 mus t  be replaced by - - i w  -1 s ince  the line ! ~ - - i / r  now 

lies above the  real axis of t. Clearly (4. 12) still holds while in (4. I4), -- ir  

mus t  be replaced by ir Hence  (4. I5) is replaced by 

(4. 16) Z (x) = L 0oo (x, ~o) + 

which on pu t t ing  x = o becomes 

i I 
2o ,  2 V ( - / o , )  

and so 

_ - L 0oo (o, ,o) + 0oo (o, o , ) -  
2 V ( - -  i~o) 

+ - -  0 0 0  O ,  - -  - -  I , 
2 O )  

and on noting (4. 3), we have (4.6). Then (4.7) follows f rom ( 4 . 6 ) j u s t  as (4. 5) 

did f rom (4.4). 
There still remains  the ease when ~ ( w ) =  o. 

Wr i te  now still 

- - I  
L = - -  ~i V ( _  ion) - V ' 

o, i -  i o,1 



(4. I7) 
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f er~lwt~--2 ~tx d t 
Z (X) = e - a i x y ~ 3  e2 ~ - - - - I  ' 

339 

where the  path of integrat ion is the real axis of t indented by the lower halves 

of small circles described about  the points t = ni/eo, (n = o, 4- I, 4- 2 , . . . ) .  Then 

/ e~i~t'-2 e ~1~ 0 (x, ~o). ~ t z  d 
(4. 1 8) e2~,ut ~'- I - -  ~ ~'Ol) 

t I 

For  the equation (4. Io) holds but  (4. II)  is replaced by 

Z ( x  - - I )  - -  Z(x)  = o. 

The solution is now given by 

z (x) = L Ooo (x, ~) + V ( -  i~) 0 (x, ~o). 

Pu t  x = o, then 

f e=ir176 --LOoo(O , co) + (4. I9) �9 e 2 n o ~  I 
- - o o  

I (000(O , r  I 

V ~  \ 2 

Change t into -- t. The integral  (4. I9) becomes 

(4. 20) / ; e ~i~t~ d t 
- -  e 2 = ~ t -  I " e~i~~ dt '  

the path of in t eg ra t ion  being now indented by the upper  halves of the small 

circles. Add (4. I9), (4. 20), then the sum of two of the integrals gives 2 z i  

into ~he sum of the residues of the integrand at t = hi~W, ( n = o ,  4- l ,  4- 2 , . . . ) ,  i. e. 

Hence 
n ~ - - o o  

l J ( i - -  + - Ooo ' Ooov (o, (-~) i~) - 
i~o) ~o 

and so L = o. 
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I t  is easy to see tha t  if in (4. I8), the real  axis had been indented by upper  

halves of small circles, then  0(x, ~o) must  be replaced by --q~(x,  w). 

I t  is also obvious that  just  as in (3.8), we can eva lua te  the integrals  (4.4), 

(4. 5), (4. 6), (4.7), (4. I7) when the - - I  in the denominator  is replaced by a 

constant  d ~ e 2"~x where o ~ ~(1) < i on put t ing  t + i~/co for  t. But  now there  

may be several poles of the integrand,  i .e .  zeros of e 2€162 ~, in the infinite 

rectangle  defined by + ~ ,  +_ ~ -  il/~o. 

w 

The  Case when  t h e  S tandard  F o r m s  coalesce. 

There  is, however, ano ther  way of solving equations (4. IO), (4. I I) which 

has the great  advantage of also giving the evaluat ion of the general  integral  

when co is real. Then the funct ions f ( x ,  ~o), 000 (x, co) no longer  exist but  some 

of the results of w 3, ~ 4 a re  still valid. Clearly the two s tandard  forms are 

the same since the integrals (4.4) to (4. 7) reduce to (3. I) when t is replaced 

by t/w. 

Suppose then eo is real. The  integrals (4.4) to (4.7) (and also (3. I)) con- 

verge uni formly  in x for  all bounded x and hence are in tegral  funct ions of x. 

Thus take the in tegral  (4. 4), say J,  and consider the behaviour  of the in tegrand 

at  the limits of summation, t =  + ~ .  Clearly at  t ~- ~ ,  J converges absolutely 

and uniformly when ~ (x) --> - -  co + e > - -  co and e is small. At  t ~ - - - ~  J 

obviously converges absolutely and uniformly for  ~ (x) <-- - -  s < o. But  J also 

converges uni formly for  o ~ ~ (x) >-- - -  ~o. Thus  near  ~ (x) = - -  w, the conver- 

gence of the integral  at only t ~ ~ need be considered. Wr i t e  

Since 

6--3  z~t~ 6 - -3  ~ t  (x+@ 
_ _  - -  6 - - 2 ~ t ( x 4 @  .~_ 

e ~ t -  I 6 2zc~  I 

f 6nicot~--2nt(x+@ 

converges uni formly  for  bounded x and 

d t  

I e-2zt(x+(") I ~ e2z~t, 

the  resul t  follows since w > o for  J .  Similarly near  ~ ( x ) -  o. 
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I f  c0 is real  and positive, the funct ional  equations (4. IO), (4- I I) still hold�9 

This is obvious for  (4. IO) f rom (4. IO'). I t  suffices to prove (4. I I) for  o > ~(x)  > --co 

as both sides are integral  funct ions  of x. 

