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§ 1. Introduction. The subject of this paper is to develop the analytic
theory of a g¢-difference system -

Y{go) = Afx) Y(x),  Y(x)= (yyx)),

(1) :
I Ax) = (ay(x)), |A@)]|=o0 (7,7=1,...7)

or, which is an essentially equivalent matter, the analytic theory of a single
g-difference equation
(1) Laly) = y(@"2) + a;(#)y(" @) + -+ + anla) y(@) = 0

(anlx) = 0).

Tt is assumed that the coefficients a(z) in (1) or (1a) are analytic for |a| =< o,
being representable for these values of x as follows

! The author began this work while he was a National Research Fellow at Harvard Uni-
versity.

1—38343. Acta mathematica. 61. Imprimé le 18 février 1933.



2 W. J. Trjitzinsky.

(1h) ai() = aiyi + abix + abia® + - (¢, 7=1,...n)
(l{a§)] # o);
(1¢) ax)=d + dx+ dx® + - (e=1,...n),

where not all the af are zero. In the past the main contributions to the subject
were made by Carmichael and by Birkhoff.!? Carmichael successfully develops
the theory under the supposition that the roots of the characteristic equation
of (1 a),

(2) Ele)=¢"+a,¢" '+ - +daie+d} =o,

are all finite and different from zero.® He demonstrates existence of a full set
of analytic solutions which actually are the ‘formal series solutions’. Birkhoff
solves the corresponding Riemann problem. The proof of the existence result
of Carmichael has been simplified by AdamsS, who also investigated the nature
of the formal series solutions in the general case when no restrictions are made
concerning the roots of (2). The purpose of the present paper is to develop the
analytic theory when the roots of the characteristic équation are not restricted
in any way. We then obviously may have several characteristic equations in
place of the single one (2). A

In view of the fact pointed out in the beginning of (C) and since the
complete analytic theory of difference equations has been already developed in a
paper by Birkhoff and myself* the present paper assumes added interest. Without
any loss of generality it will be assumed that |g| > 1.° Moreover, in the greater
part of the text the theory is developed for the vicinity of the origin. On the
basis of such developments it will follow at once that a structurally identical
theory would hold for the neighborhood of z = « provided that the coefficients

! R. D. Carmichael, The general theory of linear q-difference equations, Amer. Journ. Math,,
vol. 34 (1912), pp. 147—168. This paper will be referred to as (C). G. D. Birkhoff, The Generalized
Riemann Problem for Linear Differential Equations and the Allied Problems for Linear Difference
and q-Difference Equations, Proc. Am. Acad. Arts and Sciences, vol. 49 (1914), pp. 521—568. This
paper will be referred to as (B).

? He supposes also that no root of (2) is equal to the product of another by an integral
power of g. This restriction, however, is not fundamental.

8 C. R. Adams, On the Linear Ordinary q-Difference Equation, Annals of Math., vol. 30,
No. 2, April, 1929, pp. 195—205. This paper will be referred to as (A).

* G. D. Birkhoff and W. J. Trjitzinsky, Analytic Theory og Singular Difference Equations,
Acta mathematiea, 60: 1—2, pp, 1—89, hereafter referred to as (BT)

® The case when |g}=1 has been satisfactorily treated in (C).
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in (1) or (1a) are representable (near z = o) by series in negative powers of x
with, possibly, a few positive powers present. All the results of this paper will

continue to hold, with no essential modifications, also when in (1 b), (1 ¢) 2 is
1 .
replaced by x* (s, integer) and when a finite number of negative powers of

1
(or x® ) is admitted in (1 b) and (1¢). A corresponding statement can be made
concerning the viecinity of x == «,

§ 2. Setting of the Problem. On the basis of (A) it can be asserted that
(1a; § 1) is satisfied by » linearly independent' formal solutions

t?
‘ 493 g ) _logw .,
(1) q 7% o} (x) (t Tog s 1,...n)

where log'z is given a suitable determination and

1 1 1
a}(x)zq‘"(xsj) + taj“(acsj) + o el (ocsj),

11 — gl H 1H 1H ,,2
o1 (u) = o}y + o u + U + -

(ra)

We shall term a series o(x) of the type given by (1 a) a o-series. A series

_logx

s(t) such that s(t)=o(x) (t_log q)’ where o(x) is a o-series, will be also called a

o series.
The series (1) we order so that

(Ib) Hlé‘ugé'”gﬂn.2

Here pj = ;l (s; > o), the fraction being written in its lowest terms. When uj=p,
j

we take sj=1. In general, the y; form o(> 1) groups
My =y = =, < My == =< <M= P, 1=,
(1¢)

(IS <Iy,< - < Iy=mn).

‘Under the supposition that the series (1) are suitably ordered the following

Tt will be said that g,(x), gs(x),...g,(®) are linearly independent if the determinant
I(gj(qi“lx))l is not identically zero. .

* The pj(j= 1,...n) are all equal if and only if the roots of (2; § 1) are all finite and dif-
ferent from zero, '
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can . be said concerning the #»; and the integers k. Consider all the series be-

longing to a group of w; (=m=2)

$
me
(2> » q? aatw gty (W) (w=1, 2, ... ﬂ) ~
and write -
(2 a’) : Yatw=— — % + Qu+w-1
In general, the gutw (w=1,...8) can be partitioned into several groups. A
group of 9uiuw, :
(3) Qa1+ ’(w:I7 st 181))
is specified as follows:
' - _ Gato
(3 a) Oy +00 = Qa1+v1 s
(@=2,...8; 0=0u42= - = dotp,; the o+, integers);
: , :
o +11
Qo+ 1 8
(3b) perr =4
(0=0,1,2,..; a+wHe+1,a+2,...a,+8).

The k;, occurring in the g;(x) which correspond to the group (3), have the values
koyro =w — 1 (w=1,2,...8).

When u=p,=---=u, then, according to the existence result of Carmichael
the power series factors in the formal solutions (1) will all converge for | x| < ¢,
(¢, > 0). The formal solutions are then also ‘actual’ solutions.? When not all
the w; are equal the power series factors in the series (1), which belong to
my (=u,="-=ur), will converge for |x| =< ,*; accordingly, I'; ‘actual’ solutions
will be known. The power series involved in (1), for 7 > I';, may converge or
they may diverge.

Write g =|q|e"—1? and let 0 < ¢ < 27. The transformations

(4) x = ¢'logy (x=|z|e"—1¢; t=u+V —10)

! The ¢fe+w(w=1,...8) are the roots of the characteristic equation which belongs to the
mentioned group of ;.

* Ot (0).

® According to (A), o, =]|q|¢ at least when the coefficients are in positive powers of
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will be now applied. The system (I; § 1) will assﬁme the form
(s) Z{t+1)=BHZ()
(A(e189) = B(t); Y(e'#9) = Z(#))
and the equation (1 a; § 1) will be transfdrmed into an ordinary difference equation
(5a) : My(2)=ce(t+n)+b (O z(t+n—1)+ - +bu(t) 2(H) = 0

({106 0) = by(1), (G=1,. .. m); y(eoe®) = 2(t)).
The coefficients of the difference system (5) or of the equation (5 a) are analytic
(except, possibly, at t==o) on and to the left of the line
(6) - gquv=logjq|u—loge.
In this region B the coefficients are of period

2 @+ V= rlogla) =270 =2

The region

lz] <o ‘ 0=a=2n)

will correspond to a strip S, in the #plane, with its boundary consisting of
the part of the line (6) enclosed between the points

tol=uy + V=10, 2=0), ti(=u, + V —10,; x =€ —12%),
u, = log ¢ log | q| | log ¢ |2, vo= — qlog ¢|log ¢ |72,
u = (log elog|gl + 2 #g)|log ¢|~2, v =(27log|g| — qlog@)|log ¢]~2

and of the parts of the lines through ¢, ¢,, lying in R and at right angles with
the line (6). .
The formal series solutions of (5a) will be

. 2.,
(7) Y0 ¢l7j 1084 (1), Qj(t)=£ﬁ%&g‘"g’

oi(t) = o (&) + taj () + -+ + £9d5(8),

log q)

o™ (t) = a’;.” (et 5 (m=o0,1,...k;j=1,...n).
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The equation (5 a) is seen to be simply related to the system'

(8) Y(t+ 1)=D(t) Y (t),
o, I, O, 0

p={ 7 > o O =),
— by, — by—i, —b,

which is satisfied by a formal matrix

(8a) S(t) = (e¥lt+?—1) gltti—lrjloga gi(f 44 — 1))
H = (¢4 &% ay(t)), dy=1[( — 1)y + 1] log q.
ere
(81b) oy(t) = of(t) + toy(t) + - + £9li(2),
1°eq ktlsg__q |
op(t)= ok, + op e Y ctale Yo+ (m=o0,...kj;j=1,...n).

