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1. Introduction. For any ternary quadratic form f(x, y, 2z) with integral
coefficients there are usually congruences f'= & (mod m) which are not solvable,
whence no number m#n + h is represented by f, where » is an integer. For in-
stance, f=ua®+ 9y + 2*=3 (mod 4) implies that x, y and z are odd, whence
S=3 (mod 8). Tt follows that f represents no number 8# -+ 7 where n is an
integer. Similarly f may be shown to represent no number 4*(87 + 7). In this
case, these are the only numbers congruentially excluded. For any form the
numbers so excluded consist of certain arithmetic progressions of the forms
2"(8n + a), p*(pn + b), where » and s range over some or all non-negative inte-
gers, a is odd, p is an odd prime factor of the determinant of f, and b ranges
over the quadratic residues or non-residues of p» or both. H. J. S. Smith's
definition of genus' in terms of the characters (f | p) etc., of the form and its
reciprocal, is equivalent® to the following: two forms of the same determinant are
in the same genus if the progressions associated, as above, with the forms are the
same. Two forms are of the same genus, as proved by H. J. 8. Smith, if and only
if one can be carried into the other by a linear transformation of determinant 1
and whose coefficients are rational numbers whose denominators are prime to
twice the determinant of the forms. It is therefore natural in this article that

the solution of problems in genera of several classes® is found by use of such

' H.J. 8. SmirH, Collected Papers, vol. 1, pp. 455—509; Philosophical Transactions, vol. 157,
Pp. 255—298.

* B. W. Jongs, Trans. Amer. Math. Soc., vol. 33 (1931), pp. 92—110; also ARNOLD Ross
Proc. Nat. Acad. Sc., vol. 18 (1932), pp. 600—608.

¥ Two forms are of the same class if one may be taken into the other by a linear trans
formation with infegral coefficients and of determinant I; i.e. by a unimodular transformation.
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rational transformations. A second important property is that, given a genus
and its associated progressions, every number not in one of the progressions is
represented by at least one form of the genus. If it happens that one form
represents all the numbers not in the progressions, that form is called regular.®
It follows that whenever there is but one class in the genus, that class (and
hence every form in the class) is regular.

Though, subject to certain restrictions on the invariants, there is in each
genus® of dndefinite ternaries only one class, this is not so generally the case
for positive forms. Hence problems concerning the numbers represented by posi-
tive forms are generally more difficult than is the case for indefinite forms. We
consider in this paper only positive forms.

A few positive regular forms were studied previous to their designation as
such. The first complete proof of the fact that z® + y® + 2* represents exclu-~
sively all positive integers % 4*(8n + 7) was given by Legendre and was followed
by simpler proofs by Gauss and Dirichlet.* Similar results for 2* + y° + a2®
where @ =12, 3 or § were obtained by Lebesgue, Dirichlet and Liouville. A
limited number of allied forms had also been dealt with. Since all these forms
are in genera of ome class, their regularity now follows from the second pro-
perty of genera mentioned above. In 1916 Ramanujan® employed a number of
such results, empirically obtained, in making his list of positive forms aa® +
+ by® + ce? + dt* which represent all positive integers. It was this and his
remark that the odd integers not represented by * + »° + 102® seemed to follow
no definite law, that led to Dickson’s definition of regularity and the systematic
investigation which followed. ,

Using Dickson’s methods and extensions of them it was found® that every

primitive form (a, b, ¢) not in table T (p. 190) was irregular.” Ninety-six of

' B. W. JonEs, Trans. Amer. Math. Soc., vol. 33 (1931), pp. I11—1I24.

? L. E. Dickson, Annals of Math., (2), vol. 28 (1927), pp. 333—341.

8 A. MEYER gave a partial proof in Jowrnal fiir Mathematik, vol. 108 (1891), pp. 125—139.
For a complete proof with further references see L. E. DicksoN, Studies in the Theory of Num-
bers, chap. 4.

* For references see DIcksoN, History of the Theory of Numbers, vol. 2.

5 8. RAMANUJAN, Proc. Cambridge Phil. Soc., vol. 19 (1916), pp. 11—21; also Collected
Papers, pp. 169g—178.

® B. W. JoNEs, »The Representation of Integers by Positive Ternary Quadratic Forms», a
University of Chicago thesis (1928), unpublished.

" In the thesis the form (1, 5, 200) was erroneously reported to be regular. It fails to
represent 44 and hence is irregular. The rest of the table has been checked and found to be
correct.
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these forms were proved regular in the thesis or previous to it -— some by
laborious methods. In this paper we prove certain theorems, which, starting
with certain basic forms, may be used to show quickly that eighty-two of these
forms are each in genera of one class and hence are regular. These eighty-
two forms are the only primitive positive ternary quadratic forms without
cross-products which are in genera of one class. We also sketch the methods
used in the thesis to prove the regularity of several forms in genera of more
than one class. By ome or other of these methods it may be established that
ninety-three of the 102 forms of table I are regular. The form (1, 1, 16)!
was proved regular by using theta function expansions? and later (1, 2, 32)
yielded to the same method. The regularity of (1, 4, 16), (1, 16, 16) and
(1, 8, 32) follow directly from these results. However, the regularity of the

remaining forms
(4) (1, 8, 64), (1, 3, 36)

and two derivable from the latter has hitherto remained unproved. It may be
noted that the forms (1, 1, 16), (1, 16, 16), (1, 3, 36), (1, 12, 36), (1, 4, 16) and
(1, 8, 64) are the only regular forms of the table which are in genera of more
than one class and whose reciprocal forms are also regular.

In this paper we prove by means of the rational automorphs of z®+y*+1Az*
(A =1, 2, 3), in the convenient guise of quaternions, that the forms (A), (1, 1, 16),
(1, 2, 32) and a few others of special interest are regular. We have succeeded
in proving regular all forms which we have been able to discover as apparently
regular. With the exception of (1, 48, 144) which belongs to a genus of four
classes, all regular forms (a, b, c¢) belong to genera of one or two classes. The
companion class we find, in many cases, is regular except that either it fails to
represent a finite number of integers represented by forms of the genus, or it
fails to represent an infinite number specified by a finite number of formulas
involving square factors: for example, all odd squares whose every prime factor
is in some cases = 1 (mod 4) and in other cases = I(mod 3). These almost
regular forms are new and are one of the most significant products of the
method of proof. We may call attention to the form g=(8, 12, 21 —6, 0, 0),

! that is ®*+ ¢+ 162%. Similarly e2®+by*+c2*+2ryz+2sx2z+ 2ty is denoted by
(a, b, e, 7,8, 8.

* Nazimo¥rFr, Applications of the Theory of Elliptic Functions io the Theory of Numbers
(Russian) translated by Arnold Chaimovitch. The proof for this form was indicated by Nazimoff
and carried out by Chaimovitch.
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the companion of the regular form f= (5, 5, 72, 0, 0, —2); ¢ is regular with
the single exception of the number 5. (4, 8, 9, 0, —2, 0) has a similar property.
In table IT we list all regular primitive forms (a, b, ¢) with more than one class
in a genus, and their companion forms; in addition, two examples with cross
products.

Ramanujan’s form (1, 1, 10) was observed by him to be regular for even
numbers and he found that the following odds were not represented: 3, 7, 21,
31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391. If he had gone farther
he would have found only one more odd number less than 2000 not represented,
viz. 679. Although we have no complete proof, this form seems to be regular
with these seventeen exceptions.

