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1. Introduction

In the recent development of algebraic topology, cohomology operations have
proved to be of vital importance. Several examples of such operations (primary and
higher orders) have been constructed by Adem, Massey, Pontrjagin, Steenrod, Thomas,
and others. A cohomology operation (primary) relative to dimensions g, ¢+% and
coefficient groups G|, G, is a natural transformation (see Eilenberg-MacLane [5])
between the cohomology functors HY( , G,) and H"'( , G,) defined on the cate-
gory of topological spaces:

6: HY ,G)—~H"™( ,G,).

Primary cohomology operations are closely connected with the cohomology of
Eilenberg-MacLane spaces (see Serre [11]). The secondary operations are in a similar
way connected with the cohomology of spaces with two non-vanishing homotopy
groups and of spaces closely connected with these. This has been shown in works
by Adams [1] and Peterson-Stein [10].

In this paper we shall compute the cohomology of certain spaces P, , (see below)
with two non-vanishing homotopy groups. This computation is carried out by means
of a spectral sequence argument.

The spectral sequence argument giving the cohomology of K(m,n)’s (see Serre
[11]) relies heavily on the fact the transgression commutes with Steenrod operations.
In the computation of H*(P, ,) this however does not suffice. We need to have
some information about the differentials of Sq'x, where « € H*(F), F the fibre in a
fibration E->B, even if o is not transgressive, provided the differentials on o« are
known. Sections 3-8 in this paper are devoted to the study of this and of related
problems.
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Using the method developed by N. E. Steenrod we construct and study mappings
¢: W®C—C"™ preserving certain filtrations. These mappings are used in the study
of the problem mentioned above. The mapping ¢ is also used to define some spectral
operations (natural transformations between spectral sequence functors E?*? and E:-°,
r,82>2, defined on the category of fibre spaces). Certain spectral operations have
earlier been constructed by R. Vazquez [13] and by Araki [2]. The operations con-
structed in this paper are related to or coincide with the operations introduced in
these papers.

Sections 9-12 contain a computation of the ring structure of H*(P, , Z,;) where
P, n=P(Zy, n; Z,, 2"n—1, sﬁh), n>2,h>1. Some information about the action of the
Steenrod algebra A* on H*(P, ,) is contained in the Theorems 11.1 and 12.1. It is of
some interest to get the complete action of 4* on H*(P, ). Apart from Theorems 11.1
and 12.1, however, we have at the present only scattered information about this
action of A*. Because of incompleteness, this is not included in this paper. By
xtending the methods used in this paper further computations can be carried out.
This will be done in a subsequent paper.

The author wishes to thank Professor S. MacLane for many valuable conversa-

tions, especially on the subject of css-complexes and the method of acyclic models.

2. Preparations

In this section we are going to review a few quite well known things needed in
the following.

Let us consider graded filtered differential modules with decreasing filtratration
and differential of order +1. Although the modules are graded we shall in the follow-
ing often suppress the grading to simplify the notation. A mapping f: A—B between
two such modules must satisfy df=fd and f(F?A)< F’B. The d’s and the F’s denote
the differential operators and the filtrations on 4 and B. Such a map induces the

homomorphisms

f*: H(A)—~H(B), fr:E(A)~>E (B) (r=0,1, ..., c0). 1
with the property d.fr=frd, 2)
where d, is the differential in the rth term E, of the spectral sequence {E,} of the

filtered differential modules. A homotopy s: f~g of degree <k between two maps f,
g: A—~B is a module homomorphism s: 4—>B satisfying

S(FPA)SF°*B and ds+sd=g—f for all p. 3)
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LemyMa 2.1. If s: f~g is a homotopy of degree <k, then
ft=gr:E(A)~>E,B) for r>k.
Proof. By definition we have
ZD/ dZﬂ 'r+1+ZD Fl
where Z? as usual denotes the module
72 ={z|x€F*, de € F**'}.

Let e€Z?(A4) then g(a) — f(a) =dsa + sda,

where g(a) — f(a) € ZP(B), da€F**"(A), sda € P**""¥(B)c F**Y(B) (since r—k>1), and
sa € F*~*(B). Hence we have

dsa € ZP~{*Y(B) < Z**X(B).

Since d(sda)=d(g(a) — f(a)) EF**"(B) we have
sda € Z21(B).

This means that g(a) — f(@) determines zero in E?, and hence that
fr=gr for r=k+1,k+2, ..., oo,

which was to be proved.
In a later section the following algebraic lemma will be needed. Let T4, k=0,
, be a vector space over Z, (the integers modulo 2) generated by 1, as, 8, and
yr and let T, be mapped into Z,[x,y], the polynomial algebra generated by x and y,

by a vector space mapping
fn: Th—>Z,[x, y], 4)

defined by fa(1) =1, falan) =22, fa(Br) = (2 +)2*, and fu(ys) =(zy)?"*. By tensoring we
get the mapping

1

F: 8T ~8Zyl2,y1-> Lyl ), (5)
where the last mapping is the multiplication mapping. Let V), be a vector space
generated by 1 and a, and let g,: V,—Z,[x] be defined by g,(1) =1 and gp(oes) =22".
As before we get a mapping

G: ©F, = —®Zy[z]>Zylz]. (6)
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LeMMa 2.2 The mappings F and @ are isomorphisms.

Proof. Let us consider the systems
{8,©0,® ... ®a,|n>0;a,=1, oy, B, OF Y1} (7)
and {=°y*|s,t >0} (8)

of (vector space) generators of ®7; and Z,[z,y]. Let us define a grading in ®7T', and
r b

Z,[z,y] by dim «,=2", dim B,=2-2", dim y,=3-2", dim z=1, and dim y=2. The
mapping F is then easily seen to be homogeneous. Let (1) =0, n(as) =2", n(8x) =2"3, and
n(ys) = 2" +2". There is then to each generator a = a,® ... ®a, of (7) associated &

gaussian integer with non-negative components
Nay® ... ®a,) =1n(ag) + ... +nla,). (9)

This correspondence is obviously (1—1) and onto. If we write F(a) as a sum of

generators (8), then it is easily seen that the term with a maximal number of ¥’s in

F(a) is zy' with 8+t =n(a). This shows us that in each dimension ®T), and Z,[z, y]
)

have the same (finite) number of generators. Furthermore 2’4’ is in the image under
F of the subspace generated by {a|I(n(a))<t} with @ as in (7), and I(c) the imag-
inary component of the complex number ¢. This follows by a trivial induction on ¢
and shows that F is onto and hence an isomorphism. That G is an isomorphism is
trivial. This proves the lemma.

In section 11 we shall need

LeMMA 2.3. Let X be a topological space and let x be a homogeneous element of
H*(X, Z,). Then

2" =0= (Sq"8q" ... Sq'rx)" =0 (r,h=12,...).

Proof. The lemma for r>1 follows by a trivial induction from the case r=1.
Now let r=1 and 2=1. Since by the Cartan formula

(Sq'z)* =8q*(2*) =0,
the theorem is true in this case. Also
(Sq'z)?" = (Sq™(x?))2" 1

and the lemma follows for =1 and % arbitrary by induction with respect to h.
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3. The Eilenberg—Zilber theorem

In this section we shall prove a strengthened form of the Eilenberg-Zilber theorem
(see [6]). In the formulation of the Eilenberg-Zilber theorem we shall follow Dold [3].
Let X, be the category of n-tuples (K,, Kj. ..., Kn_;) of css-complexes. Let C,
denote the functor taking any css-complex K into its (non-normalized) chain complex
C.(K) with coefficients in the integers Z. Let 4 and B denote the functors defined by

AKy Ky, ..., K1) =C{Kyx Ky X ... x Ky _q) } )

B(Ky Ky, ..., Kn-1) = Cu(K)@Cx(K})® ... ®Cy(K ).

Both 4 and B have values in the category of chain complexes. For any css-
complex K we can in C«(K) not only define a grading and a differential operator
but also a filtration. Let namely o, denote a g¢-simplex in K. We can then in a

unique way write ¢, in the form

Oy =8,51,-..81,_ 0y (0<ig p<...<i;<q) (2)

q-p

where 0, is a non-degenerate p-simplex in K, and s, denotes a degeneracy operator
in K. The generator o,€C (K) is then said to be of filtration p,

0, € F,Cx(K) 3)

This defines a filtration in Cu{K).
Defining the filtration in a tensor product of filtered modules D; by the formula
F(Dy®...9Dy_,) ="+'_.+E-I_DF,,(D0)® -®F _(Dy-1), @)
the equations (1) show that 4 and B are filtered chain complexes.
We define a complex Hom(A4, B) as follows. An element f€Hom(4,B),, r > 0,

is a natural transformation f: 4—B increasing grading by r and filtration at most
by r (of degree <r with respect to filtration)

((An) S Bmyr, HF,A)SFp,, B, ()
such that d(f)y=df +(—1)"*'{d€Hom(4, B),_, (Hom(4, B)_,=0). (6)

It is easily seen that d(d(f)) =0 so that the requirement (6) only means, that d(f) must
increase filtration by at most r—1. Equation (6) defines a differential in Hom(A4, B)
which is hence a chain complex (functor taking X,xX, into the category of chain
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complexes). The chain complex Hom(A4, B) is augmented. If f € Hom(4, B), then the
restriction

fl 4y Ay—>B,

is multiplication by an integer k. Putting &(f) =k and &(g) =0 for g €Hom(4, B),, r>0,
it is easily seen, that we get an augmentation.

THEOREM 3.1 The complex Hom(A4, B) is acyclic,
H, Hom(A,B)=0 for r>0,

&: Hy Hom(A, B)—~Z is an isomorphism.

Proof. The proof is by the method of acyclic models, as it is developed in
Eilenberg-MacLane (4] and Gugenheim-Moore [7] (cf. also Moore [8]).

Let o, be as in (2), then there is a unique mapping
u=1u(og): Ay—~>K, M

such that u takes the basic simplex 7, of the standard simplex A, (css-complex) into
op, and hence s; s, ... 8,7, into ¢, Similarly, if a,% ... Xa,_; is a ¢g-simplex in K x

«..XKy,_q, it can in a unique way be written as
aox...Xan_1=sjls;,...s,-,_p(box...an_l) (0<jq_p< <7.1<q), (8)

with byX...Xbs_; a non-degenerate p-simplex in K% ... x K,_;. Again there are unique

mappings
ug A,—> K, 9
such that u,(z,)=0b;. We put
w=u(@X ... XUy _1) = Bty ..., Un_1) : B(Ap, ..., A))>B(K,, ..., Kn_1), (10)
then WA X ... X B _1)(1p®@ ... ®Np) =0 ® ... ®by_y, } an

W@y X ... X0n_1)(89,®...08n,) =4;® ... 0,1,

where S=s; ... 8,_, in (8)

The css-complexes A,, p=0, 1, ..., are acyclic. A contracting homotopy

U=TU(A,) : Cu(A,)>C(A,) (12)

is defined by Ulm, ...,m)=(0,my, ..., m), - (13)
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where (mg, ...,m)EA, (O<my<my < ...<m, <), (14)

is an r-simplex in A,.
Let &: Cy{Ap)—>Ho(C*(A,)) denote the augmentation mapping. Since H, (Ce(A,))xZ
and since the class of (0) is a generator of this group, we can define a mapping

775 HO(O:(Ap))_’ o(Ap) (15)
by 7((0)) =(0). (16)

Since degenerate mappings A,—~A,_, map zero into zero, it is easily seen that U and

7 are natural with respect to degenerate mappings. It is easy to see that
dU+Ud=1—1ne (17)

so that U is a contracting homotopy.
A contracting homotopy

U: BA,, ..., A)=>B(A,, ..., A)) (18)
is defined by U(ay,, Op,, --.s Opa_y) =
n-1
120 NE(Gp,)®NE(0p,)B ... ONe(0n_ ;)@ U(O'm)®0m+x® <o ®Op,_1. (19)
Then dU + Ud=1—ne, (20)

where ¢: B—>Hy(B) is the augmentation and % : B(A,, ..., A,))>H B(A,, ..., Ap) is
defined by 7 ((0)®...8(0))=(0)®...®(0) (cf. (15)).