Now, the series o'(f) (m=o,1,...k;j=1,...I}), occurring in (7), as well

as the series

(9 | o) =01, .kuj=1,...1)

converge on and to the left of a line D parallel to the line (6). Accordingly,
the first I, columns of S(f) constitute I', solutions of (8) whose elements are
analytic (except possibly at t=o0) on and to the left of a line D.

Related to (8) there is the associated difference system of order C? (1 <k =n)*

(10) Yi(t + 1) = Di(t) Yi(t)
where
(10a) Di(t) = (dsy.. 55, 5,(2))
(i17- Z.k)jli' 7k_1 -1 Z1<Zz<'”<zka/1 ~ <"'<(7.k)-3

! Ct. (BT; § 15 (6) (6 a)).

% Ct. (BT; § 3; (9), (9a), (10)). For k=1 we have the system (8).
® In agreement with (BT) we let hix~--ik'j|- A denote the determinant I(h l where in
the matrix (hi,.,j(,) (rye=1,...k) the term displayed is in the #-th row and c¢-th column. On

the other hand, (hl-l' ) will denote a matrix of order C’,: in which the set of subscripts

P P T
(@, ...3,) refers to a row and the set of subseripts (j, .. 'jk) refers to a column. It is clear that
| D0l =o.
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System (10) will be satisfied by the formal matrix

(IOB) Sk(t) _ (erl(tH- .. '{"ij({’)et(rﬁ""' Sty )logflo.ivl igid ~jk(t))
where
log g
. ¢
(10¢c) 5 i (8 = |(e( Mo g, ai, ,c(t))| (r,e=1,...k)

The O'Z”,jk;jl,_,jk(t) are of the same nature as the oy(t) since (¢-—1)7;, is a non
negative integer; here f enters as a factor to at most the (kj, +k;,+ - +kj)th

power. In fact,
(104d) O i () =0(t) + ta'(t) + - + £ (D)

[O'm(t):a:?zk,gljk(t); m=0,1,... Z(:kj1+ +k]k)] ’

1 1
log g gy1080

(108e) o"(t)=0¢" + oTe * +a%e * 4+ -

(o) =ai, )
Oy = Giy .. iy jr. . 3 ¥V=0, 1, 2,

where s(=sj, ;) is the lowest common multiple of s, sj,...s;. In view of

the fact that to the system (10) there corresponds a single equation of order C?

(cf. BT; § 1; (1), (2), (3), (4)) we conclude that the series o}, .. 4 j...j,(t), occurring
in the columns of Sk(t) for which wj, -+ wj, + -+, is smallest, all converge to the

left of a line D parallel to the line (6). The sets of subscrlpts (J1s Ja - - - ) will
be supposed to be so ordered that the values

&=t + lujz + ot Aujk

as they occur in the successive columns of Si(f), are in ascending order of mag-
. nitude. Accordino'ly, it may and will be assumed that in the first column of
Si(t) we have (j,,...50=(1,2,...k).

Throughout the paper W will denote the part of the tplane bounded above
by a portion of a line with the slope

) —q—|logq|

(11) ' Gy = - log [q] (<o)

and bounded below by a portion of a line with the slope '
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—q+|logq
e e (> o)

The slopes (11), (11 a) are those of the two lines 74, 7T, given by the equation
(11 b) Nt =o. (u # o)

The exact nature of the boundary of W near {=o0 is not essential. A part of
W on and above a line, below the axis of reals and parallel to this axis, will
be denoted by W (u). More explicitly, we shall write W {(u)=W (u; —¢) if on
the lower boundary of W(u) J¢t= ¢ Similarly, a part of 1V on and below a
line, situated above the axis of reals and parallel to the axis, will be denoted
by W() (or by W(;c) if Jt=c on the upper boundary of W (l)). Moreover,
we shall let We¢(u) (or We(u; —c)) denote a subregion of W (u) with the right
boundary, sufficiently far from t==0, consisting of a portion of a line with the
slope a,+é&(e >0). On the other hand, W¢(l) (or W*(l; ¢) will denote a sub-
region of W(l) bounded on the right, for |¢| sufficiently great, by a portion of
a line with slope a,—e&(e > 0). Throughout, it will be possible to take ¢ arbi-
trarily small. The combined region T ¢(w)+ W¢(l) will be denoted by W Simi-

log | q|
q

larly, to the right of a line with the slope we define, with respect to the

slopes a, and a, corresponding regions ¥V, ¥ (u) (above a line parallel to the
axis of reals), V(I) (below a line parallel to the axis of reals), V¢(u), V*(I) and
Ve(=Ve(u)+ Ve(l).

The results of this paper stated for W*(u), for instance, could be extended
without miodification to more general regions. For instance, we might require
that, for |¢| sufficiently great, the right boundary of W¢(u) should consist of a
portion of a curve (' such that, when ¢ is on C and ¢ (J¢'==J¢) is on T},

£t — (St
(¢ > 0: ¢ > 0; ¢ arbitrarily small).

It is clear that, with ¢ < 1, the limiting direction of ( at = is ay. Corres-

ponding extensions can be also made for We(l), Ve(u), V().

§ 3. Formal ¢-Summation. In view of the purposes at hand it is essential

to solve the formal equation

(1) ylgx) — ylx) = V(x),
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Epogg | by ( 1 )
(ra) Viz) = e ar [\wo+otat + ) Ft\og vt + -
N .
+ o +t"(v’g+vfxs+ )J
log x

(u =Z-; =0, §=1; 1, s, integers; t;ﬂ)g q)’

where not all the v ({=o0, 1, ...%) are zero and the series are, in general, diver-
gent. For an equivalent form of (1) we shall take

(1b) y@) =S V().

The operation implied in the second member of (1 b) will be termed g-summation.
Suppose = 1. Let

u 1 1
" log —
(2) T L EPEY [ PRUFIE U BT IESDETE )
1
+ (sf;+ stat + )] .

Substituting (2) in (1), by a laborious though straightforward computation, we get

(2a) 8= —, (j=o0,1,...0—1;7=1,... k)
’ m
8 Pl 1L i+1gi41 o ., ok — of — gy
(2 b) 94 (Ci'sm 1 Ci S ! + OL' Sm) S1;—:—m qu+m
"ilogq
(mz-o, I,...; ¢=0,1,...k; g=¢® q’),

where the C{ are binomial coefficients. Equations (2 b) can be solved in succes-
sion uniquely for the si{j=n, n+1,..;7=1,... k)
Suppose now that p=o while for no integer m (= o)

m
-+

(3) q °*=1.

We substitute again (2) in (1). The sf (m=o0,1,...) will be defined by the
equations

(4) (qH? — I) sk = ok (m=o0,1,...).