In this connection, some results of Tartakowsky' with regard to forms of s
variables for s = 4 are of interest. He claims to prove that if s = 5, all forms
in a genus represent the same sufficiently large numbers and a similar result
with a restriction if s=4. Our results as listed in table IT would indicate
that his theorem would be true for s = 3 in some cases, e.g. for the genus of
(1, 2, 32) and false in some other cases, e.g. for the genus of (1, 1, 16).

The regularity of the forms (A), (1, 1, 16) and (1, 2, 32) is connected with
special cases proved in Theorem 5 of a phenomenon in the representation of
quadratic residues (mod 8d) by ternary quadratic forms of determinant d. Other
examples are easily obtained empirically, and perhaps can be proved by methods
like those in section 4. Several examples connected with (1, 1, 1) have been
given as consequences of elliptic identities by Jacobi and Glaisher® and these were
recently generalized.® One of the most interesting examples is the following:
if 247 4+ 1 =25 (s> 0), then all proper solutions of 24n+ 1=22+29y’—2y2z+22*
satisfy =+ 1 (mod 12) if s=1 or § but x= + 5 (mod 12) if s=7 or 11
(mod 12); but if 247n + 15 there are equally many solutions of each type.
This has recently been verified by E. Rosenthall.

2. Though, to prove a form regular, it is sufficient, from the above discus-

' W. A. TarRrAROWsKY, Comptes Rendus de U Académie des Sciences, vol. 186 (1928), pp.
1337—1340, 1401—1403, 1684—1687. Errata in the second paper are corrected in vol. 187, p. 155.
Complete paper in Bull. Ak. Sc. U.R. 8. 8. (7) (1929), pp. 111—22, 165—q6.

* For references see DICKsoN, History of the Theory of Numbers, vol. 2, pp. 261—3 and
p- 268 respectively. For example Glaisher states the following in Messenger of Mathematics, new
series vol. 6, (1877), p. 104: The excess of the number of representations of 8 n+1 in the form
x*+4y*+47* with y and z even over the number of representations with y and z odd is zero if
8n+1 is not a square and 2(—1)s—1)/2s if 8n+1==s%

! GorDON PALL, Amer. Journ. of Math. (1937), vol. 59, pp. 895—913.
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sion, to prove that it is in a genus of one class, such a proof is usually very
tedious especially if the form in question lies outside the range of the table of
reduced forms." We hence prove in this section a new theorem which, with its
modifications not only proves with considerable celerity that most of the forms
in table I are in genera of one class but determines the number of classes in

the genera of the remaining forms. We shall use the following

Lemma: Given two primitive ternary quadratic forms f and g of the same
genus, then for every v whose every prime factor is a factor of their determin-
ant, there exists a form ¢ equivalent to f whose coefficients are congruent to
the corresponding coefficients of g (mod V).

This may be proved as follows. By a theorem quoted above, there is a
transformation (f;/r) taking f into g where f; are integers and 7 is an integer
prime to twice the determinant of f. Then for any v of the lemma we find an
s such that r¢=1 (mod v). The transformation (st;) will take f into a form
=g (mod V) and the determinant of the transformation is = 1 (mod v). Then
by a theorem of Smith? we can find a transformation (u;) of determinant 1 such
that ;= st; (mod v) for every 7 and j. This transformation will take f into

¢ =g (mod v).

Theorem 1. JIf g—a,x* + B, 4" + y,2° is primitive, if 0 = 0*0 s a common
Jactor of B, and y, where o s without a square factor and if f= o, 2*+(8,/0)y* +

+ (y,/0) 2 is in a genus of one class, g is in a genus of one class provided
(B) f=o0a, (mod o2 implies y=z= 0 (mod ¢ o)

where L is the g.c. d. of e, By, a1, Bi71
To prove this consider a form h in the same genus as g. Then, by the

lemma, we may assume that 2 =g (mod 2!. Now

! E1sENSTEIN, Jowrnal fiir Mathematik, vol. 41 (1851), pp. 141—190 gives a table for deter-
minants from I to Ioo. .

ARNOLD Ross, in Studies in the Theory of Numbers by L. E. DICKsoX, pp. 181—185 has a
table for determinants from 1 to 5o.

E. Borissow, Reduction of Positive Ternary Quadratic Forms by Selling's Method, with a
Talble of Reduced Forms for all Determinants from 1 to 200. St. Petersburg (1890}, 1—108; tables
I—116 (Russian).

B. W. Jones, 4 Table of Eisenstein-reduced Positive Ternary Quadralic Forms of Deter-
minant = 200 (1935), Bulletin No. 97 of the National Research Council.

* H. J. 8. SmitH, Collected Papers, vol. 2, p. 635; also Mémoires présentés par divers Sa-
vants & U Académie des Sciences de 1'Insiitut de France (2), vol. 29 (1887), No. 1, 72 Pp.

22—38333. Acta mathematica. 70. Tmprimé le 2 décembro 1938.
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takes g into 0/ and will take h into a form d¢ of the same genus as df, since’
J represents a number N if and only if dV is represented by g while ¢
represents N if and only if d N is represented by h, that is, the progressions
associated with f and with ¢ are the same. Then there is a unimodular
transformation R taking f into ¢. Hence K= U R U~! takes ¢ into h and if
R = (1) we have ’
P11 00r;, QO07Ty
K= \ry/00. Fas Tas

re /00 Vg2 T3

Hence ¢ and h will be equivalent if 7, =1, = 0 (mod g6). But the coefficient
of z*® in h is then ;15 -+ (8,73 + y,95,)/0 0 which must be an integer = «, (mod v).
Thus, if (B) holds, g is equivalent to h.

Modification 1. If f has an automorph 7, then replacing /'by 7" f T above
has the effect of replacing R by T'R. T will have the same effect on 7, 7y, 75
as it will on 2, y, # and hence if, for every », 7y, 7, there exists an automorph
T taking 7y, 74, 7y into 74, 7%, 75 such that 13, =1} =0 (mod ¢6) we may

conclude that ¢ and % are equivalent and hence that ¢ is in a genus of one class.

Corollary 1. If oa,=7y,/d and f=o0«, (mod ¢ 2*) implies y = 0 (mod g o)
and either  or 2=0 (mod ¢0), g is in a genus of one class. This follows from
the modification above since 75 = 0 (mod ¢¢) would imply 7,, = o (mod ¢o¢) and
the transformation x= —2', y= —y' z= —2z' is an automorph and would

interchange r; and r,. Similar results follow if 8/ =0, or 8/d=y,/0 =00a;.

Corollary 2. If go=12, 8,/ =1, y,/0 =3 and if f=o¢, (mod ¢ 2*) implies
y =z (mod 2), the theorem still holds, for

—1 0 o —1 o o
Ty=\ o —i1/2 —3/2}) and T,=| o —1/2 3/2
o —1/2 1/2 o 1/2 1/2

are automorphs of / and take 7, and 7y, into — (ry, + 373)/2, (— 7y + 74,)/2 or

! B. W. Joxngs, 4 New Definilion of Genus ... see earlier reference.
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(— 7oy + 3790/2, (rgy + r9)/2. If 5 and 2y, are odd, one of these pairs consists
of even integers.

Modification 2. 1f (B) holds, or the modification above, and fis in a genus
of more than one class, the number of classes in the genus of g is not more
than the number of classes in the genus of f. For, suppose the number of classes
in the genus of fis s. Then, if (B) holds for one form of the genus of g it
will hold for a represemntative of each class of forms. The transformation U
will lead to not more than s non-equivalent forms. And any two forms of the

genus of g which lead to equivalent forms are themselves equivalent.

