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w 1. ~ e  class B~(g~) 

1.1. Let ~ be a complex separable Hflbert space and l~(~) denote the collection of 

bounded linear operators on ~ .  A basic problem in operator theory is to determine when 

two operators S and T in s are unitarily equivalent, tha t  is, when there exists a unitary 

operator U on ~ satisfying S ~ U*TU. In  a real sense the problem has no general solution 

but one restricts attention to special classes of operators. An important  approach to this 

problem is via spectral theory in which one a t tempts  to synthesize operators from elemen- 

tary  "local operators", where "local" refers to the spectrum. For example, a normal operator 

on a finite dimensional space can be obtained as the orthogonal direct sum of scalar opera- 

tors on eigenspaces, where the scalars are just the eigenvalues which together with their 

multiplicity determine the operator up to unitary equivalence. On infinite dimensional 

spaces direct sum must be replaced by a continuous direct sum or direct integral but the 

result is essentially the same. For an albi t rary operator on a finite dimensional space the 

direct sum is no longer orthogonal, consists of generalized cigenspaees, and the local 

operators are scalars plus nilpotents. 

Conventional spectral theory a t tempts  to extend such representations to as large a 

class of operators as possible. However, there exist operators which can not be synthesized 

in this sense from local operators. One example is the backward shift U* on 12 defined by 

for (~0, ~1, a2 .... ) in 12. Since 

U*( ,Xo ,  - ~ ,  ~ . . . .  ) = (c,1, c,~, ,x3 . . . .  ) 

U* (1, ~t, )2, ...) = ~t(1, )., ).2 .... ) 

and (l, ~t, ).2 .... ) is in 12 for ] ~ I < l, we see that  the open unit disc D consists of eigenvalues 

for U*. Such behavior is quite different from that  for the finite dimensional case. More- 

over, it can easily be shown that  one can ' t  express 12= ~ + ~, where ~ and T /a re  in- 

variant  for U*. Thus one can not study U* using conventional spectral theory. 

However, we probably know as much about this operator and its adjoint, as we do 

about any single operator. In  the functional representation, the adjoint U+ acts as multi- 

plication by z on the Hardy  space H 2 and an enormous literature exists on it (cf. [8], [15]). 

This theory does not apply, however, to operators as closely related t o t h e  shift as multi- 

plication by z on the Bergman space. What  we hope to supply in this paper is the be- 

ginnings of a systematic approach which will apply to a whole class of operators. We 

define this class after introducing some notation. 

For T in s  let ran T=(Tx :  x E ~ }  and ker T = ( x e W :  Tx--0}.  
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De/inition 1.2. For ~ a connected open subset of C and n a positive integer, let B,(~)  

denote the operators T in s which satisfy: 

(a) ~ ~ a(T) = {to ~ (3: T - co not invertible}; 

(b) ran (T - w )  = ~ / for  to in ~ ;  

(c) V k e r ~ a  (T --to) = ~/; and 

(d) dim ker (T - to)  = n  for w in ~ .  

The collection B~(~) is void unless ~//is infinite dimensional. Conditions (a) and (b) 

insure tha t  ~ is contained in the point spectrum of T and that  T - o )  is right invertible 

for to in ~ .  And since we intend to study T by investigating its eigenspaces, it 's not un- 

reasonable to assume that  they span ~/which is (c). Lastly, since (a) and (b) imply that  

dim ker ( T - t o )  is constant, condition (d) imposes only that  it is finite. 

To see that  the dimension is constant we recall a few facts about semi-Fredholm 

operators. An operator T in ~(~/) is said to be semi-Fredholm if ran T is closed and at  least 

one of ker T and ker T* is finite dimensional. The index is defined for a semi-Fredholm 

operator T by ind (T)- d i m  ker T - d i m  ker T*, is continuous, and satisfies ind (ST) - 

ind (S)+ind  (T) for semi-Fredholm operators S and T as long as ind (S)+ind  (T) is 

defined. Now since T-- to is right invertible we see that  ind ( T - t o ) = d i m  ker ( T - t o )  is 

constant. 

1.3. If  ~0 is an open subset of ~ ,  then Bn(~)c  B,(~0) because V k e r ~ a ,  (T-~o)  = 

X / k e r ~ a  (T- to) .  We shall prove this later in this section. Thus T can be associated with 

any open subset of ~ .  There would seem to be some advantage in choosing ~ as large as 

possible. One kind of hypothesis implying tha t  is the assumption that  the closure of 

is a K-spectral set for T. This means tha t  IIr(T)ll ~<KIIr[l~ for each rational function with 

poles outside ~,  where Ilrll  denotes the supremum norm on ~ .  In  general, for T in Bn(~) 

there is no open set A which fulfills this hypothesis. A further possibility is to replace the 

supremum norm llrll ~ by a norm involving derivatives of r. We shall not explore this 

further in this paper. 

1.4. ~Tow B~(~) is an especially rich class of operators containing the adjoint of many  

subnormal, hyponormal, and weighted unilateral shift operators. For example i f /z  is a 

finite measure supported on ~D, m is normalized Lebesgue measure on ~D, and H2(/x + m) 

is the closure of the analytic polynomials in L2(ix § m), then the adjoint of multiplication 

by z belongsto  BI(D) [4]. If  l~, denotes the Hilbert space of square-summable C~-valued 

sequences and (Pk} is a sequence of positive operators on (~ satisfying 0 <cI<~Pk-~4CI, 

then the backward shift operator S on l ~  defined by (S/)(k)= Pk/(k + l) belongs to ~n(D). 
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Moreover, operators in these classes have been the subject of intense investigation during 

recent years [15], [20]. 

1.5. The local operators assqciated with T in Bn(~) are defined as follows. Since T - c o  

is a semi-Fredholm operator for o~ in ~ and ran (T - to)  k = ~ for each positive integer/c, 

it follows that  

(1.5.1) dim ker (T _w)k = ind (T-co)  k = kind ( T - w )  = nk for o~ in ~.  

Now the generalized eigenspaee ker (T-oJ )  k is invariant for T and hence we can define 

an operator N(~ ) = (T-~o)[ker  (T-aJ )  k+l with ~,(n) N~ = zv~ . The local operator associated to 

T at eo is N~. Since (N~)k=(T-w)k[ker  (T-~o) "+1 we see that  N~ is nilpotent of order 

n + 1 and thus our spectral picture for an operator in ]~n(~) is very reminiscent of the 

finite dimensional situation. However, whereas there one must assume information about 

the relative angles between the different generalized eigenspaces, in our situation the 

geometry makes that  unnecessary and we obtain as our main result: 

THEOREM 1.6. Operators T and T in Bn(~) are unitarily equivalent i /and only i/ 

N~ is unitarily equivalent to 1~ /or each eo in ~. 

We prove this as a consequence of our equivalence results on Hermitian holomorphic 

bundles in w 4.2. Actually, as we shall see in w 4 for "most"  operators T in B,(~) it is enough 

to know N(~ ) for o~ in ~. 

1.7. Before continuing we make several remarks. First, we emphasize that  there is 

no requirement on the behaviour of the unitary which implements the equivalence of N~ 
(k) and / ~  as a function of co. Secondly, if one knows that  N (k)~0 a n d / ~ ,  are unitarily equi- 

valent for a fixed eo 0 in ~ but for all ]c, then it is easy to show that  T and T are unitarily 

equivalent. One chooses a weak limit of a sequence of partial uuitaries which effect the 

unitary equivalence of the local operators. Next one shows that  it is unitary and inter- 

twines the two operators T and T. For this one needs the fact that  (e) is equivalent to 

oo 

(1.7.1) V ker (T - o~0) k = 74. 
k = l  

Thus the depth of the theorem lies in concluding unitary equivalence on the behavior of T 

on the generalized eigenspaees of order n + 1. 

Further, it is possible to obtain a complete set of unitary invariants for T in Bn(~) 

by recalling the result of Speeht [21] and Pearcy [18] that  a complete set of unitary in- 

variants for an operator F on an N-dimensional Hilber~ space is provided by  the traces of 
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a finite collection of words in F and F*. Using this we obtain a finite collection of real 

analytic functions on ~2, the number depending on n, which form a complete set of unitary 

invariants for T in Bn(~). We treat in detail only the case n = 1. 

Suppose N is a non-zero nilpotent operator of order two defined on a two-dimensional 

space. If e 1 is a unit vector in ker N, then choose a unit vector e 2 orthogonal to e~ such 

that (Ne2, el)=h >0. Relative to this orthonormal basis the matrix for N has the form 

and h is a complete unitary invariant for N. In connection with our earlier comments 

observe that  h ~ =trace (N'N). Applying this to an operator T in Bx(~) and observing that  

N*N~ =P~ T*TP~, where P~ is the orthogonal projection onto ker ( T - t o )  z, we obtain 

COROLLARY 1.8. Operators T and ~ in BI(~) are unitarily equivalent i /and only i/ 

trace (zV*N~)=trace ( ~ * z ~ ) / o r  o~ in ~ or equivalently i /and  only i/trace (P,~T*TPo,) -- 

trace (P~*~'P~) /or co in ~. 

Thus unitary equivalence for operators in Bl(fl) is reduced to the equality of two 
*N functions on ~. We see later in this section that  trace (No ~) is real-analytic and we 

calculate some examples. The problem of characterizing which positive re~d-analytic func- 
. 

tions on fl  can occur as trace (NoNo) for some T in Bx(~2) and reconstructing T from it is 

solved in w 4. 

As we mentioned earlier certain weighted backward shift operators belong to B~(D). 

The preceding result can be used to characterize those operators in BI(D) which are. 

COROLLARY 1.9. An operator T in BI(D) is a weighted unilateral shi/t operator i/ and 

only i/ the /unction trace (N* N~) depends only on Io~]. 

Proo/. Since T and d ~ T are unitarily equivalent for T a weighted unilateral shift 

operator [20], one direction is clear. Conversely, by Corollary 1.8 if trace (N*doNre~o) 

depends only on r, then T and eS0 T are unitarily equivalent. Thus T I ker T ~ and e f~ T ] ker T k 

are unitarily equivalent for each e *0 and k = l, 2, 3 . . . . .  We can choose an orthonormal 

basis for ker T k+l such that  the matrix for T]ker  T k+l is 

0 ~ 31,..-fl~) 
0 0 ~...fl~, 
: : i i 

0 0 0 ...=k 

0 0 0 0 
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where ~ j > 0 ,  j = l ,  2 . . . .  , k. Moreover,  such a ma t r i x  is unique�9 Now the  corresponding 

m a t r i x  for e ~~ T lker  T ~+* is 

0 ~I e f~ t(k-1)0fllk) 
0 0 ~. ... e t(k-1)~ k 
0 0 0 .. .  ~ 

0 0 0 .. .  0 

and  hence if T is un i t a r i ly  equiva len t  to  e*~ for 0/~ i r ra t ional ,  then  fljz=0, 1 ~ ] < l ~ k .  

Therefore  T is a weighted shif t  opera tor .  

Al though  we have  s t a ted  this  resul t  only  for ~ = D, on the  basis of Corol lary 1.8 one 

can see t h a t  for ~ conta in ing the  origin 0 in C, t h a t  an opera to r  T in BI(~)  is a weighted 

backward  shif t  if t race  (N*~,aN,~to) depends  only  on r on some smal l  d isk  abou t  0. The obvi-  

ous genera l iza t ion  of the  corol lary  to  T in B,,(D) is not  correct .  