The path  of in tegrat ion in (4.9) can be deformed into the inclined path  

(--oo e/a, o, ~ e/a), where a is any fixed positive acute angle, by the crude argu- 

ment  of absolute convergence, since for  real  X, 

]e aiwX2e2iO ] ~ I for  o < 0 < a  < I 
2 

The argument  leading to (4. I I )  

i 
jo ining t h e  points X ei% X e i ~ - -  

~0 

now applies as the in tegral  along the side 

vanishes when X - ~  ~ i  since 

l e z~it~X~e2ia ] ----> O. 

W e  shall now solve the equations (4- io), (4. I I) by i terat ion.  

b e  positive integers.  Then (4. IO) can be wri t ten  as 

Le t  m and n 

a n d  so 

~_ (~+ ~) , _ ~:2 I - - ( z + @ ~  
e z / x  + ~o) - e ~~ z ( x )  = - - e ~̀ 

1 / ( -  i~) 

(5. I) e Z~x + noJ) - -  e ~ z(x) - 

So from (4. I I) 

( 5 . 2 )  

n r~i 

�9 m ~ i  2 

Z ( x - - m )  - - Z ( x ) =  ~ e - - ~ - ( x - - r )  

Change x into x ~ m in (5. I) and apply (5.2), then  

r = l  

m . h i  

_ 

�9 m 

(5  3) z (x) = 

where 

----(x--r)~ n 
I = , ~  eai(2xs+s~to ) 
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(5 .4)  

~o 

f e 2r~mt- I 

T h e  e q u a t i o n  (5.3) wou ld  stil l  ho ld  i f  oJ were  n o t  real .  T h u s  if  ~ ( ~ o ) >  o, 

(4. 4) r esu l t s  a t  once f r o m  (5.4) on  m a k i n g  m a n d  n--~ + ~  in such  a way 

t h a t  [ ~ ( x ) - - m + n ~ R ( ~ o ) l < ~ ( c o ) .  T h e  i n t e g r a l  (5.4)  is t h e n  b o u n d e d  and  
ni  (x--m)~ 

e ~ --*o. T h e  r e s t r i c t ions  on m and  n m a y  t h e n  be d i sca rded  since t he  

series in (5.3)  conve rge  abso lu te ly  w h e n  m, n - ~  + ~ in any  way.  

W h e n  oJ is rea l  and  x is no t  real ,  say ~ ( x ) > o  (4.4)  is st i l l  valid.  Th i s  

can  be deduced  f r o m  (4.4) by  p u t t i n g  co = ~ + i v a n d  m a k i n g  ~ - §  T h e  inte- 

g r a l  c o n v e r g e s  u n i f o r m l y  in ~7 fo r  o ~ ~7 -< ~'  say if o > ~ (x) > - -  ~, a n d  so do the  

ser ies  fo r  O(x, co), 0 ~ ,  - -  since . ~ ( x ) > o .  T h e n  (4.4), h o l d i n g f o r o >  g l ( x ) > - - ~ ,  

- ho ld s  fo r  al l  x wi th  .~ ( x ) >  o, as t h e n  b o t h  sides a re  ana ly t i c  funct~ions of  x. 

T h e  va l id i ty  of  (4.4)  fo r  rea l  ~o > o also fo l lows f r o m  (5.4). F o r  i f  . ~ ( x ) >  o, 
~i (x__.~)~ 

e ~ - - , o  if  c o > o .  T h e  i n t e g r a l  in (5.4)  is b o u n d e d  i f m ,  n--~ + ~r in such 

a way  t h a t  o > ~ R ( x - -  m + nco) > - -  w, and  t hen  ~he r e s t r i c t ions  on m, n can  be 

d i sca rded  s ince aga in  t he  series in (5.3)  conve rge  abso lu t e ly  when  m, n--~ + 0r 

in any  way.  

W h e n  oJ is a r a t i o n a l  n u m b e r ,  say ~o = a/b, where  a and  b > o are  in tegers ,  

the  i n t e g r a l s  can  be e v a l u a t e d  in f ini te  ~erms. 

F o r  

I + O(X, tO)= Z qn~e2n~ix= Z en~ia/b+2nz~i~ 

~ = 0  ~ 0  

(5.5) 

P u t  n - -  r + N b ,  (r = o, I, 2, . . .  b - -  I, N =  o, I, . . : )  t h e n  

on s u m m i n g  fo r  N.  

(5.6)  

I 21- 0(37, CO) = Z er'r~ia/b+2rzixT2Nbz~ix+ztiNab 

r, _N 

b--1 eZirUa/b + 2 r~zix 

~d I - -  e ~ib(2x+a) 
r ~ 0  

Simi l a r ly  

b • l  ezlir~a/b__2rr~ix 
99 (x, o,) = I - -  e ~b(-2~+a)  

TwO 



Also 

e z i ( 2 n x + n ~ @  ~ e 

as is obvious from the derivat ion of (5-4). 

