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1. Introduction 

In the recent development of algebraic topology, eohomology operations have 

proved to be of vital importance. Several examples of such operations (primary and 

higher orders) have been constructed by Adem, Massey, Pontrjagin, Steenrod, Thomas, 

and others. A cohomology operation (primary) relative to dimensions q, q + i  and 

coefficient groups G1, G 2 is a natural transformation (see Eilenberg-MacLane [5]) 

between the cohomology functors H a ( ,  G~) and Hq+~(, G~) defined on the cate- 

gory of topological spaces: 

0 : Hq( , G1)--+Hq+t( , G~). 

Primary cohomology operations are closely connected with the cohomology of 

Eilenberg-MaeLane spaces (see Serre [11]). The secondary operations are in a similar 

way connected with the cohomology of spaces with two non-vanishing homotopy 

groups and of spaces closely connected with these. This has been shown in works 

by Adams [1] and Peterson-Stein [10]. 

In this paper we shall compute the cohomology of certain spaces P,. a (see below) 

with two non-vanishing homotopy groups. This computation is carried out by means 

of a spectral sequence argument. 

The spectral sequence argument giving the cohomology of K(g, n)'s (see Serre 

[11]) relies heavily on the fact the transgression commutes with Steenrod operations. 

In the computation of H*(Pn, h) this however does not suffice. We need to have 

some information about the differentials of Sqi~, where ~ H * ( F ) ,  lv the fibre in a 

fibration E--+B, even if ~ is not transgressive, provided the differentials on ~ are 

known. Sections 3-8 in this paper are devoted to the study of this and of related 

problems. 
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Using the method developed by N. E. Steenrod we construct and study mappings 

~: W| (n~ preserving certain filtrations. These mappings are used in the study 

of the problem mentioned above. The mapping ~ is also used to define some spectral 

operations (natural transformations between spectral sequence functors E~ "q and E a'b 8 

r,s~>2, defined on the category of fibre spaces). Cer~in spectral operations have 

earlier been constructed by R. Vazquez [13] and by Araki [2]. The operations con- 

structed in this paper are related to or coincide with the operations introduced in 

these papers. 

Sections 9-12 contain a computation of the ring structure of H*(Pn.n, Zg.) where 

Pn. n =P(Z2, n; Z2, 2hn - 1, e~a), n~>2, h~> 1. Some information about the action of the 

Steenrod algebra A* on H*(Pn.n) is contained in the Theorems 11.1 and 12.1. I t  is of 

some interest to get the complete action of A* on H*(Pn.n). Apart from Theorems 11.1 

and 12.1, however, we have at the present only scattered information about this 

action of A*. Because of incompleteness, this is not included in this paper. By 

xtending the methods used in this paper further computations can be carried out. 

This will be done in a subsequent paper. 

The author wishes to thank Professor S. MacLane for many valuable conversa- 

tions, especially on the subject of css-complexes and the method of acyclic models. 

2. Preparations 

In this section we are going to review a few quite well known things needed in 

the following. 

Let  us consider graded filtered differential modules with decreasing filtratration 

and differentiaI of order + 1. Although the modules are graded we shall in the follow- 

ing often suppress the grading to simplify the notation. A mapping f: A-->B between 

two such modules must satisfy d /= /d  and /(.F~A)~_F~'B. The d's and the F's denote 

the differential operators and the filtrations on A and B. Such a map induces the 

homomorphisms 

/*:H(A)--->H(B), /*:Er(A)--->Er(B) (r=O, 1 . . . . .  oo). (1) 

with the property d~[*~ * =It  dr, (2) 

where dr is the differential in the r th term Er of the spectral sequence (Er} of the 

filtered differential modules. A homotopy s: /___g of degree ~< k between two maps ], 

g: A ~ B  is a module homomorphism s: A-+B satisfying 

s(FPA)~_F~-kB and d s + s d = g - ]  for all p. (3) 
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LEMMA 2.1. I /  S: /~_g is a homotoyy o/ degree <.k, then 

/r=gr:Er(A)-~Er(B) for r>k .  

Proo]. By definition we have 

E~ = Z~[(dZ~:[ § + qp~l~ Z.~r-1 ]~ 

where Z~ as usual denotes the module 

g~ = (x  Ix e F v, dx e F v + ~}. 

Let e G Z~(A ) then g(a) - / (a )  = dea + sda, 

where g(a)-/(a) eZ~(B), daeFP+r(A), 8daeP '+ ' -k (B)_FP+I (B)  (since r - k > ~  1), and 

saeFV-t(B).  Hence we have 

p - r + l  I~+1 d8aEZr_l (B)~_Zr_I(B). 

Since d(sda) =d(g(a) - / (a))  eF~+~(B) we have 

s da E Z~+-~I(B). 

This means that  g ( a ) -  [(a) determines zero in E~, and hence that  

/*=g* for r = k + l , k + 2  . . . . .  o% 

which was to be proved. 

In a later section the following algebraic lemma will be needed. Let  Tn, h =0,  

1 . . . . .  be a vector space over Z 2 (the integers modulo 2) generated by 1, ~n, fin, and 

7n and let Th be mapped into Z2[x, y], the polynomial algebra generated by x and y, 

by a vector space mapping 

th: Th--> Z,[x, y], (4) 

defined by /h(1)= 1,/h(~n) = x  2h, /h(flh)=(X ~ +y)Zh, and /n(7h)=(xY) 2h. By tensoring we 

get the mapping 
| 

F: | ~| (5) 
h h 

where the last mapping is the multiplication mapping. Let  Va be a vector space 

generated by 1 and ~h and let gh: Va-~Z2[x] be defined by gh(1)=l  and gh(~a)=x ~h. 

As before we get a mapping 
| 

G: | Vh ~| (6) 
h h 
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and 

L E ~ M A  2.2 The mappings F and G are isomorphisms. 

Proo]. Let  us consider the systems 

{ao|174 ... | ln> O; a =l, or n )  

I ,, t/> o) 

(7) 

(S} 

of (vector space) generators of |  and Z2[x, y]. Let us define a grading in |  and  
h h 

Z2[x,y ] by  dim ~ n = 2  h, dim f i b=2 .2  ~, dim 7 ~ = 3 . 2  h, dim x = l ,  and dim y = 2 .  The 

mapping  F is then easily seen to  be homogeneous. Let  7(1) =0 ,  ~(~h) =2h,  ~(flh) =2hi ,  and 

~ ( ~ )  = 2 h +2hi .  There is then  to each generator  a = %|  ... | of (7) associated a 

gaussian integer with non-negative components  

~(ao| ... | =~](a 0) + ... +~(an). (9) 

This correspondence is obviously ( 1 - 1 )  and onto. I f  we write F(a) as a sum of 

generators (8), then it is easily seen tha t  the term with a maximal  number  of y ' s  in 

F(a)  is x'y t with s+t i=~(a) .  This shows us tha t  in each dimension | and  Z2[x,y ] 
h 

have the same (finite) number  of generators. Fur thermore  x'y t is in the image under  

F of the subspace generated by  {a[I(y(a))<~t} with a as in (7), and  I(c) the imag- 

inary component  of the complex number  c. This follows by  a trivial induct ion on t 

and shows tha t  F is onto and hence an  isomorphism. Tha t  G is an isomorphism is 

trivial. This proves the lemma. 

In  section 11 we shall need 

LElgMA 2.3. Let X be a topological space and let x be a homogeneous element of 

H*(X, Z2). Then 

x ~h = 0 -  (Sql 'Sq l' ... Sqt~x) 2~ = 0  (r, h = 1,2 . . . .  ). 

Proo/. The lemma for r > 1 follows by  a trivial  induct ion from the case r = 1. 

Now let r = 1 and h = 1. Since by  the Car tan  formula 

(Sqix) 2 = Sq2~(x ~) = O, 

the theorem is t rue in this case. Also 

( S q l x )  '~h = (Sq21(x~))2 ~ - I  

and  the lemma follows for r = 1 and h arb i t rary  b y  induct ion with respect to h. 
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3. The Eilenl~rg-Zilber theorem 

In this section we shall prove a strengthened form of the Eilenberg-Zilber theorem 

(see [6]). In the formulation of the Eilenberg-Zflber theorem we shall follow Dold [3]. 

Let  ~ ,  be the category of n-tuples (K 0, K 1 . . . . .  K~-z) of css-complexes. Let  C, 

denote the funetor taking any css-complex K into its (non-normalized) chain complex 

C, (K)  with coefficients in the integers Z. Let  A and B denote the functors defined by 

A (K o, K1, ... ,  K,~ _ 1) = C*(Ko • K1 •  x Kn _ 1) l (1) 

B(Ko, K 1 . . . . .  Kn-1) = C*(Ko)|174 |  J 

Both A and B have values in the category of chain comp]exes. For any css- 

complex K we can in C,(K)  not only define a grading and a differential operator 

but  also a filtration. Let  namely ffq denote a q-simplex in K. We can then in a 

unique way write aq in the form 

aq ~ s~,sl....s~q_pap (0 <. iq_p < ... < i 1 < q) (2) 

where ap is a non-degenerate p-simplex in K, and st denotes a degeneracy operator 

in K. The generator aq E Cq(K) iS then said to be of filtration p, 

aq E FpC, (K)  (3) 

This defines a filtration in C,(K) .  

Defining the filtration in a tensor product of filtered modules Dt by the formula 

F~(Do| |  = ~ Ft.(Do)|  | (Dn-1)' (4) 
t , + . . . + t n _ l - P  

the equations (1) show that  A and B are filtered chain complexes. 

We define a complex Horn(A, B) as follows. An element / E Horn(A, B)r, r /> 0, 

is a natural transformation /: A-->B increasing grading by r and filtration at most 

by r (of degree ~< r with respect to filtration) 

/(A,~)c_B,,+r, /(F~ A) ____Vp+~B, (5) 

such that  d ( / ) = d / + ( - 1 ) r + l [ d e H o m ( A , B ) r _ l  (Hom(A,B)_I=0) .  (6) 

I t  is easily seen that  el(d(/))= 0 so that  the requirement (6) only means, that  el(I) must 

increase filtration by at most r - 1 .  Equation (6) defines a differential in Horn(A, B) 

which is hence a chain complex (functor taking ~ , •  into the category of chain 
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complexes). The chain complex Horn(A, B) is augmented. If /E  Horn(A, B)0 then the 

restriction 

/I A0: Ao'->Bo 

is multiplication by an integer k. Putt ing e(/) = k and e(g) = 0 for g E ttom(A, B)T, r > 0, 

it  is easily seen, tha t  we get an augmentation. 

THEOR~.M 3.1 The  complex  I tom(A,B) is acyclic, 

HT H o m ( A , B ) = O  /or r > 0 ,  

e,: H 0 Horn(A, B)-->Z is an  i somorphism.  

Proo/ .  The proof is by the method of acyelic models, as it  is developed in 

Eilenberg-MacLane [4] and Gugenheim-Moore [7] (el. also Moore [8]). 

Let  aq be as in (2), then there is a unique mapping 

u = u(aq): A~-+K, (7) 

such that  u takes the basic simplex ~p of the standard simplex Ap (css-eomplex)int~) 

ar and hence si, s~, ... s~_p~  into aq. Similarly, i f  % •  ... •  is a q-simplex in Ko• 

�9 .. •  it can in a unique way be written as 

a0• ... •  ... sjg_p(bo• ... • ( 0 ~ q _ ~ <  ... <~l<q) ,  (8) 

with box ... •  a non-degenerate p-simplex in Ko• ... •  Again there are unique 

mappings 

ut: A~---> Ki ,  (9) 

such that  u i ( ~ ) =  b~. We put  

u = u(a o •  • an- l )  = B ( u  o . . . . .  un-1) : B(A~,  . . . ,  A~) ---> B ( K  o . . . . .  Kn-1) ,  

then U(ao •  • an-1)(~p| ... | = boG... | / 

J u(a o •  • an_~)(S~l~| |  = % |  |  

where S = s j ,  . . .  sjq_~ i~  (8) 

The css-complexes A~, p = O ,  1 . . . .  , are acyclie. A contracting homotopy 

Er= U(5~) : O,(A~)-~O,(A~) 

is defined by U(mo . . . .  , mr) = (0, m o . . . . .  mr), 

(10) 

(11) 

(12) 

(13) 
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where (mo . . . . .  mT)EAp (0<mo~<rax-<<... <mr<p),  (14) 

is an r-simplex in At. 

Let ~: C,(Ar)-~Ho(C*(Ar) ) denote the augmentat ion mapping. Since Ho(C,(A~))=Z 

and since the class of (0) is a generator of this group, we can define a mapping 

n: H0 (O,(A~))-~ Oo(A~) (15) 

by ~/((0)) = (0). (1O) 

Since degenerate mappings Af-~Av_T map zero into zero, it is easily seen tha t  [7 and 

~/ are natural  with respect to degenerate mappings. I t  is easy to see tha t  

d [7+  [Td= 1 -~/e (17) 

so tha t  [7 is a contracting homotopy. 

A contracting homotopy 

U: B(A~ . . . . .  A~)~B(Ar  . . . . .  An) (18) 

is defined by  U(ap., an . . . . . .  aw-1) = 

n--1 

Y. ~Te(a~.)|174 ... |163174 [7(an)|174 ... | (19) 
l - 0  

Then dU + Ud = 1 - ~ e ,  (20) 

where e : B - + H 0 ( B  ) is the augmentat ion and ~ / :B(Ar  . . . . .  A~)-*HoB(A p . . . . .  Av) is 

defined by ~] ((0)|174 = (0)|174 (ef. (15)). 