1.10. To proceed fur ther  we mus t  examine  more  careful ly  the  na tu re  of the  subspace  

va lued  mapp ing  ~o~ker  (T -~o ) .  To do this  we need to  in t roduce  the  not ion of a He rmi t i an  

holomorphie  vec tor  bundle.  Let  A be a manifo ld  wi th  a complex s t ruc ture  and  n be a 

posi t ive integer.  A rank n holomorphic vector bundle over  A consists of a manifold  E with 

a complex s t ruc ture  �9 with a holomorphic  m a p  ~r from E onto A such t h a t  each 

fibre E;. =n-l(~t) is i somorphic  to  (In and  such t h a t  for each 40 in A there  exists  a neigh- 

borhood A of ~t 0 and  holomorphic  funct ions 71(4) . . . . .  7n(~t) from A to E whose values  form 

a basis for E~ a t  each ). in A. The funct ions 71 . . . . .  7~ are said to  be a / r a m e  for E on A. 

The bundle  is said to  be trivial if A can be t aken  to  be all of A.  A cross-section of E is a 

m a p  ~, from A to E such t h a t  ze(~,(~t))=~t for 2 in A. A bun~l~e map is a m a p  ~ between 

two bundles  E and  E over  A which is holomorphic ,  and  defines a l inear  t r ans fo rmat ion  

from Ex to ~x for )~ in A. 

The t r iv ia l  bundle  over  ~ of rank  n is ob ta ined  by  t ak ing  E" -- ~ x (~" and  defining 

zt(~o, x)=o) .  A holomorphic  cross-section of this  bundle  is jus t  'a C=-valued holomorphic  

funct ion on ~ .  A funct ion / f rom a n  open set A in C to a Banach  space :~ is said to  be 

holomorphic if i t  can be defined local ly b y  a power  series with vec tor  coefficients which 

converges in norm.  A bundle  map  for E n i s  jus t  an  M,(C)-va lued  holomorphie  funct ion 

o n  ~-~. 

The mapp ing  w ~ k e r  ( T - w )  will be shown to define a r ank  n holomorphie  vec tor  

bundle  E r over  ~ for T in B~(~). Since all  holomorlahic bundles  over  ~ are  t r iv ia l  as 

ho lomorphic  bundles  by  Graue r t ' s  theorem [12] and  the  fact  t h a t  all  such bundles  over  

are  topological ly  t r ivial ,  we shall  be in teres ted  in add i t iona l  s t ruc ture  which ET possesses. 
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A Hermitian holomorphic vector bundle E over A is a holomorphic vector bundle such tha t  

each fibre Ea is an inner product  space. The bundle is said to have a real-analytic [C ~176 

metric if )~-~ll?(~)ll 2 is real-analytic [C ~] for each holomorphie cross-section of E. Two 

Hermit ian holomorphic vector bundles E and E over A will be said to be equivalent if 

there exists an isometric holomorphic bundle map  from E onto $ .  I n  what  follows we 

shall sometimes use the terminology "complex bundle" to refer to a Hermit ian holomorphic 

vector bundle. 

For  T an operator in B~(g2) let (ET, 7e) denote the sub-bundle of the trivial bundle 

• ~ defined by 

E r = {(o), x ) C ~  • 74: x e k e r  ( T -  w)} and :~(o), x) =o).  

Tha t  E r is a complex bundle over ~ is due to ~ubin [22]. We offer a slight generalization 

of his result which will be useful in future work. First we need to recall a few more facts 

about  Fredholm operators. I f  T - o ) 0  is Fredholm, then T--o)  is Fredholm for o) in some 

neighborhood of o~ 0 but  whereas ind (T-o) )  is locally constant,  dim ker ( T - o ) )  need not  

be. I t  is, however, except at  isolated points. Thus we call o)0 a point o/stability for T if 

T - o ) o  is Fredholm and dim ker (T --o)) is constant  on some neighborhood of o)0- 

PROPOSITION 1.11. I/  O)O is a point o/ stability [or T in I:(://), then there exist 

holomorphic ~t-valued /unction~s {ei(eo)}~l de/ined on some neighborhood A o/O)o S uch that 

{el(o)), e2(o) ) . . . . .  e.(o))} /orms a basis/or ker (T -o)) /or  o) in A. 

Proo/. We assume tha t  O)0=0. There exists S in 1:(://) such tha t  S T = I - - P ,  where P 

is the projection onto ker T. If  we define S(o))=(I-eoS)- lS  and P ( o ) ) = ( I - O ) S ) - I P  for 

O) in A ={eoEC: leo] < 1/]ISH} , then P(eo)is rank n and 

ker (T -o))  c ker (S(o))(T -o))) = ker ( I  -P(eo)) c ran  P(o)). 

Since dim ker ( T - o ) ) = n = d i m  ran P(w), it follows tha t  ker ( T - w ) = = r a n  P(eo). Hence, if 

e 1, e 2 ...... e~ is a basis for ker T, then the functions et(o) ) =P(o))ei, i = l, 2 .. . . .  n defined for 

eo in A have the required properties. 

COROLLARY 1.12. For T in Bn(~) the mapping O)-~ker (T-c6)  de/ines a Complex 

bundle E T over ~.  

Before continuing we u~e the proposit ion to take care of some unf in ished business. 

COROLLARY 1.13. I] ~ o C ~  are bounded connected open subsets o/ C, then B n ( ~ ) c  

B,~(~o). 



194 M. J .  COWEN AND R. G. DOUGLAS 

Proo/. I t  is enough to prove that  V ~ a .  ker (T-co)=V~Ea  ker ( T - w ) .  Suppose x 

in ~ is orthogonal to ker ( T - w )  for eo in ~0. If coo is a boundary point of A 2: interior 

of {wE~: x •  (T-co)} in ~,  then by the proposition there exists an open set ~ of 

about w0 and holomorphic functions el(co ), e~(o~) ..... e,(co) defined on A 0 which form a 

basis for ker (T-co)  for each co in A o. Since the holomorphic functions (e~(w), x) for 

i = 1, 2, ..., n vanish on A, they vanish identically and hence A 0 is contained in A. Thus 

A = ~ which completes the proof. 

THEOREM 1.14. Operators T and ~' in B,(~) are unitarily equivalent i /and  only i[ 

the complex bundles ET and E~ are equivalent as Hermitian holomorphic vector bundle~. 

This is a consequence (see w 4.1) of our generalization of Calabi's rigidity theorem 

which is stated and proved in the next chapter. 

1.15. There is an older concept in operator theory which is related to our approach. 

Let T be an operator in ~1(~) and ~, be a non-zero holomorphic cross-section of ET (which 

exists by Grauert's theorem [12]). Then corresponding to 7 there is a natural representa- 

tion r of ~ as a space of holomorphic functions on ~ * =  {~: co E~} defined by (rx)(oJ)-- 

<x, ~(~)> for x in ~ and co in ~*.(1) Moreover, since (FT*x)(w)=(x, TT(~))=(x,  ~ ( 5 ) ) =  

co(F(x)) (w) for w in ~*, we see that  T is the adjoint of multiplication by co. If we set k(2, w) = 

(~(~), ~(~)), then k is a reproducing kernel for this space of holomorphic functions or F ~  

is a kernel Hilbert space [1], [15]. Now difforent cross-sections yield different representa- 

tions. However, if 71 and ~2 are both non-zero holomorphic cross-sections of ET, then there 

exists a non-zero holomorphic function / defined on ~ such that  y2(w)=/(co)7l(co) and thus 

F I ~  and F~74 differ by a holomorphic multiplier. 

In general, there is no canonical representation of ~ as a space of holomorphic func- 

tions on ~,  since there is no canonical cross-section of ET. However, in some instances 

there is a preferred or natural choice. For example the Szeg5 kernel k(z, co)=(1-Sz) -1 

corresponds to the preferred cross-section ?(w)=(1,  co, w 2 .... ) for the shift operator U*. 

Moreover, if B~(D) denotes the closure of the analytic polynomials in L~(m2), where m e 

is normalized Lebesgue measure on D, and B+ is the operator on B2(D) defined by 

(B+/) (co)=co/(co) for / in B~(D), then B*+ belongs to BI(D) and a preferred cross-section 

corresponds to the Bergman kernel k(z, co) =g-l(1 - ~ z )  -2. 

1.16. Now although cross-sections are not themselves invariants for an operator in 

BI(~), they can be used to calculate the invariant described in Corollary 1.8 as follows. 

(1) If ~ is symmetric with respect to the real axis then it is possible to take ~, anti-holomorphic 
and represent ~ as holomorphic functions on ~ .  
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Let  T be an operator in BI(~) and 7 he a non-zero holomorphic cross-section of E r. Thus  

(T-eo)y(eo) = 0  and differentiating we obtain 

0 - fiT- eo)r(eo)}' = -7(eo) + (T-eo)r'(eo) 

or (T-eo)Z'(eo)=?(co). Therefore, ker (T-eo) e is spanned by 7(eo) and 9/(eo). An ortho- 

normal  basis for ker (T-eo)~ is 

el(co) = 7(co)  
ll-i~J;ll 

(7(eo), 7(eo)) 7'(eo) - (7'(eo), 7(eo))e(eo) 
e2r = {l lr(eoiJPil~(~)ll2_ I (r'(eo), 7<eo))l~llr(eo)ll~} ~'~ 

and we have by (1.7.2) 

1171eo/ll ~ 
h(eo)  = ( (T-eo)e , (~) ,  e~(eo))= {ll~,(eo)ll~ll~,,(eo)ll,, 10"(co), 7(eo))lT"-'" 

Thus we obtain 

THEOREM 1.17. A complete unitary invariant /or T in BI(~) is the real-analytic/unc- 

tion 

(1.17.1) ~Cr(eo)= I ( f ( ~ ) ,  ~,'(eo))l"-II~,(eolPIIr'(eo)ll ~_ ~ log II ~,(eo)ll ~ 
117(eo)ll' ~eoa~ ' 

where 7 is any non-zero holomorphic cross-section o / E  r. 

The reason for choosing this part icular  function is that ,  as we shall see in w 2, ~(eo) 

is the curvature  of the bundle ET. 

As a consequence of this calculation, we see tha t  * trace (N~,N~) = - :~r(eo) -1 is real- 

analytic as promised. Also using the Szeg6 and Bergman kernels we calculate tha t  

and 

V * m t r a ce (  +~U+~)=(1  [eel2) 2 

trace (B+~ B*~) = �89 - leo [2)2. 

Thus we see tha t  U+ and B+ arc not  unitari ly equivalent. Although there are easier ways 

to prove this (using for  example the fact tha t  U+ is an isometry),  i t 's  not  always easy to 

decide when two operators in BI(~) are unitari ly equivalent. 

One direct connection between T and E r is contained in 

PROPOSITIO)r  1.18. An operator T in Bn(f~) is reducible i / a n d  only i/ the complex 

bundle E T is reducible a~ a Hermitian holomorphic vector bundle. 

13 - 7 8 2 9 0 2  Acta mathematica 141. Impr im6  le 8 D~x.embre 1978 
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Prom/. Suppose ~ = ~ |  where ~ and ~ reduce T. I f  x in kcr ( T - m )  is written 

z = x l |  2 for x 1 in W/ and x2 in ~/, then Tx t |174  2 implying that  

both x x and x~ are in ker ( T - m ) .  Thus ker ( T - m )  decomposes into {ker ( T - m )  A ~ } |  

{ker ( T - o ) ) f l  7/} and hence T I = T  ] Wt is in B,,(s and T~=T[ Tl is in Bn,(s where 

n = n 1 + nv Therefore E r = Er, ~ Er, is reducible. 

Now suppose E r = E I |  ~ is a reduction of E r. Fix m0 in ~ and let A be a neighbor- 

hood of m0 in ~ on which there exists a trivialization el(m ) ... .  , en(m) of Er, where el(m ) ..... 

e,,(m) span E 1 and e,,+i(m ) ..... e.(m) span E~. To show that  T is reducible, it is enough to 

show that  V , , a  {el(m) ..... e,,(m)} and V,~a  {e~,+~(m) ..... e,(m)} are orthogonal, since as 

in the proof of Corollary 1.13 together they span W. But (e~(m), ej(m)) = 0 for 1 < i ~< n, < ] ~< n 

and differentiating with respect to m (viewing the functions as functions of the variables 

m and ~5) we obtain 

0 = ~-~ (e,(m), e,(m))= (e,(m), e,(m)). 