2—3343. Acta mathematica. 61. Imprimé le 18 févrior 1933.
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The s (m==o0, 1,...) will then be determined uniquely by the equations

m
wa) (0% = e e o — e o, 1, )

and so on. Thus, in succession are determined uniquely all the
s (t=k, k—1,...0;, m=0,1,...).

m

It remains to consider the case when 70 and for some integer m (= o)
(3) holds. An expression like (2) cannot be made to satisfy (1). We let

) 1 1 m
EIN e [ RS PR FE . p )

Comparison of coefficients gives the equations

n—m
. 8 i i T+l g+l L ... Tk by _ ot — ¢t
(5 a) q (( z'Sn+ (’i Sn + + (/i sn) Sn 1’11
(t=70,1,... k; n=0,1,...m—1,m+1,m+2,...),
v P41 1 g (kb o (TR Gkl g
(5b) (Ci—=1)sl + CiF gt 4o - Ok sk + O P gkl =i |
For i=k (5a), (3 b) define uniquely the s! (n==0,1,...m—1,m+1,...) and st

but leave s undefined. For ¢=-k—1 we have

i— 1 I—ﬂl
(q §— 1)3"_1 +q ¢ Ch. sk =qot= (h=o0,1,...m—1,m+1,...),

n

Yk—1 k-1 1k k Ye41 ok+1 — ,k—1
((Jk—l )Sm + ("1.'—1 Sm + (’l:—l ST U -

These equations definie the &' (n=o0,1,...m—1,m+1,...) and $¢, leaving
s*=1 undefined. Thus, using (5a), (5b) in succession for ¢==k k—1,...1 it is
seen that the s (i==k, k—1,...1; n=0,1,...m—1,m+1,...) are defined; so

+1 k—1 .2
are the constants &&F1 =1 52

However, s) will be left undefined. Now

the last set of equations (5a), (3 b), formed for ¢=-0, is

Hn—=n
((] I )Sn [(/11 5,111, +CY‘I;S7I;:|_—_7;’I
(n=o0,1,...m—1,m+1,...),

(Co—=1)sm+Clsm+ - i Chgk + ChF1 1 =g |
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These equations define the s, (n=o0,1,...m—1,m+1,...) and sy, but sy will
be left undefined. Thus equations (g a), (3 b) serve to define all the coefficients
occurring in (5) except sp. Arbitrariness of s, corresponds, of course, to the rela-
tion :
m
9(q2) — gla) = o (g(x):—s:; z ?)

m
o
which takes place whenever q7 §e== 7,

Lemma. The formal equation
ylgx) — ylx) = V{x),

where V(x) is given by (1a), always possesses a formal solution

Eplogy [( o oL
ylx) = ¢ am [ \sq+siat + o Ft\sytsat+ )+

1 m
+ th\sk +sha® + 44‘)—|—t’“+ls§j1x°‘] (m = o),

where sit13£ 0 4f and only if p=o0 and qr+? = 1. If u # o, the coefficients are
uniquely defined by (2 a), (2b). If u=o, but for no integer m(= o) qr+?= I, the
coefficients are uniquely determined by (4), (4a),.... When s&71 54 o the formal

soluteon is specified. uniquely, except for the arbitrariness of sm, by the equations
(sa), (5b).

§ 4. Lemmas on Analytic ¢-Summation. Consider first the equation
W vlge)—yla) = Hla) = 0arhia) (@)= og o]

with H({x)="V(x) where V(x) is given by (1 a; § 3), u being not zero and the

log «
log q

involved series being all convergent for t(tz ) on and to the left of a

Whenever ‘é =0, it is taken parallel to the axis

1
line D* whose slope. is _O_g_qu_l

of imaginaries. An analytic solution of (1),
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(ra) ylw)= S H(I)

(ef. (1 b; § 3)), will be found under the stated conditions.

Let L2 be a line either coincident with D* or parallel to and situated to
the left of D*. Let LY be a line parallel and to the left of L? at a suitably small
distance (7 0). Let D, be a line parallel to D*, say, midway LY and L®. A
closed region U is then defined as the part of the complex plane bounded on
the right by D,, We have

(2) | éﬂm=gﬂwma (:=129).

w=t

where the symbol in the second member is that of ordinary difference summa-
tion. That is, ' '

Sww—gww=w@

w=t+1 : w={

Consider the set of all lines parallel to LM and congruent to L{!! from the
left. Enclose each of these lines, including LY, in a strip of width w, with
boundaries parallel to LY; let each of these lines be in the middle of the strip
in which it lies." The totality of these strips will be denoted by S%. Similarly,
denote by S® the totality of strips, of width w, containing the lines parallel
and congruent from the left to L. With w sufﬁciently small,

(3) U= 81 + §2 4 8B,

where S is a set of strips, each bounded on the right by the left boundary of
a strip of S and bounded on the left by the right boundary of a strip of 8@
Let L be a straight line whose position depends on t as follows. When ¢ is in
a strip S or on the ‘left side’ of the right boundary of such a strip, L is L®.
On the other hand, if ¢ is in a strip of S or on the ‘right side’ of the left
boundary of such a strip, L is LY. Thus, for the left approach to the common
‘boundary of a strip of S" and a strip of S® we have L=L®, while for the
right approach L=L!. For ¢ in S® we take L=L\" or L=L?. With L so

defined is follows that no point ¢ in U is at a distance < (20 from a position of

' The latter condition is assumed only for convenience.
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congruency to L. Also, every ¢ in U is to the left of L. Let t+% denote the
point furthest to the right belonging to the set of points ¢, t+1,... and lying
to the left of L (t in U). It is clear that % is uniquely defined in 7 and does
not depehd on the choice of L when ¢ is in S®. The function of ¢, %, depends
only on the two positions of L (L™ and L®). Let /; denote a loop enclosing
the points ¢, t+1,... ¢+ 4k, not enclosing ¢—1 and passing between ¢+% and L.
Such a loop is defined, of course, only for ¢ in U.
Consider the expression

/U/ 2
— U IOg ([
ewrlog g h(ew log q) dw

(4) | f z T AT ()

Iy

where

Li= L+ 1,

with L described upwards and [, described in the clockwise direction. For ¢ in
U and w on L

I

I 1 — ex2n —ti—w)| = (@ > o).

(42)

Now the equation of L is of the form

u*j—v—-»-l—c
loglg| =~

Accordingly, for w on L the real part of gwg log ¢ will be

Boaq LN __Eog_qf 2).
(4b) ?R[zwlogq] 2(clogIQI Toglal *

In view of the fact that along L |h(e*'89)| does not increase faster than |w|*
it follows, by (4a) and (4b), that the component of the integral (4), along L,
is absolutely convergent for ¢ in U. The integrals along / and L each repre-
sent functions of ¢ analytic in the strips separated from each other by the
common boundaries of the strips of S and the strips of 8?. In other words,
these are strips whose boundaries D consist of D, (the right boundary of U)
and of all the lines congruent to D, from the left. Each of these integrals
represent two different analytic functions on the left and the right side of &
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line D (excepting D,), respectively. With ¢ in U there is occasion to consider
only the left side of D,; along this side the two integrals are analytic. 'We have

(s) | f: — H(¢t1o89) — H(t+01080) — . — [ (gt+Ri088) = gp().
It

The sum of the two integrals is, however, analytic in U. In fact, let ¢ be on
a line D (different from D,). Let %, for an approach to ¢ from the left, be
denoted by £!; for an approach from the right let it be denoted as %]. Then

kl=Fk + 1.
Hence, on applying the correéponding notation to ¢(f), we have

(52) g(1) = g (t) — E( Lo+ + 1) 0).

Moreover, for a left approach to ¢

L 1(2) L
and, for a right approach,
,
1‘/ LJ If

To demonstrate that

G(t)s(w(t>+f)—(mf<t>+fr)ao

G(t) = — H(e(Hki)logq)-{— (f
742)

The common integrand of the two integrals above is analytic in the closed

region bounded by L1 and L® except for a pole at t+% (this point is on D).