A simplex e ,=(m0,  m 1 . . . . .  roT) EAr is said to contain zero if m0=0 .  A simplex 

ar x qr x . . .  • aT EAr • A= x . . .  • Ar is said to contain zero if ar contains zero. All elements 

in the subgroup of C,(Ar)(C,(Ap•  . . .xAr))  generated by  such simplexes are said to 

contain zero. A generator a r . | 174  (dim q~=Pf)  in C,(Ap)|174 is said to 

contain zero if and only if p~ = 0 for j <  i implies tha t  a~ contains zero. As before 

all elements in the subgroup generated by elements of this sort are said to contain zero. 

To prove Theorem 3.1 we must  show two things: 

(i) I f  /, g f i H o m ( A , B ) ,  and if in case / . = g .  ( = T ,  say): H0(A(A r . . . . .  At))-* 

H0(B(Ar . . . . .  Ap)), p=O, 1, ..., then [~_g by a homotopy h of degree < r + l .  

This shows tha t  H~ Horn(A, B ) =  0 for r > 0 and tha t  e.  is monic. 

(ii) For  any  k fiZ there is a mapping [: A-+B preserving grading and filtration 

such tha t  e(/)= k. 

This shows tha t  e,  is onto. 
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Proo]. o/ (i) and (ii). For aox . . ,  xan-1 a 0-simplex in K o x . . .  x K n - 1  we define 

ho(a o •  x a~-1) = u(a o x . . .  x a,~_i) Uo ([o - go)0?o x . . .  x ~/o), (21) 

where the different symbols are defined in (8), (10), (12), and (19). The general de- 

finition of h is by  induction. I f  a o •  is a q-simplex in Ko•215  then 

hq(ao• ... )<an-l)= u(a0• ... •  U q ( / q - g q - h q - l d ) ( S ~ r x  ... xS~v) .  (22)  

A standard computation shows tha t  h is natural  and tha t  dh + hd = / - g .  We there- 

fore only need to show tha t  h is of degree ~< r + 1. 

By (13) and (19) we see tha t  U increases the filtration by  at  most  one, and 

t h a t  U preserves the filtration of elements containing zero. 

I f  c E C,(A v•  • Ar) contains zero, then h(c) contains zero. This follows from (21) 

and  (22) by  trivial induction using the special form of U given in (13) and (19). 

In  (22) d(S~v• ... • ) is a sum of simplices all except possibly one containing 

zero. I f  there is a simplex not containing zero, this one will be of filtration 10-1.  

:By induction (21) and (22) now show tha t  h is of degree ~ < r + l .  

Proposition (ii) is proved in a similar way. The function / is defined by 

/o(a0 • . . .  •  = ]g" U(ao•  . . .  x an -1 ) (~o  •  x~0) ,  (23) 

fq(a o •  x an-l)  = U(ao •  • an_l) U/q-1 d (Svlv •  • S~h,), (24) 

with the same notation as above. That  / preserves filtration follows by  induction on 

q, first noting tha t  / maps elements containing zero into elements containing zero. 

4. The Steenrod construction 

This section follows the paper  [3] by  A. Dold, and for further details we refer 

t o  this paper. 

Let  ~r be a permutat ion group on n letters (0, 1 . . . . .  n - 1 ) ,  then ~ operates in 

:/(n by permutat ion of the factors. Let  T E:r, then 

T(K o, K1 . . . . .  K,-1)  = (Krco), Kr(1) . . . .  , K r (n -1 ) ) .  (1) 

Associated with T there are chain mappings 

T ,  = T: A(g~) -+A(TK) ,  K = (K o, g l  .... Kn-1),  (2) 

T ,  = T: B(K)-+ B ( T K ) ,  (3) 

defined by 
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T,  (a 0 x a,  x ... x an_ 1) = aT(0) x a ra) x ... x aT(n_,), 

T,(ao| |  = ( - 1)* aT(o))|174 | 

81 

(4) 

(5) 

where the sign ( - 1 ) *  is given by the usual sign convention. I t  is clear tha t  in 

both  cases 

T,T, = (TT'), (T, T'6x). (6) 

Because of (6) the group x acts on Horn(A, B) by  

T! = T, /T** for /CHore(A, B). (7) 

B y  Theorem 3.1 Hom(A,B) is hence an acyclic x-complex. Let  V be an arbi t rary 

~-free x-complex over Z, then by  a fundamental  theorem in homological algebra we 

can construct a x-mapping 

~": V-+Horn(A, B) 

preserving augmentation. Since 

Horn(V, Horn(A, B)) ~ Hom(V|  B), 

we get 

THEOREM 4.1. There exists a natural transformation 

~': V |  

~p'(v| (a o x a 1 •  x an-l)) = e(v) ao|174 | (v 6 V, at GKt), 

whenever dim v = dim at = O, and such that 

V| '~" B(K) 

V|  " B(TK) 

is commutative /or all T s  Also 

(8) 

(9) 

q)' (v| 6 Ft+ v B(K),  ( l l )  

i /  dim v = i  and ~ 6Fv(A(K)).  

I f  ~': V| is another transformation satisfying the above conditions, then 
- - r  

~ '  and ~ are homotopie by  a natural  homotopy H. The diagram obtained by re- 

placing r  by  H in (10) is commutat ive and 

--62173067 Acta  mathemat /ca .  107. I m p r i m ~  le 27 m a r s  1962 

.K = (Ko, K1 . . . .  K , - , )  (10) 
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H(?)|  ~ FI~+I+I , 

if dim v = i and ~/E F n. 

Putting K 0 = K 1 = ... = K , - I  = K then A(K,  K, ..., K) and B(K,  K, ..., K) can be 

considered as functors of one variable. The diagonal map 

A: K - + K x K x  ... x K  (12) 

defined by A ( x ) =  (x, x . . . . .  x) for x fiK induces a natural transformation 

A: C,(K)-+A(K,  K . . . . .  K) (13)  

preserving filtration. The following composition is also denoted by ~ '  

V| l| V| "----" B(K), g = (K, K . . . . .  K). (14) 

By (2) and (3) A ( K  . . . . .  K) and B(K . . . . .  K) are ~t-complexes. The complex C,(K) is a ~- 

complex letting 7r operate trivially and so are V| and V|  letting ~ operate 

diagonally. The mappings in the composition (14) are easily seen to be ~t-homomorphisms. 

Let  f: E-+B be an arbitrary css-mapping. Let  the n-skele~n of B be the sub- 

complex generated by all n-simplices in B. Then the inverse images of skeletons in 

B define an increasing collection of subcomplexes in B which in turn gives rise te 

an increasing filtation on C*(E). The formula (4) in section 3 then defines a filtration 

on C,(E) ("), the n-fold tensor product of C,(E). Since ~' is natural we have a corn- 

m u ~ t ~ e  diagram 

V| r - -  C , ( E )  <") 

x| [/<") 
V| C, (B) ~' ~ C, (B) ("). 

(15) 

For v E V and c a (p + q)-simplex in E belonging to FrC,(E),  this diagram shows that  

~'(v| ~ Fn+,(O,(E)~"'), (C,(E) `") = B ( E  . . . . .  E)). (16) 

Since c EFnC,(E), ](c) can be written f(c) = s~,s~....si, a, 0 <~ iq < iq-1 < ... < i I < p + q, where 

a is a p-simplex in B. 

There is a unique map u: An-+B such that  the basic simplex a n in A n is mapped 

into a. Hence u(sq...stgan)=t(c ). By naturality the diagram 

V| C, (An) ~' C,(An) (") 
a| U(, n) 

V| ~' C,(B) (n) 

(17) 
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is commutative. Since F,r(G,(Av)("))=F,,r+I(C,(AI,) (")) = ... = C,(Ar) ("), it follows tha t  

ff in (16) i>~(n-1)p, then 

q/(v| 6 F.,(C,(E/"'). (18) 

We can therefore define a filtration in V| by 

v| 6Fmm(v+t.nv)(V| dim v = i, c 6Fr (C,(E)). (19) 

With this definition, (16) and (18) show that  ~' preserves filtration (C,(E) (") filtered 

as usual). 

Thus far we have only considered the non-normalized chain complex of css-com- 

plexes. However, since the mapping ~' preserves filtration, it follows that  q/(v| is 

degenerate in C.(E) ("> whenever c is. We can therefore factor out the degeneracies, 

and we get a mapping 

V| ~,: (n) 

where U,s= C,N(E) denotes the normalized chain complex of E. The filtration con- 

sidered above induces filtrations in V| and v,P(n~N. The new mapping q '  preserves 

these filtrations. In the following we shall only consider the normalized chain complex 

C,N of css-complexes. For convenience of notatation we shall therefore drop the N,  

so that  in the following C, = O,N denotes the normalized chain functor. 

As suggested by (19), we shall define a filtration on the tensor product A , |  

of two filtered chain complexes A,  and B ,  by  

Type 1,. Fv(A,| =A,| ) + ~ F~(A,)| (B,), (20) 
q+l-~ 

where n is a fixed integer >1 1 and [c] the greatest integer ~<c. This filtration is 

easily seen to have the property (of. (19)) 

a q Ft(A,), b q Fq (B,) =~ a| q F...~n(,,,. q+o(A,| (21) 

In the following we shall also consider tensor products of chain complexes with 

cochain complexes. By the tensor product of a graded chain complex A .  and a graded 

cochain complex B* we mean the tensor product of the two cochain complexes A* 

and B*, where (A*) n=  (A,)_n. The grading of A, |  is %herefore defined by 

(A,| = @(A,h|  ('4 o. (22) 
i 

If the complexes are filtered (chain complexes increasingly (Fj, ~ = 0, 1 . . . .  ), eochain 
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complexes decreasingly (F j, ] = 0 ,  1 . . . .  )), then the tenser product A,| is usually 

given the filtration 

Fk(A, |  ~ F|(A,)| (23) 
J - f - k  

A different filtration (type 2n) corresponding to the one defined in (20) is given 

as follows 

Type 2,. FV(A,| *) =A,| ~ F,(A,)eF~(B*). (24) 
q - , - ~  

The filtrations of type In and 2n are clearly compatible with the differential. 

The filtration of type 2~ we shall use in the case B*=B~|174174 where 

B~j is a filtered cochain complex and the filtration of the tensor product is the usual 

one. The filtration of A. |174 * .. . |  is easily seen to have the following pro- 

perry: 

If a E F~(A.), bj EFPJ (B~) I (25) 

then a|174174 | E F~(A. | (B~| |  

for p ~ 1.i.g. (max (( l /n)  ~jp~, ~ j  pj - i)), where l.i.g. (a) denotes the least integer greater 

than or equal to ~. 

Just  as the chain complex C.(E) the cochain complex C(E) (dual of C.(E)) is 

a filtered complex. The filtration on C(E) is defined by 

ufiFVC(E)~'<u,c>=O for all cEF,,_I(C,(E)). 

A dual ~0: V| 

of the mapping ~' is defined by the formula 

<~(V|174174 c> = (-1)Jl( | - l )<uo|174 ~'(v| 

(26) 

(27) 

where dim v = i and uj 6 U = C (E). The sign on the right hand side makes d~ = 7~/ 

hold true. 

If we give V| (m the filtration of type 2~ (cf. (24) and (25)), then ~ is fil- 

t rat ion preserving. H namely eEFrC , and p < m a x  ((1/n)~jpj, ~.jpj-i), then min(np, 

T+i)<~jpj ,  and the right hand side of (27) is zero, as an elementary argument 

shows using the fact ~p'(e,| EF~(nv,~,+l)(C(~)). 
The mapping ~ (26) is a ~-homomorphism. We can therefore factor out with 

the action of ~, and we get 

qD: V | C("~--+C. (28) 
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Since the action of H is filtration preserving, the filtration of V| ~m (type 2n) in- 

duces a filtration in V |  cn~ also named type 2n. With this filtration on V| (n~ 

the mapping r is filtration preserving. 

Thus far we have been working over the integers. We could, however, have 

chosen any ring as ground ring. In  the following we shall be working over a ground 

field K. 

Summarizing we have the theorems: 

THEOREM 4.2. Let H be a permutation group on n letters. Let V be a H-free complex 

over K. Let /:  E--->B be a m~pping of c~s-complexes and let G, = C,(E) be filtered by in. 

verse images o/ skeletons in B. Let H act in C(,7 ) by permutation, trivially in C, and diago- 

nally in V| There then exists a H-equivariant filtration preserving transformation 

V| , eft': ~(n) 

natural with respect to mappings g:E-~E 1, ~:B-~B 1 uriah ~f=fxg and satisfying 

q/(v| (m for vE V, aEC. ,  

whenever dim v = d i m a = 0 .  The filtration in V|  is of type In, and the filtration in C(. n) 

the usual one. I /  ~': V| n) is another such transformation, then q)' and ~' are homo- 

topic by a ~-equivariant natural homotopy H ol degree ~ 1. 

THV.ORV.M 4.3. The duals of the transformations in Theorem 4.2 give rise to filtration 

preserving natural transformations 
~: V| 

The filtration on V|  C (n) is of type 2.. Any two mappings q~ and ~ are homotopic by a 

homotozry of degree <~ 1. 

By Lemma 2.1 we get 

THEOREM 4.4. Any mapping q) as in Theorem 4.3 induces a mapp/ng 

~,:  gt( Y |  C~))~Et(C). 

For t >~ 2, this mapping is independent of the choice of the mapping q~. 

By the natural i ty  of ~ we get 

T H E O R E M  4.5.  Let  
g 

E 1 - - - -  E 

h i  , !  

B 1 - - - -  B 
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be commutative and let g* be the induced malrping g*: E~ (/)-->Et(fl). Then /or t>~O the 

d i ~ r a m  

Et( V|  C(E)'")) ~* Et(O(E)) 

(l| * ] g* 

Et(V|  ~(E~)(")) ~* Et(C(E~)) 

is commutative. 