A simplex g,=(my, my,...,m,) EA, is said to contain zero if my=0. A simplex
0, X0, X ... Xa, EA, XA, X ... XA, is said to contain zero if o, contains zero. All elements
in the subgroup of C.(A,) (Ce(A,X...xXA,)) generated by such simplexes are said to
contain zero. A generator ¢,,®...®p,_ ; (dim op=7p;) in Cu(A;)®...8C(A,) is said to
contain zero if and only if p;=0 for j<i implies that g, contains zero. As before
all elements in the subgroup generated by elements of this sort are said to contain zero.

To prove Theorem 3.1 we must show two things:

(i) If f, g€Hom(A4,B),, and if in case [, =g, (=T, say): Hy(A(A,, ...,A,))—~>
Hy(B(A,, ....,Ap)), p=0, 1, ..., then f~g by a homotopy h of degree <r+1.

This shows that H, Hom(A, B)=0 for r>0 and that &, is monic.

(ii) For any k€Z there is a mapping f: 4—B preserving grading and filtration
such that &(f)=k.

This shows that ¢, iz onto.
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Proof. of (i) and (ii). For a,x...Xa,_; & O-simplex in Kyx...xK, ; we define
hol@gX ... X@n-1) = (@ X ... X@n_1) Ug(fo — Go}Me X .- X710}, (21)

where the different symbols are defined in (8), (10), (12), and (19). The general de-

finition of A is by induction. If ayx...Xa,_; is a g-simplex in Kyx...xK,_;, then
ho(@oX ... Xan_1) = w(@yX ... X@n_1) Ug(fo = go— ha-18) (Smp % ... X S1pp). (22)

A standard computation shows that kb is natural and that dh+hkd=f—g. We there-
fore only need to show that A is of degree <r+1.

By (13) and (19) we see that U increases the filtration by at most one, and
that U preserves the filtration of elements containing zero.

If c€Cw(A,X...xA,) contains zero, then k(c) contains zero. This follows from (21)
and (22) by trivial induction using the special form of U given in (13) and (19).

In (22) d(Snyx...x8n,) is a sum of simplices all except possibly one containing
zero. If there is a simplex not containing zero, this one will be of filtration p—1.
By induction (21) and (22) now show that % is of degree <r+1.

Proposition (ii) is proved in a similar way. The function f is defined by

fol@eX ... X@n_1) =k u(@yX ... X@n_1)(ng % ... X1y), (23)
Fd@oX . X@n-1) =u(@gX ... Xttn_1) Ufq_1d(Snyx ... X Snp), (24)

with the same notation as above. That f preserves filtration follows by induction on

g, first noting that f maps elements containing zero into elements containing zero.

4. The Steenrod construction

This section follows the paper [3] by A. Dold, and for further details we refer
to this paper.

Let = be a permutation group on = letters (0, 1, ..., n—1), then 7 operates in
X. by permutation of the factors. Let T €x, then

T(Koy Kp veey Kn—l) = (KT(O), KT(I), veey KT(n—l))- (1)
Associated with T' there are chain mappings
Ty=T: A(K)>A(TK), K=(K, K, ...,Kn_1), (2)

T.=T: B(K)—>B(TK), (3)
defined by
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Te(@yxayX ... X@n_1) =8y XBrgy X ... Xrn-1y 4)
T,.(ao®a1® ®a,._1) = ( hnd 1)* aT(o,)®a1-a)® ®ar(,._1), (5)

where the sign (—1)* is given by the usual sign convention. It is clear that in

both cases
T Te=(TT)e (T, T €n). (6)

Because of (6) the group & acts on Hom(4, B) by
Tf=T«Ts' for f€Hom(4,B). (7

By Theorem 3.1 Hom(A,B) is hence an acyclic m-complex. Let ¥V be an arbitrary
si-free z-complex over Z, then by a fundamental theorem in homological algebra we

can construct a s-mapping
¢'": V—-Hom(4, B) (8)
preserving augmentation. Since

Hom(V, Hom(4, B))=Hom(V®4, B), 9)

we get
THEOREM 4.1. There exists a natural transformation

¢: V®A—B
satisfying
P (WO (agXay X ... Xan_1)) = &(v) 4,0, ...Qa,_; (VEV, ¢,€K)),

whenever dim v =dim a,=0, and such that

Ve AK) ¥ _BE)
lmm. IT. K=(Ky,K,...,Kn_1) (10)
|

VOA(TK)— . B(TK)
18 commutative for oll T €x. Also
'PI(”®7I)€F4+11B(K), (11)

if dimv=1 and 7€ F,(A(K)).

If ¢": V®A—>B is another transformation satisfying the above conditions, then
¢" and ¢’ are homotopic by a natural homotopy H. The diagram obtained by re-
placing ¢’ by H in (10) is commutative and
€ — 62173067 Acta mathematica. 107. Tmprimé lo 27 mars 1962
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H(v®77) er+(+1:
if dim v=14 and n€F,.

Putting Ky=K,=...=K,_;=K then A(K,K,...,K) and B(X, K, ...,K) can be
considered as functors of one variable. The diagonal map

A: K>KxKx..xK (12)
defined by A(z)=(z, %, ...,x) for x€ K induces a natural transformation
A: C(K)—~A(K,K, ...,K) (13)

preserving filtration. The following composition is also denoted by ¢’

1®A

VR0 (K) . VoAK)—° . BE) K=(KK,..K). (14)

By (2) and (3) A(K, ..., K) and B(K, ..., K) are s-complexes. The complex Cy(K) is a -
complex letting 7 operate trivially and so are V®C4(K) and V®A(K) letting z operate
diagonally. The mappings in the composition (14) are easily seen to be z-homomorphisms.

Let f: E—>B be an arbitrary css-mapping. Let the n-skeleton of B be the sub-
complex generated by all n-simplices in B. Then the inverse images of skeletons in
B define an increasing collection of subcomplexes in B which in turn gives rise to
an increasing filtation on C*(%). The formula (4) in section 3 then defines a filtration
on Cy(E)™, the n-fold tensor product of Cx(E). Since ¢’ is natural we have a com-
mutative diagram

VR0 (E)— . Co(B)™
181 fm (15)
| }

V&0 (B) — ——. Cy(B)™.

For v€V and ¢ a (p+gq)-simplex in E belonging to F,Cy(E), this diagram shows that

¢'(v®c) € Fy,(C(E)™), (Cx(E) =B(E, ..., E)). (16)

Since ¢ € F,C4(E), f(c) can be written f(c) = s8i,...91,@, 0<iy<ig_1 < ... <1y <Pp-+¢q, where
a is a p-simplex in B.

There is a unique map w: A,—B such that the basic simplex o, in A, is mapped

into a. Hence u(sy,...s;,0,) =f{c). By naturality the diagram

VOC(A,) ——— Cu(A,)™

184, ul® (17)

V®Cy(B)— . Cu(BI™
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is commutative. Since F,,(Ce(A,)™)=Fpnp1(Ca(A,)™) = ... = Cy(A,)™, it follows that
if in (16) i>(n—1)p, then

@' (v®C) € F o (Co(B)™). (18)
We can therefore define a filtration in V®C,.(E) by

v®c€me(,+4,n,,)(V®C.(E)), dimv=i, CEFD (Cg(E)). (19)

With this definition, (16) and (18) show that ¢’ preserves filtration (C4(E)™ filtered
as usual).

Thus far we have only considered the non-normalized chain complex of css-com-
plexes. However, since the mapping ¢’ preserves filtration, it follows that ¢'(v®c) is
degenerate in C4(E)™ whenever ¢ is. We can therefore factor out the degeneracies,
and we get a mapping

@ VOO~ 05y,

where Cyy=Can(E) denotes the normalized chain complex of E. The filtration con-
sidered above induces filtrations in V®Cyy and C{}. The new mapping ¢’ preserves
these filtrations. In the following we shall only consider the normalized chain complex
Cen of css-complexes. For convenience of notatation we shall therefore drop the N,
so that in the following Cy= Csy denotes the normalized chain functor.

As suggested by (19), we shall define a filtration on the tensor product A.® B
of two filtered chain complexes A, and B, by

Type 1,.  F (44®By¢)=AL®@F ) (Bs) *L‘H § F(A4)®F,(B.), (20)

where » is a fixed integer >1 and [c] the greatest integer <c. This filtration is
easily seen to have the property (cf. (19))

a GFI(At), b EFq (B#) =a®b eFm!n(nq. q+l)(At®Bt)- (21)

In the following we shall also consider tensor products of chain complexes with
cochain complexes. By the tensor product of a graded chain complex 4, and a graded
cochain complex B* we mean the tensor product of the two cochain complexes 4*
and B*, where (4*)" =(A44)-,. The grading of A,®B* is therefore defined by

(44®B%)" = @(44),®(B*)"*". (22)

If the complexes are filtered (chain complexes increasingly (¥, =0, 1, ...), cochain
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complexes decreasingly (F’, j=0, 1, ...)), then the tensor product A,®B* is usually

given the filtration
F"(A.®B‘)=! ‘ZkF,(A.)@)F’(B‘). (23)

A different filtration (type 2,) corresponding to the one defined in (20) is given

as follows

Type 2,. F?(A,8B*)=A,QF"*~"(B*) + ; F(A,)QFYB*). (24)
q—i=p

The filtrations of type 1, and 2, are clearly compatible with the differential.
The filtration of type 2, we shall use in the case B*=Bj®B{®...®B5_;, where

Bj is a filtered cochain complex and the filtration of the tensor product is the usual

one. The filtration of 4,®(Bj®...®Br_;) is easily seen to have the following pro-

perty:

It a€F(A,), be F* (B,)}

25
then a®b,®b,®...8b,_1EF?(4,8(B;®...0B1_1)), (26)

for p<li.g. (max ((1/m)2,;p;, D;p,—1)), where Lig. (x) denotes the least integer greater
than or equal to «.

Just as the chain complex C,(E) the cochain complex C(E) (dual of C(E)) is
a filtered complex. The filtration on CO(E) is defined by

u€EF?C(E)<{u, cy=0 for all c€F,_1(C(E)).
A dual p: VoC™M (0 (26)
of the mapping ¢’ is defined by the formula
(PUBU® ... QUn_1), € =(— 1)H Dy ®...Qun_1, ¢'(¥¢)), (27)

where dim v=1¢ and u,€C—=C(E). The sign on the right hand side makes dp=¢d
hold true.

If we give V®C™ the filtration of type 2, (cf. (24) and (25)), then ¢ is fil-
tration preserving. If namely c €F,C, and p<max ((1/5)2;p; 2;p;—1t), then min(np,
p+1i)<>,;p; and the right hand side of (27) is zero, as an elementary argument
shows using the fact @'(e,9¢) € Fnin(np p+(C¥").

The mapping ¢ (26) is a m-homomorphism. We can therefore factor out with
the action of =, and we get

g V®,0M>C. (28)
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Since the action of x is filtration preserving, the filtration of V®C™ (type 2,) in-
duces a filtration in V®,C™ also named type 2,. With this filtration on V®,C™
the mapping ¢ is filtration preserving.

Thus far we have been working over the integers. We could, however, have

chosen any ring as ground ring. In the following we shall be working over a ground
field K.

Summarizing we have the theorems:

THEOREM 4.2. Let m be a permutation group on n letters. Let V be a n-free complex
over K. Let f:E—B be a mapping of css-complexes and let C,=C (E) be filtered by in-
verse images of skeletons in B. Let ; act in O3 by permutation, trivially in C, and diago-
nally in VOC,. There then exists a m-equivariant fillration preserving transformation

‘P’: V®0*__>C(*ﬂ)’
natural with respect to mappings g: E—E,, §: B~ B, with §f = f, g and satisfying
¢’ (v@a)=¢(®) (@)™ for vEV,a€l,,

whenever dim v=dima=0. The filtration in VQCy is of type 1,, and the filtration in C$’
the usual one. If §': VQCu—>C is another such transformation, then ¢’ and ¢ are homo-
topic by a m-equivariant natural homotopy H of degree <1.