Modification 3. If ¢=1 and f= ¢, (mod 2% in the theorem implies that
(B) holds or ome of the conditions, C,, (;, ..., C, on the variables holds and
if for every C; there is a transformation T, of determinant o® taking f into a
form of the genus of g; if further all the coefficients in the second and third
columns of ¢T;R U~! are integers and under condition C; the coefficients of
the first column are also; then the number of classes in the genus of g does not
exceed s where s is the number of classes in the genus of f.

This may be seen as follows: if ¢ is equivalent to f and if T, takes f
into g; we have T/ ¢g; T;=f. Hence ¢ T, R U~! takes ¢; into h and if the coef-
ficients of the first column of R satisfy (), ¢; is equivalent to h. Henece % will
be equivalent to one of the g;. If, on the other hand, ¢ is not equivalent to f,
the reasoning of modification 2 applies. ‘

Corollary 3. If o =2, r =12, 6=1 and C, is one of the following, the number
of classes in the genus of g is = 2s: y even and z=¢ (mod 2); x=y=z=1
(mod 2); x=y=0 (mod 2). In the first case take as 77! x=2x'+2', y=29¢,
z==2z" and see that the first column of 2 T, R U~ is (r,, — ry)/2, 75,/2, 13, while
all the other elements are integers. (), implies that all are integers. In the
second case TI,! is wz=2x'+2' y=2¢"+ 2", 2=2' and in the third case

=2z, y=2y' z=2" ‘

The theorem and the first two modifications suffice to prove that all forms
in table I which are not marked are in genera of one class if one first ascer-
tains from a table of reduced forms that the following are in genera of one
class: (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 5), (1, 1, 6), (1, 1, 21), (1, 2, 3), (1, 2, ),
(1, 3, 10). We show this for a few simple cases.

a) If g={(1, r, r?) where =2, 3, 5; then f of the theorem is ra®+y®+rz?,
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f=r (mod % implies y =7y, and z* + r¢y; + 2°=1 (mod »} which implies that
x or z=0 (mod 7). Corollary 1 applies with condition (B) to prove our result
since (1, 1, 7) is in a genus of one class and it is the reciprocal form of f.

b) if ¢ =1(1, 1, ) where r=24, 9, 12 or 24, g will be in a genus of one
class if and only if its reciprocal (1, », r) is. Replace g by its reciprocal and
S=0a+y* + 22=0 (mod +*) implies y =z =0 (mod go) or corollary 1 applies.
If r=28 we take f to be (1, 2, 2}

c) If y=1(4, 3, 12), take & =73 and have f= 122+ y® + 42" = 0 (mod 3)
implies that y =2z =0 (mod 3). Hence g is in a genus of one class if fis. Then
repeat the process using corollaries 1 and 2 on (I, 4, 12).

Corollary 3 may be used to prove that all the forms of table Il are in
genera of two classes except that (1, 48, 144) is in a genus of four classes.
Again we prove this for a few typical cases.

a) g — (1, 2, 32) has a reciprocal g = (1, 16, 32) which we consider in its
place. Then if we take d =14, f=a*+ 49® + 82° =1 (mod 8) implies y =z=0
{(inod 2) or z=2z=1 (mod 2) with y even and since f is in a genus of one class
from table I, the corollary applies to prove that g is in a genus of 1 or 2 classes.
Table II exhibits another reduced form of the same genus as g.

b) g =={(a, 46, 120) where @ is odd, =2, 4 or 6 (mod 8) and (@, b, 33} is
in a genus of one class. Taking 0 =4 we have f=ax’+by*+3bz" = ¢ (mod 8)
implies ¥ = 2 (mod 2) and = odd and hence the corollary applies.

c) g={1, 48, 144). Take § =4 and f= (1, 12, 36) and the corollary shows
that the number of classes in the genus of ¢ is = 2. If now we take y=(1, 12, 36)
and take 0 = 4 we have f={(1, 3, 9) and the application of the corollary shows
that since (1, 3, ¢) is in a genus of one class, {1, 12, 36} is in a genus of not
more than two classes and (1, 48, 144) in a genus of not more than four classes.
The table exhibits three other reduced forms of the genus.

d) g={(5, 5, 72, 0, 0o, —1). The replacement of x by x — 3y takes ¢ into
gl=52"+ 569y + 722 — 322y =52" + 56¢4* + 722° (mod 32). Hence taking
0=4, f=52+ 14y + 182" — 162y =352+ 149” + 182" (mod 16). Hence
/=135 (mod 16) implies y =2 (mod 2), = odd and the corollary shows that the
number of classes in the genus of ¢ is not more than two if f is in a genus
of one class. That this is the case follows from the fact that x =2, — 2y,
y=wx —y, z=2 takes f into 3z] + 2! + 182 which, from table I, is in a

genus of one class.
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e) That the form (1, 1, 3, 0, —1/2, 0) is in a genus of two classes may be
verified from the table.

We prove: g=(a, 4b, 12b) where a is odd and b=2, 4 or 6 (mod 8) is
regular if and only if f=(a, b, 3b) is. f=a (mod 8) implies ¥ = # (mod 2). If
JS=a (mod 8) with y and z odd we may choose the sign of # so that y = z (mod 4)
and both of ¢'=(y + 32)/2 and z' = (y — 2)/2 will be even. This transforma-
tion, however, is an automorph of /. Hence, if f represents an 0dd number with
y and z odd, it represents that same number with y and z even. Hence g repre-
sents the same odds that f does. The multiples of 4 represented by ¢ are 4
times the integers represented by f. This, together with the above theory, suf-
fices to prove the regularity of all forms of table Il except (1, 4, 36) and those
dealt with later in this paper.

That f=(1, 4, 36) is regular as to multiples of 3 or 4 is easily shown.
Using the form (1, 1, 1) it is not hard to prove that f represents all 122 + 1.
To prove that it represents all 12 + 5 replace y by ¥ + 32 and have the form
g=2a"+ 2y* + 2(62 + y)* equivalent to f. Since h=2*+ 24* + 2 Z* represents
all 127 + 5 we need merely to show that there is a representation with Z=y
(mod 6). We may choose Z prime to 3. We can show that 2+ 2¢°=120n+5—2 Z°
implies the existence of an + and s prime to 3 for which z® + 2y? =% + 2%
For if ¢ + 20 =k with « or b prime to 3, (@ + 4b)* + 2(2a — b)* = 9k where,
after an interchange of b and — & if necessary, ¢ + 46 and 2a — b are both
prime to 3. Repetition of this argument shows that if x= 3"z, y = 37y, with
a, or y, prime to 3 and zi + 24; = (12n + 5 — 2 Z*)/g? then an » and s of the
desired type exists, i.e. h represents 127 + 5 with x, ¥ and Z prime to 3. Then
y= 1 Z (mod 6) and replacing Z by — Z if necessary makes our proof complete.

3. '+ y*—yz+ 32% is regular. The forms of determinant 11/4,

2

S=2 Y —yz+ 32 and g=a*+y  +4t +txytyz+za,

represent a genus of two classes which represent between them all positive inte-
gers n # A, where A4 = 11*"*1(11k + 2, 6, 7, 8§ or 10). Similarly, every n % A4

is represented in either f; or g, where
fi=2P P+ 112t g =2+ 3y —2yz+ 42t

represent the two classes of a genus of determinant 11. Now
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n=f, yields 4n =42+ (29" + 11(22)",
n=yg, yields 4n =4z + {42 —y)* + 119",
Hence for every = % 4, 4n is represented in (4, 1, 11), that is |
an=42"+2y—2)?+ 112 n=2"+y —yz+ 32

whence f is regular.