Hence 
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I t  is easy to see tha t  with these values of 0 (x, ~o) etc. tha t  (4.4) holds when oJ 

is a positive ra t ional  number  not  only for  ~ ( x ) >  o but  for  all x. Arguments  

similar to those for  (4. 4) also apply to (4. 5), (4.6), (4. 7). 

Some of these results were given in a different  form by Ramanu jan  1 but  

my proofs are entirely different  f rom his. 

Final ly when c0 > o and irrat ional ,  and x is also real, the  uniform con- 

vergence of the integral  (5.4) in x shows tha t  if m and n--~ 4- ~ in such a 

way tha t  x - -  m + n~o --, o, 
c~o 

= I e ~ i ~ t ~ d t  
z (x - ~ + , , , , ,)  -+ z (o) j jva~i ~ i '  

i i 
c o ,  2 V ( - - / ~ , )  

(.o 

I " ~'tt " T~t 1 ~ (x--r) ~ I 
Z ( x ) = l i m  - - ~ e  o~ + 

8 = 1  

the  dashes denot ing tha t  the par t icular  terms r ~  m and s = n have weights i/2. 

Hence if ~o > o, x is real  and the pa th  i s ( - - ~ ,  o, ~ ) ,  

l e f t i s t 2 - - 2  z t x  d t "t r x - r  2) " 
(5.7) j ~ = - T  - - l i m  - - ~ Z e  ~- + ( ] / ~ _ ~ ) s ~ l  e~(x+s'~F , 

where m---~ + ~ ,  n---* + ~ ,  x - - m  + nw---*o. 

By wri t ing - - t  for  t, - - i  for  i and - - x  for  x, we see tha t  for  co < o and" 

the path  ( - - ~ ,  5, ~ ) .  

f e "~iwtt-2c~tx dt ( �9 m' ~i e ~ -  (--2 r x--r~) --  lira - -  ~ + - -  ( 5 . 8 )  e 2 ~  t _ ~ 

where m - +  + ~ ,  n--~ + ~ ,  x ~- m + neo--~o. 

r - - 2 ~ e  ~ | 

x R a m a n u j a n  (2). 
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w  

Reduc t ion  of  the  I n t e g r a l  to the Standard  F o rm s .  

There  remains now the reduct ion to the s tandard forms in w 3, w 4, w 5 

of the in tegral  

I C ate+b! dt 
1 = : .  e ct + d ' 

where the path  of in tegra t ion  is the real axis of t indented by the lower halves 

of any zeros of the denominator .  The case a c =  o may be omit ted as these 

results are well known. The convergence of 1 requires then  ~(a)--< o. 

I f  c is real, I reduces at  once to the first s tandard form including the case 

of real co in w 5. Hence on writ ing - - t  for  t if need be, we can suppose that  

c is a complex nmnber  with 9~ (c) --> o. We consider now the case when ,~t ( a )<  o. 

Three  cases arise according as the real part  of a/c ~ is negative, positive, 

or zero. 

Suppose first 9~ (a/c ~) < o. This implies ~ ( c ) ~  o, for  ~ ( c )=  o would make 

(a) > o. Put  

(6. I) t : -  2 ~v/c, zriw = 4~r"a/c', i .e.  ~(w) > o, 

and I takes the form 

(6. 

~cC ~ C  

2 ~ f e'~~ dv f 

say. The path of in tegrat ion is now the line th rough  the origin indented by 

the lower halves of the zeros of the denominator  and inclined to the real axis 

of c at an angle a r g c  where 

I I 

2 2 

since 3t (c) > o. 

Consider now the integral  _I" V d v  taken around the contour  formed by 

the two lines (indented if necessary) joining the points --0, 0 (i. e. the  real  axis) 

and the points --,oc, Qc and the two arcs of the circle I v [ - , o  joining the points 
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@, @c and - -@,--qc .  When  @--+ ~ ,  the integrals along the arcs tend to zero  

since {R ( a ) <o .  For  put t ing  v=@e/e ,  then  ~(wv ~ ) > o i f o < a r g r  + 2 a r g c < z ,  

i .e .  o < a r g a / i < z ,  

which holds since {R ( a ) <  o. 

The zeros of the denominator  are of the form v = ni + 8, say where n = o ,  

• I, + 2 , . . .  Only a finite number  of them lie wi thin  the contour  of in tegrat ion 

since {R(c)~ o. Hence  the value of the integral  I Vdv is given by Cauchy's  

- - o r  C 

theorem in terms of the integral  f Vdv which was evaluated in w 3. 

- - a o  

S u p p o s e  n v . ~ u  ~ t  [ ~  ] / o .  

Pug t =  2 zwv/c and then  I takes the form 

c oo /(o 
t"  P'~ i c~ v2--2 v x d ?) 

3) J ' 

provided zir = 4 z~aco2/c 2, i.e. 