5. Spectral operations 

Let [:E-->B be a mapping of css-eomplexes, and let ~ G E~(/) be represented by 

a eoehain x 
~-~ = {X} P p . . . .  p - r + 1  + z p + l " i  E Er  = Z r / ( a ~ - i  r-1 j. (1) 

We shall use the mapping ~ constructed in section 4 (with respect to a permutation 

group ~, an augmented z-free z-complex g and n) to define operations in the spec- 

tral  sequence (Er, dr}, r>~2. Expressions like e.g. e~ |174174174174174174  in 

x, dx, and in elements e~ from V, belonging to V |  (=) determine elements in 

E ~ ' q ( V |  (~) for certain t, p and q. If  for a certain t, the element in Et(V| c~) 

determined by such an expression is independent of the choice of representative x 

of ~, then this expression will determine a spectral operation, i.e. a transformation 

E p' q C a, b 0: r ( )-~Et (C), 

T, q, a, b, r, t fixed, r, t >/2, natural with respect to mappings g: E--->E 1 and g: B--->B 1 

such that  / l g=~ / ,  where /l:E1--->B1. The image of 4 under this spectral operation is 

the image in Et(C) of the element in Et(V|  ("~) determined by the expression under 

the mapping 
~P*: Et( r | n Ct m )--> Et( C). (2) 

We can express this in a slightly different way. Let  M = M ~  'q be a filtered, 

graded, differential module on two generators u and v, du = v, where u and v have 

dimension (grading) p + q  and p + q + 1 respectively. The filtration is as follows 

M = pOM . . . . .  F ' M  ~_ F~+IM = ... = P~+rM ~_ F~+r+IM = ..., 

where u E F ~ M ,  u~Fp+IM, vEF~+rM, and FP+r+IM=0.  If 4 E E ~  "q, then xEZ~,  which 

means that  x E F  p and d x E F  ~+r. We can therefore define a mapping g:M~r'q-->C = 

C(E) of filtered, graded, differential modules by setting g(u)= x and g(v)= dx. This 

defines a map 
~(x) = 1 | : V| V |  (n), 
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where the filtration of V| (n~ (and of V| (n)) is of type 2.. This mapping clearly 

preserves filtration, commutes with the  differential, and is ~-equivariant. I t  hence 

gives rise to a map 

=~(x) : V|174 (3) 

also denoted by  ~. Letting the functor Et act we get the induced map 

v/* = ~(:r : Et( V | M("~)~ Et( V | CO')). (4) 

An expression in x, dr, etc. as considered above now corresponds to an element 

v ~ in E~'a(V| If  for all ~ E E r  ~'q the image of v ~ under the mapping ~(x)* (see 

(4)) does not depend upon the choice of representative x of 4, then we define an 

operation 0 = 0(v ~) 

0 : E~'q-~E~'b,  (5) 

by the formula 0(~) =r (6) 

We shall now prove a few general theorems about operations of tha t  sort. We 

remark, tha t  for any operation 0 = 0(zg) (see (5)) considered in this section we assume 

~v*(v q) to be independent of choice of representative x of ~. In later sections we 

shall consider specific operations; we will then have to prove that  ~v*(zg)does not 

depend upon choice of representative x of 4. The image of v q under ~v* will of course 

usually depend upon 4. 

Let  two permutation groups g and gl  (n letters) be given, and let a :g->g1 be 

a permutation group mapping. Let  V and V 1 be g- and gl-free resolutions of K. 

There then exists a a-equivariant map h:V-->V1, which gives us the filtration pre- 

serving map 

h|  1 on) : V| MCn~-+ V I |  , M ('). 

In  the spectral sequence this induces the mapping 

a,b {n) a b (n} Et (V| )--->Et' (VI| ). (7) 

Let  v~ be an element from the left of (7) determining a spectral operation 0, and let 

vq 1 be the image of v~ on the right. The element v~ 1 will then clearly determine an 

operation 01 . 

THEOR~,M 5.1. For any ~EE~'q(/) we have 

0(~) = 01(~) E ~ b ~' (/). 



88 LEIFKRISTENSEN 

Proo/. Let r be a mapping as constructed in section 4 (cf. Theorem 4.2). The 

composition ~l(h| will then have the properties stated in Theorem 4.2 with respec~ 

to ~ and V. We now get the commutative diagram 

h| h| 

Vx|  ~' ~ VI| ~_____A_" _. C. 

By applying Et to this diagram we obtain the result (cf. Theorem 4.3). 

Let us remark, that  if we have two equivariant maps 

h, hi: V->V1, 

then there exists an equivariant homotopy s : h ~ h  1. Such a homotopy gives a ho- 

motopy s| V | 1 7 4  (m of degree ~<1. Using this remark the above 

theorem applied to a = identity immediately yields. 

TH~.OR~.M 5.2. The spectral operations associated with a permutation group rc are 

independent o / the  choice o / t h e / r e e  resolution V used in their construction. 

The following theorem is immediate. 

TH~.OR~M 5.3. Let O G E ~ ' b ( V |  (m) determine a spectral operation O, and le~ 

dt v~ = O. The class ~ = (~}  ~" ~ E Et+I will then determine a spectral operation ~. For  any  

GEr (C) we have dt 0(~) = 0 and 

{0(~)} = 0(~) e E~'~(C). 

In the definition of the concept "spectral operation" we required naturality. 

We shall see, tha t  the operations constructed here are natural (and hence spectral 

operations). 

THEOREM 5.4. Let 
g 

E1  m _ ~  E 

h ! 

gl 
B 1 - - - *  B 

be commutative. Let g* be the induced map  g* : Et(/)--> Et(/1). Let z$ G E~'~ ( V | M ~n)) deter- 

mine an operation (see (6)). T h e n / o r  any ~6E~'q(/) we have 

Ea b g*O(~)=O(g*(~))~ ~" (/1)" 

The operation 0 is hence a spectral operation. 

Proo/. Follows immediately from Theorem 4.5. 
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THEORE~ 5.5. Let {x}=aEE~'q(]) and let ~E V |  (n~. Let the total dimension 

p + q + o: + fl o /~  be tess than the total dimension o /~ ,  then ~ ( ~ )  = O, where v 2 = ~p(x). 

Proof. Let  ~ = ~ v i | 1 7 4 1 7 4  .. Then since d im(sx |174  

dim (u| ... | = n(p + q), d im(sl |174174174 and a + f l < 0  we get 

p + q + o : + f l + i > ~ n ( p + q ) > n ( p + q + a + f l ) .  (8) 

Let  ~vt|174 .--| denote the image of ~ under ~0. We then get (see (27) in sec- 

tion 4) 
( ~ ) ( ~ ) ,  C ) =  ~ _____(81| | ~0'(vl| (9) 

where c is a ( p + q + a + f l ) - s i m p l e x .  Let  c be the image of the basic simplex 

~+e+~§ in A~+e+~+~ under a mapping ff:/~p+q+a+B--~E. Since qJ(v,| is in the image 

of (C(A,+q+~+p)) (n) under go-), whose top dimension n(p + q + o~ + fl) by (8) is less than  

the dimension p + q + o ~ + f l + i  of v~| we get 9 ' (v , |  Equation (9) now shows 

tha t  ~p (~ )=0 ,  which proves the theorem. 

COROLLARY 5.6. Let ~ E E~'b(v| M (~) determine a spectral operation 

0 �9 l ~ P ' q ~ ' T a ' b  �9 .IJ4~. - ' - ~ . 1 ~  t , 

11/ a § b < p § q, then 0(~) = 0 /or any ~ E E~" q(/). 

6. Cyclic reduced powers 

In  the following sections we shall look a t  the operations obtained from cyclic 

groups. These operations we shall for an obvious reason call cyclic reduced powers�9 

Let  n denote a prime number. Let  g be a cyclic group with n elements ope- 

rating on n letters (0, 1 . . . . .  n - 1 )  by  cyclic permutation.  Let  T be the generator 

defined by the equation 

T ( i ) = i §  (modn) .  

Let  there be given, as before, an element 4EE~'q(C). The cyclic reduced powers 

of 4 are then determined by  the map 

q~: Et( V | Cc'~)~ Et(C). 

By Theorem 5.2 the reduced powers are independent of the choice of the reso- 

lution V. Let  us therefore choose V = W, where W is the standard resolution 

r A :E A 
K - -  K~  ~ K ~  K ~ * - - - . . . ,  (1) 
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where K ~  denotes the group ring of ~ over K. The maps  in this resolution are 

multiplications by  the elements 

A = T - 1  and  ~ = I + T + T 2 + . . . + T  ~-~. (2) 

Le t  ek denote the generator  of W in dimension ]0, then 

5%2k ---- ~e2k -1, 8e2k+l = Ae2k. (3) 

7. The m o d  2 case 

In  this section let K denote the field of residue classes of integers modulo 2, 

K = {0, 1}, and let n = 2. 

For  any  cochain x in .FPC~'+q=$'~'C['IC ~'+~ we shall consider an expression of 

the form 

o~(x)=ep+q_t|174174 (2), all i, (1) 

with the agreement  t ha t  ej = 0 for ~'< 0. 

By  the definition of the fi l tration of type  2 2 (section 4) we see, tha t  the term 

ep+q_l| 2 has fi l tration as follows 

e~,+q_~|174 with r e = m a x ( p ,  p + i - q ) .  (2) 

Since ej|174 W|  r we get, by  taking the differential of (1), 

d(e~,+q _~ @x ~ = er+q_~ ~l|  = ep+q-~+l| 2. 

Hence d(a~(x) ) = ~(dx). (3) 

Let  us now choose a function ~: W| as constructed in section 4 and 

keep it fixed in the following. The image under  r of the cochain ~(x) we shall 

denote by  sqlx, 

~p(~t(x)) = ~(ep+q_~| ~" + ep+q_~+l| --- sq I x e C. (4) 

By  Theorem 5.5 we have s q ~ x = 0  for i <  0. I t  is clear tha t  sqlx = 0 for i~> p +  q +2 .  

If  d x E $  "~1, then by  (2) we have 

sq I x 6 Fro(C), (5) 

with m = max (p, p + i - q). Since ddx = 0 equat ion (3) gives 

d sq I x = sq 1 dx. (6) 
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Now let {x} = 4EEv~'q(O), r>~2. As mentioned in section 5, to decide if the ex- 

pression (1) determines a spectral operation we must examine if for some t expres- 

sion (1) determines a class in Et(W| independent of the choice of representative 

x of 4. To this end let x and y both represent. 4. Then 

x - y = d a  + b, (7) 

with a 6 F  p-'+I and b 6 F  p+I (cf. (1) section 5). By  (1), (3), and (7) we now get 

d(at(a) + ev+q-~ + l | 

= a~(da) + ep+q_~ | (xy + yx) + ev+q_~+l| (X dy + dx.  y) 

= e~,+q-i | ((X -- y - b) ~ + xy + yx) + e v + q - t + l |  ( x d y  -5 d x .  y) 

= ev+q_i |  2 -5 y~ + (x - y) b + b(x - y) + b ~) + %+q_~+l| + dx .  y) 

= a'(x) + a'(y) + e,+q_~ | - y) b + b(x - y) + b ~) 

+ ev+q_,+~| dx .  y + xdx-5  y dy). (8) 

By (2) and (3) we see (of. also Fig. 1) 

ot~(x) 6 F  p, dott(x) s  max(p+r'p+i-q+2r-1) for i < q , ]  

ot~(x) 6 F  ~+~-q, d~d(x) 6 F  p+~-q+~-I for i~>q,] f 

and also a'(a) -5 t v+a- i  + l |  E ~'~nax(p-r + l , p + t - q -  2r +3). 

(9) 

(10) 

Since in the last line of (8) the terms a~(x) and at(y) have smaller filtration than 

all other terms occurring, it  follows from (8), (9), and (10), that  

al(x) 6 Z~, for O < ~ i < ~ q - r + l ,  I 

o~(x) EZ~_l+~_q, for q - r - 5 1 < ~ i ~ q , ~  (11) 

a~(X)~ Z~+~-qzr-1 , f o r  q < . i ~ p + q ,  ] 
/ 

{s  'q+~, for O<~i<q, ] 
and also {a~(x)} "~+t -q '2~  for q~< } (12) 

,- ~ r  + , ~ n  0 -  q.~ - 2), i ~< p + q , ]  

are independent of the choice of representative x E ~ 6 E~'q. For  i = p + q, {at(x)} is 

well determined in Er since ~v+q(a)=co| This, however, shall not concern us. 

We are now in a position where we can define the reduced powers in spectral 

sequences. By  (4) and by (12), namely, we known when sqix is independent of the 

representative x of ~. We therefore make the definition for {x} = 4 E E~ v" ~ 

Sq~={sq~}eE~  .o§ for 0< i<q ,  ] 
Sq I ~ = (sq I x} e E v+t-q'2q / r+~n(i-q.r-2), for q<~i<~p+q. 

(13) 
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q+r-2  

q 

q-r+ l 

I a s 

~r y I 

ix* 

I I I 

p - r +  l p p+r  

Fig. 1. 

~ (dz), 

By (11) we see, that  sqlx for some i determine elements in later:stages of , the  

spectral sequence than the ones given in (13). I t  will be convenient in the following 

to denote these classes by Sqlfi also. Explicitly we have: 

for O < i < ~ q - r + i  
Sq '4=  (sq'x} EE~ 'q+', (14) 

for q - r +  l <<.i<<.q 

Sq'~t=(sqlx)EE~;~ +' for any ], O<i<<. i -q+r -1 ,  (15) 

for q<~ i <~ p + q  

Sql~=(sqlx}~ ~.~+~-q'2q-~+~ for any 7", m i n ( i - q , r - 2 ) < i < r - 1 .  (16) 

If  we disregard the stage of the spectral sequence, the formulas show that  Sq I in- 

creases the total dimension by i, and that  furthermore Sql~ belongs to a group 

situated on the angle line from (p, 9) vertical to (p, 2q) thence horizontally to 

(2p, 2q) as displayed in Fig. 2. Formula (6) shows, that  spectral operations defined 

here commute with the differentials in the spectral sequence (see Fig. 2). 