>

we note that

Accordingly, — | is representable as an integral described in the counter
.2

clockwise direction along a small loop enclosing the point w=t+#%. It follows
that
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\/‘,__ [:H(e(t+lci)logq>.
v 7.(2) L.(l)

The difference of the analytic function represented by (4) is equal to H (e!l°g9),
We shall define the operation of (2) as follows

(iwﬂ'logq

B o2 egwrlogyq h(ew log IZ) dw
(6) yla) = H(F)—f" B s
I'=z

b

The properties of this analytic solution of the equation (1) will be further in-
vestigated. TFor the component consisting of the integral clong I; it follows that

(7) e_Q(t)—rtlogq W(t) = — h (etl(’g {I) J— eQ(H'l)—Q(l) erlogq h(e(t+1)10g Q) - ..

. eQ(t+kt)—Q(t) e"kt log ¢ h(e(H— k) log q)'

For convenience the following notation will be introduced:

tlog q N ) 1o log ¢
(7 a) e’ =w, gi= e(2slz+”) logq =¢ ¢
) t ’ p .
Then .
(7 b) - eQ(H—i)—Q(f) &i1087 — gi win,

Let m be an integer (m = o) of the form m=(I'+1)9p—1 (I', an integer). With
m and I" supposed fixed we assume, for the present and unless stated otherwise,
that # is on and to the left of a line D_p(m), parallel to D, and to the left from
D, at a distance (in the direction of the axis of reals) equal to &’ (m). Here &' (m)

is such that, for ¢ restricted as above,

ke > 41-'.
We have
k
(7¢) o h(EE) = N [pg + o+ of 0 + b5 (H) wnt)
. =0 ) .
(162.(8)] < bm for ¢ in U)
so that
(7 a) eQUEH0—QH) grilogq py (glt+i)10g q)

k
= Z (t+ i gwn+ - + V7 pim gpintm)
0==0

k
. + wm+1z eQit+1—Q() eri}ogq(t + Z‘)o‘ b;’n(t + Z‘)pi(m+1)_

o=0
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Now
k
(7€) A+ dgi
0=0
k
=N+ Cle™ e+ o+ O) g wiw™ + - 4 of pmagtited
a0
= A+ A () + -+ D,
where
(7 ) ML) = 1 ™ + 12 ot l e o [ et

k
H o _o y. a1 Yo y0--1,.0
U= g:p Z Coty

o=H

(He=0,1,...k; I=o01,...m; ¢=0,1,...%).
Accordingly, we may write

(8) — TRt p(f) = Su(t) + Ta{f) + Rult)

Here we let
r k
(8 a) Sm(t): Z Z t+ Z {]1 1/ ’l(/” 4+ 4 I’TZvaim '1.(/'7"7“"1.?

— Lot + tLu(l) + - + Lm( )

r
(8 b) LE() = D M) == W, + W+ o + Tt
-0
R N R U/ O P A A N N N T
- ([6[11 + li[,(l'—lj.,,‘, - o+ o+

+ (I(l)f (r+1)n—1 + Z;Iu—l + o b I;I 1;__1),1(,::/%1)1;—1 + "Q”(t)'
The expression Q7(f) consist of a sum of terms of the form
Lw” (I, constant; » = m+1).

The number of these terms is independent of {. Thus

(8¢) Q1{t) = w3 g3 (1) (162 = .
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The function I, (#) will be defined as

ke k
I'n(t) = Z Z (t + 47 gsfvd e + - + 02 P atitm,

=41 g=0
Thus, by (7 b),
ok
(8 d) I'n (t) - Z Z eQUAT—Q) grilogq (¢ 4 z‘)a “lg + o v:z pim ,wm]
g—0 i=I"1

.80 that, in view of the inequalities

|vg + o 4+ 29 pimum| < N ({ = k),
R
e | 13(8] < N D[l 3 |eeitsr—an i)
o=¢  d=I'+1
P P
< le wmt1 | Z I tlu 2 | Qi +i—QIE grilogq
o=0 j=0

17

here t is t or t+k, according as to whichever of the two numbers |¢| and |t + |

is the greatest. In deriving (8e) use is made of the fact that there exists a

constant ¢ such that

[t] < alt].

Before proceeding further certain inequalities involving @(f) will be esta-

blished. Let ¢ be the distance from ¢ to I),. Then

R (tlog g) = — (e — ko) log | ¢|

where h, depends only on the position of D,(hy=0 when D, goes through the

origin). Accordingly,
RIQE+ ) — Q) =1 i i — 2(e — ko)l log |al.

Now o=/ + 0| o] = 3) so that

3—3343. Acta mathematica. 61. Inprimé le 18 février 1933.
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(9) %[Q(Hi)—Q(t_)lé i (ke — 2 (ke + 00 — hy) 1og|q|<-—ﬂ(/bt-h10a|q1

(7’.=0711"'kt; |h0—gt|§h;)
Similarly, it is possible to show that

(0a) RIQUr+)— Q)= —jlle—T—1—1] logIQI

i
2
(j=o,1,...0k—I—1).

In virtue of (9 a) from (8 e) it follows that
k
(10) | T (0)] = g™ aom* 2| D) | el
=0

whenever ¢ is sufficiently far to the left, that is whenever ¢ is on and to the
left of a line Dy () (£ (m) sufficiently great). In fact, with the inequality
k—1T—1—h =2 (> o)

secured for i suitably great it would follow that

k—I—1
(10a) Z | e@ttr+i—@ir) gritoga |
Jj=0
ky—~1—1
<f 2 ( Aloglg]—R( rlog(])) 1
—g Aloglygl+Rirlogqg)

1—e
provided that Z—A log|gq| — R (rlog q) > o.

It remains to consider the last term in (8)

E Rt
(10b) | R(8) oo < Z Z[eQ(‘“)-_Q(‘) erilea(t 4 4) b2 (¢ + 7) p'im+ Y|
0=0 =0
sime1yoedal
<b;n2|t| Z (QUH7)—Q ) rilogq ¢ s

=0 =0

Applying (6) and using the reasoning employed in deriving (10 a) we conclude that
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k .
(10¢) | Bu(®)] = gt [wm*t] 2 | E)
=0

for ¢ on and to the left of a line Dy m).
By virtue of (8), (8a), (8b), (8¢), (10) and (10¢) the function ¢(f) is seen
to be expressible in the form -

k
(II) ¢(t) — eQ(t) ertloqu t11¢11(t).

H=0

There exists a set of lines D_gmy, parallel to I, such that

k(my) > k(m) > o (for my, > m,)

and such that for ¢ on and to the left of D_zm

tlog q
(11a) pU(t) ~ g + gple ¢ + - (H=o,1,...k)
to m terms in the sense that
v tlog'q mtlogq (m-l—l)tloé_q
(11b) pl) =gl + ple * + - +gHe * + pH{t)e ¢

(lpZ(t)] = ¢H for t on and to the left of D—i(m).

For ¢ in U the functions ¢%(f) (H=o,1,...%) are bounded.

Let U® denote a subregion of U bounded on the right by curves C% C!
with limiting directions at infinity, extending upward sand downwards from the
point P of intersection of D, and of the axis of reals and such that if ¢ is on
C* (or Y and ¢ (with I =3 ¢) is on D, we have

(11¢) R — ) — oo

(as Jt— o (or Jt— — »)).

In U® the asymptotic relation (11 a) holds to infinitely many terms (that is, in
the usual sense).