(6.4) ca = ic~/4 ~a, 

so tha t  ~(~)  > o. 

The pa th  of in tegrat ion can be deformed i n to  the real  axis jus t  as before,  

since {R (a) < o, and the in tegra l  reduces to the second s tandard  form. Allowance 

must  of course be  made for  the zeros of the denominator  which are now of the 

form ni/~o + c~, s a y ,  (n = o, + I, +__ 2, . . . ) .  There  may be an infinite number  of 

t h e m  within the contour,  e. g. if o < arg (i/~o) < arg (c/w), but  the series of residues 

converges absolutely since 

and r e d u c e s  to a the ta func t ion  with the omission of a finite number  of terms. 

Thirdly,  suppose {R (a/c ~) = o. Ei ther  of the two methods  of reduct ion suffices 

since ~o is real  and the integral  I reduces to the special cases t rea ted  in w 5. 

There still remains the case .when {R ( a ) =  o. I t  suffices to assume ,~ ( a ) >  o 

as the results when ,~ (a) < o can be deduced by changing the sign of i th roughout .  

On wri t ing - - v  for  v, we may still suppose ~(c)--> o. 

4 4 - - 3 3 4 3 .  A c t a  m a t h e m a t i c a .  61. I m p r i m ~  le 10 oe tobre  1933. 
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W he n  ~ (c ~) < o, (and so ~ ( c ) ~  o), we use (6. I) and (6. 2) still holds. 

I t  is then  easy to see tha t  when o > D~(x) > - -  I, the deformat ion of the 

path  of in tegra t ion  into the real axis and the reduct ion to the first s t an d a rd  

form still hold. The resul t  then  holds for  all x by the usual argument .  

W h e n  ~ (c ~) > o, (and so ~ (c) ~ o), we use (6.4) and (6. 3), and as above t h e  

in tegral  is reduced to the second s tandard  form. 

W h e n  ~(c 2) = o, we may suppose c is purely imaginary,  since we have 

already considered the case when c is real. W e  may use e i ther  (6. z) or (6. 3) 

and the integral  is reduced to the fo rm 

f e ~ir176 dV 
e 2 n,v + d 

where ~o is real. The value of this integral  is included in the results of w 5. 

W h e n  o > ~ (x )  > - -  I, the pa th  of in tegrat ion can be deformed into the real  

axis f rom ~r to + ~ ,  indented if need be. The residues arising from the  

infinite number  of poles of the denominator ,  i . e .  v ~ n i  + (~ give rise to a con- 

vergent  series of the type 0 (x, w), or ~ (x, ~o). Thus if ~ (~) > o, only the values 

n ~ o ,  I, 2, 3 , . . .  can arise and then  

Z eni~(ni§ rex(hi+d) 
n 

converges absolutely if --  n (~o ~ (~) - -  2 ~ (x)) > o, i. e. if 2 ~ (x) --  w ~ (~) :> o. The 

results for  other  values of x follow as with (4.4) to (4. 7) when w is real. 

w 

Miscellaneous Results. 

W e  consider in the present  section various applications of and remarks 

about  the results of the paper. 

The funct ional  equations (3.3), (3.4) admit  also of solutions of the type 

(3.2) but  with denominator  000 (x, w) etc. instead of 011 (x, w). Thus if in (3-8), 

= - -  I/2, we find on not ing  

( I  ) 
01, x +  ~ ~ ,  oJ = ~q-'/~ e -~ iXOo,  (X, ~o), 
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tha t  

(7. i )  

ao 

~" e ~i~'t~-2~t~ dt 
Oo, (X, w) j ,~, + ~ . 

__ __i +~ q'?"/'e "~i~ 
w I + q ' ~  

m o d d  

+-~ i T'~"~ 
. . . .  + i Z ( -  I)l(m--1) q' " 

I + q" 
r a  o d d  

where ql = e-n"ho. I t  is easy to show tha t  one of the alternative forms referred 

to above of this result is 
0o 

0oo (~, 
W ) J  e TM + I 

(7-2) 
. r ~+++:+ /~2 t+ ,-r i X]0J +o 

= : -  W + - ' + - -~ - - .  ' - - -  
o N I + q ~  n "iZ_| . . . .  

n "  J q "-4 e(2 n-1).-tix 
I - -  q2 n--1 

Fur the r  (3.3), (3-4) can also be solved by means of integrals of a type 

different from (3.7). 

This is suggested by writ ing in (3. I), x/w, - -x /w in place of x, w respectively. 

We have 

J (2 2 " ~ t -  I 

d t --  w f ( x ,  w) + i f (x /w ,  --  t/w) 
0,, (x/w, - I / w )  

and on not ing (2.4), this becomes 

r 

e --~(t-'z)~/~ dt  _ w f ( - -  x, co) - - ' i f ( x /w ,  --  I/w) 

j - i ~ + + -  ~ - -  i 1/(= iw)O. (x, ~,) 

From (3. I) and (2.9), we have, along the path ( - - ~ ,  0, ar 

oe 

(7.3) j f  e-'i(t-ix)'/~ 2"~t- I + i ] f ( ~ ) )  f e~':̀'~c~-'~'~txdt~i~i_ } --  

- - ~  - - o r  

V ( -  iw). 