It is interesting to mote that ¢ and g, represent the same numbers, but that
J represents numbers that f; does not, e.g. 3.

The reduced form for fis x® + y* + 322 —xez.

4. The letters a, b, ¢, ¢, ..., 2z will denote in this section integral quatern-

ions of the type

(1) t=1¢, + 4t +jt,+ kt,, t, ... t; rational integers,
where

(2)

-

y 17:—;‘7 kz:_;'y

(j==ji=k ki=—ik=j, jk=—kj=ii,
4 denoting a fixed positive integer. For this section we assume that
(3) A=1, 2 or 3.

Conjugates are defined as usual (with ¢ replaced by — <, j by —j, & by — &).
Then the norm of ¢ is given by

(4) Nit=ti=ft=08(+E+ 18+ At

The unit-quaternions, of norm 1, to be denoted by 0, are respectively
(5) t+1, £4, *jand +& if 1;1,
{6) +1and t7 if A=2 oi- 3.

With any quaternion ¢ we link the class of its left-associates 64, § ranging over
the ¢ values (5) or (6), (and similarly for right-associates). Here

(7) 6=8 if L=1, g==4 if 1=12 or 3.

A quaternion is called proper if its coordinates are coprime,
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We require the following fundamental result:

Theorem 2. A proper quaternion x of norm divisible by a posttive odd integer
m, has exactly o right-divisors (left-divisors) of norm m, these forming a class of
left-associates (right-associates).

This was first proved in the case 2 =1 and m prime by Lipschitz. For the
cases A=1 and 3, but m prime, it follows immediately from Hilfssitze 8 and
10 of L. E. Dickson’s Algebren und ihren Zahlentheorie, pp. 167 and 170 (it
being necessary to transform Dickson’s integral quaternions into ours by suit-
able unit factors).

Let us note first that if the theorem is true for x of odd norm it follows
for Nz even. For if x=wut where Nt=m, then x + m = (u -+ #)¢{; whence z
and m + x have the same right-divisors of norm m.

Second we extend the theorem from #: prime to m composite.

I. Existence. Assume the truth of the theorem for products m of r —1
primes. Write m = np, n being a product of » — 1 primes, p a prime. Then
z=wut, Nt=p; and since n| Nu, = vw, where N = n; hence x = vw{, and
N(wt)=m.

II. Uniqueness up to a left-unit factor. With the same hypothesis assume
if possible that x = uv=1'v', where Nv=Nv =m =np. We canset v=wt
and v'=w't, Nt=p=N+t. Since ¢ and ¢ are right-divisors of norm p of z,
t' =40t for a unit 6, and ww =« w' 0 follows on cancelling the right-factor ¢.
Here the divisor ww of x is proper and has both w and w0 as right-divisors of
norm #. By the induction-hypothesis w and '@ are left-associates and the same
follows for v and v'.

Third we extend the theorem from 4= 1 to A= 2. There is a (1, 1) cor-

respondence between the quaternions

(8) x=x,+ 12, +jay + ks, 2, =25 (mod 2), x, ..., x5 integers
in which A=1 (i.e. 2=#k= —1, jk =1, etc),

and the quaternions

(9) y=y0+Iy1—I;Jy.2+Kg/3, Yo, - - - Yy integers,

in which . =12 (i.e. I*’= -1, J?=K?= —2, JK =21, ete.).

This correspondence is set up under the transformations
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I=i J=j—%k K=j+k,
To=1Yo, Xy=Y1, Tz=Ys T Yo Xz=1Y3 Yo
The norm is preserved under these transformations:
i+ttt =yt i+ 2y + 20

Every relation in quaternions (8) is immediately interpretable in quaternions (9)
and conversely. If x==wut, = and # being of type (8), the same is true of u if
Nt is odd; for a product of quaternions of type (8) must be of the same type,
in view of the correspondence with (g), and u = x#/ Nt

Finally, consider a quaternion (9) of odd norm divisible by m. The cor-
responding quaternion (8) has eight right-divisors ¢ of norm m. Exactly four
of these have their last two coordinates congruent (mod 2). The corresponding

quaternions of type (9) are the right-divisors sought in Theorem 2 for 1 = 2.
Theorem 3. Let x =74z, + jx, + kxy be a proper pure quaternion of norm

(11) Am?® =gy + Lai =+ dag,

where m s odd and positive, and (3) holds. Then x is of the form

{12) rz="Fat,

where t 18 of norm m, and a is a pure quaternion of norm A.

For by Theorem 2 we can write z = vt, Nt = m. Further since Z=10= —z,
f and its right-associates are the only left-divisors of z of norm m. But m|Nwv.
Hence v={%a, where a has integer coordinates, and (as is seen on taking norms)
Na= 1. Thus x=17at. Evidently a is pure along with fat.

By (11), A'z,. Replacing =, by Ly, we obtain

(13) m?= Ay + af + 2l

Using merely the fact that m®=1 (mod 8) if A=1 or 2, m®*=1 (mod 24) if
A==3, we obtain for (13) the following mutually exclusive and exhaustive pos-
sibilities A and B:

A
if A=, Zy OF X3 =0 (mod 4) Zy OF Xy

Il =

2 (mod 4)
if A==2, Zy OF Xy =0 (mod 8) x; or oy =4 (mod 8)
if =13, 3/m, x, or xy=o0 (mod 6) xy or 23 =3 (mod 6).
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Theorem 4. Let m be positive and prime to 24. All proper solutions of (13)
satisfy A if (—A|lm)=1, but B ¢f (—ijm)= —1.

By Theorem 3 it suffices to show that if ais a pure quaternion of norm A
and Nt=m, then x =fat=17x + jx, + k x; satisfies A if (—Alm)=1, and B
if (—Alm)=—1. Now if a=7a, +ja, + ka,, x is given by

=+ 6 — A8 — A a, + 24(tt; + b b ay + 2A(— 1oty + 1, 15) as,
(14)  amo=2(—tyty+tita, + L+ AB— 86— A8 ay + 2(t b + Aiyty) as,

Xy=2(lty + tity)ay + 2(—t by + Ayt a, + (o + A8 — 8 — A 8)) a,.

Firgt consider 4 =1. It will be seen that z,, x,, and xz; are obtained from
each other by permuting subscripts 1, 2, 3 cyclically. Hence by symmetry we
can take a =4, that is ¢, =1, ay=a3;=0. If m=+ 6+ 6+ =1 (mod 4),
three of the i are even, one odd, and a glance at {14) shows that z, or ;=0
(mod 4). If m==3 (mod 4) three # are odd, one even, and (14) shows that z,
or x; =2 (mod 4).

Second let 1—=2. We take a,=1, a,=a;=0 as a typical case. Now
m=1t8+6+26+26¢ If m=1 or 3 (mod8), then if ¢ and ¢, are odd, one
of t, and ¢ is odd, the other double of an odd, x,=2(— 2 + 2) =0 (mod 8);
if t, or t; is even, then ¢, or ¢ is odd, the other divisible by 4, whence
#y=2(0-+o0)=o0 (mod 8). If m=3 or 7 (mod 8), and ¢, and ¢, are odd, then
t, or t, is odd, the other divisible by 4, xz;=2(0 + 2) =4 (mod 8); but if ¢, or
t, is even, then ¢, or ¢, is odd, the other double an odd, z, = 2 (2 +0)= 4 (mod 8).