The second term in the product rule vanishes because the right hand side of the inner 

product is anti-holomorphie. Similarly we have (e~k)(m), ej(m))=0 for k = 0 ,  I, 2 ... .  and 

therefore 
/ 00 e(k)[~ ~ 
I y~ , ~ ol (co-  mo)L came)) = 0 (e,(m), effete))- \~-o ---~-v-- 

for [m-m0[ sufficiently small. Again as in the proof of Corollary 1.13 we are finished. 

COROLLARY 1.19. An operator T in BI(~) is irreducible. 

1.20. Impor tan t  in the s tudy of an operator T is an explicit characterization of its 

commutant  (T)', that  is, the weakly closed algebra of operators which commute with T. 

For each of the operators U+* and B*, the commutant  can be identified with the algebra 

H~176 of bounded holomorphic function on D. We show that  the commutant  of an operator 

in BI(~) can always be identified with a subalgebra of H~176 and for T in B,(~) we identify 

(T) '  as a subalgebra of the bounded bundle endomorphisins on E r. Recall tha t  a bundle 

map (I) from E to E is a holomorphic map such tha t  (1)(m) = (I) ] Ez is a linear endomorphism 

on the fibre Eo over m in f l  and we shall say that  it is bounded if supo~n [[(I)(m)]l < oo. 

We denote the collection of bounded bundle endomorphisms on E by /-/~:(E)(~). For E 

the trivial bundle over ~ ,  H~(E)~) is just the bounded holomorphic matrix-valued func- 

tions on ~ .  

PROPOSITION 1.21. For T in B,(~) there is a contractive mononmrphism F r f r o m  the 

commntant (T)' into H ~ r ) ( ~  ). In  general, Fr  is not onto. 
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Proo/. If  X T =  TX ,  then X ker ( T - e o ) c k e r  (T-co)  for r in ~.  Moreover, if e(co) is 

a local holomorphic cross-section of ET, then so is Xe(co). Therefore X defines a helo- t 
morphic bundle map FTX on ET. Since 11 ( r ~ x )  (co)II = II x I ker (T -co)ll < II i l l  we see that  
F r X  hes in H:~ET)(~) and FT is contractive. That  FT is a homomorphism is clear and it is 

one,to-one since V ~ n  k e r ( T - w )  = ~/. Since FT is not onto for T the Diriehlet operator 

(el. [23]), it is not onto in general. (1) 

Which bounded bundle maps are in the range of Pr? Before answering that  we need 

the following result on a basis for generalized eigenspaees. 

LV.MMA 1.22. I/71, "", 7~ are holomorphic /unctions /rein ~ to ]4 such that 71(o)), 72(eo) .... , 

7n(co) forms a basis ]or ker (T-co) ]or each co in ~ ,  then 

(i) (T - co) y~k)(co) = ky~k-1)(co) /or all k and i = 1, 2 . . . .  , n; 

and 

(ii) Yl(co) . . . .  . . . . . .  Yn(co), ., Y(lk-1)(co), , ~n~'(k-x)l~,j'~ ]orm a basis/or ker ( T -  r k/or k >1 1 

and co in ~ .  

Proo/. We first prove (i) by induction on k. Differentiating the equation T(7~(w))= 

o~t(co) we obtain 

T(r;(co)) = r~(co) + cor;(co 

which proves (i) for k = 1. Assuming (i) holds for k and differentiating we obtain 

- ? ~ ) ( c o )  + (T - co)r~+l)(co)  = ~ ? ) ( c o )  

which is (i) for k + 1. Moreover we have 

(1.22.1/ (T - CO)k?Ik)(CO) = k !r~(co) 

for all k and co in g2. 

To prove (ii) we need only show that  ker (T --co)k/ker (T _co)~-i has basis [?(lk-1)(co)], ..., 

[~(nk-1)(fD)], where [ ] denotes residue class. Now if ~ 1  a~[7~k-1)(w)] =0,  then 

( T -  co)k-1 (,=~1 a,:y~-l)(co))--0 

and by  (1.22.1) we have 

)" ( T -  co)~-~ ai~'?-~)(co) = 7 a~(k-  1/! ~'~(~). 

(1) W e  will define t h e  Dir ich le t  ope ra to r  la te r  in  t h i s  sect ion.  
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Therefore ai = 0  for i =  1, 2, ..., n so t ha t  [ ~  ~)(eo)], ..., [},~-')(a))] are independent  which 

completes the  proof since the dimension of ker  ( T - w ) ~ / k e r  ( T - ~ o )  ~- '  is n by  (l.5.1). 

1.23. Now suppose q) is an element  of H~ET)(~) for which there exists a bounded 

opera tor  X in (T)' such t h a t  F r X = O .  I f  yx(O~) .. . . .  7,((o) is a basis of local holomorphic 

cross-sections for Er,  then  by  differentiating we obta in  

x r i ( ~ o )  = (xr , (o~) ) '  = O(o~) r;(~) + r r,(o~) 
x~i '(o~) = (xr , (~o) )"  = r rT(o~) + 2O'(~) ~,;(o~) + (p"(~) r,(~) 

: : : 

X~i~)(o~) = (X~,(~))  (N) = O(o~) ~ ) ( o ~ )  + N O ' ( ~ )  ~-~)(~) +...  + O(~)(o~) r~(o~). 

In  other  words the 

(1.23.1) 

block mat r ix  for X{ker  ( T - w )  ~=x relative to the basis {y~J)(~o)},~ jE~ is 

I q)(o~) (I)'(o~) (I)'(oJ) ... (P(~)(co) 
0 (I)(oJ) 2d)'(co) ... IV(I)(N-~)(OJ) 

0 0 O(eo) N ( N - - 1 )  "'" 2 q)(N-~)(OJ) 

�9 : : : 

0 o 0 . . .  O ( ~ )  

Let  @~(co) denote  the opera tor  defined on ker ( T - o ) )  N~I by this matr ix .  Note  t ha t  to 

calculate H(I)N(eO)H we need only know the value of (I) and its der ivat ives  a t  co together  

r .(j)~r n N Our result char- with the Gram-Schmid t  orthogonalizat ion of the basis t r o t  JS,-lj-0. 

acterizing the range of FT is: 

P R O P O S I T I O ~  1.24. For ~ in H~ET)(~) the/ollowing are equivalent: 

(1) O =FTX /or some X in (T) ' ;  

(2) sup {[[(I)N(eo)[[: eoe~ ,  N=O, l, 2, ...} =C 1 < c~3, a ~  

(3) sup {Hr N = 0 ,  l,  2, 3 . . . .  ) = c ~ <  ~ / o r  .~o~ ~oo in ~. 

Moreover, i[ these conditions hold, then {{X[[ = C a = C2. 

Proo/. Tha t  (1 ) impl ies  (2 ) impl ies  (3) is obvious as is the inequal i ty  [[X{[ ~> C x ~> C2. 

To show (3) implies (1) recall t ha t  V ~ I  ker (T -Wo) k = ~ and take  a weak limit of the 

uniformly bounded sequence of operators  (1)N(w0) defined to be 0 on [ker (T-(o0)N'x]  • I f  

we call X the limit, then  [[XI[ ~<C 2, X commutes  with T, and FTX ~ ~P since (FTX)(g)(Wo)= 

(b~)(w0) for k = 0 ,  1, 2 . . . . .  
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This procedure becomes much  simpler  in case n = 1 when �9 = ~  is a funct ion in 

Hm(f~). Le t  us calculate the mat r ix  for (I)1((o) relat ive to the or thonormal  basis obta ined 

in w 1.16. We obtain  

O l ( o ~ ) e i ( o  ) = (p((.o) el((9 ) 

and 

Ox(o))e2(eo) = (p(w) e~(eo) +~'(eo)h(oJ) el(~o ), 

and hence the desired mat r ix  is 

Thus  we obtain  as 
~0(o)) ] 

COROLLARY 1.25. For T in BI(~)) a necessary condition that q) in H~(fl)  de/ine a 

bounded operator in ( T)'  is /or the/unction 

I ~o'(e))15 t race (N~* N=) = ~r(~o) 

to be bounded. 

1.26. I n  certain instances one knows tha t  the c o m m u t a n t  of T in BI((I) is all of H~(f~) 

in which case the  preceding corollary can be used to obta in  inequalities on the  growth 

of the  der ivat ive  of bounded holomorphic functions on fl. However ,  by  applying the 

corollary to the  Dirichlet  operator ,  for example ,  one obtains  necessary conditions for a 

funct ion to be a multiplier.  

The  Dirichlet space D~(D) consists of the  holomorphic functions / on D for which 

1(0) = 0  and ]' lies in L~(m ~) whore ] ] ] ] ] ~ = ~ - 1  n]a,]~ f o r / ( ( o ) -  ~n~_l a~o~ ~. Again D* the  

adjoint  of mult ipl icat ion z, lies in ]~I(D). However ,  in this case PD*. is not  onto [23]. One 

can calculate the curva ture  of E , ~  using the kernel funct ion 

1 
k(z, co) log (1 - z~5) ~ 

for D~(D) [19] by  Theo rem 1.17 and then  app ly  the  corollary. After some work  one obtains  

t ha t  a necessary condition for a bounded holomorphic  funct ion ~0 on D to be a mult ipl ier  

on D~(D) or oquivalent ly  to be in tho range of FD', is for the funct ion 

- log (1 - [ . , p )  

to be bounded on D. Shields informs us t h a t  this necessary condition was known to him 

and tha t  it is not  sufficient. The  necessary conditions involving higher der ivat ives  are 

quite complicated and it is difficult to decide the  nature  of the  fur ther  restriction imposed.  



200 M. J .  COW EN AND R. G. DOUGLAS 

We obtain a complete characterization of the eommutant only when the 0th order 

condition is sufficient. Although we could appeal to general results, we give a complete 

proof hoping that  the techniques will be useful in future generalization. 

Lot us call an ~ reasonable, if for ~0 in H~~ there is a sequence of rational functions 

r~ with poles outside the closure ~ of a such that  Ilrnl[g~ Ilvll  and ~ ( ~ ) ~ ( ~ ) f o r ~  in n. 
If the interior of ~ is finitely-connected, then ~ is reasonable; there are other properties 

implying this (cf. [101, VII I  w 11). 

PROPOSITION 1 . 2 7 .  I] ~ is reasonable and ~ is a spectral set/or T in BI(~), then Pr  

is an isometric isomorphism Item (T)' onto H~(~). 

Proo/. By definition the map r~r (T)  for rational functions with poles outside 
oo is contractive. For r in H~176 let {r~}~l be a sequence of rational functions which con- 

verge pointwise to ~0 and satisfy IIr~ll~ ~< I]~lln- We may assume that  {r~(T)}~=~ converges 

weakly to some X in (T)'. Moreover, since 

~0(o~) = l i r a  r . (~o)  = l i r a  (rn(T) e~, e~) = (Xe~, c~) 
n--~O0 n--~O0 

for e~ a unit vector in ker ( T - w ) ,  we see that  r ~ x = v  and IIxII < II~Hn. Hence r ,  is 

onto and isometric. 

With a similar proof we can also establish 

PROPOS*T*ON 1.28. I /  ~ has the property that q) in H~(~) can be pointwise boundedly 

approximated by rational ]unctions and ~ is a K-spectral set/or T in BI(~), then F r is an 

isomorphism. 