We can deduce from this tha t  
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(7 .4)  
i ~ f e - ' " t - ' ~ ) " / ' ; ' d t  e ' i ' r~-"' t~dt  

:V i :=  ~ = c o s h ~ t -  " 

This result  can also be proved by not ing tha t  both sides are integral  solutions 

of the equations 

�9 (x + ~o) + e ' "  2 ~+~ q) (x) .... 2 q~/' e ~ ,  
(7 .5)  

a)(~ - ~) + a)(x) = 2 ~,(x-ff/o, 
v ( -  ~,,;)- ' 

which cannot  admit  of more than  one integral  solution. 

Formulae of the type (7.3), (7.4) have been found by Hardy ~ and Rama- 

nujan  2 by considering reciprocal functions. 

The work 

the equations 

proves tha t  if 

o f  Lerch 3, however, shows tha t  the unique integral  solution of 

(3.3), (3.4) can be expressed in an infinity of ways. Thus he 

then the value of the integral 

(7.7) W(v, o))~= . . . . . . . . . . . . .  e - ~ - ( ~ + i - ~ )  dx 
- - ~  e 2 ~ x  -~  I 

is given by 

- i ~ ) ~ ( v , , o )  R ( u , u + ~ , , . , ) - l ~ ;  __ _ (7- 8) 00o (u, = -~ o2' ~o- ' o2 ' 

where u is arbitrary. The proof along the lines developed in this paper would 

not  be difficult. Thus both sides of (7.8) are integral functions of v since 

the residues of the two terms in R cancel for the simple poles at  the points 

v - - - - - -u  + m - - n c o  where m, n are any iritegers. The funct ional  equations for 

T(v,  r analogous to (7.5) can be deduced, and then a proof of (7 .8 )wou ld  

follow from a study of the funct ional  equations satisfied by R(u, v, ~o). 

1 H a r d y  (I). 
R a m a n u j a n  (2). 

s Lerch  (l), (2). 

_ q n ' e 2 n r r i ~  

(7 .6)  ~ (,,, ~', ~) =: ~ _ qO.n ~.~,,~' 
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I t  is easily seen tha t  I t(u,  v, ~o) is defined uniquely as the meromorphie  

funct ion  of v sat isfying the equations 

(7.9) 

It  (u, v + i ,  +)  - I t  (u, v, +)  = o ,  

I t  (u, v, ~,) - -  ~ . i ( ~ - ~ , , - , o ) I t  (u, v - ~,, ,,,) = Ooo ( <  ~,), 

and whose only singularit ies are simple poles at  the  points m + n ~o, where m, n 

are any integers,  and which has a residue - -  I/2 z i  at  v = o. There  is, however, 

no need to go into details. 

w  

T h e  Case when ai  is Rational and the Gauss's Sums. 

The results of w 5 when ~o is ra t ional  contain the formula  for  the Gauss's 

sums. As they are also in teres t ing examples on e lementary  contour  integrat ion,  

it  may be desirable to s tate  the results ia their  simplest forms and to sketch 

briefly the proofs again, independent ly  of w 5. 

Theorem.  I f  a and b are positive integers,  then  

(8. I) 

ov 
( e--~iate/b--2 z tx  

{e b~i(2x-a) - -  I} j 7 ~-~= I 
d t  

=V(?) - -  a--1 b s z i ( 2 x + ?  ) 
Z e"-nib(x--r)e/a "q- i E e , , 

r~o 8--1 

where the path  of in tegra t ion  is ei ther  ( - - ~ ,  o, ~ ), or is a s t ra ight  line in- 

clined to the r e a l  axis of t at  an acute negative angle and meet ing  the im- 

aginary axis between t = o and t = -  i. 

(8.2) 
; e z i a  2/b-2ztx dt  

{e b~i(2x-a) --- I} e 2 ~ t -  I 

e ztb(x§ -}- ~ e . , 

r=l  s= l 
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along e i ther  the pa th  ( - - m ,  o, m), or along a line inclined to the real axis of 

t at  a positive acute angle and meet ing  the imaginary axis of t between t = o, 

t - - - - i .  

For  write when ~o is real  
co 

l ~ ~iwt~-2ztx C~t 
(8.. 3) ~ (*) = j ~ t ~  ' 

- - o o  

with the inclined path  of (8. ~). On not ing  (3.7), so tha t  O ( x ) =  ~o W(x), it is 

obvious tha t  the equation (3.3) still holds when co is real  and so 

(8.4) W ( x - -  I ) - -  W(x) = g ~ i c o )  

Also 

( 8 . 5 )  ~ (x + ~ )  - ~'(~ ~+~)~ (x) = - r  ~+< 

For  the rectangle of w ] is replaced by a paral lelogram A B C D ,  vertices at  

+_~e ~, + ~ e  i ~ + i .  The integrals  along the short  sides of A B C D  are zero 

if a is an acute angle with a eo > o because of the factor  e zi~ with t =  +__ ~ eia-ff-~, 

and [~[--< I. t Ience  (8 .5 ) fo l lows .  