Consider the function represented by the integral along L; denote it by
g(). Let It =3¢, while ¢ is on L. Designate the parts of L above and below
t by L, and L,, respectively. Noting that ‘
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o (et10%9) — Zt"h" (@] < h in U)
and using (4 a) we have
| f ‘ l f +1rlogq—2nV—' Le—1) Jy (¢7' 108 9) I
o I _ e——m?—-nt—r))

< hd]e*”v—ltlz f|eQ +(rlogq+2n7—1)r+alog1“dpl

o= OIl

Suppose, for the present, that J¢= 0. On taking note of (4b) it is seen that
the integrand in any of the 2+ 1 integrals above diminishes, as JI' approaches
infinity, rapidly enough to insure the inequality '

. ? 3
(12) | j ' < h"e‘Qﬂv;‘itlz I(),Q(t’)+(rlogq+2nV:T)t'+alogt’|
I, o=0
' k
i feuerser | S §r=o
0==0

On the other hand,

13
' f |§ dhz [|8Q(F)+rl“logq+0'logl'”dply‘
I 0=0 . ,

the maximum of an integrand above being attained near the axis of reals. Such
an integrand diminishes sufficiently rapidly, away from the axis of reals, upwards

and downwards, so that

(12a) |f|<h2 tzo).
. v

For Jt=o0 the rbles of the integrals along L, and along L, are interchanged.
Thus, for ¢ in U,

(12 b) lg()] = g.

By a special example it can be shown that, in general, | ¢ (¢)| cannot satisfy
an inequality like (12).
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The function defined by (6), y(x)=g¢(t)+g(t), will be now considered. It is
observed that along the lines

(13) v=au

VE= Qg (t=M+VjIU)
(cf. § 2) the real part of Q(f) vanishes. The asymptotes of the hyperbola
(139) RIQM + rtlogd o

are parallel to the lines (13), respectively. The hyperbola degenerates into the
pair of lines (13) when r=o0. The portions of these asymptotes, which lie in U,
will be denoted by B, (above the negative axis) and by B; (below the negative
axis). The subregion of U enclosed by B, and B; (and, in some cases, by a
part of D, will be denoted by W in accordance with § 4. Moreover, letting
B, denote the complete boundary of W, we take B_; to designate B, shifted to
the left (in the direction of the negative axis) through the distance £.

Taking into consideration the established properties of ¢(¢), (12b) and the
way in which R [Q(f)+r¢log g] increases, as |¢| increases in W, and of the fact
that in U— W the function R[Q(t)+rtlogq] approaches minus infinity (as

|#] - ) we establish the lemma.

Lemma 1. The function
(14) . y (o) = @tttz p (f),

defined by (6), is a solution of (1) for ¢ en U. It is analytic in U and 4t has the
Jollowing properties.

There exists a set of curves B_ywm {congruent from the left to the boundary
of a region W), '

k(mg) > k(my) >0 (when my > m,),
such that, on writing

(142) | n ()= t1nH(),

the asymptotic relations _
tlog g 2ilog q

(14 D) : ni ()~ ¥+ g¥e * +ofe * + - (H=o,1,...k)

“ hold to m terms, provided that ¢ is on or to the left of B—rm); in a region W€ the
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asymptotic relations (14b) hold to infinitely many terms. In W the functions
|9 (¢)| are bounded. In the region U— W the solution (14) 7s bounded.
The series in the second members of (14b) are in general divergent. The

formal expression
k ( tlogq
eQ(tH—rtloqu tH ¢21+ 9Dll{e s 4 )
H=0

is clearly a formal solution of the equation (1); it is identical with the formal
series solution of Lemma 1 (§ 3). The lemma continues to hold true, when
V(x) (V(x) given by (1a; § 3)) is not convergent for ¢ in U, provided that H(x)
is defined, for every integer m (= 0), by an expression ‘

k

H () == eRMt)Frtlogq Z tolvd + o+ oo w™ + b (8) wm

=0

(|bfn(t)| < by for ¢ in T).

It will be now assumed that the function H{(x)[= e x" h(x)|, involved in (1),

has the following puvoperties. If we write

(15) ale o) = S mwngy

=0
then the functions | h2(t)| are bounded in a region W (u) (cf. § 2). In W¢(u)

| tlogg 2t1og g
1% a )~ vl + vie & + ¢pHe & + .- 1
O 1 2

As before it 1s assumed that u > o; moreover, H(x) is analytic in t for t in W (u)
(and t 5 o). '

Denote the lower boundary of W (u) by h. Let T be a point on h. A
solution of (1) analytic in ¢ for ¢ in a region W, (u) slightly interior to W (u),
will be defined by the integral

Llogg

QU pI'rlog ¢ p27Y —1 A(t—1) h (ew s ) ar ‘

(16)

[ — ¥ =1(-r)

(A, a suitable integer).

! Un}ess stated to the contrary, asymptotic relations are taken in the ordinary sense, that
is, to infinitely many terms,
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We need only to take L,=L+1;, where L is formed exactly as before except
that it is in W (w) and that the two positions of L are terminated below in the
fixed point 7. The contour /, (and L) is defined for ¢ in W (u) on and to the
left of a line L, extending from 7T upwards between the two positions of L;
moreover, ¢t is to be on and above a line i’ parallel to the line & and slightly
above it. It may be assumed that the portions above b’ of L, and of the two
positions of L can be obtained by translation of the right boundary of W ()
in the direction of the negative axis.! The part of W (u) bounded on the right
by L, and bounded on the left by A’ will de denoted by W,(u) (which is a
region of type W(u)). The definitions of /; and of L, for ¢ restricted as above,
are entirely analogous to those given before. Moreover, L and the integer 4
can and will be supposed to be so chosen that, aloug each of the two positions
of L,

(16 a) 9”1‘[@(1“)—2@1/:?(/1—- 1)I']—> — o,
CRQID) —2mV — 1Al + -

as the imaginary part of I’ increases. It is clear then that the integral (16)
converges absolutely for the specified values of ¢ It is noteworthy that a
translation (in the direction of the axis of reals) of I may necessitate a change
in . This is unlike any corresponding situation of the paper (BT). The fact
is thus peculiar to the theory of ¢-difference equations; it constitutes one of the
reasons why some of the summation methods of (BT) do not apply in the
present paper.

A reasoning closely similar to that used before in deriving the asymptotic

form of ¢(t)[——— f ] will show that, on writing (11), the asymptotic relations
J . ;

(11a) will be valid in the ordinary sense in a region We{u; —¢) (cf. § 2). Here
- —¢ is the distance of A’ from the axis of reals. On the other hand, on taking
account of (4a) (valid for w on L and for ¢ on and to the left of L, and on
and above '), of (16a) and of the fact that R Q(f) increases sufficiently rapidly
as ¢ moves to the left in the direction parallel to the axis of reals, it follows
that each of the integrals in the second member of the relation

! CUompare with certain analogous situations in (BT).
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t’ ®
f-_f+j (R N,
L T t

if added to ¢(t), will not produce a change in the asymptotic form when ¢is in
We(u; —¢’). Thus the function y(f), defined by (16), is asymptotic in We(u; —¢')
to a formal expression which necessarily will be the one whose existence was
established (for the corresponding formal problem) in Lemma 1 (§ 3).

If (11) is written for @(t) it can be concluded that the |¢¥(f)| are bounded
in W,(u). Consideration of the integral along L, when ¢ lies between Ly, and
the right boundary of W¢(x; —¢) leads us, in view of the properties of N Q(t)
and in-conjunction with the above property of ¢(f), to the conclusion that y(?)
is of the form (14), (14a) where the |5"({)| are bounded in W,{u).

Lemma 2. Let H(x) of equation (1) satisfy the hypotheses of the statement

wn ttalics in connection with (15) and (15a). The function
(17) y(a) = QW+l p(f)

defined by (16), will then be a solution of (1) for t in a region W, (u), slightly in-
terior to W(u). This solution is analytic in W,(u). Moreover,

k
(17a) n(t) = D\ " (e)
H=0
where
tlog g
(17b) it~ gl + gle * + - (I1=o0,... k)

e a region We(w). On the other hand, the functions | n™(f)| are bounded in W, (w).