Third let A=3. We take ay=1, a,=a,=0 as typical. Now m =1 +
+ 1+ 36+ 386 If m=1 (mod6), ¢ or ¢ is divisible by 3, the other prime
to 3, whence zy = 2(— t)¢, + 34 t) =0 (mod 3). Evidently z, is also even. If
m=75 (mod 6) f, and ¢ are both prime to 3, and zy=18 + 386 — i — 38 is
divisible by 3; it is also odd.

These results become more interesting in the light of

Theorem 5. If A=1 or 2 and n s of the foom 8f+ 1, or ¢f A=3 and
n=24f+ 1, but n vs not a square, then

(15) n=2Lyi + a5 + =}

possesses equally many solutions satisfying A or B.

We observed before Theorem 4 that all solutions of {13) for the given forms
23-—38333. Acta mathematica. 70. Imprimé le 2 décembre 1938,
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of » satisfy A or B but not both. We shall set up a (o, 10) correspondence
between the solutions of the two types.
To do this we fix upon a prime p satisfying both of

(16) (pln) = —1, (=Alp)=—1

This is possible since % is not a square in virtue of Dirichlet's theorem on
the existence of primes in an arithmetical progression. Since n = 1 (mod 4), (16)

implies (— A#nlp)==1; hence we can choose an integer x, such that

(17) Aot + n=o0 (mod p).

Since the property A or B is unaffected by the removal of a common odd
factor from ¢,, @, and z,, and since in all solutions z, or x; is prime to 4, we
can restrict attention to proper solutions. Let &==1i7y, + jx, + kx, represent

a proper solution of (15). Then
(18) NE=1IAn, and N(Azy + & =A(A2} + n) =0 (mod p).
By Theorem 1, A2, + & possesses a right-divisor ¢ of norm p:
(19) lay +E=ut, Nt=np.

From (19) we obtain at once
(20) tu— Ly, =tEi/p.

Thus (t&%)/p has integral coordinates, is pure (along with &), has its coefficient
of ¢ divisible by 4 (as will be evident from (22)), and is of norm (N¢- N&- Ni)/p* =
= N&=1in, and hence represents another proper integral solution of (13), proper

sinee any common divisor of the coordinates of

(21) n="{tED/p=2Adw, + juv, + ko,

divides the coordinates of &= (fnt)lp. Set t§f=iz +jz, + kz,; then
=0+ =28 —28)Ay, + 24 (— bty + L) oy + 24(Lts + t, 1) 2y,

(22) y=2(tty + t,8) Ay, + (B + AL — £ — Af)ay + 2(— tyb, + Aty 4))
zy=2(—toty + Lt Ay, + 2(tt, + Aty ty)y + (6 + A5 — 6§ — A1) 2,

If ¢ is replaced in (19) by a left-associate ¢ then % in (21) is replaced by
6756 which (as is easily verified) is obtained from % by
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(23) merely changing the signs of v, and v, if A=2 or 3,
23 :

merely changing signs of two of wu,, v, v,, if A= 1.
If the same sequence of operations be applied to 5 instead of £ with the
same p, but with — x, in place of x, we obtain  for a right-divisor and are led
back to &; for by (20), — Ax, + p=(— @)¢ Also the 4o quaternions 650 lead
in (19) to t0, and hence again to

n=(tE)/p=(t0-0E6-00)/p.

Let wus anticipate the proof below that if § is of type A then 7 is of type
B and vice-versa. Then to each set of {o representations of type A we corre-
spond the set of type B obtained by means of p and z,; but for sets of type
B we use p with —x,. Two sets of type A cannot correspond in this way to
the same set of type B: for by the above argument the latter set must lead back
to both of the former, contrary to the statement about (23).

Finally we prove that if § is of type A, 7 is of type B. The converse will
follow by parity. Since p is prime to -2 4, it suffices to show that t§# is of
type B.

Let A=1. Then p= 3 (mod 4), three ¢ are odd, one even. We can suppose
by symmetry that 2, = x; =0 (mod 4). Then by (22) obviously z, =z, = 2.

Let A=2. Then p=75 or 7 (mod8). By symmetry we can take z;=o0
(inod 8), x, 0odd. By residues (mod 8) in (15) », must be even. Since

h+t6+26+265=735 or 7 (mod 8),

one of t, and # is odd, the other =2 or o (mod 4) according as f,t; is even or
odd; hence 23 =2(f,t, + 2t,t,) = 4 (mod 8).

Let A=13. Then p=5 (mod 6), p=1+ £ + 38 + 38, {, and f, prime to 3.
Suppose z; =0 (mod 6). By (15), x, is odd and prime to 3, ¥, is even, y;=x,=0
or 2 (mod 4). Hence z,=(ff + 38 — i — 3{)x, =0 (mod 3) and also =¢,+1,+
+t, + t;=1 (mod 2); that is 2, = 3 (mod 6).

Avpart from similar cases this completes the proof of Theorem 5. To take
an example, 73 = 327 + % + 22 has the solutions (4; 5, o) and (2; 5, 6) of type
A; and (4; 4, 3) and (0; 8, 3) of type B.

Theorem 6. ILvery positive integer of the form 8w + 1 15 represented in

(I’ I) 16)’ (I7 4) 16)’ (I’ I67 16)7 (I’ 2! 32)’ (15 87 32)> (L/'Zd (I) 8’ 64)!
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and every positive integer of the form 24mn -+ 1 w8 represented in
(1, 3, 36), (1, 12, 36), and {1, 48, 144).

All the results of Theorem 6 are trivial for the case of a square. For a
non-square the required representation follows at -once from Theorem 5 in the

case of
(19 I’ 16)) (2’ I) 64‘)’ (37 I’ 36)'

From 8n+ 1=(1, 1, 16) follows z, or z,=o0 (mod 4); which takes care of
(1, 4, 16) and (1, 16, 16). From 8u + 1 = (2, 1, 64) follows z, even, 8§n + 1 =
=(8, 1, 64). From 8k + 1=(3, 1, 36) follows x, even, 8% + 1 = (12, 1, 36).
From 8% + 1 =(1, 12, 36) follows x, = x; (mod 2), whence 8%+ 1 =(1, 48, 144)
unless z, and z, are odd; then 8% + 1 = a1 + 48 ¥; + 14495 with

Ya=1(@ L 3x), #y=1(2 T x3)

By Theorem 5 with A=1, 8n + 1 =xi + 495 + 4y; with y, and y, odd, if
8n + 1 is not a square, this being a representation of type B. Hence

8n+ 1=+ 2(y, + u) + 2(y: — 9%,

where by choice of signs, #; + ¥, = 2 (inod 4), ¥, — ¢, =0 (mod 4). The results
stated for {1, 2, 32) and (1, 8, 32} follow. '

That. all other integers of the genera of these forms can be represented
thereby can easily be proved and was proved in B. W. Jones’ Chicago Disserta-

tion. For example to represent 8 + 3 in (1, 2, 32) we start with a representation
8n + 3=yl +y: + ¥,

wherein the y; are necessarily odd and we can choose their signs and order to
secure ¥, =y, (mod 8); then 8n + 3 =1y; + 2}y, + 3u5)? + 32 ((y; — v5)/8)%

Corollary. All the forms listed in Theorem 6 are regular.