TEEOREM 4.3. The duals of the transformations in Theorem 4.2 give rise to filtration

preserving natural transformations
¢: Ve, 0™M->C.

The filtration on V®,C™ is of type 2,. Any two mappings ¢ and § are homotopic by a
homotopy of degree <1.
By Lemma 2.1 we get

THEOREM 4.4. Any mapping ¢ as in Theorem 4.3 induces a mapping
@ BV ®,C"—E{C).

For t>2, this mapping is independent of the choice of the mapping ¢.
By the naturality of ¢ we get

THEOREM 4.5. Let
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be commutative and let g* be the induced mapping g*: Ey(f)—>Eyf,). Then for t>0 the
diagram

P»

E(V®,C(E)™) —~ B(C(B))
| (l@g(ﬂ))t l g*
E(V®, C(E)™) ——— E(C(E,))

18 commutative.

5. Spectral operations

Let f:E->B be a mapping of css-complexes, and let @ €E7(f) be represented by

a cochain x
#={x} € B? = Z?/(dZP={* + Z21Y). (1)

We shall use the mapping ¢ constructed in section 4 (with respect to a permutation
group 7, an augmented z-free m-complex V and n) to define operations in the spec-
tral sequence {E,, d,}, r>2. Expressions like e.g. ¢,02®...0z+¢€,,192Q...8x®dx in
x, dr, and in elements ¢; from V, belonging to V®,C™ determine elements in
EP4(V®,C™) for certain £, p and q. Tf for a certain ¢, the element in E{V®,C™)
determined by such an expression is independent of the choice of representative x

of #%, then this expression will determine a spectral operation, i.e. a transformation
0: B> YC)—~E¢°(0),

P, q, a, b, r, ¢ fixed, r, £>2, natural with respect to mappings ¢g: #—E, and §: B—B,
such that f,g=gf, where f,: B,—B,. The image of % under this spectral operation is
the image in E(C) of the element in E,(V®,C™) determined by the expression under
the mapping
" B(V®,0™)—E|C). @)
We can express this in a slightly different way. Let M =M?? be a filtered,
graded, differential module on two generators » and v, du=v, where % and v have
dimension (grading) p-+g¢ and p+g¢+1 respectively. The filtration is as follows

M=FM==FM2F" 'Y= .=F"MF"*""M=..,

where u € F?M, u¢ FP*'M, v€ F**"M, and F**"* M =0. If @ € E?? then x € Z?, which
means that z€F? and dx€F?*". We can therefore define a mapping g: M7"?%—C=
C(E) of filtered, graded, differential modules by setting g(u) ==« and g(v)=dz. This

defines a map
(@) =10¢g™: VoM™ —>VeC™,
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where the filtration of V@M™ (and of V®C™) is of type 2,. This mapping clearly

preserves filtration, commutes with the differential, and is m-equivariant. It hence

gives rise to a map '
y=9(): Ve, M"->V,0™, (3)

also denoted by p. Letting the functor E; act we get the induced map
P =9@)* : E(V @, U™)>E(V®,C™). (4)

An expression in x, dx, etc. as considered above now corresponds to an element

& in EP°(Ve, M™). If for all € E>? the image of ¢ under the mapping p(x)* (see

(4)) does not depend upon the choice of representative x of @, then we define an
operation 6=_0(%)

0:EP—>E°, (5)

by the formula 0(i1) = p*p*(9). (6)

We shall now prove a few general theorems about operations of that sort. We
remark, that for any operation 0=0(4#) (see (5)) considered in this section we assume
»*(#) to be independent of choice of representative x of #%. In later sections we
shall consider specific operations; we will then have to prove that y*(#) does not
depend upon choice of representative « of @. The image of & under »* will of course
usually depend upon 4.

Let two permutation groups = and 7, (n letters) be given, and let ¢:m—m, be
a permutation group mapping. Let ¥V and ¥V, be m- and x,-free resolutions of K.
There then exists a o-equivariant map h:V—V,, which gives us the filtration pre-
serving map

1MV, M™—->V,®, M™,

In the spectral sequence this induces the mapping
B (V2 M™)—>E (Vi@ M™). (7)

Let ¥ be an element from the left of (7) determining a spectral operation 0, and let
©# be the image of & on the right. The element ¥, will then clearly determine an

operation 0,.
THEOREM 5.1. For any 4€EY%f) we have

6(%) = 0,(%) € B *(f).
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Proof. Let @; be a mapping as constructed in section 4 (cf. Theorem 4.2). The
composition ¢,(A®1) will then have the properties stated in Theorem 4.2 with respect
to » and V. We now get the commutative diagram

Ve,M"m — 2 . Ve, 0m —~C
o e |
V®uMm—" .y e, 0m 2 ¢

By applying E; to this diagram we obtain the result (cf. Theorem 4.3).

Let us remark, that if we have two equivariant maps
h,hy: V—>V,,

then there exists an equivariant homotopy s:h~#,. Such a homotopy gives a ho-
motopy s®1™: Ve, M™—>V,®, M™ of degree <1. Using this remark the above
theorem applied to ¢o=identity immediately yields.

TaEEOREM 5.2. The spectral operations associated with a permulation group m are
independent of the choice of the free resolution V used in their construction.
The following theorem is immediate.

TaeorEM 5.3. Let #€EF* Ve, M™) determine a spectral operation 0, and let
di®=0. The class §={0}€EL, will then determine a spectral operation 6. For any
wEE,(C) we have d,0(4) =0 and

{6(w0)} = O(a) € E¥°(0).

In the definition of the concept ‘“‘spectral operation” we required naturality.
We shall see, that the operations constructed here are natural (and hence spectral

operations).

TrEOREM 5.4. Let

E, —~E

h f
J l

B—> B

be commutative. Let g* be the induced map g*: E(f)—Ef,). Let & € EF (V. M™) deter-
mine an operation (see (6)). Then for any 4 € EY *(f) we have

g°0() = 0(g* (@) € B¢"(f,)-
The operation 0 is hence a spectral operation.

Proof. Follows immediately from Theorem 4.5,
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TEEOREM 5.5. Let {x}=a€EP(f) and let nE VR, M™. Let the total dimension
p+q+a+f of  be less than the total dimension of 4, then @y(n) =0, where p = y(zx).

Proof. Let 7=2v,88Q...®s,. Then since dim(s,®...Q8,)=p+q+a+p+1,
dim (#®...®u)=n(p+g), dim(s,®...0s,) =2 dim (¥®...®u), and x+F<0 we get

ptgtat+ftizn(p+qg)>nip+gt+a+f). (8)

Let 2v,05,®...95, denote the image of % under p. We then get (see (27) in sec-

tion 4)
Lpp(n), =2 1(5®...85,, ¢'(;®c), 9)

where ¢ is a (p+g-+o+p)-simplex. Let ¢ be the image of the basic simplex
Np+a+atp D Apigigrp under a mapping g:Apiqi.45—>E. Since ¢'(v;®c) is in the image
of (C(Ap+gsas+p)™ under g™, whose top dimension n(p+gq+a+p) by (8) is less than
the dimension p-+g¢g+a+f+i of v,®¢, we get ¢'(v,®c)=0. Equation (9) now shows
that @y(n)=0, which proves the theorem.

COROLLARY 5.6. Let $ €EP (V®, M™) determine a spectral operation

0: BP9 E3.

If a+b<p+q, then 0(@)=0 for any %€ EP(f).

6. Cyclic reduced powers

In the following sections we shall look at the operations obtained from cyclic
groups. These operations we shall for an obvious reason call cyclic reduced powers.
Let n denote a prime number. Let ; be a cyclic group with n elements ope-
rating on n letters (0,1, ..., n—1) by cyclic permutation. Let 7 be the generator

defined by the equation
T@#)=i+1 (mod n).

Let there be given, as before, an element %€ E?%(C). The cyclic reduced powers
of & are then determined by the map
¢: B(V®,C"—E/0).
By Theorem 5.2 the reduced powers are independent of the choice of the reso-
lution V. Let us therefore choose ¥V =W, where W is the standard resolution

K Rpe—?2 gpe-® gap--% ., (1)
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where Kz denotes the group ring of x over K. The maps in this resolution are

multiplications by the elements
A=T—-1and S=1+T+Tt+...+T". 2)
Let e, denote the generator of W in dimension %, then

Beax = Dok 1, Oegns1=Aeay. (3)

7. The mod 2 case

In this section let K denote the field of residue classes of integers modulo 2,
K={0, 1}, and let n=2.
For any cochain z in F?C**?=F?C' N (C**? we shall consider an expression of
the form
(X)) = ep1qi®B +€p1q-14,102dr EWR,C®, all i, (1)

with the agreement that ¢,=0 for j<O.
By the definition of the filtration of type 2, (section 4) we see, that the term

eprq-1927 has filtration as follows
trsq 1T EF(W®,0P), with m=max(p, p+i—q). (2)
Since ¢;®2%=Te;02* € W®,C® we get, by taking the differential of (1),
d(eprq-1®T =ep1q 1,192dx) =€y, q-141®(dx)>.
Hence d(a'(z)) = a'(dx). (3)

Let us now choose a function ¢: W®,C®—>C as constructed in section 4 and
keep it fixed in the following. The image under ¢ of the cochain a'(z) we shall
denote by sq'z,

P (x)) = Plep1q-1®2* + €py g1 1@ dx) =8q' 2 €C. 4)

By Theorem 5.5 we have sq'z=0 for i <0. It is clear that sq'z=0 for :>p+q¢+2.
If dz€F?*, then by (2) we have

sq' z € F™(C), (5)
with m =max (p, p +1—g¢q). Since ddx=0 equation (3) gives

dsq'z=sq'dz. (6)
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Now let {z}=u@€EP%C), r>2. As mentioned in section 5, to decide if the ex-
pression (1) determines a spectral operation we must examine if for some ¢ expres-
gion (1) determines a class in E(W®,C®), independent of the c¢hoice of representative

x of 4. To this end let  and y both represent. @. Then
z—y=da+b, (N
with a €F?"" and b€ F?*! (cof. (1) section 5). By (1), (3), and (7) we now get
d(a!(@) + epyq-s4102Y)
=o!(da) + epyq-i @ (Y + y2) + €p1g-i111®(x dy +dx - y)
=ey,q-i B —y — b2+ 2y +yx) + €prq_i1®(2dy + dx - y)
=€y i Q@+ P+ (@—y)b+bx—y)+ b)) +epq i (@dy+da-y)
= o (x) + ol(y) + prq-i ®((x — y) b+ b(x — y) + b?)
+eprg-i+1@(@dy +dx -y +xde+y dy). (8)

By (2) and (3) we see (cf. also Fig. 1)

©)

ai(x) EFP, doc‘(x) evaax(D+r.p+i—q+2r—l) for ’I:Qq,
of(x) EFPH-2, doi(x) € FP+-a+2r-1 for i>gq,

and also ol(@) + ey g i1 @y € FRax@-r+lpti-g-2r45) 10)
D+q Y

Since in the last line of (8) the terms ai(x) and «'(y) have smaller filtration than
all other terms occurring, it follows from (8), (9), and (10), that

o'(x) € Z2, for 0<i<<qg—r+1,
(%) €28, _14i-¢ for q—r+1<i<y, (1)
oMx) € ZBH9, for ¢g<i<p+gq,
{o'(2)} € BF 7, for 0<i<y,
d al 12
and aso {o(x)} € B % r -2y, for q<i<p+g, (12)

are independent of the choice of representative x€d@€E??. For i=p+yq, {«'(2)} is
well determined in E, since «”*%a)=e,Qada. This, however, shall not concern us.
We are now in a position where we can define the reduced powers in spectral
sequences. By (4) and by (12), namely, we known when sq'z is independent of the
representative x of 4. We therefore make the definition for {z}=#€E??