§ 5. Factorization. As remarked in § 2, under the transformation (4; § 2)

the g¢-difference equation (1a; § 1) assumes the form of a difference equation
(5a; § 2),
(1) Ma(y) = y(t+n)+ b, () y(t+n— 1)+ - + b () y(t) = o,

which has a set of » formal series solutions (7; § 2). Tet 1 =< I'<<n. 'The
system (10, 10a; § 2; with £=T), of order (7 and associated with the system

(8; § 2) (which, in turn, corresponds to (1)), possesses a formal matrix solution

(tob; § 2),
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Sp(t) _ (erl(t)'-F - ~+Qj[,(t) et(rjl-!—- - ~+rj1,) log g O‘i_ g .jp(t))-

In the first column (j;...7r)=(1...I) and the value of p (=g, + - - +pur) cor-
responding to this column is equal to or is less than any of the other values
e (=w+ -+ Fuwp j1 <js < <jr). The elements of this column,

(f) = Q0RO i e tona o

.(2) Uiy, i .‘ir;l.l,.l‘(t)y

. logq
; t(7p—1) gy —= .
ofl-- ir; 1P(t) = (6 i ‘% Gi,-,c(t)) (7'7 e=1,...1 ))

converge in a closed region U bounded on the right by a line D (cf. § 2).*
These elements constitute therefore an actual solution of the system (10; § 2).
Accordingly, there exist I' solutions of the system (8; § 2),
(2a) yi (O) =yt + i — 1)

(j=1,...0Ii=1,...n),

such that the elements (2) are correspondingly equal to the ‘determinants

(2b) - | (s, . (O = (g,e (t + 2 — 1))
(re=1,.. T2, <ity< -~ <ip=1,2,...0).
It is to be mnoted that an element given by (2) is also representable by the
determinant
(2 C') » | (ch(t+i,.—-1) e(t—l—ir—l)rclogq 01, ¢ (t + ir _— I) |

(r,e=1,...T)
the I' series

(24) ) grelosa gy (f) e=1,...1)

being formal solutions of the equation (1).

Consider the operator

(3) - Mely) =g+ D)+ (ylt+ I—1)+ - +or(t) y(o),
— 1Y us,. . i r—ita, ... r+1(t
Ci(t):( y w. @ © (¢=1,2,...T)..

! Some of the 9, , W08y diverge. However, formal computation of (2) will .always give a
convergent result fnasmuch as u, + -+ up, = oy, t ++ Y Ur<da<- - <gph

4--3343. Acta mathematica. 61. Imprimé le 18 février 1933.
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The coefficients ¢;(f) will be of the same type as the b(t) ((=1,...2), in (1), at
least when

(3 a) ur < Hryy.

As the more gencral case, when w,=ur:q, will not be needed for the purposes
at hand (3a) will be assumed. The truth of the statement concerning the na-
ture of the ¢;(f) is a consequence of the following considerations. The elements
of the determinant w; . r(t) may contain positive integral powers of ¢ (cf. 2‘0);
these enter in the consecutive columns in such a way that by suitably combining
the columns it is possible to show that in the formal series expression for
w0y, . r(t) no such powers actually enter (compare with analogous situations in
(BT)). In this connection it is also essential that any wp is a positive rational
fraction. In view of the linear independence of the formal series we have
w. . r()= 0. For same reason c,(f) will not be identically zero. Hence the
difference operator Mr(y) is actually of order 1

Since the w,; .. :.(t) are representable by the determinants (2 c), respectively,

it follows that, except for a factor, M(y) is of the form

y (t) ()Q.(!) elr, log ¢ 01,1 (t) o eQ,y(r‘; e!r_[vll)p; o o, I(t)
y(t+1)
(3b) |77
_1/ (t+ I‘), eQ‘ (t+17) ‘,(?-i rrilogy 0.1’ . (t + I‘), o e(“'(f L) (,([-{ I')rlvlnu q GI,I'(t 4 I‘)

Consequently the series (2 d) constitute a set of linearly independent formal
solutions of the equation

(4) . Mrly)=o.

As the w; . ..(t) are also representable by the determinants (2 b) it is concluded

that there exist solutions #.(f) {ec=1....I") of the equation M,(y)=0 which
also satisfy the equation (4).
If we write

(4 a) My (y) = Mu—r Mr(y),

M,—r(2) will be a difference operator of order n—1I"

(4 b) Mp-p@)=2(t+n—D)+d (O z(t+n—-T—1)+ - +dn r(t)2(0).
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The coefficients d;(f) (¢=--1,...n-1") can be obtained by comparison and they
are of the same nature as the #;(f). The equation

(4 ¢) My_r(z)=0
possesses a linearly independent set of formal solutions

(5) My (er+ilt) gltvireloga gy p(8) (6=1,...0n—1).

Lemma, Suppose that
U S U= ST e S =
(1=I<n).
The equation (1} will be then necessarily fuctoralle,
Mauly) = Mer M (y),

in such « way that the difference operators Mp{y) (of order 1) and M, p(2) (of
order n—~ I') have analytic coefficients of the same nature as those of My(y). More-

over, the first I' formal series solutions of the equation M, (y)==0 will also satisfy
Mrly) o,
while the series (8) will constitute a set of formal solutions of the equution

Mur (Z) =— 0.

§$ 6. The Preliminary Lemma. We now proceed to the actual construc-
tion of solutions.

The equation M, (y) =0 (1; § 5) can be factored in the sense of the Lemma
of § 5 if, as will be supposed, there are more than one w-groups; that is, if we
have (1¢; § 2) with 6 > 1. The contrary case has been already treated by Car-
michael and Birkhoff. Several successive applications of the factorization Lemma
will result in the following factorization (valid in U; cf. § )

(1) Muly)= Mrp—r,  Mp,_—r, ... Mo, Mr,(y) (I'y=n).

Here the ¢ factors correspond to the ¢ pgroups. Now the equation M,(y)=o0
possesses » linearly independent formal series solutions e%'" ¢7!1969 g;(¢f) (j=1,... n),
where the ¢;(f) are g-series (cf. § 2). An equation
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(I a) . Mry-r, (?/l' )'Ml) =0. (1=£1=0; 1'0=O)

will be of order I''—1I3—;. It will be satistied by I;—1"—, linearly independent

formal solutions

(1Db) '. et grytlogg 0]‘ =1 () (j=Ii1+1,...1%),

where the ob*'(t) are o-series. The values of u in (1b) are all equal and so

these series converge in [J. The right boundary of U will be taken suitably far
to the left so as to enable taking the same region U for all equation (1 a).

First the equation
(2) Mr,(y®) = Mr,—r, Mr,(y") =0

will be solved. The equation M/, (y')=o0 has solutions
(2a) Y (f) == e4® gnjtloea g; (¢) (j=1,...1I).
Elements #4(t) (¢,j=1,... 1) will be defined by the relation
(2b) (@5(0) =it +¢— 1)) (G, J=1,...I%).
On the other hand, in view of (1b), the equation Mpr, (y*)==0 is satisfied by
the solutions : :
g (8) == e%® e"j“"“a;?'l(t) (j=I1+1,...1}).

The equation (2) will possess the I solutions (2 a),

i () == yj (t) (j=1,...Iy).