THEORE~ 7.1. Let 4EE~'q(C) and let dr4=~EE~+~'q-'+~(C). Then 

where t=min(max(r,  i - q + 2 r - 1 ) ,  2 r - l ) .  (See Fig. 2.) 

Thus t has the property that  dt goes from the angle line beginning in 4 to the 

one beginning in ~. 
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~S 

Fig. 2. 

We remark tha t  we are only interested in E[ "q for p~>0, q~>0, and r>~2. I n  

Theorem 7.1, therefore, we assume wi thout  ment ioning it t ha t  the fibre degree q -  r + 1 

of  fi is greater t han  or equal to zero. This same assumption we have made in e.g. (14). 

For  i < 0  it follows from Corollary 5.6, t ha t  S q ~  = 0. For  i > p +  q let us define 

Sql~=OEE~+~-q.2q ~-2 . Wi th  this extension the Sql's still commute  with the differentials. 

This is clear except for the case 

d ~ _ l { S q  p+q+l ~}(  = d~,_ l{0}  = 0) = {Sq  p+q+x ~)  = {~) .  

d, (~.  ~) = ~ ,  we have {~2} = 0 E E2,-1, which is wha t  we wanted  

To show this we make the following computat ion.  Le t  

Since, however, 

to  show. 

The Sql's are additive. 

x and y belong to  Z~ "~, then 

sq I (x + y) = ep(ep+q_~ | (x + y)2 + ep+q-~+l | (x + y)(dx + dy)) 

= ep(ep+q-~ | + yg + xy + yx) + e~+q_~+t| dx + y dy + x dy + y dx)) 

= sq~x + sq ~ y + d~0(ep+q-t +l| + e~+q_i+2| y) 

+ q~(ep+q-l+2| (17) 

Now let ~ ,  ~2EE~ "q be represented by  x and  y respectively. Since in (17) the last 

two terms in the last line determine zero in the group to which Sq I (ut + uz) belongs 

(see (13)), we have proved 

Let  

THEOREM 7.2. For  Ul'  ~'~2 EE~r'q 

Sq j ( ~  + u2) = Sq I (ul) + Sq I (u2). 

/~,: C,->C,|  #: C| 
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be dual filtration preserving diagonal approximations (filtration on C,|  and C| 

the usual ones). The product operation in Et(C) is then induced by /~, 

/~: E ,  ~'" "(C)| ~'''(C)-+E, ~:+~'":+~'(c). 

We remark that  Et(C|174 (usual filtration on C| In the fol- 

lowing we shall choose /~, and # to be defined respectively by /a,(c)= c/(eo| ) 

and lu(x|174 ). :Furthermore we Shall write /x(x|  By the proof of 

Theorem 4.1 we can obviously choose the mapping ~ so that  the multiplication be- 

comes associative. We shall assume in the following, that  the mapping ~0 we are 

working with has this property. We remark that  the usual (explicit) Eilenberg-Zilber 

mapping gives rise to an associative multiplication. 

To derive the Cartan formula in the case of spectral operations let us consider 

the diagram 

W| (C| (2) 1|174 W|  C a) ~ - C 

I A|174 2) p 

(W|174174  (2) " . ( W | 1 7 4 1 7 4  (2)) ~| C|  

(is) 

The mapping A is the equivariant diagonal map A: W.--~W| given by Aek= 

~_.~+j.~e~| (~ operates diagonally in W| a is a permutation of the factors, 

a: ( W | W) |  (C~ | C:)a)-+ ( W | ~ C~ <~)) | ( W |  C:e)). 

The diagram (18) is commutative up to a homotopy H of degree ~< 1. This is 

seen by considering the diagram 

W |  +" Ca, ) ~+| C$ ) 

{ A| t P 

W | 1 7 4 1 7 4  (W|174174 r174162 pa)~p<~} 

(19) 

which is dual to (18). The mapping _P is the permutation of the factors given by 

(1, 2, 3, 4)-->(1, 3, 2, 4). The element T 6 x  operates in C (4) by the permutation (1, 2, 

3, 4)-+(3, 4, 1, 2) of the factors. 

Theorem 4.1 shows, that  the two compositions in (19) mapping W| into 

C~ ) are horn| by a homotopy of degree ~< 1. The diagram (18)is therefore com- 

mutative up to a homotopy H of degree ~ 1. 

Let x 6 FvC p+q, y 6 FsC "+t, take k/> 0, and let ~ = ev+q+,+t_k |174 2 + ev+q+~+t-k+l 

|174174174 Then applying the maps in (18) to ~ we get 
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(p(l |174 = sqk(xy), 

/~(~| a(A| | 1)c~))(W) =/~(~| a( ~. er+q-~| n+"-~e,+~-~|174 s 
t + i - k  

T ~+~t_:r+q_~+l| y 

+ ~ er+q-~|174 
| + J - k  

=/J(~|174 ,+,-~,2 e,+q_,+~x'|247 
p + q - |  even 

+ ~ er+,-~+~x~| ~ 
f + . / - k  

p + q - t  even 

r ~ p + q - i + l  ~ ~ - -  . § ~ er+~-~+z~ axcge~+~_~+~yay) 
f + J - k  

= ~ sq ~ x .  sq ~ y + db + c, (20) 
| + J - k  

where b -- 

C ~ 

~+~-k rP(e'+q-~+zx2)" rp(e,+t_j+lydy), 
p + q - J  even 

~(e~+q-t+z x~) �9 ~(e,+t-j+l (dy) ~) 
f + J - - k  

p + q - |  even 

+ +~s_k~(er+,_~+~Tr+'-~+~xdx). rp(e,+,_~+~ydy). (21) 

We remark that  b and c are zero if y is a eocycle. Since (18) is commutative up to 

a homotopy H, we get 

sqk(xy) = ~. sq lx . sqJy+db+c+dH(~l )  +H(dy),  
| + j - k  

(22) 

with ~7 = e~+q+~+t-k|174 ~ + ez+q+~+t_k+l|174174174 

This equation implies (proof below) the Cartan formulas. 

THEOREM 7.3. For any two cla~es 416EPr "q and ~s6E~ "t the /ollowing formulas 
hold true, 

S q k ( ~ 2 )  -- ~ Sql~z.SqJ~2eE~ +''q+'+k (O<~k<.<q+t) 
f + J ~ k  

Sq k ( ~ )  = S q l ~ .  SqJ~  EEp+,+k-q-t .  ~(,~+t) r + m l n  ( k - q - t ,  r - 2 )  
t + t - k  

(q+t<~b<~ p + q §  8+ t). 

Proo/. We first remark that  in the second equation we are considering Sql~l 

and SqJ~, as belonging to Er+~c~,-q-t.T-,). In (16) we saw that  this is legitimate. 

The proof of the Caftan formulas follows from (22). The only terms on the right 
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hand side of (22) that  will make any contribution are the ones of least filtration. 

Since H is of degree ~<1, these are in the two cases ~+~.~sq~xsqJy with respeeti. 

r e ly  O<~i<~q, O<<.j<<.t and q<~i<<.p+q, t<j<<.s+t. This proves the theorem. 

If A is an algebra over a field of characteristic n, then the algebra homomor- 

phism a--->a ~ is denoted by $. The iterations of ~ are denoted ~s($~= $. ~s-~, ~x= ~). 

THEOREM 7.4. Let u 6 v.q and let (t = ~ a ~  . b~, where a~ 6 E~ "~ and b~ 6 ~22 "q. Then 

Sqt( t=~a~.Sqlb~6E~ "q+~ /or O<~i<~q, 
at 

Sql4=~.Sql-qa~.~=~2~,~+~-q.~q /or q<.i <~ p+q.  

This means, that i/E*'~162 ~ 2 ~ is an isomorphism, then 

Sql=l| 'q+t for O<<.i<~q, 

Sql = "uu-i-q'~"'~" ~2=~'"'-~E ~+'-q'2 ~Q ]or q <. i <~ p + q. 

Proo]. Since the Sql's are additive, we only need to show that  for a in the 

base and b in the fibre Sql(a .b)=a.  Sqib for i < q  and Sqi(a .b)=Sql-qa 'b  ~ for q<.i. 

This, however, is a trivial consequence of the Cartan formula. 

THEOREM 7.5. Let ,26E,  ~'q,/et dry2=0, and let (t determine the class {4}6E~:~]. Then 

f~P'q+' /or O<~i~q 
{Sq t ~} = Sq' {fi} "~ +* 6~=P+'-q'2q /or q<~i <~ +q. [ "Ulr + l +min( I -q , r -1 )  P 

Proo[. Since dr~2 = 0 it  follows that  there is a cochain x 6 Z r ~  representing ~; 

x will then elarly also represent {,2}. By the definition (13) of Sq t we see, tha t  sq 1 

represents both Sql~ and Sqt{~}. This implies the theorem. 

By  the Theorems 7.4 and 7.5 we immediately get 

THEOREM 7.6. Let (t={Y.~a~.b~}EE~ "q, where ~a=.b~EE~ "q with a~EE~ '~ and 

I)~ 6 E~2 '~. Then 

Sq'~t={Za~'Sq~b~}eEVr"+' /or O<i<<.q, 

I - l - q  ~ p + ~ - q . 2 q  ~ < i ~ <  S q u = { ~ S q  a~'b=}EE,+m~no-,.~-2) for q p+q.  
g 

As before let [: E-->B be a mapping of css-eomplexes. Let  b 0 (ver tex)be  a base 

point  in B. The inverse of b0, F = / - i ( b 0 )  , is a subcomplex of E. We therefore get the 

commutative diagram 
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incl. I 
F - -  E - -  B 

k ! In  , 

incl. l s  
b o - - - * B - -  B 

(23) 

where b o also denotes the subcomplex of B generated by b 0. The pairs (incl., incl.) 

and (/, Is) of horizontal mappings will be denoted by ~ and ~. These induce mappings 

E,(ls) r*-- E,(I) '~'~ E,(b). (24) 

We have for all r I> 2 

E~'q(b) :"Ha(F), E~'q(k,) = 0  for p~>l,~ 

E~'~ Er~'q(ls) = 0  for q~> 1. / (25) 

If ~ is an element in the fibre or in the base of the spectral sequences (25) 

then by ~' we shall denote the corresponding cohomology class under the isomorphisms 

given in (25). 

THEOREM 7.7. Let @~6E~r'e(/r and /et @~6Er ~'~ Then 

(Sq ~ ~)' = Sq' (~) 6 H "+'(F), 

(Sq i @~)' = Sq' (~) 6 H" § 

Proof. By comparison of the construction of Steeurod powers in the spectral 

sequence and in cohomology the proof follows trivially. 

From the naturality (Theorem 5.4) of the Sql's we get from (24) 

THEOREM 7.8. Let ~6E~'~ and /d @s Then 

~,*(Sqi 4) = Sq I (~*~), 

a*(Sq I @) = Sq I (a*@). 

The infinity term, Eo~=Eoo(/), of our spectral sequence is isomorphic to the graded 

module associated with the filtered module H* =H*(E), 

0 = Fr-IH r c_ FrH ~ c_... c_ F~H p c_... c_ IVIH p ~_ l?eH p = Hr(E), 

Fi tp , /  F + I H,, ~ E ~ ' - t  

If  we disregarded the filtration, the mapping ~: W| used to define the 

spectral operations can also be used to determine the Steenrod operations in H*(E). 
The proof of the following theorem is trivial. 
7 -  62173067 Acta mat~emat/ca.  107. I m p r i m ~  le 29 mar s  1962 
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TH]~OREI~I 7.9. Let 4EF~H~+q(E) determine {~} in E~;q(/). Then we have 

Sq I ~ E Fr+/H p+ q+t(E) 

and {Sq 'a)  = Sq'{~) ~ E  ~+ '~  , 

where ]= max (0, i -  q). (Here Sq t denotes a cohomology operation when operating on the 

cohomology class ,2 and a spectral operation when operating on {~}). 

Exact ly  as in the case of cohomology operations we can consider iterated opera- 

tions and ask for relations between them. In  the case E~'*~-H*(B)| certain 

relations are, however, easily derived from the Adem relations by  means of Theorems 

7.4 and 7.6. Since such relations are not used in this paper, we shall not write them 

down. 

8. S o m e  l e m m a s  

In  certain computations coming up in later sections we meet the following situa- 

tion: In  the spectral sequence {E~,d~} of a certain mapping /: E-->B we know tha t  

three elements ~6E~ 'n-l ,  8 n.o y6EO.2(n-1) 6Ea  , and (n~>2) have the properties 

daa = 8 ,  day = ~ ' f l ,  

E~'q=O for l ~ < q < n - 1 ,  any p. 

We are then interested in determining the differentials of Sqly and of other elements 

in the fibre. The lemmas proved in this section t reat  this and a similar situation. 

First  let us make the following 

REMARK 8.1. Let /: E--->B be a map o/ess-complexes and {Er, d,} the corresponding 

spectral sequence. Let ~6E~ "n-x, f leE~ "~ and yeE~ 'z(a-1) (n~>2) with dao~=fl, day=ast. 