Sqla = {sqtz} € EP- 7, for 0<i<y,
q'@={sq'x} q } 13)

Sq' = {sq' 2} € B i %% r o, for g<i<p+gq.
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]
4 al
(a) +
— 2
/()
g+r—2 1 a
o(dz)
'R Y F + — (dx)t
g—r+1 dz
p—'r+l P ptr
Fig. 1.

By (11) we see, that sq'z for some i determine elements in later stages of the
spectral sequence than the ones given in (13). It will be convenient in the following

to denote these classes by Sq'@ also. Explicitly we have:

for 0<i<g—r+s

Sq'a={sq'z} € P *, (14)
for g—r+1<i<gq
Sq'#={sq'x} EEPI* foranyj, O0<j<i—gq+r—1, (15)
for ¢g<i<p+g
Sq'a={sq'z} €EP}}~*%¢ for anyj, min(i—gq, r—2)<j<r—1. (16)

If we disregard the stage of the spectral sequence, the formulas show that Sq' in-
creases the total dimension by 4, and that furthermore Sq'@# belongs to a group
situated on the angle line from (p, gq) vertical to (p, 2¢q) thence horizontally to
(2p, 2q) as displayed in Fig. 2. Formula (6) shows, that spectral operations defined
here commute with the differentials in the spectral sequence (see Fig. 2).
THEOREM 7.1. Let G€E!Y(C) and let dai=5€E2*" 9" ((C). Then
d,Sq'a=8q'd, & =Sq'7,
where t=min (max(r, t—¢+2r—1), 2r—1). (See Fig. 2.)
Thus ¢ has the property that d; goes from the angle line beginning in % to the
one beginning in 7.
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Fig. 2.

We remark that we are only interested in E?'? for p>0, ¢=>0, and r>2. In
Theorem 7.1, therefore, we assume without mentioning it that the fibre degree ¢ —r+1
of 7 is greater than or equal to zero. This same assumption we have made in e.g. (14).

For ¢ <0 it follows from Corollary 5.6, that Sq'@=0. For ¢>p+q let us define
Sq'%=0€E5*'; "%, With this extension the Sq's still commute with the differentials.
This is clear except for the case

dor 1{SP* 4 G} = dgr_1{0} = 0) = {SqP**1 5} = {#*}.

Since, however, d,(@-7)=%", we have {#*}=0€E,;_,, which is what we wanted
to show.
The Sq"s are additive. To show this we make the following computation. Let
z and y belong to Z?'?, then
8q' (T + ) = @lep+q-1 (@ + Y + €91 1110 (z + y)(dz + dy))
=@lepsq-1 (P + 2+ 2y + y2) + €51 g 111® (x dx + y dy + 2 dy + y d2))
=8q'2+8q'y + dp(€psg-14102Y + €51 g-14+29dz * y)
+(p(€p+q_i+2®dxdy). 17
Now let @,, %, €E?? be represented by z and y respectively. Since in (17) the last

two terms in the last line determine zero in the group to which Sq'(#, + i,) belongs
(see (13)), we have proved

THEOREM 7.2. For 4,, ti,€E>?
Sq' (4, + %) = Sq' (@,) + Sq' (4,).

Let B Ce—>Ca®Cy, p:C2C—->C
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be dual filtration preserving diagonal approximations (filtration on Cx®Cx and CRC
the usual ones). The product operation in E,(C) is then induced by g,

u: E'?h 01(0)®E3" 03(0)_>E’1_’1+P1o Q’x‘l‘q’(C) .

We remark that E{C®C)=E(C)®E(C) (usual filtration on C®0). In the fol-
lowing we shall choose u, and u to be defined respectively by u.(c) = ¢'(e,®c)
and u(x®y)=g@le,®zy). Furthermore we shall write u(x®y)==zy. By the proof of
Theorem 4.1 we can obviously choose the mapping ¢ so that the multiplication be-
comes associative. We shall assume in the following, that the mapping ¢ we are
working with has this property. We remark that the usual (explicit) Eilenberg-Zilber
mapping gives rise to an associative multiplication.

To derive the Cartan formula in the case of spectral operations let us consider
the diagram

1@u®p

We.(Ce0)® W®,0® c

l A®181)E) l” (18)
(WOW)©,(CRO)P — % (W®,0®)Q(We,0?)—22% . 08C.

The mapping A is the equivariant diagonal map A: W—WQW given by Ae,=
D~ ®T', (m operates diagonally in W®W); ¢ is a permutation of the factors,
o: (WO W)®,(C,00)P—>(We,C,®)(W®,C%®).

The diagram (18) is commutative up to a homotopy H of degree <1. This is
seen by considering the diagram

W& Cs v o i oP
A®ug lP (19)
WOWRC,8C, ~(W80),8(Wal*) —¥2Y . 0Pe0P,

which is dual to (18). The mapping P is the permutation of the factors given by
(1, 2, 3, 4)—(1, 3, 2, 4). The element T €x operates in cw by the permutation (1, 2,
3, 4)—>(3, 4, 1, 2) of the factors.

Theorem 4.1 shows, that the two compositions in (19) mapping W®Ox into
€’ are homotopic by a homotopy of degree <1. The diagram (18) is therefore com-
mutative up to a homotopy H of degree <1.

Let z€F?C?*9, y€F°C**, take k>0, and let =€y, g154t k@ XOY)* + €psarsst-ks1
®(x®y)®d(x®y). Then applying the maps in (18) to 5 we get
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P(1®udu)(n) =sq*(xy),
we®) o(A®(101)®)(n) = u(eoe) GSHZ_kem—:@T”*““e,u-;@(z@y)”

+,HZ k3y+q-i+1®T”+“"”e,+g_,®xyd:v -y

= ulp®e) z @)Y Fd( D eprg-in12®rt-s1ydy)
5=k t7=k

p+a—ieven

+ 2 en+q—1+1-'172®es+t—l+1(d?/)2

t+i=k
p+qg-ieven

+1+; Lrraidl TPy de®esst— g1y dy)

= > sq'z-sq'y+db+ec, (20)
t+i=k

where b= 121: C}?(epw—tuxz)'99(8:+t—;+1?/d3f),
p+;—’l-even

o= Zk Plep+a-1+12%) * @l€s1t-141 (dY)?)
D+;1?even

+“% k¢(6p+q —£+1Tp+q—1+1x dz) - gplesss—s43y dy)- (21)

We remark that b and ¢ are zero if y is a cocycle. Since (18) is commutative up to
a homotopy H, we get

8q" (xy) =l+IZ_ksq’x -8q'y+db + ¢+ dH(n) + H(dy), (22)

with 77zep+q+s+t—k®(x®?/)2+ep+q+a+t—k+1®(x®y)®d(x®y)~
This equation implies (proof below) the Cartan formulas.

TeEoREM 7.3. For any two classes @, €E?'® and d,€Ey* the following formulas
hold true,

Sq(ia)= | 3 Sq' S, €EFE (0<k<q+)
0<iga. 0<ist
Sq* ()= 3 Sq'dSqLEENLLGI TS (qHt<k<ptgte+e).
a<iCP+ . t<ISE+1
Proof. We first remark that in the second equation we are considering Sq',

and Sq'd, as belonging to E,.mmx-¢_t.r-2. In (16) we saw that this is legitimate.
The proof of the Cartan formulas follows from (22). The only terms on the right
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hand side of (22) that will make any contribution are the ones of least filtration.
Since H is of degree <1, these are in the two cases Dy.s.x8q'zsq'y with respecti.
vely 0<i<q, 0<j<t? and ¢<i<p+gq, ¢<j<s-+t. This proves the theorem.

If A is an algebra over a field of characteristic », then the algebra homomor-
phism a—>a" is denoted by . The iterations of [ are denoted (° (=e-57, 2r=0).

TEEOREM 7.4. Let w€ES? and let 4= a,"b,, where a,€E}°® and b, € E3°. Then

Sq'@=Da, Sq'b, EEF ' for 0<i<yg,
Sq'i=2Sq""a,-b2EEET T2 for g<i<p+g.

This means, that if E3'°@EY*—~E3* is an isomorphism, then
Sq'= 188q: Ep "> EB®  for 0<i<g,
Sqt=8q' QL P —>E3* % for ¢<i<p+tq.

Proof. Since the Sqs are additive, we only need to show that for @ in the
base and b in the fibre Sq'(a-b)=a-Sq'b for i<q and Sq'(a-b)=8q'%a-b* for ¢<i.

This, however, is a trivial consequence of the Cartan formula.

THEOREM 7.5. Let 4€E>Y, let d,ii=0, and let i determine the class {a}€ E?.3. Then

P+ for 0<i<gq

1—q,2 .
E?:l+xglinq(l—q,r—l) for 9<1<P+q

(Sqtay =S¢ {i) e{

Proof. Since d,i=0 it follows that there is a cochain x€Z7;§ representing ;
z will then clarly also represent {@}. By the definition (13) of Sq' we see, that sq' «
represents both Sq'@é and Sq'{@}. This implies the theorem.

By the Theorems 7.4 and 7.5 we immediately get

THEOREM 7.6. Let 4={3,a, b,} €EEP?, where ., b, EES® with a, €EY® and
b €EEYY. Then
Sq'%={Da.-Sq'b,} EEF** for 0<i<g,

Sq'i={38q" %a, - b2} € BV} andiir-ny for g<i<p+q.

As before let f: E—B be a mapping of css-complexes. Let b, (vertex) be a base
point in B. The inverse of b,, F =f-1(b,), is a subcomplex of E. We therefore get the

commutative diagram
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incl, !

F E B

) E l f ‘ 15 (23)
| incl. ! 1z !
b, B B

where b, also denotes the subcomplex of B generated by b,. The pairs (incl., incl.)
and (f, 15) of horizontal mappings will be denoted by « and y. These induce mappings

B,(1) —— E(f) —— E,(k). (24)
‘We have for all r>2

EXYk) ~HYF), E>%k) =0 for p>l,}

p,0 D D, @ — (25)
E?%(1g)y= H?(B), E?%1g)=0 for q=>1.

If @ is an element in the fibre or in the base of the spectral sequences (25)
then by @' we shall denote the corresponding cohomology class under the isomorphisms
given in (25).

THEEOREM 7.7. Let @, €EY (k) and let i, € E>°. Then
(Sq'@,)’ = Sq' (@) € H*'(F),
(Sq'%,)’ = Sq’ (%) € H*+(B).

Proof. By comparison of the construction of Steenrod powers in the spectral
sequence and in cohomology the proof follows trivially.
From the naturality (Theorem 5.4) of the Sq’s we get from (24)

TEEOREM 7.8. Let 4€EL°(1,) and let 5€EY(f). Then
y*(Sq' %) =Sq' (y*a),
a*(Sq' ) = Sq' (a*#).

The infinity term, E. = E.,(f), of our spectral sequence is isomorphic to the graded
module associated with the filtered module H*=H*(E),

0=F*'H°C FPH’< ...c P'H?< ... < F'H*< F°H? = H(E),
F'H? /P HP > BLP

If we disregarded the filtration, the mapping ¢: W®,C(E)®—C(E) used to define the
spectral operations can also be used to determine the Steenrod operations in H*(E).
The proof of the following theorem is trivial.

7 — 62173087 Acta mathematica. 107. Imprimé le 29 mars 1962



98 LEIF KRISTENSEN

TEEOREM 7.9. Let w€F H*Y(E) determine {a} in E%%f). Then we have
SqlﬂerHHxHaH(E)
and {Sq' @} =Sq!{a} € E** 4+,

where j=max (0,i—q). (Here Sq' denotes a cohomology operation when operating on the
cohomology class % and & spectral operation when operating om {@}).

Exactly as in the case of cohomology operations we can consider iterated opera-
tions and ask for relations between them. In the case E3 *=~H*(B)® H*(F), certain
relations are, however, easily derived from the Adem relations by means of Theorems
7.4 and 7.6. Since such relations are not used in this paper, we shall not write them
down.