To find the remaining solutions the equations

3) Mo, (y") = g () (I +15j=T)

are to be solved. An equation (3) can be solved by formula (7) in (BT; § 7).
which was used in (BT) for an analogous purpose. Taking account of the dif-

ference in notation we have

(32) yj’(t)“—zly}.(t)éiu‘n(l‘+ ypHr)

Here the summation methods of § 4 are to be applied.
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The summand in (3 a) can be expressed in the form
(4) Py (E+ 1)y (8) = €%, #0475 31108 q ‘g-series],
2 N . 1
Q.alt) = Qit)= @ult); vz =ria + " (N, integer); 7,2 =1; — 2.
The ¢-series involved in (4) converges in U. Application of Lemma 1 (§ 4)

will give

9 . o ;
(4 a) ég}}_“(l‘%- Dyr (1) = et vrjatiory Z "l (2),

ot ) H=0

where the 7/,(f) (H=o0,1,...) are analytic and bounded in a region W, while
tlogq

(4 b) O~ F et +

for ¢ in a region W¢ Therefore, by {3a) and in virtue of the known form of
the yi(t) (A=1,... 1),

(4¢) v (f) = it grf tlosa 3 i ()

H=0

. .4\7
(]'1+ 1=7= 1, 7'1"2:7‘]‘-%- 8)_

The functions %% #(t) (/{==0,1,...) are analytic and bounded in W, moreover,

j
in We

tlog q
(4d) ) ~ o+ otile ¢+
In this sense, for ¢ in W,
4e) Bt ~eh0er rgi(t) . (I +1Sj= 1),

the symbol qi(t) denoting a o-series. We get a result of this kind for j=1I", + 1,
I'i42,...1%.

! In the derivation of this formula use is made of the fact that |(yj‘(t+i—l))| Gj=1,...I

is expressible as a product of an exponential factor by a o-series factor. The latter factor involves
no powers of {; this can be shown by suitably combining columns of the determinant.
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Consider the equation

(5) Mf'a(y&) = M['3_p2M['2(y3):O.

The nature of a set of solutions of Mp(y®) =0 in a region W has been deter-
mined above. We define the elements yj(f) by the relation

(5 a) @5 () = (uf (¢ +2—1))~ (@j=1,...T3)

.On the other hand, the functions (1b), formed for A=3, constitute a set of
solutions of the equation Mp_r,(9>?2) = o,

Yy (t) = e e’j“"gqa} () (j= I}—l— 1,...1%).

The equation (5) is satisfied by the solutions of M (y?) = o0 so that it will be
consistent to write
yi () = 9} (¢) =12, 1)

The remaining I'y— I, solutions are obtained by solving each one of the equations

© M) = 320 =ity
Now

s
64 W= 3 00 el + 1530

=1 e

Application of the summation method of Lemma 2 (§ 4) gives, after a simple
computation, the following result:

(6b) yi () = e%® i thoga 2 H 17]3; H(f)

=0

, : N; .
(1'2 +tI1=j =Ty 1=+ _9'1; N;, 1ntegers).

The functions 5} #(t) are analytic and bounded in a region of type W (u) while
the asymptotic relations

tlogg
(6¢) Al ~ ol +adille © 4 - (H=o,1,..))

350 73

will hold in a region W¢(u). In this sense, for ¢ in W¢(u),
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(64) uh (1) ~ e g irosa g (1) (I +1=j=T,)

where d (¢) is a o-series. There are I';— I, such solutions.
In the indicated manner the equations

MPI (yl) = Oa Mfz (y2) = O’ LR} Mn (yo) =0
are solved in succession.

The Preliminary Lemma, The equation M,(y)=o0 possesses a lnearly inde-
pendent set of solutions

i

( .
0) L = el 3 gy =1, .-
H=0 -
such that the nf(t) (H=o,1,...k; j=1,...n) are analytic (for t+# «) and are
bounded in a region W (u); moreover, they are such that in a region of type W<(u
9 P

. . tlog g
7a) RO~ o) —ofly +ofl et o+

(H=o0,1,...kj; j=1,...n).

The formal expressions

kj .
v o4t o oea 3 g1 1 (1 G=1,...)
H=0

will constitute a linearly independent set of formal series solutions of the equation.
Semilar results hold in regions W(l), W=4(l). There is an analogous situation, with
respect to a set of formal series solutions corresponding to % = o, 4n a right t-half
plane.!

Let wus consider a set of solutions y;(f) (j=1,...%) of the equation
M,(y) = o, whose existence in the above lemma has been asserted in connection
with a region W (u), for instance. The nature of the y;(t), in the upper t-half
plane, outside of T (u) can be determined by consideration of the corresponding
system (8; § 2), ‘
(8) k Y(t+ 1)=D() Y(2).

In We(u) .

(8a) Y(t) = (s (¢ + ¢ — 1)) ~ (% % 05(2))

! Provided that the coefficients of the equati»n are of the nature, in the vicinity of z=o0,
specified in § 1. ' Lo
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(cf. (8a;.§ 2)). Here the asymptotic relations hold with respect to the g-series
o;(t) (7, j=1,...n). By (8) it follows that

() YH)=D({t—1)... D(t—my) Y (t—m).

Let P(u) be the half plane bounded below by the line, parallel to the axis
of reals, which is obtainable by extending the lower boundary of W (u). For ¢
in P(u) the relation (9) will express the values of the y;(f). in terms of their
values in W (u) (or W#(u)), provided that (depending on f) m is taken sufficiently
great and provided that ¢ is not congruent from the right to a singularity of
an element of D(f). If the assumptions of § 1 hold both at x=0 and at x=c0
logg|

q
In general, it cannot be expected that asymptotic relations of any kind will be
valid for the solutions when ¢ is in U outside of W (u) and above the axis of
reals (or outside of W (l) in U and below the axis of reals, in the case when

all such singularities will be in a strip bounded by lines with the slope

solutions corresponding to W(l) are considered).
Analogous facts can be stated for a right thalf plane (that is, a neigh-
borhood of x=c0) by means of the relation

(9a) ZO) =D 'O)D~{t+1)... D"t +r— 1)Z(t + 7).

Here r is taken sufficiently great, depending on ¢. Moreover, ¢ should be not
congruent from the left to a singularity of an element of D—'(t—1).

§ 7. The Fundamental Existence Theorem. The regions W(u), W(l)
overlap along a strip S~ (bounded above and below by portions of lines parallel
to the axis of reals). This strip contains a part of the axis of reals.

Let
(1) vy (t) (j=1,2,...m)

be a set of solutions, corresponding W (u), and let
(ra) Y (®) =1,2,..)

be a set of solutions, corresponding to W(l). It is assumed that in W¢(u) and
W=(l), respectively, the sets (1) and (1a) are asymptotic to certain sets of formal
series solutions (as asserted in the Preliminary Lemma). These sets of formal

series solutions are essentially the same. Thus it may be assumed that
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(2 V(0 = (g (t+i— 1) ~ (59 e ay(e) = (1)
(05 == [(E—1) i+ 15} dog q; 0;5(t), o-series; 7, j=1,...7)

for t in W¢(u), while

(2a) Tl = (it +i— 1)) ~ (% 44 0y())

for ¢ in We(l). The matrix P'() (=p}(f)) of functions of period unity, defined
by the relation

(3) Yult) = Y'(t) P'(8),

consists of elements analytic (for ¢ o) in S~ and, necessarily, analytic in a
strip F containing the axis of reals. In virtue of (2) and (2 a) it follows that

tklogq
(3a) (wi(t) = (eri“) ¢riit1o8 g [g,-j +e * bfj(t)])
(Qilt) = @) — QuB); wi=1r5— 1)

where [bE(f)] <® (/,j=1,...%; t in S7) and k can be taken arbitrarily great.
Here (§;) = I (the identity matrix). In view of the ordering of the s it follows
that the MR Qu(t) (j <) approach minus infinity, as |¢{]— « in the strip S,
rapidly enough to insure the relations

pi(t) '—“I}ilm pi(t)=o
Rr=:J2" = 0; Rz’ <Rzx; x—2/, integer)

for ¢ >j. Similarly,
pult) = }ir? pilt) =1 (f=1,...7).
;
For 7 > ¢ we still have
pij(t) = 1|i11'1|1 pyt)=o
provided that 7 and j belong to the same p-group, that is provided that for
some » (1 =7 = o)
(4) [+ 1=i<j= T, (To =)
(ef. (1¢; § 2)). Thus )
I, 17’12(t) e plﬂ(t)
, o, I, . . . pinlt
() ws@)=4{ 7 p n_()
o, T ¢
6—3343. Acta mathematica. 61. Inprimé le 20 février 1933.
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A matrix of the general type of the second member of (5) will be called, in

accordance with Definition 11 of (BT), a half matrix. It is noted that in (5)

the only elements, to the right of the principal diagonal, which could at all be

not identically zero are the elements p; (t) for which no relation (4) holds.
Apply the substitution

On writing

it is observed that in a Laurent ring (¢, ¢,), formed by ecircles ¢, (|z]|=¢"279)
and ¢, (|z|=¢€>"% 0> 0), the g;(z) are analytic. As in (BT; pp. 74—73), it is
noted that, if g(2) is analytic in a ring (c,, ¢,), it follows that

_ v felQde 1 [g0)dd
(© “@”‘zﬁya_ff‘;—z ) 2”v__rj ;—e

Cy (41

Here the direction of integration is as in (BT; p. 75). The function a(z) will
be analytic interior ¢, while b(2) is analytic exterior ¢, We now proceed to the
determination of the half matrices A(z) (=(ay(2))), with elements analytic in-

terior to ¢;, and B(z) (= (b;(2))), with elements analytic exterior to ¢*, such that
(7) G(2) = Ble) A(e).