Le t  now m, n be positive integers.  Applying (8.4), m times, 

m l l  
I 

(8.6) ~ (x - ~ )  - ~ (~) -~ V ( -  i~) ~ e<~-~>' .  
r ~ 0  

From (8.5) 
~-,~,~+~)"/~o ~ (~ + ~) - e,~/~ ~ (z) = - i  e - ~ ~ %  

and changing x into x + w, x + 2 ~o, . . .  x + (n -- I)OJ and adding 

( 8 . 7 )  
r i m 1  

8 =  0 

Suppose now c o = -  a/b where a, b are positive integers.  Take m = a ,  n = b. 

Mult iply (8.7) by e ~(~b~+b~'), write b - - s  for  s, subtract,  and n o t e - - a - ~ - b c o ,  

then  (8. I) follows. I t  is also easy to see tha t  when o > ~ (x )  > - -  I, the  inclined 

pa th  can be deformed into the path  ( - - ~ ,  o, ~) ,  and then  tha t  (8. ~) h'olds for  

o --> ~ (x) -- - -  I, while (8.4) shows the integral  really converges for  all x and 

so (8. I) holds for  all x. Similarly when co ~-a/b,  the result  (8.2) follows. I t  
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can also be deduced f rom (8. ~) by changing i into -- i ,  not ing (--or o, or 

becomes (--o~, 5, 0r and then  writing - - t  for t and - - x - - I  for x. 

On put t ing x = o ,  in (8. I), the well known reciprocity formula for the 

�9 Gauss's sums foll6ws. This suggested to me the simple proof which I published 

in the Messenger of Mathematics 1 tha t  

For  write 

Then 

so tha t  

n--1 

\ ~ + i l  
r ~O  

n ~ l  
f ( z )  (e  2 z i z  ~ I) = ~ ,  e2g i ( z+r )e /n .  

r ~ o  

( f ( z  + I) - -  f ( z ) ) (e  2~i* - -  I) = e ~'=i(~+<2/'~ - -  e 2'*~z~/'~, 

+ i )  = 

f 
Consider now the integral  . ] f ( z )  dz  taken around an infinite parallelogram 

A B C D  of which the parallel sides A B, D C are inclined to the real axis of z 

at any positive acute angle and cut it  at  z == --  I/2, z -~  I/z respectively: The 

sides B C and D _4 are parallel to the axis of x and are at an infinite distance 

above it and below it respectively. 

Then f ( z )  is analytic within A B  C D  except for a simple pole at  z = o  

with residue S/2 z i .  

The integral  taken along each of the sides B C and D A vanishes, while 

those alOng the sides A B ,  C D  reduce to 

B B 

A A 

+ dz .  

Hence by Cauchy's theorem 
B 

S = f e 2~iz2/n (e 2~lz q- I) d z .  

A 

The value of this integral  is .well known, since the path of integrat ion can 

be deformed into the real axis from - - ~  to ~ .  We need not  use this, however, 

1 Morde l l  (2). 
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for if in the first part of the integral, we replace z by 

throughout put z = y V n ,  we have, with k independent of n, 

s = k V~ (~ + ~ - ~ )  
Take n = I, whence 

and the result. 

I 
z - - - n  and then 

2 

w 

The Approximate Functional Equation of the Thetafunetion. 

The results of w 5 when eo is irrational include the approximate functional 

equation of the thetafunction. This has been the subject Of papers by Hardy 

and Littlewood i, van der Corput ~, myself 3 and Wilton 4. Its importance makes 

desirable a short treatment independent of w 5. I prove the 

(9. I)  

Theorem. Let  

f eziwt~-2 gtx d t  
tIS(x) = e 2~t - I 

along the path ( - - ~ ,  9, ~) ,  where ~ o > o  and x is real. 

Let  m--> o, n--> o be any integers and put 

m r n 
I --(x--r) ~ i ~ .  __szi(2x+s@" (9.~) sin,, ,-  y ~ Z e  ~ -- 

r:O s-O 

Denote by S~,~ the sum when weights I/2 are given to the terms r = m ,  s = n ,  

and by S" ~,= the sum when in addition weights I/2 are attached to the terms 

r~---O~ 8 = 0 .  

Then if m and n are positive integers such that  o ~ ~ ~ I, where 

(9. 3) x- -m+n~=-- -~ ,  

1 H a r d y  and L i t t l e w o o d  (I), (2). 
van  der  Corpu t  (I), (2). 
Morde l l  (6). 

4 W i l t o n  "(I). 
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I w (x) + s;~,,, I -< : ~ + min -.~7:-, - ] , 
f'OU'- t 0.)'" (0 ~'1"" 
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and  so the  left  h a n d  side ---~o if  .m, 1~-+ + ~  in such a way  tha~ x - m + ~ o a - - + o .  