8. Some lemmas

In certain computations coming up in later sections we meet the following situa-
tion: In the spectral sequence {E,,d,} of a certain mapping f: E—>B we know that
three elements « €EY"™!, BE€EL", and yEEYX* ™D (n>2) have the properties

d,,oc=ﬂ, dn)’:a'ﬁ:
Eyi=0 for 1<qg<n—1, any p.

We are then interested in determining the differentials of Sq'y and of other elements
in the fibre. The lemmas proved in this section treat this and a similar situation.
First let us make the following

REMARK 8.1. Let f: E—>B be a map of css-complexes and {E,,d,} the corresponding
spectral sequence. Let a €E3""Y, BEER, and y €EY*™ ™D (n>2) with dya=p, dny =af.
Let Bi**1=0, t=2,3, ...,n—1. Then there exist cochain representatives u, v, and « of
o, B, and y respectively with the property

dr=uwvta (L
with a € F**~YO*Y(E)).

Proof. The cochain @ we shall say is “in the base”. In general we shall say that
any cochain belonging to >, F/C’ is in the base. Let u be a representative of a. The
cochain v=dy is then in the base and represents . Let y be an arbitrary represen-
tative of y. Then, since d,y=af, the cochain dy must represent «8, which is also
represented by uv. By (1) in Section 5 we therefore get

dy=uwv+db+c
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for some bEFC? % and ¢€Z2*} "2 The cochain ¢ determines a class in Ep*}™2,
Since this group by assumption is zero, we get

c=db +e¢;
with b, €F® and ¢, €Z3*3" % Since ¢, determines a class in Ept3" %=0, we can
iterate this process. We therefore get
dy=uv+d(b+b1+ +b,._2)+c,...z

with ¢,_s=a in the base and b+b,+ ... +b,_s € F'. Since d(b+b, + ... + bp_2) EF”, the
element x=y—(b+b,+ ... +b,_3) represents y and we get (1).

LeMMA 82. Let «€EY", BEEL®, and yEEY ™V be elements in the spectral
sequence {E,,d,} associated with a css-map f: E—B. Let u, v, and = be cochains re-
presenting «, B, and y respectively with the properties du=v, der=uv+a, where a is in
the base. Then

7D = gkt +.,§kosq°“ Sq* e (0<k<n-—1),
i8 transgressive, while
20— Sy + 3 8q°a- S 0a (0<k<n~1)
persists to E,., and has
dn 4 1:{T%} = {Sq* e - Sq* 8}. (2)

Furthermore there are cochains u,, v,, and x, representing Sq*e«, Sq* B, and T®* respectively
such that
duy=v, and dz,=wv +ay,

where a, is in the base. (The existence of u,, vy, z,, and a, with this property clearly
tmplies (2).)

Proof. Since dx=uv+a and ddx=0 we get
duv) +da=v*+da=0.
By (17) and (22) of section 7 we get for ¢=0,1

dsq®™* () = sq™*¢ (dx) = sq™** (uw + a) = 5q¥5+° (uv) + 8¢**** {a)
+ dplezn_2k—e® (UV) @+ €202k 6410%0) + P(e2n—2k—e11® (07)%)
=87 (uv) + 897" (a) + d(@(€2n - 2x—c® (u0) @ + €20 _g1c—s11®V%a) + 8¢%*¢ 1 (a))
= > sq'u-8q'v+ H(egn -5k ®9%) +5¢%*(a)

f+i=2k+s

+d(H(n) + @lean-2k-:®(u0) @ + €35 _gx—4100%a) +8q*+* 1 (a)) (3)
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with 7=¢€g_1 2k, QUVUV + €35 _gk-Duvvy (see (22) in section 7; since v is a cocycle,
b and ¢ there are zero). By the definition of the filtration of type 2, we see that
the filtration of # is greater than or equal to 2n—(2n—1—2k—¢)=2k+ ¢+ 1, which
is >2 since 2k+&>1. Since H is of degree <1, we see that all terms in

b=H(n)+ pleon—ox—® (uv)a + e2n—gk—s11®0°a) +8q7 7 (a) 4)

are of filtration > 1. The sum

k+e—1

[« PO 2k+e—~a
go Sq« - Sq o

k+e-1
2K +8— c

is represented by Q= Z 8q° % - 8q

Applying the coboundary operator to @ we get

k+e—1

dQ= z (sqcv sq2k+t °u+sq°u sq2k+; 4] )
o=0

k+s-1 P
-2 (Sq2k+°+°“‘Sq°”+SQ°u'sq2k“’"v)+d( 2 9le®sq vsq™reTo ))

a=0
k+s-1
+ 2 ple; ®8q° v 8g*+* % v). (5)
k+6-1
The term c= 2 ole,®sq°v8q**** %) (6)
=0

we pnote has filtration >1.
If e=1, we get from (3) and (5)

d(sq™* 'z + Q+b+c) = Hlean—ox- 1®v‘)+2¢(ex®sq vsg®* 17 %y) +8¢®™* (@).  (7)

Since H is of degree <1, it follows that the right hand side is in the base. Also
since, as we observed above, b+ ¢ is of filtration >1, it follows that sq®*'z+Q+b+c
represents 7**D, The equation (7) hence shows that ***" is transgressive.

If £e=0, we get from (3) and (5)

. k-1
d(3q** x+Q+b+c¢) =89 u - 3q¥v + H(ezn_gx®v*) + > ple,®5q°v8q™ °v) +8q™(a). (8)
=0

As before z,=sq™x+Q+b+c 9

represents *®, and

k-1
@, = H(egn _2:®v") + 2 gle,®5q% v 8q™ 7 v) +sq™ (a) (10)
o=0
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is in the base. Putting

u, =8q"%, v, =sq¥v
we get from (8) the second statement of the lemma. This completes the proof.

Lemma 8.3. With the same assumptions as in Lemma 8.2
y +du(y) = yaf € B30
ts transgressive, i.e. persists till Es, _».

Proof. The element pafi is represented by z-dx. Taking coboundary we get by
(17) and (22) of section 7

d(x - dx) = (dx)?

= 8" ! (uv + a) =8q™ 7 (uv) + 8q* ' a + dp(e, ® (uv) @ + ¢,@v%a) + (e, R (v7)?)

=8q* 'u-sq*v+sq”u-8q” ‘v +s8q™ a+dH(y)+ H(e,®v*) + db (11)
with 7=e,®(u®v)® + ¢, @ (u@vRv®v) and b=gp(e, @ (uv)a+e;,®v*a) +8¢* *a. Since

s u-sqtv+sqtu-sqt v =sq"tu - v* +uv-sq® v =db, + (e, ®v%sq* 1v) (12)
with by=s8q" 'u-a+z-sq" v+ @e,®asq® v), (13)
we get from (11)

d(zdz + H(n) +b +b,) = H(e; ®*) + p(e; @7 sq* 1 v) + 8¢ ' a. (14)

Since 7 is of filtration 2n, H(y) is of filtration 2» —1>n+ 1. It follows that xdz -+ H(n)
+b+b, is a cochain representative for yaf. Since the right hand side of (14) is in
the base, this equation gives us the conclusion. This completes the proof.

We shall now consider analogs of the above lemmas. As before we make the
following

REMARK 84. Let f: E—B be a mapping of css-complexes and let {E,,d,} be the
corresponding spectral sequence. Let a €Ey""', BEER°, and y €EXP"2 (n>2, h>2)
with d,x=f and domn—m(y)=ap® 1. Let EP**1=1=0 for j=2,8, ...,n—1. There then
exist cochains u, v, and x representing a, B, and y respectively with the property

dr=uw?"14q
with a in the base.
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LeMMA 85. Let a€Ey"", BEEY®, and yEEY?""2 (n22,h>2) be elements in
the spectral sequence {E,,d,} associated with a css-map f: E—~B. Let u, v, and x be
cochains representing «, B, and y respectively with the properties du=v, dx=uv?+a
where a is in the base. Then

Sq*y, k<2'n -2

is transgressive if n is not divisible by 2". If k=s-2"%, then

Sqty =8q* ¥y
persists to Eor_1y;n+s) and has

der 1)(n+s){sqs '2h7} = {qu a: (qu/g)?}'—l}.

Furthermore there are cochains u,, v,, and z, representing Sq®x, Sq*f, and Sq"2hy
respectively such that

duy =v,, dz;=u0," ' +a,
with a, in the base.

Proof. From the equation dr=uv®"1+a we get
d(uv?-1) +da=v*+da=0. (15)
Putting >,sq'y=sqy for any cochain y we get from (17) of section 7
dsq (z) =sq(dz) =sq (ur® 1 +a) =s8q (wv? 1) + sq (a) + db, (16)

where b=, (p(egmn-1®(uv? 1) a + eam-1+100v%a) +8q' " 1a).
[}

By an obvious generalization of (22) of section 7 we get from (16)

dsq (x) =sq (u) * (sq (v))* -1 +db, + ¢, +sq (a) + db, (17)
where b, = gﬁ(ﬁ,) (18)
6= ;E(ezh._.@(v@v@ ..®v)%). (19)

The homotopy in the generalized diagram (18) of Section 7 is here denoted by H:
WR(C®™)®—(C; 4, denotes the element esn—_1-1®(uv? 1) + eopn-1® (w? 1) (2?*).
Putting
Q=2 (sq'u(sq'v)*) (sq'u(sq'v)*~7) (sqv)**" (20)

ot<h—1
i<y
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we get Q=2 ((sq'v(sq'v)¥?)(sq} u(zq'v)?-1)
28— gt+1

+(8q' u(sq'v)? ") (sq' v(sq v)? 1)) (sq )
= > (sq'u(sq'v)? 1) (sq’v)? (sqv)? 2" +db,+c, (21)

0gigh—1
i+S

with by = % 1<P(81®(SQ’ v(sq'v)* ) (sq' u(sq’ 9)* 1)) (sq v)* " *", (22)
-

o<t
¢

2 pley®((sq'0)%) (89’ v))) (sq 0>~ #"". (23)

Cg=
0gigh -1
i<f

If for a moment a and b are arbitrary cocycles in the base and ¢ is a cochain with
the property that ¢ and dc are in the base, then an easy computation shows

(@+b+dc)=a®+b*+dé
with ¢ and dé¢ in the base. Using this.an inductive argument shows
(sq0)? = 3. (sq'0)? + def) (24)
with ¢(t) and de(f) in the base. Furthermore the components of c¢(t) are all of dimen-
sion >n (=dimension of v). By (21) and (24) we now get
dQ+dby + ¢y +8q(u) (sqv)* -1
= t 1021 (acqd )2 o g+t 24 -1
K%,;_l(sq u(sq'v)*~1) (sq' v)? (sq v) +squ(sqv)
= 3 (sq'u(sq'v)* 1) (sq'0)* (3q0)* ¥ + S sq’u - sq’ v(sqv)* 2
1<t<h-1 s

= 2 (sq'u(sq'v)*" 1) (sq' )% (squ)? ¥ + > sq®u(sq’v)’ (squ)?~* +dby+ ¢ (25)

2<tigh-1
f4f

where b=, 8q°u 8q®v-c(1)-(sqv)?~* and c;=>,(sq°v)?¢(1) - (3qv)?~*. We note that
b, has positive filtration, and that ¢, is in the base. Tterating the process from (25)
we get

dQ+db,+c, +squ(sq)? 1= sq®u(sq® v)? 1+ d(by+ ... + bpy1) +Cg+ ... +Cns1, (26)

where by + ... +by,; i8 of positive filtration and c;+ ... +¢44y i in the base.
Using (17) and (26) we now get

d(sq(z) +b+b, +by+ ... + by + Q)= sq®u(sq* v)? -1 +sqa+ ¢, +Cg+ ... Fopar.  (27)
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Since sqz+b-+b;+..:+bps1+@Q is a representative of Sqy=2,8q'y and since sqa
+¢;+ ¢+ ...+ €441 is in the base the conclusion of the lemma follows. This completes

the proof.
LeMMA 8.6. With the same assumplions as in Lemma 8.5
y-der-pa(y)=y-a-f* 1€En_1n
18 lransgresssive; i.e. persists till Eoryiyn-2.