We conclude this section with one geometricial implication of the assumption that  

is a K-spectral set. Analogous results with different rates of growth are undoubtedly true 

when ~ is a "C~-spectral set". 

PROPOSITION 1.29. I[ O~ consists o/[initely many Cl.smooth simple closed curves and 

T in ~1(~) has ~ as a K-spectral set, then lim~st(~.0n~-~0 :~r(O~) = - 0% where ~ r  is de/ined 

by (1.17.1). 

Proo/. For ~o o not in ~ we h~ve by  Corollary 1.25, the definition of K-spectral set, 

and the fact that  (T-e%)  -1 is in (T)' that  

I( )1 
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which implies 

h(~)< Klto-~~ 
dist (w o, ~ )  

for to in ~.  

Now for co sufficiently close to ~ ,  there exists to o exterior to ~ such that  Ito-to01 = 

2 dist (w0, a~) and hence we obtain h(to) < 4K dist (to, a~) which implies using the compact- 

ness of ~ that  lim~,t(~.a~)_.0 ~r(co)= - c o .  

w 2. The rigidity theorem and the canonical connection 

2.1. In the first chapter we showed that  every operator in Bn(~) gives rise to a Hermi- 

tian holomorphic vector bundle over ~.  In order to obtain the results stated in Chapter 1 

we must begin a rather detailed study of certain aspects of complex geometry. In  this 

chapter and the next  we concentrate on complex geometry. In Chapter 4 we finally draw 

it all together. 

For ~ a separable complex Hilbert space and n a positive integer, let ~r(n, :H) denote 

the Grassmann mani/old, the set of all n-dimensional subspaccs of :H. When the dimension 

of :H is finite, ~r(n, :H) is a complex manifold. 

For A an open connected subset of C n we shall say tha t  a m ap / :  A-~ ~r(n, ~ )  is holo- 

morphic at ~t 0 in A if there exists a neighborhood A of ~t 0 and n holomorphic ~-valued 

functions ~1 ..... r~ on A such that/(~t) =V{~1(2), ..., ~(~t)} for ~t in A. I f / :  A-+ ~r(n, tH) is 

a holomorphic map, then a natural n-dimensional Hermitian holomorphic vector bundle 

Ef is induced over A, that  is, 

Er={(x,~)e~xA:xE/(]t)} a n d ~ : E 1 - ~ A  where~(x ,~ )=2 .  

Equivalently, Ej is the pull-back/*S(n, ~) of the tautological bundle S(n, ~) defined over 

~r(n, ~),  where 
s(n, ~)  = {(x, V) e ~ x (~r(n, ~): xe r}  

and 
re: S(n, ~) -+ ~r(n, :H) such that  ~t(x, V) = V. 

Our interest in such bundles is obvious since E r arises as the pull-back of the map t: ~-+ 

~r(n, ~H) defined by  t(to) =ker  ( T - t o )  for T in B,(~). A map/ :  ~-~ ~r(n, tH) for ~ an open 

set in C is said to be a holomorphic curve. 

Now given two holomorphic maps / and ~: A-~ ~r(n, :H), we have two vector bundles 

E r and E~ over A. If there exists a unitary operator U on ~ such that  ~= U/, then / and 

are said to be congruent and Ef and E~ are obviously equivalent. The Rigidity Theorem 

states that  is the only way they can be equivalent. 
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T H ~ O R ] ~  2.2. (Rigidity.) Let A be an open connected subset o/C ~ and / and ~ be holo- 

morphic maps /rom A to ~r(n, ~)  such that V~A/(2)  =V~eA [(2) = ~ .  Then / and [ are 

congruent i /and only i /E~ and E f  are locally equivalent Hermitian holomorphic vector bundles 

over A. 

Proo/. Congruent maps obviously define equivalent bundles. Thus suppose E r and Ef  

are locally equivalent and tha t  (I) is a holomorphic isometric bundle map from E A A onto 

Ef  ]A for some open set A in A. Assume tha t  A is an open ball in A on which both E I and 

E / a r e  trivial. I f  {71 .... ,7n} are holomorphie cross-sections of E/def ined on A which form 

a frame on A and we set ~ = (I)?~, i = 1, 2 . . . .  , n, then {~:, ..., ~,} is a frame for Ef  on A. 

Moreover, we have 

(r,(Z), r~(2)) = @~(2), ?~(2)) 

for 2 in A and 

1 <i,  ~<n. 

Further,  since the ~ are h01omorphic, we have 

~ P + q  

(r?)(2), r~)(2)) = ~ (r,(2), rj(2)) 

for 2 in A, where p and q are multi-indices (Pl, P~ .... .  Pk) and (ql, q2, "", qk)" 

and 

Therefore, we have that  

~ P - - q  ~ P l d - . . . - F p k + q l §  k 

~zV ~5 q ~z~"  ~zP~ O~ q' ~ ' �9 ' '  k 1 . . ,  

�9 - ~ z ~ ? ,  ~. 

(r?)(2), ~I~,(2)) = (p~,)(2), plq)(2)) 

for 2 in A, 1 ~< i, j ~< n and all p and q. 

Thus we can define an operator Ua from V~ Y~.l 7~v)(2) to Vp V~_I "(P) 7~ (2) by  

u ,  7?)(2) = ~ ) ( 2 )  

for 1 ~<i~<n and all p. Moreover, U~ is isometric, since 
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for 1 ~<i, j~<n and  all p and  q, and  thus  is well-defined. Fu r the r ,  since 7~ and  ~ can be 

expanded  in a Tay lo r  series in some bal l  A~~ abou t  each 20 in A, and  using the  proof  of 

Corol lary 1.13 we see t h a t  

n n 

Y V 77~(~.o)= V V 7,(~)= V/(;t) ='.~ 
p i ~ 1  ~,eA). ~ ~=1 ) . c A  

and  
n n 

V V P?)(A0)= V V 2,(A)= V [(A)= ~ .  
p i = l  2,r ~ t = l  ) .eA 

Therefore,  U~ is a u n i t a r y  opera to r  defined on ~ for each ~ in A. Now for 2 in A~o we have  

v - -  r!  [~ ~ 0], 

where (~-20)r  =l-~_~ (2 j -2 j .0)  ~j and  r! = 1 " ] ~ - 1  r j ! .  Since U~o is bounded,  we have  

u~.(7?'(a)) = ~ (a - ~o)~ 
r r! U~~176 

r r .  

= u ~ ( 7 7 ) ( ~ ) ) .  

and  hence U;, o = U~. I f  we set U = U~, then  [(2) = U/($) for ~t in A. Since the  subset  of A 

on which [ = U / i s  open and  closed we see t h a t  / and  [ are congruent .  

The f irst  ins tance  of a R ig id i t y  Theorem for curves in ~r(n, ~) is due  to  Calabi  [2], 

in the  case n = 1. 

2.3. Al though  we s t a t ed  the  R i g i d i t y  Theorem in the  con tex t  of several  complex  

var iables ,  we now deal  exclus ively  wi th  the  one-var iable  case. Much of wha t  follows makes  

sense in the  several  var iables  con tex t  and  we hope to  consider  t h a t  in fu ture  work. 

Here  our pr inc ipa l  concern is deciding when two pul l -back  bundles  over  an  open sub- 

set of the  p lane  are  equivalent .  I n  w 3 we show t h a t  this  is the  same as ! 'equivalence up to  

f ini te  order" .  F o r  th is  we need the  canonical  connect ion on such bundles  which we define 

la te r  in th is  section. W e  now define when two holomorphic  curves have  f ini te  order  of 

con tac t  a n d  re la te  t h a t  to  the  opera tor - theore t ic  invar ian t s  in t roduced  in the  first  chapter .  

F o r  s a connected  open subset  of C we follow Griff i ths [13] in saying  t h a t  two ho!o- 

morph ic  curves ] a n d  T: ~ - ~  ~r(n ,  ~ )  have  order o/contact k if for each ~o 0 in ~ there  exis ts  

a u n i t a r y  U on ~4 such t h a t  U/and f agree to  order  k a t  o0, t h a t  is, if 71, 72 . . . . .  7~ are  
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holomorphic spanning cross-sections for E / a t  COo, then there exists holomorphic spanning 

cross-sections ~ ,  p~ .... , p~ for Ef  at o90 such that  

Uri'(ogo) = ~)(o90) 

for 1 ~< i ~< n and 0 ~< ] < k, where the choice of the ~ may depend on o9o. 

Before relating this to the local operators defined in w 1 we need the following technical 

] e m m a .  

L ~ M ~  2.4. I / / :  ~-~ ~r(n, ~4) is a holomorphic curve and ~]1, ~2 . . . . .  ~n are holomorphic 

cross-sections o/the vector bundle Ef de/ined over ~ such that y~(eoo) ..... Y~(ogo) is an ortho- 

normal basis/or/(o9o), then there exist holomorphic cross-sections Y1 ..... ~n o/ Ef de/ined on 

some open set A about o9o such that Y~(ogo) =~(o9o) /or i = 1, 2 ..... n and 

(~z)(ogo), ~r = 0 /or 1 < i, ~ < n and k = 1, 2 ..... 

Proo/. The matrix function ((7i(o9), 7j(Og0)))~,J=1 is invertible on some open set A con- 

taining co o with inverse (C~r If we set ~ ( o 9 ) = ~  C~(og)ys(og), then ~ ..... ~ are 

holomorphic cross-sections of E r which satisfy )~t(og0) =~i(O~o)- 

Moreover, since ((~,(o9), ~z(og0))) is the identity matrix, we see that  (~i~)(og0), ~(eoo) ) =0  

for k>0.  

PROPOSITION 2.5. For T and T in Bn(~) de/ine t, ~: ~--> ~r(n, ~/) by t(o9) =ker  ( T - w ) ,  

t(og) = k e r ( ~ - e o )  and N(2)=(T-o9)lker  (T-og)  k+~, ~(~)=(T-og)[ker  (~_og)k+~. Then t 

and ~ have contact o/order k i/ and only i /N(~ ) and N(~) are unitarily equivalent/or each o9 

in ~.  

Proo/. Assume t and ~ have contact of order k on ~.  For o9o in ~ there exists a unitary 

U on ~,  holomorphic spanning cross-sections Yl ..... y~ for ker (T-o9o) and holomorphic 

spanning cross-sections ~1 ..... ~ for ker (T-o90), such that  

U(Y~J)(ogo)) =~J)(o90) for i = 1, 2 . . . . .  n and 0~< ~< k. 

By Lemma 1.22 we have 

(~) ( j )  �9 ( j - l )  _ ( k )  (,  UN~.  (7~ (%))  = U(77~ (o90)) - ~ 0  U(7~ (r 

and hence UN~), = 37~ ). U. Since o90 is an arbitrary point in ~,  this completes one half of 

the proof. 

Conversely, suppose N~ ) and ~ )  are unitarily equivalent for each o9 in f2. Moreover, 

let U be a uni ta ry  defined on ~ such that  U {ker (T-COo) k+x) =ker  (~-o9o) ~+x and satis- 
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lying U N ~ ) = . N ~  ) U. I f  7z(to0) ... . .  yn(w0) is an orthonormal basis for ker (T -me) ,  then 

~i(w0) = U7~(o0) for i = l, 2 ..... n defines an orthornormal basis for ker (T-co0). Moreover, 

using the preceding lemma we can choose holomorphic cross-sections 7~, 72, ..., 7~ for E r 

and ~1, ~2 ..... ~n for E~ defined on some open set A containing m0, and satisfying 

(2.5.1) (ri'(O~o), r~(~o))  = (p~J)(O~o), ~ ( ~ o ) )  = o 

for 1 ~< i, 1 ~< n and ] ~> 1. We claim tha t  

(2.5.2) U(r~J)(mo)) =~J)(mo) for i =  l ,  2 . . . .  , n and 0~<?'~<k. 