Let E~ a-j'j-1 =0,  t = 2 ,  3 . . . . .  n -  1. Then there exist cochain representatives u, v, and x o/ 

g, 8, and y respectively urith the property 

d x = u v + a  (1) 
w/~h a e ~a- l (0~a- l (E))"  

Proo/. The cochain a we shall say is " in the base". In  general we shall say tha t  

any  cochain belonging to ~ jFJC j is in the base. Let  u be a representative of ~. The 

cochain v = du is then in the base and represents ~. Le t  y be an arbi trary represen- 

ta t ive of y. Then, since dny = ~8, the cochain dy must  represent ~8, which is also 

represented by  uv. By (1) in Section 5 we therefore get 

dy = uv § db + c 
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for s o m e  b E F l C  r and ~ - n + l n - 2  c t ~ . _ f  . The coehain c determines a class in ~.+1,n-2 

Since this group by  assumpt ion is zero, we get  

c = db 1 + ca 

with b l E F  s and  ~ . . . + 8 , . - 8  ~ " + 8 ' ~ - s = 0 ,  w e  can ca t n , - 2  . Since c I determines a class in ~,_9. 

i terate this process. We therefore get  

dy = uv + d(b + b 1 + ... + bn-8) + cn-8 

with cn-3 = a in the  base and b + b I + ... + b~_9. E F I. Since d(b + b 1 + ... + b~_8) E F n, the 

element x = y - ( b + b l +  . . . + b n - 8 )  represents ? and we get  (1). 

LEMMA 8.2. Let ~eE~ "n-l, f l e E ~  "~ a n d  y E ~ n  "~(n-1) be elements in  the spectral 

sequence {Er,  dr}" associated urith a c~s-map /: E--->B. Let u, v, and x be cochains re- 

?resenting ~, fl, and ? respectively with the properties du = v, dx = uv + a, where a is in  

the base. Then 
k 

�9 ( ~ + D = S q ~ k + l ? + . ~ 0 S q % t ' S q ~ k + l - ~  ( 0 ~ < k < n -  1), 

is transgressive, while 
k - 1  

"r(sk) = SqSk ? +(,_~oSq%~ �9 Sq2k-a ~ (0<  k ~ < n -  1), 

persists to E,+~ and has 

= { s q  

Furthermore there are cochains ua, vt, and x I representing Sqk~, Sqkfl, and T (Sk) respectively 

such that 

dUl=V 1 and dXl=Uavl +ax, 

where a x is in  the base. (The existence o/ Ul, Vl, Xl, and a 1 with this property clearly 

implies (2).) 

Proo/. Since dx = uv + a and ddx = 0 we get  

d(uv) + da -= v 8 + da = O. 

By (17) and (22) of section 7 we get  for e=O,  1 

d sq uk*" (x) = sq ~'*~ (dx) = sq ~ §  (u~ + a) = sq 8k+~ (uv) + sq 2k+" (a) 

+ dqp(esn-2~-8| (uv) a + ezn_2k_,+l| + 9(e2n-zk-e+l | (vg) ~') 

= sq2k+~ (uv) + sq 2k+* (a) + d(q~(esn-8~_,| a + e~, _2k:,+x| + sq 2k+~ t (a ) )  

= ~ sq tu ' sqJv+H(e2~-2 , - , |  
t+t-2k+~ 

+ d(HO?) + q~(ezn-2~-~| (uv) a + es._2k_s+l| -]- s q  2k+ ' - I  (a)) (3) 
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with 71=ea,_l_21,_~|174 (see (22) in section 7; since v is a cocycle, 

b and  c there  are zero). B y  the  defini t ion of the  f i l t ra t ion of t ype  2 4 we see t h a t  

the  f i l t ra t ion of ~ is greater  t h a n  or equal  t o  2 n - ( 2 n - l - 2 1 c - ~ ) ~ 2 k + e + l ,  which 

is >12 since 2 k + e ~ > l .  Since H is of degree ~<1, we see t h a t  all t e rms  in 

b = H(~) + ~(e2,-2k-,| (uv) a + e2.-2~-~+1| + sq 2k+e-l(a) (4) 

are of f i l t ra t ion >i 1. The  sum 

k + e - 1  
~. Sq~a �9 S q 2 k + ' - ~  

0--0  

k + ~ - I  

is represented b y  Q= ~. sq~176 
a - 0  

Apply ing  the  coboundary  opera tor  to Q we get  

k+e-I 

dQ = ~ (sq" v .  sq ~k+'-~ u + sq ~ u -  sq ~k+'- ~ v) 
a - 0  

k+~-x /~+.-I \ 

= o-o ~" (sq'k+'+Ou'sq~176 o~-O- q~<et|176 

k+s-I 

+ ~. ~(et|176 (5) 
a--0 

k + 6 - 1  

The term c= ~ Ct)(el| (6) 
O - 0  

we note  has  f i l t ra t ion >11. 

I f  e = l ,  we get  f rom (3) and  (5) 

k 
d(sq~+~ ~ + Q + b + c) = H(~, ,_~_~|  + ~ ( h |  ~ v sq ~+1-~  ~) + sq "~§ (al. (7) 

Since H is of degree ~< 1, i t  follows t h a t  the  r ight  hand  side is in the  base. Also 

since, as we observed above,  b + c is of f i l t ra t ion >/1, i t  follows t h a t  sq2k+lx + Q + b + c 

r e p r e s e n t s  T (2k+l). The  equa t ion  (7) hence shows t h a t  T (2k+l} is t ransgressive.  

I f  s = 0 ,  we get  f rom (3) and  (5) 

k - 1  

d(sq~  x + Q + b + c) = s q k u  �9 sq k V -t- H(e2n_9.k@v 4) -{- ]f090(el| ~ v sq 2k-~ v) + sq  2k (a). (8) 

As before x I = sq~kx + Q + b + c (9) 

represents  ~cz~), and  

k - 1  
a 1 = H(e~,,_2~| 4) + ~. ~0(el| v sq  2k-" V) + sq  2k (a) (10) 

a - 0  
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is in  the  base. P u t t i n g  

u I = sq k u, v 1 = sq k v 

we ge t  from (8) the  second s t a t e m e n t  of the  lemma.  This  comple tes  the  proof.  

LEMMA 8.3. With the same assumptions as in Lemma 8.2 

7" d , (?)  -- ?~fl E E~ ' s ( ' -  1) 

is transgressive, i.e. persists till Ea,-2. 

Proo/. The e l emen t  ?aft  is represen ted  b y  x .dx. Tak ing  c obounda ry  we ge t  b y  

(17) a n d  (22) of sect ion 7 

d ( x .  dx) = (dx) 2 

= sq ~ -1  (uv + a) = sq 2n-1 (uv) + sq 2"-1 a + dep(el| ) a + e2| + ~o(e2| (v2) 2) 

= sqn-1 u" sq" v + sq n u -  sq ~- 1 v -]- sq 2n -1 a + dH(~) + H(e t | v 4) + db (11) 

wi th  ~1 = Co| (u| ~ + e 1 | (u|174 v| and  b = ~v(e 1 | (uv) a + e2| vga) + sq 2n-2 a. Since 

s q ~ - l u . s q ~ v + s q n u . s q n - l v = s q ~ - l u . v 2  + u v . s q n - l v = d b t  +q~(et| (12) 

wi th  b I = sq n-1 u" a + x" sq ~-1 v + ~P(el|  sq ~-1 v), (13) 

w e  get  f rom (11) 

d ( xdx + HOT ) + b + bl ) = H ( ea | v ~ ) + q~( e~ | v 2 sq n-1 v) + sq ~n-1 a. (14) 

Since ~ is of f i l t r a t ion  2n, H(~) is of f i l t r a t ion  2n - 1 >~ n + 1. I t  follows t h a t  xdx + H(~) 

+ b + b  1 is a cochain r ep resen ta t ive  for ?aft.  Since the  r igh t  h a n d  side of (14) is in  

the  base,  th is  equa t ion  gives us the  conclusion.  This  comple tes  the  proof.  

We  shall  now consider  analogs  of the  above  lemmas.  As before we m a k e  the  

following 

REMARK 8.4. Let [: E--->B be a mapping o/ css.complexes and let {Er,dr}  be the 

corresponding spectral sequence. Let aCE~ . " -1, fl e E~ "~ and 7 e E ~  ,~)n-2 (n~>2, h>~2) 

with dna= fl and d<uan-n)(?)= a /~  h-1. ~ ~ n - - J . J - - l =  0 /or  j =  2, 3, . . . ,  n - - 1 .  There then 

exist cochains u, v, and x representing a, fl, and ? respectively with the property 

dx = uv ~ -  1 & a 

with a in the base. 
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LEMMA 8.5. Let ~6E~ ""-1, f lEE ,  "'~ and yEE~, "~"-2 (n~>2, h>~2) be elements in 

the spectral sequence {Er, dr) associated with a css.map /: E--->B. Let u, v, and x be 

cochains representing ~, fl, and ~ respectively with the properties d u = v ,  d x = u v ~  + a 

where a is in the base. Then 
Sqkr, k<2hn--  2 

is transgressive i/ n is not divisible by 2 ~. I /  k = s .  2 a, then 

Sqk~, = SqS-2h 7 

persists to E(2~-l)(n+s) and has 

d(~- 1)(n + s){Sq" 2hr} = {Sq' a .  (Sq'fl) ~ -  1}. 

Eurthermore there are cochains Ul, Vx, and x 1 representing SqSa, SqBfl, and SqS'Sh 7 

respectively such that 

du 1 = vl ' dx 1 = utv12*- x + ch 

with a x in the base. 

Proo[. From the equation dx = uv ~ -  l q_ a we get 

d(uvS'- l) + da=  v~ + da=  O. (15) 

Putting ~.~sqiy=sqy for any eoehain y we get from (17) of section 7 

d sq (x) = sq (dx) = sq (uv ~ -  1 + a) = sq (uv ~ -  1) q_ sq (a) + db, (16) 

where b = ~. (~0(e2hn- ~| (uv ~ -  1) a + e ~ -  ~+ 1 | v2 'a )  -~- s q  l -  1 a). 

By an obvious generalization of (22) of section 7 we get from (16) 

d sq (x) = sq (u). (sq (v)) 2~- 1 _{_ db x + ca + sq (a) + db, 

where b x = ~ H(~) 

(17) 

(18) 

c a = ~ H(e2hn-,|174174 | (19) 
| 

The homotopy in the generalized diagram (18) of Section 7 is here denoted by H :  

W| fl~ denotes the element e~n_l_~| +e2hn_t|  

Putting 

Q= ~ (sqiu(sq 'v)2 ' - l ) (sqJu(sqJv)~-l)(sqv)  ~-2'+' (20) 
O~t <~ h - 1  

t<j 
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we get  de= Y ((sq'v(sq, v)~-i)Isq,~(sq~v)~,-1) 
o ~ t ~ 2 - 1  

+ (sq' u(sq ~ v) ~'- ~) (sq ~ v(sq ~ v) ~-  ~)) (sq v) 2~- ~'+' 

= ~, (sq~u(sq%)~-l)(sq~v)~'(sqv)~-~'~'+db~+c~ 
O<t~h-1  

(21) 

with b~ =o<t<~-x ~(e~| (sq~ v(sq~ v)~- 1) (sq| u(sqS v)~- ~)) (sq v) ~-  ~'+', (22) 
t < t  

c a= ~ ~(el| 2')((sqjv)~'))(sqv) ~-~'+'. 
O<t<h-1 

t< /  

(23) 

I f  f o r  a momen t  a and  b are a rb i t ra ry  cocycles in the base and  c is a cochain with 

the proper ty  tha t  c and dc are in the base, then an  easy computa t ion  shows 

(a + b + dc) 9 = a s + b e + d5 

with 6 and dg in the base. Using this.  an  inductive a rgument  shows 

(sq v) 2' = ~ (sq l v) ~ + dc(t) (24) 
I 

with c(t) and  dc(t) in the base. Fur thermore  the components  of c($) are all of dimen- 

sion > n  ( = d i m e n s i o n  of v). By  (21) and (24) we now get 

dQ + db 2 + c 2 + sq(u) (sqv) ~'-  1 

= Y. (sq lu(sqiv)~- l ) (sqJv)~(sqv)~-~+'+squ(sqv)~"-I  

- Y.. (sqiu(sqlv) ~'-1) (sqJv)~(sqv)2"-2'+~+ ~ s q S u  �9 sq"v(sqv) ~ - e  

= ~ (sqlu(sq~v)~-l)(sq j ~ - ~ ,  v) ~ (sq v) - ~" + ~ sq~ u(sqS v) 8 (sq v) ~ -  4 + db 3 + c8 ' 
2 ~ t ~ h - 1  s 

| . t  

(25) 

where b 3 = ~ ,  sqSu �9 sqSv �9 c(1). (sqv) ~ - 4  and c 3 = ~ ,  (sq~v) ~. c(1). (sqv) ~-~.  We note t h a t  

b 3 has positive filtration, and tha t  c 3 is in the base. I te ra t ing  the process f rom (25) 

we get  

d Q + d b 2 + c ~ + s q u ( s q v ) ~ ' - l = ~ s q S u ( s q ~ v ) ~ ' - l + d ( b 3 +  ... +bh+l)+Cs+ ... +ch+l ,  (26) 

where b~+ ... +bh+l  is of positive fi l tration and ca+ ... +ch+l  is in the base. 

Using (17) and  (26) we now get 

d ( s q ( x ) + b + b l  + b ~ + . . .  + b ~ + l + Q ) = ~ . s q ~ u ( s q ~ v ) ~ - l + s q a + c 1 + c s + . . .  +c~+l. (27) 
$ 
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Since s q x + b + b x +  ..: + b a + l W Q  is a representat ive of S q ? = ~ S q t ~  and since s q a  

+ c a + c2 + ... + cn+~ is in the base the conclusion of the lemma follows. This completes 

the  proof. 

LEMM~ 8.6. With the same assumptions as in Lemma 8.5 

~'" d(~- 1). (~) = ~" ~" fl2A- 1 ~ E(2h-  1) n 

is transgresssive; i.e. persists till E(2~+1)n-2. 