Proof. The element y-a-$%-1 has a cochain representative x-dz. Taking the
coboundary we get
d(z - dz) = (dz)? = 8q®"™~1(dx) = 8q®**~ Yur? 1+ q)
=gsq®2~ Yuv? 1) + 8q®"~Y(a) + d(d), (28)

with b=p(e,®(uv? V) a+e,0v%a) +sq** 2. (29)

Using the generalized formula (22) of section 7 (see also (17), (18), and (19) in this
section) we get from (28)
dxz-dr)= 3 8q®u)sq®@)...sq® ()
1

Zid)=2An—
7

+dH (fjn 1) + H(e, ® (v?)%) + 52~ + db
=sq* lu(sq®v)® 1+ > sqtusqvsq v... sq"vsq* " lvsq v ... sq"v
+ d(H (fjzmn-1) + b) + H(e, ® (v™)%) + s¢®*1a
=sq® lu-v?"" 24+ 5 uw-otegqrly.pP?T 4

0<i<oh-2
+ d(H (fjpn-1) + b) + H(e, ® (v**)%) + sq¥"~1a. (30)
Since > uvet®esqtlo-o?T 4% =gdb +¢ (31)
Oig2h1-2
with b, = w . gqp-ly . pP-4-%.q,
0<IS2A -2 s ‘ |(32)
G = v .sqn—l,v.v%—‘i—h.a,
Ogig2h1-2
uv2f+lsqn—1.v.v?)+l—4—2i=db2+62 (33)
21 1gig2h-1
281 ] )
with by= > anit2-P.gqr-ly.Pt-e-2
tmpi-1 (34)

261
Cg= z a02t+2—2l.sqn—lv.v%“—4—2t’
t=20"1-1
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and sq®~ 1 u - v?"' -2 =db, + c, (35)
with by=sq®* lu-v?%-q, cy=sq ly-v? 2.q, (36)

we get from (30)
d(xdz + H(forn-1) + b+ by + by + by) = H(e, ® (v?)?) + 8qZ2~1a + ¢, + ¢, + ¢5. (37)

Since 2dz+ H(fzsn_1)+b+b, + b, + by is a cochain representing yxf?~! and since the
right hand side of (37) is in the base we get the conclusion of the lemma. This

completes the proof.

9. Mappings of spectral sequences

For the rest of this paper we shall be working in the category of topological
spaces. It is well known that there is defined a functor 8, the singular complex
functor, taking this category into the category of css-complexes. We shall consider
the (normalized) singular homology theory of topological spaces X and use the following

definitions and notation

Cu(X)=C4(8X), C(X)=C(8X),

H,(X)=H.(8X), HX)=H*(8X).
If /: E—>B is a mapping of topological spaces, then

E(f) = E(Sf),
where E(Sf) denotes the spectral sequence of the css-mapping Sf. In Gugenheim-
Moore [7] it was shown that if f is a fibre mapping, then
E(f)3*=~H*"(B, H*(F)) (local coefficients).
If 7,(B) operates trivially on H*(F), then
E(f)2*=H*B)® H*(F).

The coefficient group is here assumed to be our ground field K.

In this section the ground field K is an arbitrary field of characteristic n. Tt is
well known that the end-point projection LX—>X, LX the space of paths over X based
at a point z,€X, is a fibre map. This is an example of a fibre space with total
space having trivial cohomology. The infinity term E of the spectral sequence of such
a fibration is trivial (except for E%°>K). In this section we shall mostly consider
spectral sequences with trivial co-term. The spectral sequences considered will not
necessarily be spectral sequences of a fibration.
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Let us define three kinds of elementary spectral sequences 4 ={4,,d,} B={B,, d,},
and C={C,, d,} (r>2). These spectral sequences are bigraded sequences of commutative
algebras. The differentials are derivations and have bigradings as in the cohomology
spectral sequence of fibre spaces.

The spectral sequence A(k)=4={4,,d,} (see Fig. 1) is given by
A, =P(y)®A(x) (yeAF°, z€A3*), 1)

where P(y) denotes the polynomial algebra generated by y and A(x) the exterior
algebra generated by z, and by

d,=0 for r#k,} @)
dife} = {y}-
The spectral sequence B(k)=B={B,,d,} (see Fig. 2) is given by
B,=(A(y)®P(2))®P,(x), y€Bs’, z€Bz* D20 pe B+l (3)

where P,(z) denotes the truncated polynomial algebra of height n generated by «
(i.e. 2"1%0, 2*=0), and by
d,=0 for r+k and (»-—-1)(k—1)+1,
dife} ={y}, 4)
dn-pa-n+{yr" '} ={z}.
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We remark that if n+2, then £ must be odd. If & was even then by commutativity
2* =0 which contradicts =" '=0.

The spectral sequence C(k,m)=C={C,,d,} (see Fig. 3) is given by

02 = (Pn(y)®P(2)) ®(A(z)® Py(w)) (5)
where YECT®, 2€CEFm DN Dm0 g CPFY, welh (6)
and by d,=0 for r+k, kim—1), (km—2)(n—1)+k,
dilz} =1{v},
dm-n{w} ={y" 'z}, (M

Boem -2 n-neafy™ Taw” = {z}.

In case n+2, km must be even. If m>2, then k must be even.

In all three cases the differentials of any element are easily derived using the
fact that the differentials are derivations. Since we later on are going to need the
explicit expression of the differentials in the third case, we shall write them down here:

{y*Prw’} pemsists to 0, (0<a<m—2,0<f< o0, 0<y<n—1)

(ie. d{y*Pru?}=0 for (0<o<k) (8)
and d{y Prw’} = {y** P’}
{Pw"} persists to Cxm-1, (0<P< o0, 0<y<n—1)

and diem-p{Pw} = {yy™ Prwr1}.
{y™ 2Pzw" "} persists t0 Cum-gym-nix (0<B< )
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and diem-gya-nely” Few = {1}

The differentials of all other generators are zero.
The infinity terms of the three spectral sequences are quite obviously trivial.
The spaces X we shall consider in the following are all assumed to have locally
finite cohomology, i.e. H(X, K) is finitely generated for all ¢. The cohomology H*(X, K)
is a vector space graded by dimension.

DEFINITION. The cohomology H*(X) = H*(X, K) of X is said to be decomposed into
a tensor product if we have given graded vector spaces T, and maps
fo T—>HYX) (i=1,2, ..., }),

of graded vector spaces such that the composition

h h
® 1,288 @ HY(X)—~H"(X) (H"(X),= H(X))

is one-one and onto in dimensions 0,1, .... The map on the right of the composi-

tion is h-fold cup-product. If A= co the tensor product ‘® T, is defined by
=1

P 0
lim @ Ty=® 7.
o -1 =1

The map on the right in the composition is defined to be the direct limit of
b4
p-fold cup-products 1®H"‘(X),—>H‘(X).
=1

LemMMA 9.1. Let f: E—B be a fibre mapping with fibre F. Let E(f)={E}*,d,}
denote the associated spectral sequence.

Let
f: A3*—>E3*,

g: Be'—>EY", ©
h: C3*—E3*,

be mappings of graded vector spaces satisfying

(a) f(x) persists to E,,
df{f(x)} ={a}, where a€EF?;
(b) g(x*) persists to K,
di{g(z*)} ={abg(z*"")}, where 0<a<n—1, bEES® (remember g is not assumed
to be multiplicative),
bg(xn_l) persists to E(n-l)(k—1)+la
Ain -1y e-1y+1{0g9(z" )} ={c}, where c€E3*V*>0;
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(c) h(xw®) persists to E,
di{h(zw*)} = {@Gh(w")}, where 0<a<n—1, a€Es°,
h{w™) persists to Eym-yy,
Aim—-1i{P(w*)} = {ad™ h(zw ")}, where 1<a<n—1,
@™ h(zw" ') persists t0 Bum-syn-1+k,

d(km_Z)(n_1)+k{dm—lh(zw"_l)} = {6}, where 6 EEékm—z) (n—D+km.0 .

Then the (additive) spectral sequence mappings

f: A~>E, ¢q: B>E, h: C—E, (10)
defined by
f{y*«}) = {a*f ()}, (0<a< oo, £=0,1),
g{y*2*2f}) = {b°cg(=)}, 0<ax< o, e=0,1, 0<p<n—1), (11)

h{y*Prw’}) = {@Ph(z*w?)}, (0<a<m-—1, 0<B, ¢=0,1, 0<y<n-—1),
are extensions of the mapings (9). Furthermore f| A3'° is an algebra homomorphism. The
same is true for g|BY° and h|CE° provided b2 =0 € E3*°, and G™ =0 € EF*° respectively.

Proof. Provided that we know that (11) really defines mappings of spectral se-
quences, then it is obvious that the mappings (10) extend the mappings (9). By the
formulas (11) it is also obvious that the restrictions of (10) to the base give algebra
homomorphisms under the assumptions 5*=0, @"=0.

We shall restrict ourselves to show that the third equation in (11) defines a
mapping h: C—E of spectral sequences. This is the most complicated case. A com-
plete description of ¢ was given in (8). We see that we only need to show that

k{y*Pauw?} = {@*bPh(xw")} persists to E,,

di{@*bPh(zw”)} = {@***6Ph(u?)},

h{2Pu} = {bPh(w?)} persists to Exm-y,

dion-n{b°h(w")} = {ya™ "6 hizw’ 1)},

h{y™Paw™ "} = {a™ ' BPh(xw" 1)} persists t0 Ewm-zyn-1+ks

diem—sin—ry s 4™ BPh(zw™ )} = {BP+1),
Since the differentials in E are derivations this follows immediately from the assump-
tion (c).

LEmma 9.2. Let F—E—>B be a fibration. Let the total space have trivial cohomo-
logy and let m,(B) operate trivially on H*(F) such that in the spectral sequence E={E,,d }
we have B3 *>H*(B)Q H*(F). Let

' e A(k)—~E, gy Bk)—>E, hs: Clks, ms)—>E (12)
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be (additive) mappings of spectral sequences. The indices i, j, and o are understood to run
through given indexing sets. If the restrictions of f;, g;, and ks to the fibres decompose
H*(F) into a tensor product, then additively H*(B) is isomorphic to the tensor product
of exterior algebras each having ome generator giy(k)))€H*(B)=~E3°, of polynomial al-
gebras having the generators fi(y(ky)), gi(z(ky)), ho(2(ks, ms)), and of truncated polynomial
algebras with generators hs(y(ks, mq)) of height m,.

H*(B)= A{g/y)D @ K[{fdy), g/(2), ho(2)}]® @ K[ho(y), mo]. (13)

If further (as in Lemma 9.1) ho(y(ks, mo)’) = ho(y(ks, mg))P, 1 <B<m,—1, then (13) is an
algebra isomorphism provided in H*(B) g,(y(k;))>=0 and hy(y(ks, my))"e =0.

Proof. The composition
® A(k) @ ©B(k) & D ko, mo) > OB~ 14)

t
of @f,@@;)g,@@h, and cup-product is by assumption an isomorphism on the fibre.

Since the oco-term of both the range and domain in (14) are trivial it follows from
Moore’s comparison theorem (see e.g. Zeeman [14]) that the composition (14) is an
isomorphism in the base. The comparison theorem only tells us that (14) restricted
to the base is an isomorphism on the additive structure, but with the final assump-
tion in the lemma this map is an algebra homomorphism and hence an algebra iso-

morphism. This completes the proof.