Statement  (2.5.2) is valid for j = 0  and we assume it holds for some ~ <It. Then 

(k)[TT'~,U+i)[t'.' ~ ~]+i)((D0) } = U ( ( ] +  1) r~)(r } - ( j+  1)~S)(o~0)=0 me t ~ / ' i  ~ w 0 !  - -  

by hypothesis which implies UT~J+l)(eo0)-p~J+l)(Wo) is in ker (~ -m0) .  But  ker ( T - w 0 )  

is spanned by  pl(oJ0) ..... p~(oJo), while 

(U(7~J+l)(w0)) - p~J+i)(O~o), pz(r = (U(~lJ+l)(r U~z(r ) - (p~J+l)((o0), pl(r = 0 

since U is unitary and (2.5.1) holds. Therefore (2.5.2) holds for j +  1 which completes the 

proof since eo o is an arbi trary point in ~ .  

2.6. Thus the proof of Theorem 1.6 is reduced to showing that  pullback bundles which 

agree to sufficiently high order of contact are equivalent. Unfortunately, we are unable to 

prove this without involving the geometry already implicit in this context. The reason is 

that  our analysis of two Hermit ian holomorphic vector bundles to decide whether or not 

they are equivalent takes us out of the category. In  particular, we consider non-holo- 

morphic sub-bundles. Hence we show tha t  the equivalence problem for Hermitian holo- 

morphic vector bundles can be replaced by a standard equivalence problem in differential 

geometry which we then proceed to solve. 

2.7. Let  E and $ be n-dimensional Hermitian holomorphic vector bundles over the 

connected open subset ~2 of C. We are interested in finding invariants for E a n d / ~  which 

will determine, at least locally, when the bundles are isometrically and holomorphically 

equivalent. We do this by making explicit the geometry already implicit in this context. 

By geometry we are referring to vector bundles equipped with a compatible connection 

which then allows one to compare vectors in fibres over different points of ~ .  In  general, 

there exist many  connections on a Hermitian bundle which are compatible with the metric. 

However, for Hermit ian holomorphic bundles there is a natural  or a canonical choice. We 
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briefly describe this in our context. For more details on these matters the reader is advised 

to consult [26, Chap. I I I ] ,  whose notation we shall follow. 

2.8. For ~ a connected open subset of C let z and 5 denote the co-ordinate functions 

defined by z : = x + i y  and 5 = x - i y .  If  T*(~) denotes the co-tangent bundle of ~ ,  then a 

basis for each fibre is given by dz and dS. Thus a basis for the fibre of the exterior algebra 

bundle AP(T*(~)) is 1 for A~ dz and d~ for AI(T*(~)), and dzd~ for A2(T*(~)). We 

let E(~) denote the algebra of complex-valued C r176 functions on ~ and O(~) the subalgebra 

of holomorphic functions on ~2. For F a C ~~ vector bundle over ~ ,  we let E(~, F) denote 

the C ~176 cross-sections of F and if F is holomorphic, then O(~,  F) denotes the holomorphic 

cross-sections. We let E~(~)= E(.()-, AP(T*(~))) denote the C ~ differential forms of degree 

p on ~.  Thus we have E~  E l ( ~ ) = { / d z + g d ~ : / ,  gEE(~)} and E2(~)={/dzd~:  

/E E(~)}. We further decompose EI(~) = ~l.0(~)Q) ~0.1(~]) into (l, 0)- and (0, 1)-forms such 

that  EI'~ :: {[dz: [ E E(~)} and E~ = {gd~: g E E(~)} and set E~176 = E(~), ELI(~) = 

~ ( ~ ) ,  and ~ .0(~)  = Eo.~(~) = 0. Then the exterior derivative d: ~ ( ~ ) ~  ~ x(~) defined 

for p =0, 1, 2 can be decomposed to obtain ~: E'.q(~) -~ ~+~.q(~) and ~: ~ 'q (~) -+  ~'q+x(~). 

Observe that  / in E(~) is holomorphic if and only if ~[=0.  

Now for F a C ~ vector bundle over ~ let E~(~, F ) =  E(~, A~(T*(~ ) ) |  

ferential forms of degree p on ~ with coefficients in F, that  is, s e is in E~([:), F) if it can be 

written ~ = ~  ~ |  for ~]1 . . . . .  ~k in A~(T*(~)) and ~ .... , a~in ~(~,  F). Again E~ 2') = 

E(~,  F), E~(~, F) = {dz| -~-dS| a~, a2 ~ E(~, F)}, and E~(~, F) = {dzd5 | ~ e E(~ ,  F)}. 

Using the Hermitian structure on F we can define a map E~(~, F) x Eq(~, F)-~ ~'+q(~) 

such that, for example for ~ in E ' (~) ,  ~ in Eq(~) and a~, a2 in E(~,  F) we have 

{2.8.1) (~ | ~ |  (~) = }(o~) A ~(~o} (a,(~o), a~(~o)), 

where the bar denotes complex conjugation ol forms which satisfies 

dz = (dx + idy) = d x -  idy = d5 

(2.8.2) dS = (dx - idy) = dx + idy = dz 

dz d~ ~ d~dz = - dzd~ 

2.9. Let E be a Hermitian holomorphic bundle over ~ .  A connection on E is a first.- 

order differential operator D: ~o(~, E ) ~  EI(~, E) such that  

(2.9.1) D(/a) = d ] |  for / in E(~) and a in E~ E). 

On any Hermitian holomorphic vector bundle E over ~ there is a unique canonical connec- 

tion D which preserves both the Hermitian and holomorphic structures, that  is, such that  

(2.9.2) D is metric-preserving or d((~, d) = (Da, 5) + (a, Dd) 



C O M P L E X  G E O M E T R Y  A N D  O P E R A T O R  T H E O R Y  207 

for a and # in ~0(~, E), and 

(2.9.3) D"a = 0 for (r in 0 ( ~ ,  E), where D = D' + D" 

is the decomposition of D into (l, 0)- and (0, 1)-form valued operat~ors, or equivalently 

D" extends ~. 

Since all holomorphie bundles over ~ are holomorphically trivial by Grauert 's  Theorem 

[12], there exist cross-sections al ..... an in O(~2, E) which form a frame for E on ~.  

The metric on E defines a positive-definite n • n matrix function {hfj(oJ)} = (aj(w), a,(co)) 

which depends on {a~}7=1. If we define O=h-i(Oh or 0~j(w)=~_~ gik(o))(~h~r where 

9~(~o) = (h(o~) -x)~, then 0 is the matr ix  of connection I-forms for E and the canonical 

connection D is defined by 

(2.9.4) D 1~, = ~ d / ~ |  s for -- ~ [ ~ ( ~ i n ~ ~  
i i-.1 t ~ l  i - 1  i .1 

Now although D is C-linear, it is not ~(~)-linear and hence is not a bundle map. How- 

ever, the commutator  of D with a bundle map is also a bundle map. Before proving this 

we observe that  if q is a bundle map between bundles E and E over ~ ,  then q induces a 

bundle map from E| to E| which we also denote by ~. 

LEMMA 2.10. Let E and 1~ be C ~ vector bundles over ~ with connections D and D, 

respectively. I /q)  is a C ~ bundle map Item E to 1~, then ~Jq)-q)D is a C ~~ bundle map/rom 

E to E | T*(~). 

Proo]. I t  is enough to prove that  ~ - q D  is s or equivalently that  

(5~ -~0D)([~) =/[(/~f~v -qgD)z]] for / in E(~) and ~ in ~0(~, E). 

Using (2.9.1) we obtain 

( ~ - - ~ D )  (/~) = D(/(Tq) ) -q~n(/~) 

= dl |  +lD(q~) -~(d l |  -q~(ll~) 

- ID(Vq)-l~v(Dq) = l[bqJ-q~n]~ 
which completes the proof. 

We use this iemma to define partial derivatives of bundle maps in this context. 

De/inition 2.11. For C a bundles E and • over ~ with connections D, D and ~o a C a 

bundle map from E to E we define the covariant partial derivatives ~ and ~ to be  the 

bundle maps from E to ~ defined by  

r)qJ -~p D = q~ | + q~| 
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Moreover, we define Tz,=(q)z-~)z, ~,=(~v~*-~)z and ~o-=(%~)~, for 1 ~<r, s. Note  tha t  we 

include the possibility tha t  E = E, D =~i. Fur ther  ~0 z is always relative to the connections 

on the domain and range of q, which should be clear from the context .  

If E,  E,  and ~ are C ~ bundles with connections D, ~i, and ~), and ~0: E - + $  and 

y~: E - ~  are bundle maps, then  

~)(~0o~) - (v /o~)  n = ( / ~  -~v~i)q +~o(~i~0 - q D )  

which gives the Leibnitz rule 

(2.11.1) ( ~ ) z  = %~0 + ~ %  and (y~i0)~ = ~0~ + ~ .  

If  E and E are Hermi t ian  holomorphic vector  bundles and D and ~i are the canonical 

connections, then  the matr ix  for ~ relative to holomorphic frames is just the usual ~- 

derivat ive of the mat r ix  of ~0 relative to the same frames. Moreover there  is a simple rela- 

t ion between our z- and 5-partial derivatives. 

LEMMA 2.12. I / E  and J~ are C ~ Hermitian vector bundles, D and D are metric preserving 

connections (2.9.2) and ~o is a bundle map ]rom E to J~, then (%)*= (cp*)~ and (~0~)* = (r 

Proo/. For  a and ~ in ~(~ ,  E) and E(~,  R), respectively we have using (2.8.1) and 

(2.9.2) tha t  

(2.12.1) ((~i~0 -qJ D)a, ~) - (a, ( Dq~* -cp*FJ) d) 

= [(~iq~a, (~) + ((pa, D(?)] - [(Da, q~*5) + (a, n~*(~)] 

= d[(g~a, (~) - (a, ~*~)] = 0. 

Therefore appealing to Definition 2.11 we have 

(q~a, d)dz + (~za, (~)d~ = (a, (~o*)~5)dz + (a, (~*)~(?) d~ 

and hence (~)* = (~0")~ and (~0z)* = (~0*)z. 

We can now show tha t  the  equivalence problem for Hermi t ian  holomorphic bundles 

equipped with this canonical connection is j u s t t h e  s tandard  equivalence problem in 

differential geometry.  Although this is well-known, we include a proof for completeness. 

LEMMA 2.13. Let E and J~ be Hermitian holomorphic vector bundles over ~ with the 

canonical connections D and ~J, respectively, and let gg: E~J~ be a C ~176 isometric bundle map. 

Then ~o is holomorphic i /and  only i/q) is connection.preserving, that is, i /and  only i/ 

(2.13.1) , ~o~ ~ ~ o D .  
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Proo/. The bundle map ~0 is holomorphic if and only ~ = 0. Analogously, ~v holomorphic 

implies ~* =~-1  is holomorphic and hence (~0~)* = (~0")~ =0. Thus ~)q)-~D =cfzdz +cf~d~ =0  

or q0 is connection-preserving. The converse follows similarly. 

Thus by  the lemma we may  generalize the equivalence problem for Hermitian holo- 

morphic vector bundles as follows: 

Let  E and J~ be n-dimensional Coo-Hermitian vector bundles over ~ with metric- 

preserving connections D and ~i. We wish to find invariants which will determine when 

there exists a connection-preserving isometric bundle map between E and ~.  

Remark 2.14. I f  there is a connection-preserving isometry ~, it is unique up to the 

action of the group y(E) of connection-preserving isometrics of E, and Y(E) may  be identi- 

fied with a Lie-subgroup of U(n, C). In  particular, if E and E are irreducible as Hermitian 

vector bundles with connection, then ~ is unique up to multiplication by a scalar of absolute 

value one. 