5. There are also interesting properties of the companion forms in the
genera of each of the forms listed in Theorem 6. Consider for example

f=2+y'+162* and g=22  +2y ' +g2?—2ye—2zax=(x+y—2)+{x—y)*+ 47

which are the reduced forms of a genus of determinant 16 (cf. Table II). To

every representation of an 8% + 1 in f corresponds a solution of
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(E) 8n+ 1=y + 495 + 49

with y, and y, even; and to every representation in ¢ corresponds a solution of
(E) with y, and y,; odd. Hence Theorem z together with the fact that every
8n+ 1 is a sum of three squares shows that every 8» + 1 not a square is
represented equally often in both f and g. On the other hand f obviously
represents every m®. But g represents properly no m? for which m = 1 (mod 4)
{m positive), and hence cannot represent (properly or improperly) any m® all of
whose prime factors are = 1 (mod 4). However g does represent properly any
m? for which m = 3 (mod 4) (Th. 4), and hence g represents every m? for which
m has some prime factor = 3. This proves the result stated in the first line
of Table II. The proofs of the other results of the table, in which m? or u?®
appears, are similar.

In the case of the form f=(1, 2, 32) the situation is somewhat different.
The companion form g=(2, 4, 9, — 2, 0, 0) seems to represent every 8u + 3
except 3, 43, and 163, but we have not been able to prove this. However we
can prove as follows that g represents every 8# + 1 with the single exception 1.
For if m is odd, m =g if and only if m =a?+2¢y2+ 822 =22 +(y+22)*+(y—22)°
with z odd, that is

(F) m=uxi + x; + 235, ,=2x; + 4 (mod 8).

We have seen above that unless 8% + 1 is a square containing no prime factor
4k + 3, (E) is solvable with y, and y, odd: then 2y,= * 2y, + 4 (mod 8) by

choice of sign. It remains only to prove the solvability of (F) when m = p*

with p a prime 4% + 1. Setting p=1 + £ + & + 13 we have
PP =i + 25 + al, xlbz b+ H—6—18 x,=2{tt + tt),
zy=2(—tyty + t, t,).

If p=175 (mod 8) we can take p =1 + &3, {, = t,==0, whence x, =0 and x;=
—2ft,=4 (mod 8). If p=1 (mod 8) it has by the above a representation
o+ 1 + &3 with £, =0 and ¢; = ¢, = 2 (mod 4), ¢, odd; hence x,=2¢, £, =0 (mod 8),
g = — 21yt = 4 (mod 8). The result for (4, 8, 9, 0, —2, o) follows.

6a. The classes of forms represented by
(1) S=sa"—z2zy +s5y’+ 722" and g=82%+ 129 — 1292 + 212°

constitute a genus and are rather noteworthy in that
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Theorem 7. f s regular, and g represents exactly the same numbers as f
except that g does not represent the number s.
Both forms are derived from z* + y*® + 3%

(2) f=@+y+62f+x+y—62°+ 30—y
(3) 9=z +32f+(2x—32 +3(2y —2)

Either of 2n=/f or 2n=yg leads to $n==2 X*+ 3 Y? 4+ 18 Z*; either of
3n=yf or 3n=g yields n=4X>*—4 XY +7Y*+24Z° Hence f and g
represent the same numbers 2 » and 3#; since a genus is always regular, f and
g are each regular for multiples of 2 and 3.

The only remaining numbers possibly representable in f or g are those of
the form 247 + 3.

To represent 24% + § in f it suffices (by (2)) to solve

(4) 24m 4 5 =a% + y? + 32°

in integers z, y, # for which the equations

(s) X+Y+6Z=x, X+Y—-6Z=y X-—-Y=z¢
yield integer solutions X, Y, Z. The condition for this is

(6) x =y (mod 12), % =2 (mod 2),

Whiéh in the particular case of (4), may be replaced by

(7) x=y (mod 12), xye odd.

Similarly in view of (3), to represent 247 + § in g it suffices to solve (4) in

integers x, y, ¢ satisfying
(8) x=y+ 6 (mod 12), zyz odd.
6b. Thus Theorem 7 will follow if we prove

Theorem 8. Every 24n + 5 is represented in x® + y® + 32° with x, y, z
odd and x =y (mod 12); and every 24mn + 5 except 5 is represented therein with
x, ¥, 2 odd and x =y + 6 (mod 12).

That (4) is solvable in integers x, y, z is well.known. BEither x, y, ¢ are all
odd; or one of x or y is odd, the others even. In the latter case the even ones
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are incongruent (mod 4), and it is evident that the application of one of the
following automorphic transformations will produce a representatlon having

xz, ¥, z odd:

T: (=, y; &)~ (o, 3y —32); 3y + 2)),
T" (2, ¥y + 32); 3y —2)),
U: (. 3l —32); 3z + 2)),
U’ (, Ho +32); $@—2),

The proof of Theorem 8 will involve a finite sequence, of arbitrary length,
of alternate applications of these automorphs, (which, we may note, correspond
to t=1+jor 1+ k with A=3, in § 3).

6c If a, y, z are odd, then in (4) either

(9) x=*1y-+6orxz=*y (mod12).

Starting with a solution of either type (9;) or (9,) we shall try to derive one of
the other type.

If z, y, ¢ are determined to modulus 24, the result of applying 7, ..., U’
is determined to modulus 12. Thus, under 7, (1, 5; 1) (mod 24)—(1, 1; 3) (mod 12),
wherein =y (mod 12); and evidently this resolves the step from (9;) to (9)
also for (+ 1, + 5; + 1) aund (X5, =+ 1;
be taken as least absolute residues (mod 24) and the x and y interchanged. In

; +1) (mod 24), that is the residues may
a similar way, applying 7, the reader can immediately complete the step from
(9;) to (9,) in the following cases (mod 24): (5, 1; —3), (s, 13 5), (1, 5; —7), (1, 5; 9),
(s, 1; —11), (1, 7; 3), (1, 75 —3), (1, 7; 11), (5, 11; —1), (5, 115 7), (5, 115 —0),
(7, 115 — 1), (11, 73 3), (11, 73 =3}, (7 15; 7), (7, 133 —o), (11, 7; 11). There
remain to be treated only the six cases:

(10) (1, 7; 1), (1, 75 7), (1, 75 9), (s, 115 3), (5, t1; 5), (5, 11; 11), (mod 24).

Similarly, starting with (9,) the transit to (9,) is obtained by one application
of T in the cases (1, 1; —3), (1, 1; 38), (1, 1; —11), (1, 11; —1), (11, 1; — 3),
(r1, 15 5) (1, 175 7), (I I1; 9,(11 1; —11), (11, 115 1), (11, 115 7), (17, 115 —9),

)
(s, 55 1) (5, 55 —7) (8, 55 9), (7, 55 1), (5, 75 3), (5, 75 —35), (7, 55 —7), (7, 55 9),
(5, 7; 11), (7, 75 3), (7, 7; —3), (7, 7; 11). There remain here twelve cases
(

mod 24):
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(, ;1) (1, 13 7), (1, 150, (7, 75 1), (7. 75 70, (7, 75 9)
(s, 55 3) (5, 55 5), (5, 55 11), (xr, 115 3), (11, 115 5), (11, 11; T1).

(11)

All cases (10) can be reduced to (1, 7; 1). For example, if

24n+5=a>+y*+32% wx=5, y=11, z=735 (mod 24),
then
24257+ 5)+ 5 =02+ (59 +3(52)° sa=1, sy=7 s52=1;

and it is obvious that application of automorphs 7, ..., U’ (which are the only
transformations to be used) cannot eliminate the divisor 5 of (52, 5¥; 52).
Similarly (1, 7; 7) reduces to (1, 7; 1) through a factor 7; and (5, 11; 11) to
(r1, 55 5). Next, (1, 7; 9) (mod 24)—(1, 17; —1), where * x=1 is still deter-
mined to modulus 24, the 17 and —1 to modulus 12; this separates (mod 24)
into (1, 7; 1) and the three trivial cases (1, 7; 11), (1, 5; 1), (1, 5; 11). Similarly
for (5, 11; 3).