Also if in ~ddi t ion  o--< :r. < I, 

(9.5) I ' "  I ~ S ,~, n 8 (o -'I'~. 

These  resul ts  hold  u n i f o r m l y  for  all r > o and  no t  mere ly  for  a usua l  r a n g e  

s u c h  a s  o ~ w ~ 2 .  

W r i t e  x - - m  fo r  x in (8.7) and  add  to (8.6). T h e n  

(9-6)  e -""' ' ,~+ ..... : T ( x - , ~  + ~ < o ) -  T ( x )  = S ~ _ ,  . . . .  ~. 

Also by the  a r g u m e n t  l ead ing  to (4. I5'), 

( e ' i " ' : d t  i i 
. (9.7) ' / x (~  l ('7">~'--I - :  e - e l ' ( - -  ioJ) 

W r i t e  (9.6) as 

S;,,, = , - " " ' ( ' ~ . ~ -  ...... ~ ' v  (:~. - ,~ + . , , , , )  i u 

I -~ (a:--m) 2 i e _ n z i ( 2 x + n v D  ~ 
+ --: . . . . . . . . .  -. e . . . . . .  . 

2I'" ( -  i < , )  2 

s a y .  

= _ , , . ~ , ( o . , , ,  ,,o,)(,v (x. - . , ,  + . , , ~ )  - ~ ( o ) )  - , e  (:<,) 

I (:c--n0"-' 
+ . . . . . . .  e ~" 

2 1 " ( - -  t',O) 

=: m 1 -  ~ ( x )  + J'.,, 

T h e n  f r o m  (9.3), 

2 V , , [  T.,I: - e . . . .  ,(-2~ . . . .  ) - -  e<" 

__ C--n~i (2x+n.w))  , 

and  so 

Also  

4 5 - -  3343. Acta mathematlca. 

- -  I - -  ~ cJ ; ~ - ~ - - - ~  
09 

61. l m p r i m 6  lo lO o c t o b r e  1933. 
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(9.8) 

and so 

cJo 

j "  /C 2~t~ - -  IX ~ v( -~ ) - , v (o )=  e",o':, t~lt ,  
\ e  ~ - ' -  i l  

f :) f ( t e  2nt~ - I - -  (~--2~t~ i 
en. i(2x+n(o) T1 _ _  ~ ' r i c ) t ~  \ ~ i - -  d t  + e~'~ I " e - ' ' ~ )  d t  

0 0 

= T ~ +  T4, 
say. 

To approximate to these, we require a modified form 1 of the second mean 

value theorem. 

Suppose that  for a <--x <--b, f ( x )  is positive, monotone decreasing and dif- 

ferentiable, and that  g(x) is any continuous function (real or complex) of the 

real variable x. Then 

b 

ifs,x,g,x,,,~l ~',a,m~x, j" -< g (x) d x I- 
(I (1 

This is easily proved by putting G (x) --  j g (t) dt, i. e. g (x) = G' (x) and integrating 

r 

the left hand side by parts. 

From this follows Wilton's result" that  for M > o 

(9.9) 1-- 

Clearly I --< M, and also 

/- lf 
0 

M 

dt  <--co ,-. 
t 

0 

I I 
M 

I I 

~-- . . . .  + - - - M '  2 ] / (0  7l; O) 

since 

x I am indeb ted  to Mr. Davenpor t  for th is  fornl which leads to sumller  cons tan t s  than  
those  I found original ly.  

Wi l ton  179. 



Some I n t e g r a l s  a n d  the  A n a l y t i c  T h e o r y  of N u m b e r s .  355 

(9. io) If I lf  le i,,l< e ~z('~t d t  I 2 I 

2 r  " z r  w M 

M M 

on a p p l y i n g  the  modif ied second m e a n  value theorem.  T h e n  if  2li > ~o -, 

I I I 

z ~ M  < -  < . . . .  

e 2~t~ - -  I 
N o w  . . . . .  decreases  

e T M  - -  I 
s teadi ly  f rom ~ to o in o ~ t < zr t a k i n g  the  obvious  

def ini t ion at  t = o .  F o r  if y = e  2€ I, t h e n  f r o m  

i .  e .  

d y ~ - -  ~) 
= o ,  

(y - -  i) ~y~-~ - -  y~ + ~ .... o, 

~;--- I _ = ~ y ~ - l .  
y - - !  

But  since o < ~ <  I, the  lef t  h a n d  side > E g  ~-1 excep t  when  y -  I. H e n c e  by 

the  m e a n  value t he o re m  a nd  (9.9), 

(9' 1 I) I1"~l ~ ~ max l /e~'"'t~'dt] ~ ~ c ~  ~1 

0 

N e x t  in I'4 wri te  

T h e n  

Also  if  

I e--2 Zt 
. . . . .  I +  . . . . .  
I - -  e - 2 , ~ t  I - -  e - 2 ~ t  

0 

_< rain 

~o 

/" . ,~e--2nt(I - -  e-2~t~)dt 
T~ .... t e  ~ . . . . . . . . .  . . . . . . .  