2.15. The connection D: ~0(~, E)_+EI(~, E) can be extended in a natural  way as a 

derivation of E~(~, E) to EP+I(~, E) for p =0,  1, 2 so that  

(2.15.1) D(~r| = DaQ~+a|  for a in ~(~,  B) and ~r in ~ ( ~ ) .  

One checks easily tha t  D*(/o)=/(D*a) for o in ~(E) and / in E(f~). Thus D 2 is a bundle 

map from E to E|  and we define the curvature K(E, D) as the Coo cross-section 

of H e m  (E, E|  by  

(2.15.2) K = K(E, D) = D 2. 

I t  is also useful to define a related "curvature"  :~ (more precisely ~ ( E ,  D)) as a C ~ cross- 

section of H e m  (E, E) such that  

(2.15.3) K a  = ~ d z d 5  for o in E(~,  E). 

Using (2.8.1), (2.9.2), and (2.15.1) we obtain 

(D*o, ~) + (a, D2#) = (Da, D#) +d(Da, 5 ) -  (Da, D#) +d(o, DS) 

= d2(a, ~) = 0 for o, # in E(f~, E). 

Therefore we have  

(2.15.4) (~Ka, 5)dzd5 = (Ka, (?) = - ( 0 ,  K#) = - ( a ,  ~(d)d~dz = (0, ~d)dzd5 

and hence ~ is self-adjoint. 
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An ident i ty  involving the curva ture  and part ia l  der ivat ives  is 

(2.15.5) [ ~ ,  q] = (qz)~- (~)~- for q: E -~ E a bundle map.  

To verify this we write 

{ ( ~ )~ - ( q~ ~)~ } dz d5 -- [ D' , q~ ] d5 + [D ~, q~ ~] dz 

= D'[D ~, ~ ] + [ D  ~, q~]D'+D'[D',  ~] + [D',  ~ ] D "  

= [D'D" + D 'D ' ,  ~] - [K, ~oJ - [:K, q~Jdzd5 

where (D ' )~= (D~) 2 = 0  since there are no non-zero (2, 0)- or (0, 2)-forms on ~ .  

Remark. 2.16. I f  E and  $~ are C ~ vector  bundles over  ~) with connections D and ~i 

and ~: E-~  ~ is a connection preserving bundle m a p  (2.13.1) then  ~i2q0 - T D  2, so :~T -- ~ .  

Thus [/:i, ~ ] T = ~ [ D ,  X],  which implies (2.11) t h a t  ~ ( ~ = ~ X ~ ,  ~ z ~ = ~ X ~ .  Continuing in 

this fashion, we clearly have 

(2.16.1) ~,zjqJ - q ~ j ,  all 0 ~ i, j < ~ .  

Wc can now s ta te  our definition of local equivalence. 

Definition 2.17. Given n-dimensional Hermi t i an  vector  bundles E and ~, over  ~ with 

metr ic-preserving connections D and 9 ,  we say t ha t  E and ~ are equivalent to order k at ~o 

in ~ for some k ~> 1 if and  only if there exists an i sometry  V f rom E,o onto/~,~ such t ha t  

(2.17.1 ) V Jf~,~j ~ ~ , ~  V for 0 <~ i, ?" ~< i + j ~ k, (i, i) -t- (0, k), (k, 0). 

Note  t ha t  since ~ and  ~( are self-adjoint, by  L e m m a  2.12 it suffices for (2.17.1) to 

hold for i ~< j. 

In  the nex t  section we show there exists k ~< n such tha t  if E a n d / ~  are equivalent  to 

order k a t  each ~o in ~ ,  then E and E are locally equivalent  off some closed nowhere dense 

subset  of ~ and tha t  k is 2 in the generic case. Before beginning the  proof of this, however,  

we connect this notion to t ha t  of finite order of contact  we int roduced for holomorphic 

curves earlier in this chapter .  

PROPOSITION 2.18. Let / and f be holomorphic maps /rom ~ into Or(n, ~ )  and Ef 
and E f  be the associated Hermitian holomorphic vector bundles with canonical connections 

D and rJ, respectively. The holomorphic curves / and ] have contazt o/order k at w o in ~ i/ 

and only if there exists an isometry V:/(to0)-~](to0) such that 

(2.18.1) V~f~(Wo) = ~p~(tOo) V for 0 ~<p, q ~< k ' -  1. 
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Pr~] .  Le t  ] and f be holomorphic curves over  ~ having contact  of order k/> 1 a t  ~0 

and let {~1 .. . . .  ~ }  and {(71 .. . . .  (?n} be f rames  for E s and E 7 and  U a un i t a ry  opera tor  on 

such t h a t  

(2.18.2) U(~J)(O~o)) = ~J)(w0) for 0 ~< j ~< k. 

Obviously,  we can assume t h a t  (rl(OJo) , ..., an(oJ0) are o r thonormal  which in tu rn  imphes  

t ha t  (71(O)o) . . . . .  (?n(Wo) are or thonormal .  Le t  h = ((aj, at)) and  ~ = (((?j, (?~)) be the  ma t r ix  of 

inner products  for E I and  ET, respectively.  Note  t h a t  h(o~o) = I =s Fur ther ,  for ~0 a 

bundle m a p  on E / l e t  ~(a) denote  the  ma t r ix  for ~ with respect  to the f rame  al  . . . . .  an. B y  

2.15.2, 2.9.4 and  2.15.I we have  

K(a)  = K(E:,  D) (a) = 0 A 0 + dO 

= h-tOhh-~Oh + ~(h-t  ~h) + ~(h-tOh) 

=~(h- l~h)  
which implies 

(2.18.3) ~ ( a ) =  - ~ \  - ~zz] for all co in ~ .  

Moreover,  f rom Definit ion 2.11 it follows tha t  for any  C OO bundle m a p  ~ on E we have  

(2.18.4) / ~z(O*):~(~o(O'))-~- [h-ie~'  99(0r)]" 

Thus  by  (2.18.3) and  (2.18.4) we can express X ~ ( a )  in t e rms  of h -1 and  ~'~Sh/~z'~s 

for 0 ~ < r ~ p + l  and  0~<s~<q+l .  Similarly, we can express ~ u ( ( ? )  in t e rms  of ~ - t  and 

~" ~ "h/Oz'~ ~. Since 

O"-'h ~'+~h 

for 0~<r, s~<k by  (2.18.2), this implies 3 ( ~ ( a ) = ~ ( a )  a t  co, for 0~<p, q<~k-1 .  But  

~z~z~ and ~ z ~  are bundle maps  and  hence (2.18.1) holds where V:/(~Oo)-*f(O~o) is defined 

by  Vx = Ux for x in/(COo). 

Now assume tha t  V is an i somet ry  defined from/(COo) to [(O~o) sat isfying (2.18.1). I f  

al  . . . . .  an is a n y  f rame  for Et, then  f rom (2.18.3) we obta in  

(2.18.5) 8"h ~h h_ ~ Oh 
~ z ~  O~ ~z - h~(a) .  

14 - 782902 Acta maShematlca 141. Imprim~ lo 8 D~cembro 1978 
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We claim tha t  ~' ~Sh/az'~58 can be expressed in terms of h -1, ~h/~z ~ for 0 << i <~ r, ~Jh/~5 j for 

0~<]~<s and ~p~(a )  for O<~p<~r-.1 and 0 ~ < q < s - l .  This is trivially vahd  for r + s < l .  

Assume it is t rue for r+s<~m. Then if r + s = m ,  ~n+lh/~z'+l~58=~/az{~"h/~z'~5"} can be 

expressed in the specified terms, except possibly when s = m. But  ~m+lh/~z~Sm =~,,-1/~,,-1 

(a2h/~za~), which by (2.18.5) and the induct ion hypothesis can be expressed in the specified 

terms. Similarly for ~+~h/az '  az "+~, and hence the claim is t rue for r + s < m + 1. 

If  (2.18.1) holds, then we can choose frames al . . . . .  a= for E I and 51 ..... #= for E r such 

tha t  the al(too) .. . . .  a,(O~o) and the 51(eo0) .. . . .  #,(We) are or thonormal  and 

(2.18.6) ~ ( ~ )  = ~ ( d )  at  to o for 0 ~<p, q ~< k - 1 .  

We can fur ther  normahze the (rf and d~ as in Lemma 2.4, so tha t  

(a~l)(Wo), a,(o~0) ) = 0 = (#~')(w0), (?t(Wo)) for l/> 1. 

Note  tha t  (2.18.6) still holds because the a and 5 are unchanged at  to 0. But  since a~h/~z ~= 

~h/~5 t= 0 at  eo 0 for this frame, we can express ~'~ Sh/~z~(~Oo) in terms of h -x and : / ~ ( a )  at  

to 0 for 0 ~<p ~< r - 1 and 0 ~< q ~< s - 1. Therefore we have (a~v)(Wo), ( ~ q ) ( O ) o ) )  ~ ~ r ~ + q h / ~ z V ~ z q ( o ) o )  - -  

~+q~/~zV~2q(Wo)=(5~v)(~Oo), d~q)(eOo)) for O<~p, q<~k which implies / and f have contact  of 

order k at  w 0. 

2.19. If  T is in B=(~), then Propositions 2.5 and 2.18 show tha t  there is some relation- 

ship among the N ~  ) and the : K ~ ,  where ~ is the curvature  of E T. We shall see (w 3) tha t  

the  ~ p ~  are fairly tractable,  but  we have been unable to pu t  the N(~ ) into any  reasonable 

canonical form. To illustrate the difficulties in going from the ~ to N(~ ) we give the 

following generahzation of Theorem 1.17 which shows tha t  the relationship between ~(r 

and N~ ) is non-linear. 

P~Ol"OSITIO~ 2.20. Let T be in ~ ( ~ )  and let ~ be the "curvature" el the bundle E T 

with the canonical connection. F i x  co o in ~ ,  and let 

be the eiqenvalues el :~(~oo). Then the ~ are strictly negative and there is an orthonormal basis 

o[ ker ( T - w e )  ~ such that relative to this basis Nm,~o has the matrix 

I 0 

0 

:) n 

0 

where ff ~ = (-i ts)  - t .  
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Proo/. Since ~(o)0) is self-adjoint, let v I . . . . .  v, be an orthonormal basis of (Er)~ 0 such 

that :K(o~0)(v~)=).tvt, l<~i<~n. Let  (71 . . . . .  (~n be holomorphic sections of E r such that  at 

w 0, at(oJ0)=vt for all i. By Lemma 2.4 we can assume that (a~k)(~o0), aj(w0))=0 for 1 ~<i, 

]<~n and k - - l ,  2 ..... By (2.18.5), at We we have 

: ~ ( a )  = - ( ( a i ( ~ 0 ) ,  a ; (o~0) ) )  

which implies that the a;(Wo) are orthogonal, and Ha;(Wo)H = ( - 4 , )  �89 By Lemma 1.22, if 

we let vt+ , =a~(eOo), i-- 1 ..... n, then v 1 ..... v2n form a basis for ker (T-co0) 2, so 2j is le~n 
2~(1)~ , )~(1)~ than 0 for each i, and ~.lv,)=0 and -.~.(vt+n)=vi for i = l  ..... n. Thus relative to the 

orthonormal basis vl, . . . ,  Vn, Vn+l/llVn+lll, . . . ,  v2~/Hv~]] for ker (T -o~0) 2, ..~.~v (1) has the required 

form. 

w 3. Invariants of C ~ hermit ian  vector bundles with metric preserving connect ions  

3.1. Let E and ~ be C ~176 Hermitian vector bundles of dimension n over the open subset 

of C, with metric preserving connections D and ~i. We show in this section that point- 

wise equivalence of E and ~ over ~ to some finite order not greater than n determines local 

equivalence of E and $ at any point in the complement of a closed nowhere dense subset 

of ~. One case where this is easy is when the scalarized "curvatures" :~ and :~ of E and 

are scalar multiples of the identity. This we call the 0-umbilic case. For the general case 

we first put E and E into a canonical form, where we can reduce the equivalence problem 

to equivalence of direct sums of 0-umbilic bundles with some auxiliary conditions. We 

solve this problem, and relate the solution to equivalence of order k (Definition 2.17). 