6d. We require the fact that if » > o, (4) is solvable with
(12) x®, o%, and 7 odd, but not all equal.

The only case of doubt is 24n + 5==15m* m positive and prime to 6. There
seems to exist a simple formula for the number of solutions of

(13) sm® =3 + ai + x5, @, X, 2y 0dd,

from which we might see that if m > 1 there are solutions besides 2] = 2} =
=z =m®?. However we shall be content with a brief proof, based on the solv-
ability of

(14) i+ +38+36=m,

that if m>1, m prime to 6, (13) cannot have all its solutions divisible by m.
We assume that m is a prime > 3; the stated result will then follow for any
m on multiplying (13) by a factor s>. We set

300 Byt by = (ty—1 ty—j ta— k) (3174 R) (b +4 b, +) ta+ ki 1),
the quaternions being of the type with 2 =% = — 3. We have

2=+ ti—36—380)F2(lts+t t)F2(—tyta+ 1, L),

@y =6(—loty+t ) FB+H38—E—38)F2(t 8, +3 80, = -,
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which are odd; and, on taking norms, obtain (13). If x;, x, x; could be divis-

ible by m for all solutions of (14) they will remain divisible by m if ¢, and %,

or ¢, and ?; are interchanged or changed in sign. Changing the signs of %, ¢,

in x; and adding, yields

ml2(fg+ 6§ —36—346), mit+ £ and 6 + £,

the latter using (14). Since & + &3 <m, t,=1,=0. Interchanging ¢, ¢, in w,

now gives m|{; — i, whence m|#; and #, a contradiction.

6 e. Assuming » >0 and (12), we can reduce all cases (11) to

(13) (1, 1; 1) with z, y, # not all equal, or to (1, 1; 7), (mod 24).

For example if x =1y =z=75 we multiply through by 52 and use (3x, 5¥; 5 2);

similarly for (7, 7; 7) and (11, 11; 11). In the same way (7, 7; 1), (3, 5; 11),
to (1, 1; 9). Finally (1, 1; o) transforms under 7 into one of (1, 11; 3), (1, 1; 35),

(1, 115 7), and (1, 1; 7) (mod 24); the three first were treated as trivial in § 6c.

6 f. There remain to be treated solutions of (4) of the three types:

(16) FE=(a+ 24h, b+ 24k%; ¢+ 2410,

where (a, b; ¢)= (1, —7; 1), (1, 1; 1), or (1, 1; —7). (Cases 1, 2, 3).

We shall form virtually all sets of odd integers obtained by applying to

(16) the automorphs 7, ..., U’. To begin with we have

ET=(a+24h, a +12k—360; a" + 12k + 1210),
EU=(b+ 24k b + 12h—361; b + 12h + 121),

(17)

where
(a7 a", Cl”):(l, -5, _3)) (17 -1, 1)7 (Iy 11, _3)7 resp.,

(6, ¥, v")

[

(—77 —I, I)a (Ia —1I, 1)7 (Iy IT, —3)’ resp.
Let A stand for either £ T or E U, and write

(18) (UUy=(UUNUU) ... tor factor-pairs,
1

AU UY = (ur, vr; wy), AUUY U=, yr; &), (r=o0,1,...)

We shall prove, for every » = o, that
24—38333. Acta mathematica. 70. Imprimé le 2 décembre 1938.
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Lemma 1. If, in the respective three cases,

(19) h=Fk=1,
h=k=1+4%(4 —1), (mody4),

then both of the sets of solutions of (4) expressed by

(20) ET(UUYU and EU(UU'Y U

are integral, and one of them satisfies

(21) x= 1 y (mod 12) 7n case 1, =t y + 6 (mod 12) én cases 2 and 3,

unless (respectively)

h=l=k+ L4+t —1)
(22) h=k=1,
h=Fk=1+ }(4*' — 1), (mod 2.47).

And if (22) holds, then both of the sets of solutions
(23) ET(UUY+ and EU(U U'y+

are integral, and one of them satisfies (21) unless (19) holds with » + 1 in place of r.
It should be observed that (4" — 1) + 4" =4(4"*' — 1).
Conditions (19) being vacuous if » = 0, Theorem 8 will follow. For no set
of values can satisfy (19) and (22) for all values of », except in case 2 with
h=Fk=1 The latter case can be excluded as in § 6 d unless » = o.

From (ur, vr; w,) U U’ = (ttp41, vrs1; wrs1) follow

Uri1 == 3y — 3,
trr1 = daur + Jvr + o,
wrer = — {Ur + 30, — L0y,
and hence
Uy , 1 o —%
(24) vr | =K " |v, ]|, where K = 3 1 3
wr w, -1 ¥ —i

To evaluate K™ we bring K to a diagonal form by a collineatory trans-

formation, employing
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(25) K=MDM1,
I w—1 w— I —1 O o
M=|—3 bw io |, D=] o o of
i 2—w/6 (2—w)6 0 0 o

where w and @ denote the roots of the equation
(26) 4w —70 + 4=o0.

Hence K"==MD M1 =

(—1)r+ze(r) —(=1y—3e@)+qe(r+1) 3(—1)—500)+4e(r +1)
(27) =] —(—1y+4e()—ge(r+1) (—1)+2e(r) —3(—1)r—2zer)+4e(r+1)
(— 1Y+ §ell—telr+ )= (=1) + fel)—felrr) 3(—1y+ )

where ¢(r) = 0" + o".

Since  + @ =7/4 and ww =1 it is evident that f(r) = 47e(r) is an integer.
It is easy to verify for every r = o, that
(28) flr+2)—7f0 + 1) + 16 f(r) =,
and since f(0) =2, f(1)==7, and f(2) = 17, that f(r + 1) is odd, and
(29) Sl + 1)+ f()=0 (mod 3), flr)=2 (mod ).

‘We shall adopt temporarily the following abbreviations:

la, b, e)=a(— 1y +be(r) +ce(r + 1), a=2a(h+ %k + 31,
(30) B=48h— 2k + 1), y=096(k—1), d=16(h+2k— 31,
=24(2h+3k—3510), {=32(h—k), n=8(5k—2h—31),

and indicate by a prime the act of interchanging # and k; e. g. 8 = 48 (k—2 h+1).
In these notations, using (17), (24), and (27) we obtain formulas for w:, ..., 2.
(The mode of formation of u, ..., z by applying 7, ..., U’ shows that they
either are integers or have powers of 2 for denominators.)

Case 1. ET(UU'Y = (ur, vr; wy), where
(31) 5“7':[0‘—3) ﬂ—l— 32, 7_32}) 52"':[3_‘% 7’) ﬂ,_ 16]?
sw,=[a—3, 6§ —32/3, 16/3—4d;
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EU(UU'Y = (ur, vr; w,), where 5u,, 5vr, 5w, are given by
(32) fa—3, =16 ], [3--a y—32 g+32] [e—3, & —16/3, 32/3—4]
For ET(UU'Y U and EU(U U’y U we therefore have respectively
(33) @r=1v, 59y =[3~¢, 327, e—24], 52 =[e—3, 32/3+(, 9—40/3];
(34) @ =wvr, s5yr=[3B—e, ¥, &—16], 5z =[a—3, {'—32/3, 4 +16/3].
By (29,) and since 3|, 8, 7, and &, (31)—(34) satisfy
(35) =t @=—y (mod3),
It is therefore sufficient to show that if (19,) holds, i.e. if
(36) k=h+42—434 —1), Il=h+474,

where x and A are integers, then z,, y,, 2z in both (33) and (34) are integral,
and that for one of them,

(37) Tr = — Yo (mOd 4)
unless (22,) holds; and that if (22,) holds with » — 1 in place of 7, i.e.
(38) k=h+24"2—3(4g"—1), l=h+ 2412,

then unless (19,) holds, the (u,, vr; ®w,) in both (31) and (32) are integral, and
for one of them,

(39) ur = v, (mod 4).