Proo[. The element 7/-~ .fl2h-1 has a cochain representat ive x .dx. Taking tho 

coboundary  we get  

d(x" dx) = (dx) 2 = s q  2hn- l(dx) = sq 2hn- l(/v2i- 1 + a) 

= sq2h=- l (uv~-  1) + sq~n-  l(a ) + d(b), (28) 

with b = q(e~ | (uv ~ -  1) a + e 2 | v~a) + sq ~=- 2a. (29) 

Using the generalized formula (22) of section 7 (see also (17), (18), and (19) in this  

section) we get  f rom (28) 

d(x" dx) = ~ sqm)(u) sqU2'(v) ... sqU~)(v) 
~/(/) - 2an - 1 
i 

+ dEr(f/2A,- 1) + H(ex | (v~) 2) + sq 2hn- la + db 

= s u n -  1 u ( s q n  V)2 h -  1 "4- ~ sq n u sq ~ v sq = v . . .  sq = v sq n- 1 ?) s q n  V . . .  s q  n V 

+ d(H(~2An- 1) + b) + H(ex| (v2h) 2) + sq 2hn- I a 

= s q n -  1U " ~0~+~-2 + ~ U V ' V 2 t ' s q n - I v ' v  2a+~-4-2i 
0 < t ~ 2 a - 2  

+ d(H(~2hn_ 1) + b) + / ~ ( e  I | (tr2t) 2) + sq  2hn- 1 a .  (30) 

Since V 21 S n - l y  t ~2s+1-4-2i ~, uv" �9 q �9 = d b l + c a  
0~t~2a-~-2  

(31) 

with b l =  0<i~2a_2_ 2 ~ "  U V 2 1 + X ' s q n - l v ' v 2 L 4 - 2 i ' a , t  

ca=  ~. V2t + 2 . sqn - l v . v2h - 4 - 21. a, 
0 ~ t ~ 2 ~ - , - 2  

~. UV2|+I s q = -  1 V �9 V ~ §  4 -  2i ~ db  2 + c2 
2h - t -  1~<t~2h- 1 

1(32) 

(33} 

with 
2h-1 

b2= ~ x ~ + 2 - ~ . s q n - l v . v  2~+'-4-2i, 
t . 2 h - 2 -  I 

2~-1 
C2= ~ a v 2 i + 2 - 2 k ' s q n - l v ' v ? ~ + l - 4 - 2 i ,  

i _ 2h--; _ 1 

(34) 



ON THE COHOMOLOGY OF TWO-STAGE POSTNIKOV SYSTEMS 105 

a n d  s q n -  1 u .  v ~-3+1- 2 = d b  3 _~_ c3 ' (35) 

with ba=sq~-lu'vO-2.a, c3=sq~-lv.v~=~.a, (36) 

we get from (30) 

d(xdx+R(~l~n-1)+b+bl+b~+b3)=H(el| (37) 

Since xdx + H(~/2hn-1) + b + b 1 + b~ + b s is a eochain representing ~0~/~ 2~-1 a n d  since the 

right hand side of (37) is in the base we get the conclusion of the lemma. This 

completes the proof. 

9. Mappings of spectral sequences 

For the rest of this paper we shall be working in the category of topological 

spaces. I t  is well known that  there is defined a functor S, the singular complex 

functor, taking this category into the category of css-eomplexes. We shall consider 

the (normalized) singular homology theory of topological spaces X and use the following 

definitions and notation 

C,{X) = C,(SX), C(X) = C(SX), 

~ , ( x )  = H,(SX), H*(X) = H*(SX). 

If [: E-+B is a mapping of topological spaces, then 

E(f) = E@), 

where E(S/) denotes the spectral sequence of the ess-mapping Sf. In Gugenheim- 

Moore [7] it was shown that  if / is a fibre mapping, then 

$ , * ~  * E(/)~ ~ H  (B, H*(F)) (local coefficients). 

If  nl(B) operates trivially on H*(F), then 

E(f)~.* ~_ H*(B)| 

The coefficient group is here assumed to be our ground field K. 

In this section the ground field K is an arbitrary field of characteristic n. I t  is 

well known that  the end-point projection LX-+X, LX  the space of paths over X based 

at  a point xoEX , is a fibre map. This is an example of a fibre space with total 

space having trivial cohomology. The infinity term E of the spectral sequence of such 

a fibration is trivial (except for E~~ In this section we shall mostly consider 

spectral sequences with trivial w-term. The spectral sequences considered will not  

necessarily be spectral sequences of a fibration. 
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k - 1  

y y~ y. 

Fig. 1. 

y z yz z~ yz' 

Fig. 2. 

Let us define three kinds of elementary spectral sequences A = {At, dr} B = {Br, dr}, 

and C = (G,, dr} (r >/2). These spectral sequences are bigraded sequences of commutative 

algebras. The differentials are derivations and have bigradings as in the eohomology 

spectral sequence of fibre spaces. 

The spectral sequence A ( k ) = A = ( A r ,  dr} (see Fig. 1) is given by 

(yEA2 , xEA~ (1) A 2 = P(y)| k.o 

where P(y) denotes the polynomial algebra generated by y and A(x) the exterior 

algebra generated by x, and by 

dr=O for r # k ,  1 (2) 
] 

The spectral sequence B ( k ) = B = { B r ,  dr} (see Fig. 2) is given by 

B 2 = (A(y)|174 y fiB~ '~ z eB~ r176 x e B~ '~-1, (3) 

where P,(x) denotes the truncated polynomial algebra of height n generated by x 

(i.e. x "-1 # 0, x ~ = 0), and by 

dr=O for r=~k and ( n - 1 ) ( k - 1 ) + l ,  

(4) 

d(tt-1)(k_l)+l(yx, rt-1}={Z}. 
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y y.,-i z y'-~z 

Fig. 3. 

We remark that  if n 4  2, then k must be odd. If k was even then by commutativity 

x 2 = 0 which contradicts x ~- 1 4  0. 

The spectral sequence C(k, m)= C= (Cr, dr} (see Fig. 3) is given by 

C2 = (P=(y)|174174 (5) 

k.0 zEC~ ~-9")(~-1)+~'~ xEO~' , wE~2 , (6) where yEC2 , ~-1 f~O.~m-2 

and by dr=O for r 4 k ,  k ( m - 1 ) ,  ( k m -  2) (n - 1 )  + k, 

dk(m_l){W)={ym-lx} ,  (7)  

d,km-2)(n-1)+k{y m-i XW n- l }  = {Z}. 

In case n 4 2 ,  km must be even. If m > 2 ,  then k must be even. 

In  all three cases the differentials of any element are easily derived using the 

fact tha t  the differentials are derivations. Since we later on are going to need the 

explicit expression of the differentials in the third case, we shall write them down here: 

{ y ~ x w  r} persists to Ck ( 0 ~ < ~ < m - 2 , 0 ~ < f l < o % 0 ~ < ~ < n - 1 )  

(i.e. d,,{y~z~xw r} = 0 for (0 < a < k) (8) 

and dk{y~z~xw ~'} = {y~+lzZw~}. 

{zaw r} persists to Ck(m-1) (O<fl<  oo, O~<~,~<n-- 1) 

and dk(=- 1){z~w y} = {ry =- lz~xu~- 1}. 

{y=-'~zw ~-1} persists to v(~=-~,(.-1,+~ ( 0 < ~ <  oo) 
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a n d  d f . . . .  l~J~C)n--1"~ __ f•]3+l). (km-2) (a -1 )+ tcUr  J - -  I. j -  

The differentials of all other generators are zero. 

The infinity terms of the three spectral sequences are quite obviously trivial. 

The spaces X we shall consider in the following are all assumed to have locally 

finite cohomology, i.e. Ht(X, K) is finitely generated for all i. The cohomology H*(X, K) 

is a vector space graded by dimension. 

DgFI~CITION. The cohomology H*(X) = H*(X, K) of X is said to be decomposed into 

a tensor product if we have given graded vector spaces T, and maps 

/,: T,-->H*(X) (i = 1, 2 . . . . .  h), 

of graded vector spaces such that  the composition 

h h 
| T, t,|174 | H*(X)r+H*(X) (H*(X),=H(X)) 
t-1 ~-I 

is one-one and onto in dimensions 0, 1 . . . . .  The map on the right of the composi- 

tion is h-fold cup-product. If  h =  oo the tensor product Q T, is defined by 
l=1 

P 
lira @ T, = (~ T,. 

The map on the right in the composition is defined to be the direct limit of 

p-fold cup-products Q H*(X),-+H*(X). 

$,$  LEMMA 9.1. Let f: E-->B be a fibre mapping with /ibre F. Let E( / )={E,  ,dr} 

denote the associated spectral sequence. 

Let 
Ao.*___>~.* : 2 2 

g: ~ . * - ~ . * ,  (9) 

h: ~'*-~ '* ,  

be mappings o/ graded vector spaces 8atis/ying 

(a) /(x) persists to El,, 

dk{/(x)}={a}, where a6E2" 

(b) g(x ~) persists to Ek, 

d,{g(~)}={gbg(x"-~)}, where O~<g~<n-1,  b e E~ "~ (remember g i8 not assumed 

to be multiplicative), 

bg(x "-I) persists to E(,_,)(~_~)+~, 

a,n_l)(k_l)+i{b~(gn-1)}  = {C}, w h e r e  c e E ~ ' k - ' ) + 2 ' ~  
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(c) h(xw ~) persists to 1~, 

dk{h(~w')} = {~h(~)} ,  where O < ~ < n -  1, ~eE~ "~ 
h(w ~) persists to Ek(m-a), 

d ( . _ l ) ~ { h ( w ' ) } = { ~ - ' h ( ~ o ' - ' ) } ,  where 1 < ~ < n -  1, 

5m-ah(xw "-x) persists to E(km-2)(n-1)+k, 
d,~m_~,,._,,+~(a:-lh(~w"-l)} = @ ,  wher~ $ e~,~ ~:-~,`--1,+~m.0. 

Then the (additive) spectral sequence mappimjs 

/: A-+E, g: B-+E, h: G-+E, (10) 
de/ined by 

/({y'x~}) ={a'l(x)'}, (0~<~< co, e=0 ,  1), 

g({y'z'x~}) ={b'c~g(x)~}, ( 0 < ~ <  co, e=0 ,  1, O<~fl<~n- 1), (11) 

h({y'zSx"wr})={a-~h(x'wV)}, (0, .<a~<m-1, 0~<fl, e = 0 , 1 ,  0~<7~<n-1),  

are extensions o/ the mapinqs (9). Furthermore / I A  *'~ is an algebra homomorphism. The 

same i8 true ]or gIB~ "~ and h]C~ "~ provided b2=0eK~2 k'~ and 5m=0fiE~ '~'~ respectively. 

Proo/. Provided that  we know that  (11) really defines mappings of spectral se- 

quences, then it is obvious that  the mappings (10) extend the mappings (9). By the 

formulas (11) it is also obvious that  the restrictions of (10) to the base give algebra 

homomorphisms under the assumptions b ~= 0, 5~= 0. 

We shall restrict ourselves to show that  the third equation in (11) defines a 

mapping h: C-->E of spectral sequences. This is the most complicated case. A com- 

plete description of C was given in (8). We see that  we only need to show that  

h{y'Z~ r} = (5"$~h(xw~)} persists to E~, 

d~{~-~h(~w~)} = (a -§ 

d~,(,. _ l) { $~h( wV) } = {~5--'$~h(xwr-1)}, 

h { u ' - l ~ w " - ' } = { a ' - l $ ~ h ( ~ w " - l ) }  persists to E,~._~,,._,+~, 

d(km-~_)(.-1)+ ~{5"- l$"h(xw'- 1)} = {$,+ 1}. 

Since the differentials in E are derivations this follows immediately from the assump- 

tion (c). 

LEMMX 9.2. Let F--->E--->B be a ]ibration. Let the total space have trivial cohomo. 

/oyy and /ct nl(B) operate trivially on H*(F) such that in the spectral sequence E = {E~, d,} 

we have E*'*~-H*(B)| Let 

' /~: A(k,)-+E, gf B(kj)--+E, h,,: C(k,,, m~,)--->E (12) 
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be (additive) mappings o/ spectral sequences. The indices i, j, and a are understood to run 

through given indexing sets. I /  the restrictions o/ /~, gj, and ha to the fibres decompose 

H*(F) into a tensor product, then additively H*(B) is isomorphic to the tensor product 

o/ exterior algebras each having one generator gj(y(kj))EH*(B)~-E,~ "~ o/ polynomial al- 

gebras having the generators [~(y(k~)), gj(z(k~)), ha(z(ka, m~)), and o/ truncated polynomial 

algebras with generators ha(y(k,, ma)) o/ height m~. 

H*(B) ~ A({gj(y)})| gr ha(z)}] | @K[ha(y), too]. (13) 

I[ /urther (as in Lemma 9.1) ha(y(k~, m~) ~) = h~(y(ko, mo))~, 1 < fl <. m, - 1, then (13) is an 

Mgebra isomorphism provided in H*(B) gj(y(k~)) 2= 0 and h~(y(k~, m~)) "~a =0.  

Proo/. The composition 

|  (k,) | | | | C(k~, ma)-+ |  (14) 
l t ~ t , I . a  

of @/f|174 and cup-product is by assumption an isomorphism on the fibre. 
t t a 

Since the ~ - t e r m  of both the range and domain in (14) are trivial it follows from 

Moore's comparison theorem (see e.g. Zeeman [14]) that  the composition (14) is an 

isomorphism in the base. The comparison theorem only tells us tha t  (14) restricted 

to the base is an isomorphism on the additive structure, but  with the final assump- 

tion in the lemma this map is an algebra homomorphism and hence an algebra iso- 

morphism. This completes the proof. 