The basic idea of the proof is not difficult, but there are two complicating factors. 

One is the introduction of a certain closed nowhere dense subset of ~,  which is unavoidable 

in the case of C ~ bundles. For the Hermitian holomorphic case with real analytic metric 

(which is all we need for the applications to operator theory) we show that local equivalence 

holds at every point of ~. Nonetheless, the subset enters into the proof even in that case. 

The other complicating factor is the indexing necessary to effect the reduction of 

a bundle to its canonical form, and the bookkeeping involved in obtaining the bound of n 

on the order, Indeed we show that the order of pointwisc equivalence necessary for local 

equivalence depends on the canonical form.of the bundles, and tha t equivalence te order 

two suffices for "generic" bundles. 

Equivalence problems have of course been much studied in geometry. Classical 

arguments of Veblen [25] and E. Caftan [16] seem to indicate that equivalence to some 

fini~ orde~ implies local equivaleace in.our situation, ar least ~or" the real analytic case. 
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However, we have been unable to find a reference which gives an upper bound on the order 

for equivalence of holomorphic Hermit ian vector bundles. Furthermore, although our 

bound of n appears to be dictated by  the geometry, we are unable to show tha t  the bound 

is sharp. Examples which require equivalence to order n would necessarily be highly non- 

generic and thus presumably quite complicated. 

We have not a t tempted  to deal with global equivalence (but el. (3.27)), which has a 

topological aspect. Our results are purely local and suffice for the applications to operator 

theory due to the uniqueness of analytic continuation. The proof also uses the one complex 

dimensional nature of ~ in an essential fashion. We hope to deal with domains in C n at  

a later date (cf. w 4). 

We begin with the case of 0-umbilic bundles or bundles for which the curvature is 

essentially a scalar function. What  we need follows more or less directly from the fact 

tha t  such a bundle is a flat bundle tensored with a line bundle. That  is essentially the 

content of the following Lemma. 

LE~MA 3.2. I /  E is a Hermitian vector bundle over an open subset ~ o /C  with metric 

preserving connection D such that ~ ( E ,  D)=,~I, then there exists (locally) an orthonormal 

/rame a 1 ..... an/or E over ~ and ~ in ~1(~'~) 8ugh that ~ = - - 4  and Da~ =~a,, where the choice 

o /~  depends only on 2. 

Proo/. Since 2dzd5 =(22/i)dxdy is a closed, pure imaginary two-form, there exists a 

pure imaginary ~ in ~a(~) such  tha t  d~ =2dzdS. I f  zl ..... 7, is an orthonormal frame for 

E over ~ ,  which is possible since E is trivial, then there exists a matr ix  0 = {0tj} of connec- 

tion one-forms such tha t  D v j = ~  0~j*~. We seek a C ~~ unitary matrix function U = { U ~ }  

such that  a~ = ~ U~zt satisfies 

~(~ U,jT,) = ~aj = Da~ = D(~  V~jv,) = Y. dV,~v, + ~ UksO,k % 
t t i k 

or equivalently such tha t  
dU = - (0 -71 )  U. 

I f  we define a new connection/9 on E by  s e t t i n g / g v j = ~ t  Ofjv~, whore 0 = 0 - 7 1 ,  then 

we seek U such tha t  dU = - ~ U  or equivalently such t h a t / g a j = 0 .  Since an easy computa- 

tion shows tha t  the matr ix  for ~ is given by  dO +6 h 0 (cf. (2.18.3)), we have 

I~ = dO - d ~ I  +O A 0 = K - d y I  = (2dzdS-d~)  I = 0 ,  

and hence/9  is fiat. 

The existence of U follows from the Frobenius Theorem as follows (of. [9, p. 102]): 
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Let L be the one-form on ~ • Mn(C) defined by L=dZ+O(z)Z.  Then 

and hence by the Frobenius Theoiem, there exists a Coo matrix function A(z) with prescribed 

initial value at z 0 such that  Z = A  is an integral submanifold of L=O, that  is, such that  

dA = -OA.  If A(zo)=I,  then we put B=(A*) -1, so that  B(zo)=I  and 

dB = - A * - l d A *  A *-1 = - (A - idA  A- l )  * = (A-lO) * = -OB,  

since ~ is skew-adjoint (since/)  is metric preserving). Thus by uniqueness B = A ,  that  is, 

A is unitary. 

Thus we can find the desired U and defining aj = ~i U~j T~ completes the proof. 

We now show that  equivalence to first order at every point of ~ implies equivalence 

for 0-umbilic bundles. This is well known and follows in standard fashion from Lemma 3.2. 

PROPOSITION 3.3. Let E and J~ be Coo n-dimensional Hermitian vector bundles over 

the open subset ~ o[ C with metric-preserving connections D and ~. I[ E and ~ are O-umbilic, 

that is, q ~ =,~. I and ~ =~. I / o r  Coo real-valued/unctions ,~ and ~ on ~,  then there exists 

(locally) an isometric connection-preserving bundle map q~: E ~  J~ i] and only i / ~  =~ or equi- 

valently, q and only i / trace (:~)=trace (~). 

Proo[. If such a ~ exists, then obviously A =~. Conversely, if both E and E are 0- 

umbilic, then by the lemma there exist frames al ..... an and dl ..... ~n for E and E re- 

spectively such that  Da~ =~ai and ~id~ =~d~, where du =Adzd~ and df  1 =~dzd~. Further, if 

2 =~, we can take ~ =4 and hence if we define ~: E ~  ~ such that  qur~ = ~ ,  then ~0 has the 

desired properties. 

Note that  by Definition 2.17, equivalence to first order means precisely that  ~ equals 

~, in the 0-umbilic case. In the general case, E and /~  are equivalent to first order if and 

only if :~ and :K are unitarily equivalent at each point. By (2.15.4), :~ and ~ are self- 

adjoint. In view of Proposition 3.3, it seems very natural to diagonalize :~ and ~ and to 

investigate the decomposition of E and $ into eigen sub-bundles, with the hope that  this 

decomposition will simplify the equivalence problem, and it does. 

To analyze the function :K we need some results on self-adjoint matrix functions (cf. 

[17]; [28], Chap. II,  w 6): 

LEMMA 3.4. I / H :  A-~Mn(C) is a C ~ self-adjoint n • n matrix valued/unction de/ined 

on the open subset A o / R  m, then there exists a closed nowhere dense subset Z~ ot A such that i /  



216 M. J. COWEI~ AN]) R. G. DOUGLAS 

AI is a camponent el A - Z u ,  then there exist Coo [unctions ~1 < "'" <~k  and C ~ (orthogonal) 

projection valued ]unctions PI, ..., Pk de/ined on A, such that 

(3.4.1) t1(0)) . . . . .  Ik(~) 

are the distinct eigenvalues el H(~o) and P~(eo) is the orthogonal projection onto the eigenspace 

o/H(~o)/or the eigenvalue ti(o~) /or r in A 1. 

Proo/. Let [~(z) be the characterist ic  polynomial  of H(eo), k the max imal  number  of 

dLutinct roots  of / , ,  for co in A, and  J~ the  set of (o such t h a t / ~  has k dist inct  roots: ~tl(eo ) < ... 

<).k(eo). Fix ~0 a point  i n / ~  and let m s be the  mult ipl ic i ty  of lj(e%). Let  A 1 . . . . .  A~ be dis- 

joint  discs centered a t  ~q(r . . . . .  ~tk(co0). For  o~ close enough to co0, 

2~i aj ]~,(z) 

is continuous in co, hence is equal  to m j, and  thus  o~ is in A b y  the  a rgumen t  principle. 

This implies b y  pigeon-holing t ha t  tj((o) is in A j, t ha t  the  mult ipl ic i ty  of ),j(eo) is mj, and  

since 

: fo ls ,~j(w) - - 2~imj ~, ~(z) zdz, 

it follows tha t  the  ~tj are differentiable. 

To show tha t  P~(o) is a C r176 funct ion o n / ~  we recall t ha t  

1 
(3.4.2) P,(r =jill 2 , ( w ) -  ).s(o~)!H(o~)- 2j(o)  I) .  

We can continue this procedure on the  interior of A - - ~ ,  absorbing the boundary  of 

into the set Z H and etc., which completes  the  proof. 

We now proceed to analyze a C ~ Hermi t i an  vector  bundle E over  ~1, an open con- 

nected subset  of (~, where E is equipped with a metr ic-preserving connection D. 

De]inition 3.5. An open connected subset  A of ~ has a regular 1-eigenvalue structure 

for E if there exist C ~176 real-valued functions 

(3.5.1) ~tx(w) < ... < )~(E)(~0) 

defined on A which are the distinct eigenvalues of :K(~o). Each t i  has mult ipl ic i ty  mi 

(necessarily (,onstant on A) and  a corresponding eigen sub-bundle  E~ of E restr icted to A 

such tha t  

(3.5.2) E = EI(~ ... oEncE~. 

The index set {1 . . . . .  n(E)} is denoted by  Y,(A). 
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Throughout this section we will use the notation ~(E,  o~), mi(E), Y~(A, E) and so 

forth when we wish to emphasize dependence on the bundle E. 

By the previous lemma there is a closed nowhere dense subset Z 1 of ~ such tha t  each 

component of ~ 2 - Z  x has a regular 1-eigenvalue structure for E. 

Note that  if E is a holomorphic Hermit ian vector bundle and D the canonical connec- 

tion, the E~'s will not in general be holomorphic sub-bundles of E, since ~(w) is not at  all 

holomorphic (it is self-adjoint). Nonetheless if P~ denotes the orthogonal projection of the 

C ~ Hermitian bundle E onto El, then 

(3.5.3) D~ = Pt DPt 

gives a metric preserving connection on E t. 

Let A have a regular l-eigenvalue structure for E. We say that  A has a regular 2- 

eigenvalue structure for E if A has a regular l-eigenvalue structure for each E~ for i in 

Yl(A). We decompose Ei into eigen sub-bundles E n ..... Et~(~t) corresponding to the 

eigenvalues ~t~l(w ) < ... <Jt~(Ei)(w) of :~t = :K(Et, Di), the "curvature"  of Et with respect 

to the connection Dt. Then Y2(A) is the set of all (i, 1), ..., (i, n(E~)) for i in Yl(A). Conti- 

nuing in this fashion, we say that  A has a regular k-eiqenvalue structure for E if A has a 

regular (k-1)-eigenvalue structure for E and has a regular 1-eigenvalue structure for 

each El with its connection D1and "curvature"  :~,= :K(E,, DI), I=( i  I .... , ik 1)in :~k I(A) �9 

We put ~tj equal to ~ttk(E,) for J=(i l ,  ..., ik), where l <~ik<~n(E,) and let :~k be the set of 

all J of this form. Then m I denotes the multiplicity of ~t I, E I the eigen sub-bundle of E, 

corresponding to X~, and Pj  the orthogonal projection of E onto E~. Define 

(3.5.4) Dj = Pj DP~ 

which gives a metric preserving connection on Ej, for J in :~k(A). 

To keep our notation consistant we put  Y0(A) equal to {O}, E z  equal to E, D z  equal 

to D, and :~z equal to j(.  

By Lemma 3.4 there exists a closed nowhere dense subset Z k of ~ such tha t  the com- 

ponents of ~ - Z  k have a regular k-eigcnvalue structure for E. Note that  if E is 0-umbilic 

on ~ ,  then it trivially has a k-eigenvalue structure for all k. 