Substituting from (36) into (33) we obtain, to modulus 4,
(40) tr=—(—1), yp="—(—1)+2x+ 21 2 odd
The details for y, are typical: 5y, = (3 —a)(— 1) -+

(3296 {47 %~} (4" ~1)—4" Ml e(r) +24 (3.4 % —(4"—1)=5.4" A—1}e(r+1).
Here we replace 47¢(r) by the integer f(r) and obtain (mod 4)

—(—1)—(96x—964+ 32) f(r) +6(3x—1—8 ) f(r+1)= —(—1V—0+2x+2+24,

since f(r + 1) is odd. Similarly in (34),

(41) or=—(—1), yp=—(—1) + 24 2 is odd.
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Hence @, = — y, in (41) unless 1 is even, and then x, = — y, in (40) unless x is
odd; that is unless (22;) holds.
Substituting from (38) in (31) and (32) we obtain (mod 4)
(42) wy=(—1), v,=-—(—1V+ 2%+ 24 w, 0odd;
(43) w={(—1), v,=—(—1)+ 22, w, odd.

Hence u, = v, in (42) or (43) unless 4 and x are even, i.e. (19,) holds.

Cases 2 and 3. The results for E U . .. are deduced from those for £ 7 . ..
by interchanging & and k. For ET ... we obtain
sw=[ac+35, 87, sv=[—5—07y, 8, swr=[+aq ¢ —7)
@r=vr, Sgr=[—5—@a —p &, sz=[c+5s, L 19,
in case 2; and respectively for the same quantities in case 3,
lea—19, 8—16, y+ 32|, [19—«a, ¥ +32, ff —16], [ea —19, 0 + 16, —d —16],
X =0y, [19—@a, —y—32, ¢+ 40, le—19, §, 5+ 8.
In both cases, #, = — v, and z, =y, (mod 3). Hence (21,) will be attained
if, first, given
(44) k=h+4"xand l="h + 474, in case 2,
(45) k=h+4"%and l="h+ 47— %{4 — 1), in case 3,
then (x, yr; 2,) are integral for both ET and E U and satisfy (37) for one of

them, unless x and A are even in (44), or x is even and A is odd in (43); and,

second, a like result holds in regard to (39) unless x and A are even, being given
(46) =h+ 24" % and l="h + 2471, in case 2,
(47) k=h+24""xand l="h+ 2414 —3(4 — 1), in case 3.

That all this goes through as stated is easily verified. With a little patience
we find, by virtue of (44)—(47) in their proper places,

2 and w, are odd integers, 2, = — (— 1) = — %, (mod 4), in all cases;
vy=—(—1y+24for EU, v,=—(—1)+ 2% + 24 for -ET;

in (44), yr=—(—1+24 for EU, yr=—(—1)+2x+24 for ET;

in (45), yr=—(—1)+24+2 for EU, y,=—(—1)+2A+2x+2 for ET.
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Table I.
All primitive regular forms az® + by’ + ¢2*; a < b =c.

a) Self-reciprocal forms: (1, r, +%) where =1, 2, 3, 4%, 5, 8.
b) Forms whose reciprocals are regular:

(1, 1, r) and (1, », ) where » =12, 3, 4, 5, 6, 8, 9, 12, 16', 21, 24.
1, 2, 7) and (2, », 27) where 7 ==3 or 3.
1, 2, 1)
1, 3, r) and
1, 3, 7)

3,1 ) where r =4 or 10.
7) where » =12, 18, 30, 36*
2, 3, 12); (1, 4, 24) and (1, 6, 24).
40)
18);

(

I, 4, 6) (
1, 5, 8) and (5, 8, 40); (1, 5, 40) and (1, 8, 40).

) (

(

—

, 6,9 (1, 6, 16) and (3, 8, 48).
1, 9, r) and (3, 7/3, 37) where r=12, 21, 24.

, 16, 24) and (2, 3, 48).

2, 2, 3) and (2, 3, 3).

2, 3, 8 and (3, 8, 12); (2, 3, 9) and (2, 6, 9).

, 5, 6) and (5, 6, 15); (2, 5, 15) and (2, 6, 135).
3, 3, r) and (3, 7, r) where r=24, 7, 8

? 7

I

N

(
(
(
(
(
(
(
(
(
(
(
(
(

¢)' Forms whose reciprocals are not regular:
(1, 2, 32); (1, 4, 36); (1, 8, 24); (1, 8, 32); (1, 16, 48);
(1, 24, 72); (1, 40, 120); (1, 48, 144); (3, 8, 24); (3, 16, 48);
(3, 40, 120); (5, 8, 24); (8, 9, 24); (8, 15, 24).

Table II.

The pnmltlve regular forms az® + by® + c2® in genera of more than one class

and two regular forms with cross products.

In this table D is the determinant of the form, f the regular form, ¢ (or
in the case of D=6912: ¢, ¢g,, g5) is the other reduced form in its genus.
m represents an odd whose every prime factor is =1 (mod 4), w an odd whose
every prime factor is =1 (mod 3). ¢ # m?, for instance, means that g is regular
except that it represents no m®. When no notation occurs after a form g, the
results are not known.

! Forms so marked are in genera of more than one class.
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D J 9
16 (1, 1, 16) (2, 2, 5, —1, —1, 0) # m®
64 (1, 2, 32) (2, 4, 9, —2, 0, 0) £ 1 and certain 8%+ 3
64 (1, 4, 16) (4, 4, 5, 0, —2, 0) # m®
108 (1, 3, 36) (3, 4, )#u/
144 (1, 4, 36) (4, 4, 9)
192 (1, 8, 24) (4, 8, 9, —4, —2, 0)
256 (1, 8, 32) (4, 8, 9, 0, —2, 0) # 1
236 (1, 16, 16) (4, 9, 9, 1, 2, 2) = m®
432 (1, 12, 36) (4, o, 12)#10
g2 (1, 8, 64) (4, 8, 17, 0, —2, 0) F# m*
576 (3, 8, 24) (8, 11, 11, 3, 4, 4)
768 (1, 16, 48) (4, 16, 17, —8, —2, 0)
960 (5, 8, 24) (8, 13, 13, 3, 4, 4)
1728 (1, 24, 72) (4, 24, 25, —12, —2, 0)
1728 (8, 9, 24) (8, 17, 17, 5, 4, 4)
2304 (3, 16, 48) (12, 0, —8, —6, 0)
2880 (8, 15, 24) (8, 23, 23, 11, 4, 4)
4800 (1, 40, 120) (4, 40, 41, —20, —2, 0)
6912 (1, 48, 144) g, =9, 16, 48) # w*, 4w*
9: = (4, 48, 49, —24, — 2, 0)
gs = (16, 25, 25 7, 8, 8)
14, 400 (3, 40, 120) (12 40, 43, —20, —6, 0)
1728 (s, 5, 72, 0, 0, —1) (8, 12, 21, -6, 0, 0) # 5
11/4 (1, 1, 3, 0, —1/2, 0) (1, 1, 4, 1/2, 1/2, 1/2)