10. Spaces with two non-vanishing homotopy groups

A space with only a finite number of non-vanishing homotopy groups is called
a Postnikov space. An important subclass is the class of spaces with only one non-
vanishing homotopy group, the Eilenberg-MacLane spaces (denoted K(z, n), m(K(7, n))
=0 for t#n and =z for i=n). Spaces with two non-vanishing homotopy groups =
and 7 in dimensions % and m(n<m) can be constructed from Eilenberg-MacLane
spaces. Let P be the total space of the fibre space induced by a mapping K(z,n)
—K(r,m+1),

K(r,m)=QK(r,m+1)
RN

7N
e N

P—— — LK(z,m+1)

k

| |
Kz, n) —K(t,m+1).
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The space P has the homotopy groups n and 7 in dimensions n» and m. This
follows easily from the homotopy sequence of the induced fibration. The mapping
K(n,n)—K(r,m+1) determines s class (k€H™*(K(s,n); 1) called the k-invariant of P.
The cohomology class k is also the image of the basic class ¢, € H™K(t, m); T) under
the transgression in the fibration K(z,m)—>P—K(m, n). Since the singular homotopy
type of P is determined by k (the groups # and v and their dimensions), we denote
P by P(m,n; v,m, k). The k-invariant was introduced by Eilenberg-MacLane. It is the
first of a sequence of k-invariants associated with any topological space. The higher
k-invariants were introduced by Zilber and by Postnikov. We remark that the singular
homotopy type of any space with two non-vanishing homotopy groups can be ob-
tained by the above construction.

Spaces with two non-vanishing homotopy groups (or closely related spaces) are
of importance in different situations in algebraic topology. They are used in Peter-
son’s definition of functional cohomology operations [9] and in the definition of se-

condary cohomology operations (see e.g. Peterson-Stein [10] or Adams [1}).

11. Computation of H*(P(Z,, n; Z,, 2n— 1, %), Z,)

The method in computing the cohomology of spaces P=P(n,n; t,m, k) is simply
to compute the spectral sequence of the fibration QP—LP->P by using Lemma 9.1
and 9.2. This can be done in certain cases if the cohomology of QP =P(n,n—1;
7,m—1,0k) is known. When the k-invariant ¢k, the suspension of k, of the fibre is
zero, this cohomology is known, for in this case QP is of the same homotopy type as
K(m,n —1)x K(r,m —1). We remark that if in particular k is decomposable, then gk =0,
and we are in the above case. In this section let K=2Z,.

A sequence I=(a,,a,,...,a,) of non-negative integers is said to be admissible if
a;>2ag+1 (i=1,2,...,'r—1). (1)
The degree and the excess of I are defined by
r
deg I =‘Z ay,
=1
(2)

r—-1
e(I) =gl(at“2ai+1) +ar.

We then have the relation

deg I + e(I) = 2a,. (3)
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Sequences (of non-negative integers) are multiplied by juxtaposition, and a sequence
is multiplied by a (non-negative) integer by multiplying each of the components with
the integer. The empty sequence is also considered a sequence in the following. Se-
quences of the type (2"7'd,2"°%d,...,d) will occur frequently in the following. We

shall use the short notation

L(d, h)=(2"1d,2" 24, ..., d). (4)
Finally let us recall that if I=(a,,a,,...,a,), then
Sq'=8g™ Sq*...8q". (5)

TarorREM 11.1. Let P,=P(Z, n; Zy,2n—1,¢63). For each admissible sequence J,
e(J)<2(n—1), containing odd components and each admissible sequence N,e(N)<n—1,
there are classes B(J) and p(2N) in H*(P,) of dimensions 2n—1+degJ and 2(2n—1
+ 2 deg N) respectively, satisfying

BWJ)=Sq’(B2j +1)J)
whenever J =J (2§ +1)J; with all components of J, even.
Let o be the non-zero class in H*(P,), then
H*(P,) = Z{{B()) IO A({Sq'a}) ® Z,[{Sq-® 4= W y (2N )}],

where h=0,1,... and where J, I, and N run through all admissible sequences satisfying
e(J)<2n—1), el)<n—1, and e(N)<n—1; further it is required that J contains odd
components.

Proof. Since QP,=K(Z,,n—1))x K(Z,,2(n—1)), it follows that
H*(P,)=H*(K(Z;,n—1))®H*(Z,, 2(n — 1)) (6)
as algebras. By Serre [11] we then get
H*QP,)=>Z,[{Sq"¢, Sq’ }], (7
where I and J run through all admissible sequences of excess less than »—1 and
2(n—1) respectively, and where ¢ and y are (the images of) the basic classes in
K(Z,,n—1) and K(Z,,2(n—1)) respectively.
In the spectral sequence of QP,—~LP,—~P, we have d,=0 for 2<r<wn, d,e=a,

and d,(x®e)=a?=0. As mentioned above, « is the non-zero class in HP,) (H'(P,)=0
for 0<i<n), and a®=0 follows from the special form of the (first) k-invariant of P,.
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We see now that there must be a class z in E%**™P with the property d.(z)=a®¢
since a®e otherwise would determine a non-zero class in %, contradicting the con-
tractibility of LP,. From (7) and the fact that the Steenrod squares commute with
transgression it follows that p has this property.

da(e)=a, du(y)=a®e. 8)

The set of generators for H*(QP,) given in (7) is not so useful for our pur-
poses. Before changing to another set of generators let us define certain elements 17,
I admissible, H*((1P,). This is done inductively,

=y for I empty,

-1
.,(2/) @ _, Zosqu SqJ e Sqm—a SqJ e+ qu’ 121,
o=

(9)
LE+DED =§osqo Sq” e+ Sq¥*1-98q" ¢ + Sq¥*1 ¥,
If I=(j)J and J contains an odd component, then
'=8q'7.
This defines ¢ for all admissible sequences I. It is easy to see that
T €V IOP),
ary - nitsr ) 1o

where I and J run through all admissible sequences of excess less than n—~1 and
2(n —1) respectively.
Next we must determine the differentials of the generators 7’ in the spectral
sequence of
QP,—~LP,—P,. (1)

Lemma 11.2. If J comtains odd components, then v’ is transgressive. If I=2N,
then T' persists to Ey sy and

dn+deg N{TI}':'{SQN(Z@S(]NG}. (12)
The element Sq~ a®Sqe- 17 is transgressive, i.e. persists t0 Esp_1, g0z Ny+1-

Proof. Since d,y=a®¢c (see (8)), the assumptions in remark 8.1 are clearly satis-
fied for the classes e€EY""!, « €Ey°, and y € B2~ (y =1’ for I empty). There there-
862173067 Acta mathematica. 107. Imprimé le 29 mars 1962
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fore exist cochain representatives satisfying (1) of section 8. This means that ¢, «,
y satisfy the assumptions of Lemma 8.2. Suppose inductively that SqVe, Sq¥a, and 7'
satisfy the assumptions of Lemma 8.2 for all I=2N of length <r. then Lemma 8.2
shows that if I=2N is of length r, then (12) holds true and that Sq¥e, Sq¥«, 7
satisfy the assumptions (for definition of 7’ see (9)). This proves that not only is (12)
true in general but Sq"¢, Sq¥ «, 7’ satisfy the assumptions of Lemma 8.2 for all I =2N.
By Lemma 8.2 we therefore also get that v¥*P®" is transgressive (transgresses into
B((2j+1)(2N)) say) for all N. Also by Iemma 8.3, for each N,Sq"a®S8qVe 7' is
transgressive (and transgresses into y(I) say). We now only need to show that if
J =J(2j+1)(2N), then 7’ is transgressive. Since by (9)

T] = qu (T(zl+1) (ZN))’

since T#*VEY transgresses into S((2j+1)(2N)), and since Sq7 commutes with trans-
gression, it follows that v’ transgresses into B(J)=Sq’(8((2j+1)(2N))). This completes
the proof.

The proof of this lemma shows that for all J and I of excess <2(n~—1),J con-

taining odd components and all components of I even, there are classes

ﬂ(‘]) eH2ﬂ~1+dexJ(P")’
7(1) eHz(Zn—lﬂiezI)(P")’ (13)
such that
d‘zn—1+de¢ I{TJ} = {ﬂ(J)},
N N I (14)
d3n—1+4eg N)+I{Sq a®8q e T }= {Y(I)}’
and such that if J=J(2j+1)J;, where all components of J, are even, then
BT) =8q3(B((2] + 1)Jy))- (15)

Lemma 11.3. If J contains odd components, then (v)?, h=0,1, ..., is transgres-

stve and
dg{(TJ)”} — {SqL(‘z(n—l)+de¢ J. h)ﬂ(J)},

where t=2"2(n—1)+degJ)+1.
Proof. This follows from the fact
(11)% = SqL(Z(n—IHdec J.h) IJ

For each pair (J,k) let V(J,h) be the fibre in the elementary spectral sequence
A(k) (see section 9) with k=dim ((1')?)+1 and let a mapping
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f(J, k) V(J,h)—>H"(QP,) (16)
be defined by f(J, k) (x)=(")*. By Lemma 2.2 we get

LemMma 114. If J contains odd components, then the mapping

oo

@17, 1): @ VI, W—>Z,[r)= H'QP,)

h=0
is an isomorphism as a mapping of graded vector spaces.
Now let I=2N be admissible and of excess <2n—2.
LeMMA 11.5. The element Sq~ e« 1N persists to Eniqeqn and
dnrace v{Sq"e - 7"} = {Sq"a®((8q"e)* + ™)}

Proof. Since dn.qexn{Sq e} ={Sq"a}, the lemma follows from Lemma 11.2 using
the fact that d,,qeen~ is @ derivation.

LemMa 11.6. The element (SqNe)®+ 1Y persists to Epiaen and
Bn+aeg n{(8qV )% + 1%} ={Sq" «®Sq"e}.

Proof. Since d,.qgn is a differential, it follows that dy g ((Sq¥e)?)=0. The
lemma now follows from Lemma 11.2.

LemMma 11.7. The elements (Sq¥e)?, (Sq¥e)*+ v™)?, and (SqVe:v™)> persist till
the (2%n—1+ deg N)+ 1)-term in the spectral sequence and

d{(Sq"e)?} ={Sq" ¥ u}, (17)
d{((3q¥e)* + 7™} = {Sq"¥a® (8q" &)}, (18)
a{(SqVe - ¥} = {Sq" a®((8qVe) + T2M)?}, (19)

where s=2"n—1+degN)+1 and L=L(n—1+degN,h). The element
SN a®(/qNe - 72y
persists till the (3-2%n —1+deg N)+ 1)-term and
d{SqN o ® (Sp¥e - 122} = {SqLéa-1+eeE ™. (O )Y (20)
where y(I)=v(2N) 1is as tn (12) and £=3-2"n—1+deg N)+1.

Proof. Since (Sq¥e)?=8q Ne, (17) follows from (8) and the commutativity of the
squaring operation with differentials. ¥or h=0 (18), (19), and (20) are proved in the
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Lemmas 11.5, 11.6, and 11.2. Since the differentials are derivations, we see that to

prove (18) and (19) in the general case we only need to show
d{(z*")?} = {Sq"™ «®(Sq¢)?}.

@1

We do this by induction on %, assuming (21) is true for all powers of 2 less than

2%, By the commutativity of the squaring operation and the differentials (Theorem

7.1) and by Theorem 7.6 we have
ds{(sz)”} _ ds(sqzh(n»-l+degN){(_[2N)2h—'})

=821+ IEN (Gor s 1+deg m+1{(TZT)Z )

= quh(n—1+degN) {SqL(n—1+degN. h-1) SqNa®(SqN£)2A—‘}
= {Sq2h—x(n—1+dasN) SqL(n—1+desN. h-1) SqNoz® (Squ)Z"}

= {Sq"" a® (Sq¥&)?}.

This proves (21). To prove (20) in general we again proceed by induction on A. The

general step is here as follows
d{Sq™ a®(Sq¥e - 7*") 2%}
= dt(sq2h“(n—l+degN){SqL(n—1+degN.h~1) Sq"a®(Squ . TzN)Zh“})

— Q2h*i(n-1+degN) L(n-1+degN.h—DN N__2N\2h—1
=8P AT G rn 1 4o 1y 11 {SGEE TN IOV 40 (Sqer )P

= Sq2h+l(n—1+degN){qu(«n—lﬂ'legN). h-1) (7(2N) )}
— {SqL(i(n—l-i-degN). h) (y (2.N))},

which is what we wanted to prove.