The ring (c}, ¢;) is to be slightly interior to (¢, ¢,). If A(z) and B(z) are half
matrices it is clear that (7) is satisfied for #=j. It remains to consider (7) with
i <j. We have

(79) 5(6) = 3 hise)as o) )

Choose the a;(z) and the b;(z) so that, whenever (4) holds,
(7b) a;(2) = bij(2) — o.

Then the equations (7a) will be satisfied whenever i and j are of the same pu-
group. Thus it is necessary to consider (7 a) only for values of 7 and j such that

' +1=¢=T<Irat1=5=1) . (I'y==1).
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We group equations (7 a), for o=1,2,...%—1, in sets
i+o
(8) : i, i+0(2) =2 bis(2) as, i40(2) (t=1,...n—o0).
i=i
These sets are solved in succession for ¢=1,2,..., as in (BT; pp. 75—78) and

on making use of (6). The sets of functions

(8a)  gim(e)= g_z',i+m(2')+ Bi, 1+1(2) @i41,4m(2) + b, s42(2) Givo, samle) + -
+ by, s4m—1(2) Gitm—1, s+m(2)] (z=1,...0n—m)

are determined for m==1, 2, ... », while we also obtain in succession, for m==1, 2, ... %,
the functions

” I S /R
e ‘ aene) = 22V —1 v t—z
n () d
bi,sem (2) = M}I/__—I f@z"%(i)ﬁ—g (i=1,2,...0-m)!

Let !
{ery (1)) = (ay (2)), (85 (6) = (b (2))-

On making use of (8 b) the following facts are proved. The e;(#) are of period
unity, are analytic for It = —¢ (0 > ¢ > 0) and the @;(f) are of period unity,
analytic for J¢t = — ¢. Moreover, :

(80) dij(t)=e2ﬂyj]“1jta3+

(s, integer, = 0),

where the second member is a series in positive powers of 7" =1t convergent
for J¢=<¢ On the other hand,

(84, integer, = 1),

Y

where the second member is a series in positive powers of ¢ 1t convergent

! Here the Laurent ring (c’ln, cgb) is slightly interior to (071'1"1, 07;%—1), all such rings being
interior to (c,, ¢,).
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for 3¢ < ¢. Furthermore, (e;(8))~" = &;(f)) is a half matrix, with elements analytic
for It = — ¢ and such that

(8e) ayl{t) = eV =Tt af + -
v (ay, integer; 7 << j).
Whenever 7 and j satisfy (4)

(9) ay(t) = By(t) + aylt) =o."
Now '

(10) 17“(0(&U(ﬁ)=¥ Y(t) (85(2) (= Y(d).

It is clear that Y*(f) is a matrix solution of the system (8; § 6), corresponding
‘to the equation My,(y)==o0. Its elements, yj;(t), are analytic (for {7 o) in the
combined region W= W(u) + W(I).

By (2)

(1) )= eww s Losgg + e w(6]).

Here of(¢) is 0;(f) with the power series factors terminated after my (my— oo, as

k— ) terms and % can be taken arbitrarily great; moreover,
80| < b (in W* )
On using (8 ¢) and (10) it follows that, for ¢ in W*(u; —c),

Jj—1

(r1a) yi(t) = y(t JrZyMau

ktlog q

— ettty Loy + e+ vr() + a0,

where .
j—1 ktlogq

(1) ol — 3, -0 0 g+ ¢ v plo) (@rV = aa + ),
A=1

In the second member of (11b) only those terms may be present for which 2
and j are in different u-groups. Hence, if we write

Qi(t) — Qi(t) = ut* log g,

' This follows by the reasoning employed in (BT) for an analogous purpose.
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the constant pu will be negative for each term in (11b). As |t]—> o in We(u)
(and in We= We(u) + We(l)) R[Q(¢) — @;(#)] will approach minus infinity rapidly
enough to insure the asymptotic relationship

(11¢) ra(t) ~ o,
which will be valid in W¢(u; —c¢). In the latter region, then,
(12) | Y™ (8~ S(H).

Similarly, using (10), (2a) and (8 d), it can be shown that (12) holds in a region
We(l; ¢). Hence (12) holds in a region W
Let I'(t) denote a formal matrix solution corresponding to w=1c. Then

there exists a matrix solution
(12a) Z*(t) = (e(t) ~ T'(8)
' (t in V¥

with elements analytic in V.
Results of the above type will also hold for any system (5; § 2)

(13) T+ 0=BO YO,

corresponding to a g-difference system (1; § 1).

The Fundamental Existence Theorem. The difference system (13), corres-
ponding to a g-difference system (5; § 2), will always possess a matrix solution
Y*(t), of elements analytic tn W, such that

(13 ) Ye(t) ~ S

Jor t in We  This system will also possess a matriz solution Z*(t), of elements
analytee in V, such that

(13b) Z*() ~ r(t)

Jor t in Ve, Here S(t) and I (t) are formal matriz solutions corresponding to x=o0

and x=%, respectively.

The implications of this theorem for a g¢-difference system are obvious.



38 W. J. Trjitzinsky.

§ 8. Connection between the ‘left’ and the ‘right’ Solutions. The limiting
directions at infinity of the wupper and lower boundaries of W are at right
angles. The same is true of V. These regions, as well as W¢ and V¢, each
extend indefinitely upwards and downwards from the axis of reals. Let Y*(f)
and Z*(f) be matrix solutions of the Fundamental Existence Theorem. The ele-
ments py;(t) of the matrix P(f), defined by the relation

(1) Y*(t) = Z* (1) P(t),
are of period unity. On making use of the matrix equation it follows that
(2) P(t) = Z*_l(t+7‘[) B(t+7'z—I)B(t+7‘g—2> e B(t)B(t—I) . If(t—lt) Y*(t—][\)

The important case when the coefficients of the g-difference equation (or system)
1
are rational in 2z (or x") is reducible to the case when they are polynomials
1

in = (or :c“_). -In the latter case the coefficients of the corresponding difference

equation (or system) will be entire in ¢ (being polynomials in e “_). The p;(t)
will be then entire in ¢ This can be seen by taking the integers 1, I in (2),
depending on ¢, sufficiently great so that ¢+ is in V*, say, and {—U is in W,
Moreover, by taking 1 also so that |#+¢| = ¢ (¢ independent of ¢ and sufficiently
great), the non vanishing of the determinant | Z*(t+1)| will be secured in virtue
of (13b; § 7).

As shown by Birkhoff, in the case when u, =g, =: -+ — u, (and when the
coefficients are polynomials in z) the p;(¢) are expressible in terms of the Weier-
strass sigma-functions (B; pp. 361—569). In the general case at hand, however,
even if the formal series solutions, corresponding to x =0 and x = », converge
nothing of corresponding simplicity can be obtained.