J I - -  C - 2 ~ t  : 

0 

I r~ l  <- ~o, ~/~ 
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l>y the mean value theorem, since x(I  --x~)/(I - -x )  decreases steadily from ~ to 

o i n  I - - > X - - > O .  

~ o r  :~rom 

d 

( I  - -  X ) ( I  - -  (~  @ I ) X  "~) + ;Z,' - -  Z "}~-~ ; - :  O,  

I - -  W :}t- 1 . . . . . . . . . .  (~ + ~) a< 
I - -  9:,' 

But the left  hand side > (~ + l)X ~ except when x =  I. I lenee 

(9. 12) 

' 1 ' ~  ' o / I  (9. I 3) ] T, ] --< 2 ~ w-','-' + rain ~2 cJ/~' I/~ 

Hence, and this is (9.4), 

(9. x4) I t IF(X) 4- S'  ~ ' 1 ,r ~'~ I ) , ..... I -< ~ ,~ , , , - ' '  + ~ , , , in ~_, , r  f ,  ~, �9 

I f  now also o --> x > - -  I ,  the formulae (9. 8) to (9. 13) on taking o ~ ,~ < I, show 

Also from (9. 14) 

Hence 

i .e .  

I 'v (~,,) - 'F (o) 1 <- ~ , , , - " ~  + o , - ' / - ' .  

I 'Y (x) + Z~,,, I < ~ ,o-',"~ + ~ ~,,-"~. 

I u (o) + S;,,,, I -<- 7 ,o-','~, 

I I - ' / "  S',,~ < 8~o ". n - -  

There still remains 

simple result  for 

IO. 

Some Problems .  

tile general t ransformat ion formula for f(x, co), i .e.  a 

f (  ~ ~ + ~  ~ + a' ~-g-? ,~l '  
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where a, fl, 7, d are any integers  sa t is fying ad--~7  =--I.  I had hoped to deal  

with this quest ion four teen  years  ago but  my a t ten t ion  was diver ted elsewhere. 

I t  seems to me now t h a t  some of the ideas recent ly  developed by Hecke  1 for  

the t r ans fo rma t ion  of the the tafunct ions  associated with algebraic  fields may  be 

relevant ,  but  I leave this to others.  

There  is also the question in (2. I5) of finding a simple expansion for  

foo(X)Os(x)/Ooo(X) which would lead to class relat ion formula .  Thus ~ 

f , , o ( X )  o , 2fO) = - -  I 000 (x ,  fD) -[- ~ B n e  2 ~ i x  
2 

where for  n --~ o, 

Bn=Z(__i)rqn"--2r'-' 
r - - 0  

B-,~ 
r :--: 1 ( n - - l )  

= __ Z ( _ _  i ) r  qn"--2r'-'. 

On dif ferent ia t ing and pu t t ing  x-== o, we find t ha t  if m is any integer  > o, 

I F ( m ) - -  2~'(,~B-- 2.  12 ) + 2~.2(m-- 2 .22  ) . . . . . . . . .  Z x ( - -  I) "r+y+l, 
2 

where the summat ion  in x, y refers  to the solutions in integers  of 

X ~ - -  2 y'3 = m 

l ! 

with x > o and  --  " - ( x - -  I) --~ y ----- : x,  or is zero if no such solutions exist. 
2 2 

Next  

,foo_ (x) Ooo (3 x,  3 o,) = - 
Ooo(X) 

o0 
I 

OOl(2X , 2o)) + AOIl(2X , 2~o) + ZBne2n'~r 
2 

? l ~ - -  ;r 

where for  u ~ o, 

' Hecke  (I), (2). 
Morde l l  (I), 126, 127. 

B,~ - ~_j ( - -  I) �89 q�89 
r ~ O  
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r ~ .~ (n--'.') 

r = l  

and r is also subject  to the condit ion r ~  n (mod 2). Also A is independent  of 

x, but  i t  does no t  seem easy to find a simple form for  A of use for deducing 

class-relation formula.  This is, of course, the difficulty arising in the general  

case and is wor th  considerat ion by o ther  investigators.  

Here,  however, a class relat ion formula  can be deduced as I have already 

shown. For  if we change x into x + ~- and add the two expansions, A is eli- 
2 

minated.  Now different iate  and put  x = o: we find tha t  

/~ ' (2 .~) - -  2 F ( 2 m - -  3 '  12) + 2 V ( 2 ~ n - -  3"22) . . . . .  (--  I) m = l z x ,  

where the summation in x, y refers to the solutions in integers of 

x~" 3 Y~ 
with x > o and, 

I(x i ) < v <  l 
- -  - -  - -  ' X .  

3 3 

An extensive set of formulae of this kind has been given by Uspensky l 

and Venkoff which they have invest igated by Liouville 's  ar i thmetic  method.  

I may remark  finally tha t  there is" a possibility tha t  relations such as (2. 18) 

to (2.2I)  may lead to results about  the order of magni tude  of the class number  

and perhaps supply solutions of questions such as >>Is F ( n ) =  I for  an infinity 

of values of n?,) 
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