10. Spaces with two non.vanishlng homotopy groups 

A space with only a finite number of non-vanishing homotopy groups is called 

a Postnikov space. An important  subclass is the class of spaces with only one non- 

vanishing homotopy group, the Eilenberg-MacLane spaces (denoted K(~, n), ~z~(K(~z,n)) 

= 0 for i :#n and = ~t for i = n). Spaces with two non-vanishing homotopy groups 

and z in dimensions n and m ( n < m )  can be constructed from Eilenberg-MacLane 

spaces. Let  P be the total space of the fibre space induced by a mapping K(~t, n) 

-->K(~, m + 1), 

K(~, m) = ~K('c, m + 1) 
/ \  

/ \ 

P +LK(~, m + 1) 

I 
K ( : ~ , n ) - - -  K(T ,m+ I). 
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The space P has the homotopy groups g and v in dimensions n and m. This 

follows easily from the homotopy sequence of the induced fibration. The mapping 

K(:~, n ) - ~ K ( v ,  m + 1) determines a class (It EHm+I(K(:~, n); 3) called the k-invariant of P. 

The cohomology class k is also the image of the basic class e m E H m ( K ( v ,  m); v) under 

the transgression in the fibration K ( ~ , m ) - - > P - - > K ( ~ , n ) .  Since the singular homotopy 

type of P is determined by ]c (the groups g and v and their dimensions), we denote 

P by P(~, n; v, m,/c). The /r was introduced by Eilenberg-MaeLane. I t  is the 

first of a sequence of ]c-invariants associated with any topological space. The higher 

k-invariants were introduced by Zilber and by Postnikov. We remark that  the singular 

homotopy type of any space with two non-vanishing homotopy groups can be ob- 

tained by the above construction. 

Spaces with two non-vanishing homotopy groups (or closely related spaces) are 

of importance in different situations in algebraic topology. They are used in Peter- 

son's definition of functional cohomology operations [9] and in the definition of se- 

condary cohomology operations (see e.g. Peterson-Stein [10] or Adams [1]). 

11. Computation of  H*(P(Z2 ,  n; Z 2, 2n - 1, e2), Z~) 

The method in computing the cohomology of spaces P = P ( ~ r ,  n; v, m,  k ) i s  simply 

to compute the spectral sequence of the fibration D..P---->LP---)-P by using Lemma 9.1 

and 9.2. This can be done in certain cases if the cohomology of D , P = P ( ~ r , n - 1 ;  

v , m - 1 ,  ak) is known. When the k-invariant a/c, the suspension of k, of the fibre is 

zero, this cohomology is known, for in this case F~P is of the same homotopy type as 

K(~r, n - 1) • K ( v ,  m - 1). We remark that  if in particular k is decomposable, then ak = 0, 

and we are in the above case. In this section let K = Z~. 

A sequence I = (al, a 2 . . . .  , at) of non-negative integers is said to be admissible if 

ai ~ 2at+l ( / = 1 , 2  . . . .  , r -  1). (1) 

The degree and the excess of I are defined by 

We then have the relation 

f 

deg I = ~ al, 
t - 1  

r - 1  

e(I)  = ~.. (at - 2at+l) + at. 
f - 1  

(2) 

deg I + e(I)  = 2a 1. (3) 



112  I ~ I F  KRISTENSEN 

Sequences (of non-negative integers) are multiplied by  juxtaposition, and a sequence 

is multiplied by a (non-negative) integer by multiplying each of the components with 

the integer. The empty sequence is also considered a sequence in the following. Se- 

quences of the type (2a-ld, 2h-Sd, . . . ,d)  will occur frequently in the following. We 

shall use the short notation 

L (d, h) = (2h-1 d, 2h-2d, ..., d). (4) 

Finally let us recall that  if I =  (al, a2, .. . ,at), then 

Sq' = Sq", Sq-.. .Sq"r. (5) 

TH~.OREM 11.1. Let Pn=P(Zs ,  n; Zs, 2 n - l , e ~  ). For each admissible sequence J,  

e(J) <~ 2 (n -1 ) ,  containing odd components and each admissible sequence zY, e(N) < n - 1 ,  

there are classes fl(J) and 7(2N) in H*(P.) o/ dimensions 2n - 1 +deg  J and 2(2n - 1 

+ 2 deg zY) respectively, satisfying 

fl(J) = SqS(fl(2i + 1)Jx) 

whenever J = J ( 2 ~ + l ) J  x urith all components o/ Jx even. 

Let o~ be the non-zero class in H*(Pn), then 

H* (P.) = Z,[(fl(J)}] | A({Sq'~}) | Zs[{Sq u4<:-~+a~ N), h, 7(2N)}], 

where h =0, 1 . . . .  and where J,  I,  and N run through all admissible sequences satisfying 

e(J)<<.2(n-1), e(I)<~n-1,  and e ( N ) < n - 1 ;  further it is required that J contains odd 

components. 

Proof. Since D.P.~K(Z2, n - 1 ) ) x K ( Z s ,  2 (n-1) ) ,  it follows that  

H*(P.) ~ H*(K(Z~, n - 1))| s, 2 ( n -  1)) (6) 

as algebras. By  Serre [11] we then get 

H*(~P.)  ~ Zs[{S q' e, Sq J 7}], (7) 

where I and J run through all admissible sequences of excess less than n -  1 and 

2 ( n - l )  respectively, and where e and 7 are (the images o f ) t h e  basic classes in 

K(Z~, n - 1) and K(Z2, 2(n - 1)) respectively. 

In the spectral sequence of ~P.--->LP.--~P. we have d r = 0  for 2~<r<n,  d . s = a ,  

and d . (a |  a s=  0. As mentioned above, a is the non-zero class in H"(P.) (Ht(P.)= 0 

for 0 < i < n), and a s = 0  follows from the special form of the (first)k-invariant of P . .  
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We see now that  there must be a class x in E~ r with the property d.(x)=~t| 

since ~| otherwise would determine a non-zero class in Eoo contradicting the con- 

tractibility of LP.n. From (7) and the fact that  the Steenrod squares commute with 

transgression it follows that  ~, has this property. 

d.(~) = a,  d . (7)  = a |  (8) 

The set of generators for H*(FZPn) given in (7) is not so useful for our pur- 

poses. Before changing to another set of generators let us define certain dements ~r, 

I admissible, H*(D.P.). This is done inductively, 

~r=Tj_l for I empty, / 

~csj~ <~) = ~oSq, SqJ e" Sq ~~-r Sq ~ e + Sq u T ~~, 

t 

~(2j+l)(2J) __ ~oSq~ Sq~ e" Sq ~J+x-~ Sq J e + Sq ~j+l ~ .  

(9) 

I f  I = (j)J and J contains an odd component, then 

~I = Sq~ ~ .  

This defines ~t for all admissible sequenees I .  I t  is easy to see that  

v I E H ~(n-l~+dog J(~P.), 1 (10) 
B * ( ~ P . )  = z d { s q I ~ ,  d}~,J  

where I and J run through all admissible sequences of excess less than n -  1 and 

2 ( n -  1) respectively. 

Next we must determine the differentials of the generators ~ in the spectral 

sequence of 

D.P,-+ LP,-+ P,.  (11) 

LEMMA 11.2. I[ J contains odd components, then v r is transgressive. I /  I = 2 N ,  

~hen T t persists to E,+aer and 

d~+d.~ N{~) = {SqS r174 s}. 

The element SqSa| .31 is transgressive, i.e. persists to Es(,-l+do~N)+l. 

(12) 

Proo[. Since dny=~|  (see (8)), the assumptions in remark 8.1 are clearly satis- 

fied for the classes e E E~"-I ,  a E E~" o, and 7 6 E~ "~(n-1) (7 = vl for I empty). There there- 
8 -- 62173067 Acta mathematica. 107. I m p r l m 6  [o 29 m a r s  1962 
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fore exist cochain representatives satisfying (1) of section 8. This means tha t  e, ~, 

satisfy the assumptions of Lemma 8.2. Suppose inductively that  SqSe, SqS~, and ~Z 

satisfy the assumptions of Lemma 8.2 for all I =2N of length < r. then Lemma 8.2 

shows that  if I = 2 N  is of length r, then (12)holds true and that  SqSs, SqU~, v ~ 

satisfy the assumptions (for definition of v: see (9)). This proves that  not only is (12) 

true in general but Sq N e, Sq N a, z: satisfy the assumptions of Lemma 8.2 for all I = 2N. 

By Lemma 8.2 we therefore also get that  z (2j+l)aN) is transgressive (transgresses into 

fl((2~+1)(2N)) say) for all N. Also by Lemma 8.3, for each N, SqSzr174 I is 

transgressive (and transgresses into ~ (I) say). We now only need to show that  if 

J :=J(2? '+ 1)(2N), then v I is transgressive. Since by (9) 

~J = Sq5 ('t "(2j+1) ('~N)), 

since z (~+1)(2N) transgresses into fl((2~+ 1)(2N)), and since Sq y commutes with trans- 

gression, it follows that  r I transgresses into fl(J)=SqJ(fl((2~+ 1)(2N))). This completes 

the proof. 

The proof of this lemma shows that  for all J and I of excess < 2 ( n - 1 ) ,  J con- 

taining odd components and all components of I even, there are classes 

such that  

fl(J) EH2"-I+d'*J(P,,), } 
}'(I) E H ~(*~- l+d.. I) (p,,), 

dan-,+ee, ~{v ~) = {fl(J)}, } 
ds(,_l+a,, N)+, {Sq ~ a| Sq s e. z'} = {y(I)}, 

(13) 

(14) 

and such that  if J = j ( 2 ~ + l ) J 1 ,  where all components of J1 are even, then 

fl(J) = SqS(fl((2j + 1)J1) ). (15) 

Lv.M~A 11.3. I /  J contains odd components, then (v~) ~, h=O, 1 . . . .  , is transgres- 

sive and 
= { S q '  h, 

where t = 2a(2(n - 1) + degJ)  + 1. 

Proof. This follows from the fact 

For each pair (J, h) let V(J, h) be the fibre in the elementary spectral sequence 

A(k) (see section 9) with k=dim((~d)~)+ 1 and let a mapping 
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/(J,h): r(J ,h)-~H*(~Pn) (16) 

be defined by /(J, h)(x)=  (~)~. By Lemma 2.2 we get 

LEMMA 11.4. I/  J contains odd components, then the mapping 

/(g, h): ~) V(J, h)->Z~[v J] c H*(D.P,) 
h-O h - O  

is an isomorphism as a mapping o/ graded vector spaces. 

Now let I = 2 N  be admissible and of excess < 2 n -  2. 

LEMMA 11.5. The element S q n s ' v  ~N persists to En+des~ and 

d,+der v~v} = {SqS~| ((SqNe)2 + ~2N)}. 

Proof. Since dn+d~rz{SqSe}={SqS~}, the lemma follows from Lemma 11.2 using 

the fact that  d,+de;N i s a  derivation. 

LEMMA 11.6. The dement (SqSe)24-~  2t~ persists to En+a~N and 

{(Sq e) + = {Sq  | d 

Proo/. Since d n + d ~  is a differential, it follows that  d,+d~N((SqSe)~)=0. The 

lemma now follows from Lemma 11.2. 

LEMMA 11.7. The elements (SqNe) ~, ((SqSe)s+V~v) 2h, and (SqSe'v~v) ~ persist till 

the (2n(n - 1 + d e g N ) +  l)-term in the spectral sequence and 

d,{(Sq s e)~} = {Sq TM a}, (17) 

d,(((Sq N e) ~ + v~)~h} = (Sq~.S a | (Sq" e)~}, (18) 

4{(SqNe �9 v~N) ~} = {Sq"S~| + v~)~}, (19) 

where s -~ 2h(n - 1 + deg ~V) + 1 and /~ = L(n - 1 + deg N, h). The e/ement 

SqT,N~| ~N)~ 

persists till the (3.2~(n - 1 + deg N) + 1)-~erm and 

d~(Sq~.n a| (SpSs. ~v)~} = (SqLf4(n-~+aegs}. h, (~(2N)) ) ,  (20) 

where ~(I)=~(2/V) is as in (12) and $ = 3 . 2 a ( n - l + d e g / V ) + l .  

Proo]. Since (SqSe)~=SqLSe, (17) follows from (8) and the commutativi ty of the 

squaring operation with differentials. For h = 0  (18), (19), and (20) are proved in the 
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Lemmas  11.5, 11.6, and 11.2. Since the differentials are derivations, we see t h a t  to 

prove (18) and (19) in the general case we only need to show 

d.{(~2~)~} ={Sq,~| (21) 

We do this by  induct ion on h, assuming (21) is t rue for all powers of 2 less t han  

2 h. B y  the commuta t iv i ty  of the squaring operat ion and the differentials (Theorem 

7.1) and by  Theorem 7.6 we have 

d.{(~:ss)zh} = d,(SqUh(n-I+ d~ N){(Z~N)Sh-'}) 

= Sq2h(n- 1 + de' N) (4a-,(n _ l+d~ .,V) + 1 {(-~2'V)2h-'}) 

= Sq ~`o-~+o~, {Sq ~--~+~, ~, ~-~, Sq ~ ~| (Sq" ~)~-'} 

= {SqLN a| 

This proves (21). To prove (20) in general we again proceed by  induct ion on h. The 

general step is here as follows 

d,{SqnNa| z sN) 2 ~} 

= dt(Sq2h+'(n-l+do*N){SqL(n-1 +de, N.h-1)SqN ~| (SqN e. T~N)~-'}) 

= S q~+' (~ - 1 + do, N) d~.~-,(~ _ 1 + d** N)+ 1 {S q"(~ - ' + de, N. h - 1) N a | ( S qNS~SN )~-'} 

= SqS~+,(.-~+aegm {Sq~4<.-~+d~N). h-,)(~,(2N))} 

= {Sq ~`o-~+d~N,.~,(~ (2N))}, 

which is wha t  we wanted to  prove. 