For each pair (N,k), e(N)<n—1,letT(N,h) be the fibre in the elementary spec-
tral sequence C(k,2) (cf. section 9), with k=dim (Sq¥¢)®")+1, and let a vector space

mapping
g(N, k): T(N, b)—>H"(QPy)

be defined by g(N, k) (x) = (Sq~¥ &),
g(N, k) (w) =((Sq"e)* + M),
(g(N, h) (zw) = (8q"e - 7).

By Lemma 2.2 we get

Lemma 11.8. The mapping

® g(N,h): ® T(N,h)—>Z,[SqVe, 8] < HY(QP,)

h=0 h=0

i8 an isomorphism as a mapping of graded veclor spaces.

(22)

(23)

(24)
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By (10), (11), and the Lemmas 11.4 and 11.8 we get

LeMMa 11.9. The mappings f(J,h) and g(N,h) defined in (16) and (23) decom-
pose H*(QP,) into a tensor product, i..

® f(J, h)®R g(N,k): @ V(J,h)@Q T(N,h)—>H*(QP,)
am NS am A0
is an isomorphism as a mapping of graded vector spaces.

- For each (J,k) and (N, %) the mappings f(J, k) (16) and g(N,h) (22) satisfy the
conditions (@) and (¢) in Lemma 9.1 respectively. These conditions are namely nothing
but the statements of Lemma 11.3 and Lemma 11.7 with a=SqX®2 D*+e8IDg(J))
a=8q"«, and §=SqU¥®-1*4EM:D(,(9N)). Lemma 9.1 therefore shows that f(J, ) and
g(N,h) can be extended to mappings

f(J, k) A(B)—>E, k=dim{(7)?)+1, }

g(N,h): Ck,2)—E, k=dim ((Sq"e)?)+1. (25)

Since also by Lemma 2.3, (Sq"¥«)®*=0 all assumptions of Lemma 9.2 are satisfied
we get
H*(P,) = A({SqH> e 2N (o)}
® Z2[{qu(4(n—1+desN).h)(,y(zN))}] (26)
®Zz[{sqm2(n—l)+dac.r.h)(ﬁ(J))}],

where as mentioned earlier J and 2N run through all admissible sequences of excess
less than 2n—2 such that J contains odd components, and A runs through all non-
negative integers. An easy rewriting of (26) gives Theorem 11.1.

As an example we get
H*(Py)=Z,[{Sq’ } 1@ A({Sq™" "V a})® Z,[{Sq"*™»}], (27)

where the dimensions of «, 8, and y are 2, 4, and 6 respectively, J =(j,, fa, ..., ;) is ad-
missible, of excess <3, and §,>1. Again A runs through all non-negative integers.

We remark that since P,=QP(Z,,n+1; Z,,2n,8q"en+1), it follows that the spec-
tral sequence of QP,—~LP,~—>P, is a sequence of Hopf-algebras. It follows that ¢ and
« are primitive. Since d.{y}=a®e is not primitive, y cannot be primitive. The dia-
gonal of y must therefore be as follows,

p{y) =18y +e®e+yQ1. (28)
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This shows that (6) is false considered as a tensor product of Hopf-algebras. By (28),
however, we have complete knowledge about the diagonal in H*(QP,). For example,
it is not hard to show that

p(r¥) =187¥ +8q°e®8q” e + 181, } (29)

p(r) =107+ 7'®1,

for I containing odd components.

A theorem of W. Browder on spectral sequences of Hopf-algebras, as yet not
published, implies that a primitive element in the fibre must be transgressive provided
its dimension is = 2(mod 4). This provides a second proof that 7’ is transgressive for
I containing odd components.

Let us consider the spectral sequence of the fibration
P,—~LB—~B, B=P(Z,3; Z, 4,8q%¢,). (30)

This is also a sequence of Hopf-algebras. The basic class &€ H%B) has the property
8q®s=0. Hence we have
e =8q%e=8q!'Sq?e=8q'0=0. (31)

In the spectral sequence of (30) (Fig. 1) we therefore have
dy(e®@a) =e2=0 (32)

~and hence dy(f) =e®ua. (33)

E,

81
Sqla \
a eQa

#=0 B
Fig. 1.

Since £ and « are primitive, é®a is not primitive and (33) then shows that § cannot
be primitive. We therefore have in H*(P,) (cf. (27))

v(B) =108+ a®a+ L. (34)

In the spectral sequence of
QP,~>LP, P, (35)
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which we used in the determination of H*(P,), we saw that v®=s%+Sq'y had the

property (cf. (14))
a1} =d e’ +8q'y} = (= (1))

Since Sq' commutes with transgression we get

dy8q' {e’ +Sq'y} = d{e'} = {Sq' B}
and hence in E;, by (17),

{89°Sq" o} = {8q’ 8}.
In H*(P,) this gives
Sq'f=8¢*Sq'a+kaSq'a (k=0,1€2,).

Applying p to both sides we get by (34)

188q' B+ a®Sq'a+Sq'a®a + Sq'a®1
=1®8¢*8q' @ +8q°Sq'a®1 + K(198q « + «®8q « + Sq*a®a + 2 Sq' a®1).

This shows that k& must be one, and we have

Sq'8=8q¢*Sq'x + aSqla.

(36)

37

(38)

(39)

(40}

(41)

Further results on the action of Steenrod algebra in H*(P,) can be obtained along

these lines.
12. Computation of H*(P(Z,,n; Z,,2"n — 1,2, Z,)
If all components in a sequence I are divisible by an integer & we write
I=0 (mod k).

If this is not s0 we write
I£0 (modk).

TaEOREM 12.1. Let P y=P(Zyn; Zy, 2*n—1,62)(n>2, h>2). For each admis-
sible sequence J, e(J)<2%n—2,J£0(mod2"), and for each admissible sequence I, e(I)
<n-—1, there are classes B(J) and y(I) in H*(P, ) of dimensions 2"n—1+degJ and

2"*Yn + degI) — 2 respectively, satisfying
B(J)=8a%(B((5) )

‘whenever J =J(j)J, with j%0(mod 2" and J,=0 (mod 2*).
Let o be the non-zero class in HYP, ;) then

HY(Py, ) = Zy[{())}1® Z,[{Sq" a}, 2"|® Z,[{y(])}],
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where Z,[{x,},2"] denotes the truncated polynomial algebra of height 2* in the generators
{z} (22 =0), and where J and I run through all admissible sequences satisfying e(J)
<2 —2, J %0 (mod 2%), and e(I)<n—1.

Proof. Since QPy, n~ K(Zy,n—1)xK(Zy,2"n—2), it follows that
H*QP, »)=H*(K(Zy,n— 1))@ H*(K(Z,, 2"n — 2)) (1)

as algebras. By Serre [11] a set of polynomial generators of H*(QP, ;) is given by

{Sq' ¢}, I admissible, e(I) <n—1,dime=n—1, } @

{Sq’y},J admissible, e(J)< 2"z —2,dimy=2"n—2.

Let us note that (Sq's)®*=8q“e with L=L(n—1+degl, k). We see that e(LI)=n—1,
and also that if N is an admissible sequence with ¢(N)==—1, then in one and only
one way N can be written in the form LI with ¢(I)<n—1. From this it follows (cf.
Lemma 2.2) that as vector spaces

H*(QP, »)>=A{Sq'e))® A({8q° y}), 3)

where I and J run through all admissible sequences with e(I) <n —1 and e(J)<2"n— 2.
By an argument similar to the one given in section 11 it follows that in the
spectral sequence of

QPn,h_hLPn.h_XPn.h (4)
we have o =0,
d,=0 for 2<r<n, (5)

die=a, de=0? 1Q¢.

We proceed to determine the differentials in the spectral sequence of (4). The
following lemma follows by induction from Remark 8.4 and the Lemmas 8.5 and 8.6
in the same way Lemma 11.2 followed from Remark 8.1 and the Lemmas 8.2 and 8.3.

Lemuma 12.2. If J =0 (mod 2*) then Sq’y 1s transgresswve. If J=2"I then Sq’y =
Sq®ty persists to Eer-1ym+aesn and
dor-1yn+aeen{Sq¥ v} = {(Sq' ®)*~1®8q'¢}.

The element (3q'x)*~1®8q'e-Sq®*'y ts transgressive (i.e. persists to Egnri1yn+aegn=2)-

This lemma shows that for all J, J %0 (mod 2%), e(J)<2"n—2, and all I,e(I)<n—1,

there are classes
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J H?/'n—1+des'lp'l ,
B)e (Pn,n) } 6)

'y(I) eHZ"“(n+deﬂ)—2 (Pn.h),

such that dorn 14+ desl{SqJ 7} = {ﬂ(J)}, }
der+ 1yn+deg Dy - 2{(SqI )*-1® Sq'e- Sqm)’} = {V(I)}’

and such that if J=J(j)J, with j%0 (mod 2*) and J,=0 (mod 2*), then

B(J) =8q7 (B((jW,))- @8)

LemwMa 12.3. The elements Sq'e and Sq'e-Sq®'y persist to Enigegr and

@+ cer I{SqI 8} = {SqI “},
dn+aes1{Sq"e - Sq®"y} = {Sq’ 2®Sq* y}

Proof. The first equation follows from (5) and the commutativity of Sq' with
differentials. By Lemma 12.2 dn;aee:{Sq*'y}=0. The second equation is therefore a
consequence of the first and the fact that differentials are derivations. This completes
the proof.

For each admissible sequence J,J %0 (mod 2*) and e(J)<2"2—2, let V(J) be the
fibre in the elementary spectral sequence A(k) (see section 9) with k=22 —1+degJ,
and let a mapping

' f(J): V(J)—>H*(QPn,») (9)

be defined by f(J)(x)=8q’y. Since by Lemma 12.2, this mapping satisfies condition
(@) in Lemma 9.1 with a=p£(J) it can be extended to a mapping

f(J): A(k)—~E, k=2"n—1+degl. (10)

For each admissible sequence I with ¢(I)<n—1 let T(I) be the fibre in the ele-
mentary spectral sequence C(k,2") with k=n+degl, and let a mapping

g(I): T(I)—>H*(QPy, ) (11)
be defined by g(1) (z) =8q'e,
giI) (w) =Sq®y, (12)

g(I) (xw) = Sq'e - Sq**y.

Since by the Lemmas 12.2 and 12.3, this mapping satisfies condition ¢ of Lemma
9.1 with 6=8q'« and §=9(I) it can be extended to a mapping

g(I): Clk, 2" —>E (k=n-+degl). (13)
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LEMMA 12.4. The mapping f(J) and g(I) defined in (9) and (11) decompose H*(QLP5 1)
into a tensor product, i.e.

@ /(J)@(;@ g(I): (J>9 V(J)® (?T(I)»H*(QPn.n)

is an isomorphism as a mapping of graded vector spaces.

Proof. When I runs through all admissible sequences of excess <n—1, 2" will
run through all sequences congruent to zero (mod 2%) of excess <2"n—2. Since J runs
through all sequences =0 (mod 2*), the lemma follows from (3).

Since by (5) and by Lemma 2.3, (Sq*«x)*=0, all the conditions of Lemma 9.2
are satisfied (see (10), (13), and Lemma 12.4). We therefore get

H*(Pn,n) > Z,[{f(/)N®Z,[{8q" a}, 2"]® Z,[{y(I)], (14)

where as mentioned earlier J and I run through all admissible sequences satisfying
J#0 {(mod 2%), e(J)<2"rn—2, and e(I)<n—1. This completes the proof of theorem 12.1.
We remark that contrary to the similar situation in section 11, it can be shown
that (1) is an isomorphism as a mapping of Hopf-algebras. It is enough to show that
y is primitive. By Lemma 12.2 we see that y*=8q® %y is transgressive and hence

primitive. Let
piy) =18y + 2 yi®y +yol (18)

be the diagonal of ¢ with all the y,’ ’s and y{ ”3 in the vector space basis obtained
by taking powers of the polynomial algebra generators (2). We then have

Y = o)) = 199"+ S (i)' e i) + L. (16)

Since y® is primitive and since (y:)* and (y;’)* are in the above mentioned vector
space basis of H*(QP, ) it follows that in (15) no pi’s and y;”’s actually occur.
Hence the primitivity of .
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