For  each pair  (N,h),  e ( N ) < n - 1 ,  let T(N,h)  be the fibre in the e lementary spec- 

tral  sequence C(k, 2) (el. section 9), with k = d i m ( S q N s )  ~') + 1, and let a vector  space 

mapping  
g(iV, h): T(N,  h)--+H*(D.P,,) (22) 

be defined by  g(N, h) (x) = ( S q  N 8) 2a, 

g(N, h) (w) = ((SqNs) ~ + z~N)~h, (23) 

(g(N, h) (xw) = (SqNs �9 ~N)S~. 

B y  Lemma 2.2 we get  

L~MMA 11.8. The mapping 

(~ g(N, h): Q T(N, h)--->Z z [SQNe, z ~N] = H*(~P,,) (24) 
h-0  h ~0 

is an isomorphism as a mapping o/ graded vector spaces. 
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By (10), (11), and the Lemmas 11.4 and 11.8 we get 

LEMMA 11.9. The mappings /(J,h) and g(N,h) defined in (16) and (23) decom- 

pose H*(~ZP,) into a tensor product, i.e. 

(~ /(J, h)| g(N, h): (~) V(J, h)|174 T(N, h)-+H*(~P,~) 
(J. h) (N. h) (Y. h) (N, h) 

is an isomorphism as a mapping o/ graded vector spaces. 

For each (J,h) and (2r the mappings /(J,h) (16) and g(N,h) (22) satisfy the 

conditions (a) and (c) in Lemma 9.1 respectively. These conditions are namely nothing 

but the statements of Lemma 11.3 and Lemma 11.7 with a=Sq~Za-1)+de~'1"~)(fl(J)), 

5=SqLS~, and $ =Sq~4(=-l+d~m'h)(?(2N)). Lemma 9.1 therefore shows t h a t / ( J , h )  and 

g(N, h) can be extended to mappings 

/(J, h): A(Ic)-+E, ]r = dim ((vJ) ~) + 1, 
(25) 

f g(N, h): C(k, 2)-+E, k =d im ((Sq~) ~) + 1. 

Since also by Lemma 2.3, (SqT'N~)2----0 all assumptions of I~mma 9.2 are satisfied 

we get 

H*(P,) = A({Sq ~n-l+d~ (x)}) 

| Z~[{Sq ~-~+do'm'h>(r(2N))}] (26) 

| Z,[{Sq~2<.-~,+d~ J. h>(fl(j))}], 

where as mentioned earlier J and 2N run through all admissible sequences of excess 

less than 2 n -  2 such that  J contains odd components, and h runs through all non- 

negative integers. An easy rewriting of (26) gives Theorem 11.1. 

As an example we get 

H*(P2)~- Z 2[{Sq Jfl}]| ~''h) a})OZz[{Sq L(4'h) y}], (27) 

where the dimensions of ~, fl, and ? are 2, 4, and 6 respectively, J = (Jl, 72 . . . . .  ~,) is ad- 

missible, of excess -<< 3, and ~, > 1. Again h runs through all non-negative integers. 

We remark that  since P ,  = D~P(Z2, n + 1; Z 2, 2n, Sqne,+1), it follows that  the spec- 

tral sequence of ~zPn--~LP~--~Pn is a sequence of Hopf-algebras. I t  follows tha t  e and 

are primitive. Since d,{?}= ~| is not primitive, y cannot be primitive. The dia- 

gonal of ? must therefore be as follows, 

~0(~,) = l |  + e| + 7| (28) 
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This shows that  (6) is false considered as a tensor product of Hopf-algebras. By (28), 

however, we have complete knowledge about the diagonal in H*(QP=). For example, 

it  is not hard to show that  

~(T ~) = 1 |  SqJe| + T~| { 
~(:~) = I|174 ! (29) 

for I containing odd components. 

A theorem of W. Browder on spectral sequences of Hopf-algebras, as yet  not 

published, implies tha t  a primitive element in the fibre must be transgressive provided 

its dimension is ~2(mod4) .  This provides a second proof tha t  z ~ is transgressive for 

I containing odd components. 

Let  us consider the spectral sequence of the fibration 

P~--~LB-->B, B = P(Z~, 3; Z2, 4, Sq2ea). (30) 

This is also a sequence of Hopf-algebras. The basic class e E Ha(B) has the property 

Sq2s=0.  Hence we have 

e 2 = Sqae = Sq 1 Sq~e = Sql0 = 0. (31) 

In the spectral sequence of (30) (Fig. 1) we therefore have 

da(e| = E ~ = 0 

and hence da(/~ ) = e| 

(32) 

(33) 

Ps 

~s 

�9 . | . 

e 

: I : : ;  

~=0 B 

Fig. 1. 

Since e and ~ are primitive, e |  is not primitive and (33) then shows that  ~ cannot 

be primitive. We therefore have in H*(P2) (cf. (27)) 

(34) 

In the spectral sequence of 

D.P~--> LPz-+ P 2, (35) 
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which we used in the determination of H*(P~), we saw that  Ta)=ea+Sql  7 had the 

property (d. (14)) 
d.{v a)} = d,{e s + Sqly} = fl ( = fl (1)). (36) 

Since Sq 1 commutes with transgression we get 

d 5 Sq ~ {e 3 + Sq'7} = ds{e' } = {Sq l /~}  (37) 

and hence in Es, by (17), 

{Sq ~ Sq' ~} = {Sq' ~}. (38) 
In H*(P~) this gives 

S q l f i = S q 2 S q t a + k ~ S q t a  (k=O, 1 EZ~). (39) 

Applying ~ to both sides we get by (34) 

1 | + a |  + Sql~|  + S q ~ |  1 

= l@Sq2Sqt~+Sq2Sql~ |  + k ( l |  ~ |  Sq l~ |  ~Sq~@l) .  (40) 

This shows that  k must be one, and we have 

Sqlfl = Sq ~ Sq I ~ + a Sq la.  (41) 

Further results on the action of Steenrod algebra in H*(P,) can be obtained along 

these lines. 

12. Computat ion o f  H*(P(Z2, n; Zz, 24n - 1, e2h), Z2) 

If all components in a sequence I are divisible by an integer k we write 

If this is not so we write 
I ~ 0  (modk). 

I :~0  (rood k). 

THEOREM 12.1. /Jet P, .a=P(Zz ,  n; Z~,2hn--l,e~n)(n>~2, h>~2). For each admis- 

sible sequence J, e(J) <~ 2hn - 2, J ~ 0 (mod 2h), and /or each admissible sequence I, e(I) 

< . n - l ,  there are classes fl(J) and 7(1) in H*(Pn.a) of d i m e ~  2 4 n - l + d e g J  and 

24+1(n + degI)  - 2 respectively, satisfying 

fl(J) = Sq~ (fl((i) 4 )  

whe, never J =J(~)J1 ugth imO (rood2 a) and J l - -O (rood 24). 

l e t  ot be the non-zero class in H"(P,. h) then 

H* (P,. 4) = Z~[{~(J)}] ~ Z,[{Sq' ~}, 2 4] ~ Z,[{~(1)}], 
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where Z2[{x,), 2 h] denotes the truncated lmlynomial algebra o] height 2 h in the generators 

{x,)(x~t =0 ) ,  and where J and I run through all admissible sequences satis/ying e(J) 

< 2an - 2, J ~ 0 (rood 2a), and e(I) < n - 1. 

Proo[. Since D~Pn. h "" K ( Z  2, n - 1) x K ( Z  v 2hn - 2), it follows tha t  

H*(D.P,, h) = H*(K(Z~, n - 1))| 2hn - 2)) (1) 

as algebras. By  Serre [11] a set of polynomial  generators  of H*(~P~.~)  is given b y  

{Sq I e}, I admissible, e(I) < n - 1, dim e = n - 1, ] 

{SqJT}, J admissible, e(J) < 2hn - 2, dim 7 = 2~n - 2. I (2) 

Le t  us note t ha t  (SqIe)2~ = SqXae with L = L ( n -  1 + deg I ,  k). We see t h a t  e ( L I ) =  n -  1, 

and  also tha t  if N is an admissible sequence with e (N) = n - 1, then  in one and only 

one way  N can be wri t ten in the form L I  with e ( I ) < n - 1 .  From this it follows (cf. 

L e m m a  2.2) t ha t  as vector  spaces 

H* (D.P,. h) -~ A({Sq~s})|  J ~'}), (3) 

where I and J run  th rough  all admissible sequences with e(I) -<< n - 1 and  e(J) <<. 2hn - 2. 

By an a rgument  similar to  the one given in section 11 it follows t h a t  in the 

spectral sequence of 

~ P . .  h -+LP. ,  h-->P,, h (4} 

we have a 2a = 0, 

d r = 0  for 2 < r < n ,  (5) 

d n s = a ,  dn ~: = g~")- 1 | 

We proceed to  determine the differentials in the spectral sequence of (4). The  

following lemma follows by  induct ion from Remark  8.4 and the Lemmas  8.5 and 8.6 

in the same way  L e m m a  11.2 followed from Remark  8.1 and the Lemmas  8.2 and 8.3. 

LEMMA 12.2. I [  J ~ 0 ( m o d 2  a) then Sq~7 is transgressive. I /  J = 2 ~ I  then S q ~ 7 =  

Sq2M~ persist8 to E(2a-1)(n+dog/) and 

= d .  

The dement ( S q I a ) u ' - l |  7 is transgressive (i.e. persists to E(2h+l)(n+a~-~.). 

This lemma shows t h a t  for all J ,  J ~ 0 (rood 2a), e(J) < 2an - 2, and all I ,  e(I) <<. n - 1, 

there are classes 
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fl(J) E H~'n- 1+ d~cI(P,, h), } 

7(I) EH ~+,("+d~cn- 2 (Pn.a), 

such that  d ~ . _  1 + d~z{SqJ7}  = {fl(J)},  1 

J d(21 + 1)(n + deg/)- 2 {(Sq I ~)2a- 1(~ SqXe. Sq2h, 7} = {7(i)}, 

and such that  if J = J(])J1 with i ~ 0 (mod 2 n) and J~--0 (rood 2~), then 

(6) 

(7) 

~(J) = Sq5 (/~((i)J~)). 

LEMMA 12.3. The elements Sq~t and SqIe.Sq~X 7 persist to E,+d~r and 

Pro0/ .  

(s) 

={SqI4, 

The first equation follows from (5) and the commutativity of Sq x with 

differentials. By Lemma 12.2 d~+d~l{Sq~Iy}=0. The second equation is therefore a 

consequence of the first and the fact that  differentials are derivations. This completes 

the proof. 

For each admissible sequence J ,  J ~ 0 (rood 2 h) and e(J) ~< 2 a n -  2, let V(J) be the 

fibre in the elementary spectra] sequence A(k) (see section 9) with k=2hn - 1 + d e g J ,  

and let a mapping 

[(J): V(J)-->H*(D.P,.h) (9) 

be defined by /(J)(x)=Sq~7 . Since by Lemma 12.2, this mapping satisfies condition 

(a) in Lemma 9.1 with a=f l ( J )  it can be extended to a mapping 

[(J): A(b)-->E, k=2hn-- 1 + d e g J .  (10) 

For each admissible sequence I with e(I) ~< n -  1 let T(I) be the fibre in the ele- 

mentary spectral sequence C(k, 2 a) with ] r  and let a mapping 

g(I): T(I)-->H*(D.P,.a) (11) 

be defined by g(I) (x) = SqIe, 

g(z) (w) = Sq2h~ 7, (12) 

g(1) (xw) = Sq~e �9 Sq2h~ r .  

Since by the Lemmas 12.2 and 12.3, this mapping satisfies condition c of Lemma 

9.1 with 5= S qI~  and 5=7(1  ) it can be extended to a mapping 

g(I): C(k, 2h)-->E (b=n+degI) .  (13) 
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L~.MMA 12.4. The mappin9 /(J) and 9(I) de/ined in (9) and (11) decompose H*(D, Pn.h) 

into a tensor product, i.e. 

| 174  | g(I): | V(J)| | T(I)--+H*(~P,. h) 
J I J I 

is an isomorphism as a mapping o[ graded vector spaces. 

Proof. When I runs through all admissible sequences of excess ~< n - 1 ,  2al will 

run through all sequences congruent to zero (rood 2 a) of excess ~< 2 h n -  2. Since J runs 

through all sequences ~ 0  (mod2h), the lemma follows from (3). 

Since by (5) and by  Lemma 2.3, (SqX~)~=0, all the conditions of Lemma 9.2 

are satisfied (see (10), (13), and Lemma 12.4). We therefore get 

H*(Pn. h) ~- Z2[{fl(J)}] | Z2[{Sq x ~}, 2 h] | Z2 [{Y(I)], (14) 

where as mentioned earlier J and I run through all admissible sequences satisfying 

J ~ 0 (rood 2h), e(J) ~< 2hn - 2, and e(1) <~ n - 1. This completes the proof of theorem 12.1. 

We remark that  contrary to the similar situation in section 11, it can be shown 

that  (1) is an isomorphism as a mapping of ttopf-algebras. I t  is enough to show tha t  

7 is primitive. By  Lemma 12.2 we see t ha t  ~2=Sq2h-2~ is transgressive and hence 

primitive. Let  
V(7) = 1 | + ~ Y~| + 7| (15) 

be the diagonal of y with all the yt s and yt s in the vector space basis obtained 

by  taking powers of the polynomial algebra generators (2). We then have 

" 2 |  r ,  2 ~@)=(~(r))2=l| (r,) +72|  (16) 
t 

Since F~ is primitive and since (7~) 2 and (~ ')~ are in the above mentioned vector 
t ,  ?1~ 

space basis of H*(~P . .D  it follows tha t  in (15) no y~s and 7~ s actually occur. 

Hence the primit ivi ty of y. 
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