Let A have a- regular n-eigenvalue structure for E, where the dimension of E is n. 

If  I is in :~k(A) for 0 ~ k  ~ n -  1, then n(E1), the number of eigen sub-bundles of E I, is at  

least one and hence the dimension of each eigen sub-bundle of E z is strictly smaller than 

the dimension of E,, unless E z is 0-umbilic, that  is, unless :K1=~t(~.l). identity. Thus there 

exists m, O<~m<~n-1 such tha t  E x is 0-umbilic for all I in ya(A). Let M(A, E) be the 

smallest integer ~n for which this is true. 
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Definition 3.6. A O ~~ Hermitian vector bundle E of dimension n over the open subset 

of C with metric preserving connection D is said to be M-umbilic on an open connected 

subset A of ~ ,  if A has a regular n-eigenvalue structure for E and 

(3.6.1) M = M(A, E). 

3.7. Let  E and $ be n-dimensional Hermitian vector bundles over ~ with metric 

preserving connections D and Li. If ~: E-~J~ is a C ~ isometric bundle map which is con- 

nection preserving, then ~ o ~ = ~ o ~  (2.16.1), which implies that  the eigenvalues of 

and ~( are equal. Thus if A, contained in ~ ,  has a 1-eigenvalue structure for E, then it  has 

a 1-eigenvalue structure for ~. In addition ~I(A, E) equals ~I(A,/~'), 2t(E) equals 2i(~ ), 

the multiplicities agree, and ~oP~ =/5~o~. If ~ :  E~-~ ~ is ~ restricted to Et, then ~ preserves 

the connections Dt and ~i~ on E~ and ~i, and hence ~ o  ~ is ~ o ~ t .  Continuing in this 

fashion we see that  if A has a regular n-eigenvalue structure for E, it has one for E, and 

the following hold for all 1 ~<k ~<n: 

(3.7.1) :~k(A, E) = :lk(A, ~) 

(3.7.2) 2~(E) = 2~(/~) and m~(E) = m~($) for each I in ~(A) .  

Furthermore, q~oP,=Pzoq) for I in ~,(A), so if we let ~ :  E~-~g~ be the restriction of q0 

to E~, then T, is an isometry and 

(3.7.3) ~p,o D~ =~o9~ ,. 

Thus we have shown that  the Yk(A, E), 21(E, w), and m1(E) for I in :lk(A, E) and 

1 ~< k < n  are invariants of E and we call them the eigenvalue structure of E on A. If A 

has a regular n-eigonvalue structure for both E and ~,  we say that  E and ~ have the same 

eigenvalue structure if (3.7.1) and (3.7.2) hold. 

Moreover, if for I and J in :lk(A), I ~= J ,  we define 

(3.7.4) Wzs = PzDP1 

then it is easy to check that  ~F11 is function-linear on the sections of Ej, so it is a C ~ 

bundle map from E~ to El |  T*(A), and 

(3.7.5) ~01 tF11 =~ug~j 

3.8. If E and $ have the same eigenvalue structure on A, and for fixed k, 1 <.k<~n, 

there are isometries ~z from E t onto ~1 for each I in Y~(A) which are connection preserving 
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(3.7.3) and satisfy the auxiliary conditions (3.7.5) for all I and J in Jk(A), I : ~ J ,  then E 

and E are equivalent,  since 

(3.8.1) D =  ~ D~+ ~ ~F,~. 
IEYk l, JeY k 

l * J  

This observation is not  very  useful for general k, but  if we let k be the integer M such 

t h a t  E is M-umbilic,  t h e n / ~  is M-umbilie and  the  E~'s and $1's are all 0-umbilie for I in 

YM(A). B y  Proposit ion 3.3 we can completely determine which r  are connection preserving 

isometries of E z onto ~x, and thus we need only check when the conditions (3.7.5) can also 

be satisfied. These are conditions on bundle maps (or equivalently on matr ix  valued func- 

tions) ra ther  than  on connections, which makes them much easier to handle. 

I n  order to  analyze the auxil iary conditions, we need a technical lemma which we 

prove after giving the  following well known result f rom differentia] geometry.  

LEMMA 3~9. Let A be a connected open set in R ~ and (~1, ..., am: A-~C n be C ~ 

such that al(x ) . . . . .  am(X) are independent for each x in A and (~aJOxj)(x) is in \](al(x ) . . . . .  

am(X)) ='~(x), /or all x in A, i = 1  . . . . .  m, and ]=1  . . . . .  k. Then ~(x)  i8 constant. 

Proo/. Fix x 0 in A. Then there exist C ~ maps  T 1 . . . . .  Tin: A-~q(x0) • and a C ~ matr ix  

function (a~) with a j ( x ) = ~  aij(x)a~(xo)+Ts(x ), for ?'= 1 .. . . .  m. I n  some neighborhood A 0 

of x0, (a~) is invertible with inverse (fl~j). Sett ing 5~(x)=~ fl~t(x)as(x) we obtain C ~176 maps  

such tha t  d~(x)=ai(xo)+~(x) ,  where ~,(x) lies in ~(x0) • But  then aS~(x) /~xj=~(x) /~x~ is 

in ~(xo) • while a t  the  same t ime ~Si(x)/~xj is in "~(x)=V(al(xo)+~l(x)  . . . .  , a~(Xo)+~(x)},  

which implies ~5~[~xj ~ O. Thus 51 ... . .  d~ are constant ,  so ~(x) is also. 

Remark 3.10. Let  ]: R - ~ R  be a C ~ funct ion such tha t  ]~)(0) is 0 for i = 0 ,  1 ..... but  

/(x) is never  zero for x non-zero. Define a 1 f rom R into C 2 by  

(/(x), O) f o r x ~ < 0  

(TI(X) = (0,  / (X))  for x/> 0. 

Then a~(x) is in ~(x) for all x, but  ~(x) is not  constant.  Thus the independence of the a 

is a necessary hypothesis  in Lemma 3.9. 

LEMMA 3.11. For ~ an open subset of C and positive integers m and n let x: ~ - * C  ~+~ 

be a Coo/unction. For each eo in ~ ,  let ~ be in S ~'~-~ • S ~ - I ~  C m • C n such that 

f f  +s x 
a~ .~ (o ) )=0  

~Z ~Z 

for r, s>~O, r +  s < . m + n - 2  and for r=O,  s = m + n -  1. 
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where (a~ ... . .  am+~):-(bl, ..., b . . . .  ) = ~  a~b,. Then there exists a closed nowhere dense subset 

S x o / ~  such that ~. x ~ 0 in each component o] ~ - S~, where ~ = ~ / o r  any eo in the component. 

Moreover, i /each ~ is lust assumed to lie in C m+~, then the same conclusion holds i / w e  

require r = m + n - l ,  s = 0 as well. 

Pro@ I f  ~1={~o: x(~o)40} and  ~ is the  in ter ior  of {co: x (w)=0} ,  then  ~ _ ( ~ 1  U ~ )  

is a closed nowhere  dense subset  of ~ .  On ~ the  l emma  is t r iv ia l  so we m a y  assume b y  

dele t ing a closed nowhere dense subset  t h a t  x never  vanishes  on ~ .  Now do the  same for 

x A ~x/~5, t h a t  is, we m a y  assume (neglecting a closed nowhere dense subset)  t h a t  x A Ox/~5 

never  vanishes  or vanishes  ident ical ly .  Cont inuing in th is  manner  w e  set x I = x and  having  

chosen x~, we choose x~+~ to be the  first  of x, Ox/~5, ~x/~z, g*x/~5 ~, Oex/~z~5, ~x/~z ~, ... af ter  x, 

such t h a t  x~ A x~ ... A x , .  1 is never  zero. Le t  x~ be the  las t  one which can be chosen. Le t  

~(eo) =~q{Xl(~O ) . . . .  , x~(w)}. Since the  pa r t i a l  de r iva t ive  of a n y  vec tor  funct ion in ~(o~) 

remains  in ~q(~o), then  ~(eo) = ~o is a cons tan t  subspace  of C m+n b y  the  previous  lemma.  We 

consider two cases (1) x A ~x/~5 never  vanishes  and  (2) x A Ox/~5 =-O. 

I n  (1) if x A ~x/~5 A ~x/~z is never  zero ( so  m + n ~> 3), then  since the  d imension  of ~q0 

is not  g rea te r  t h a n  m + n, we see t h a t  

l0 sx } ~ 0 =  V [ ~ z ~ :  r + s ~ m + n - 2  , 

where we use the  fact  t h a t  if all  the  par t i a l s  of t o t a l  o r d e r  k a re  dependen t  on the  lower 

order  der iva t ives ,  t hen  ~q0 is spanned  b y  the  lower order  der iva t ives .  Hence  ~,o _L ~o for  

all  eo in the  component ,  f rom which the  resul t  follows. O n  the  o ther  h a n d  if x A ~x/~5/~ 

~x/~z ~ O, then  there  exis t  C ~~ funct ions  [i  a n d  ]2 such t h a t  ~x/az = [1 x + ]2(Ox/O~) and  ar+Sx/ 

(~zr~5 s) is in the  span  of x, ~x/05 ... . .  ~m+n-lx/05 m+n-s. Therefore  a~.  (~r+~x/~zr~5 s) =0  for all 

0 ~< r + s ~ m + n - l ,  hence a~ • ~ f rom which the  conclusion follows. 

Now suppose x A ~x/~5 -~ 0 and  let  [ be the  non-vanish ing  C ~ func t ion  such t h a t  ~x/85 = 

Ix. I f  we set �9 =gx, where ~ log g/~5 = - [ ,  then  ~ / 0 5  = 0. Thus  wi thou t  loss of genera l i ty  

(replacing x b y  X) we m a y  assume ~x/O~=O or t h a t  x is ho lomorphie  which implies  x , =  

~*-lx/~zi-1. If  p ,  the  d imension of ~q0, is no t  grea ter  t h a n  r e + n - l ,  then  we proceed as in 

(1) and  we are  done. I f  not ,  t hen  x(~o) is a holomorphic  curve f rom ~ in to  C n+m such 

t h a t  {x,(~o)}/= 1 . . . . .  m + n ,  form a basis for each ~o. Le t  y~ . . . . .  y~+~ be the  dua l  basis,  t h a t  

is, the  basis which satisfies y j .  x , = 5 , j .  I f  xj(eo) = ~  A,j(w)e,,  where {el} is a basis for C m+n 

then  y j=  ~ B,j(w)8,,  where (~, is the  basis  dual  to  e, and  B = (A- l )  t is holomorphic .  Thus 

the  y~'s are  holomorphic .  Since a~ is necessar i ly  a non-zero mul t ip le  of y~+~, and  a~ is in 

S ~ - 1  x S  e~-~, we have  y~+~= V(~o)@ 17(co) where V(~o), IZ(w)are  holomorphic  curves in 
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C rn, C n respectively,  and l] II and ~ =V~5{lY(eo)}.  By  

an obvious var ia t ion of the rigidity theorem (2.2), there  exists U: ~/-~ ~ an isomorphism 

such tha t  U(V(eo)) = ?(o~). Le t  Pu denote  or thogonal  project ion on ~/. Define T in 

End  (C m+~) by  T(e, ~) = (0, UP~(e) - ~). Then T(ym+~(w)) :: (0, U(V(o~)) - ?(co)) = 0, and T ~: 0. 

Since T(ym+=).e i--ym+~. Ttei::-- O, then  Tt(C m+~) is contained in V ~ l  . . . . . . . .  ~ {x~(~o)}. Let  

~: in Tt(C m+~) be non-zero; then  there exist holomorphic functions ~ such tha t  ~ -  

~ l  ~(~o)x~(w), r < ~ m + n - 1 ,  and ~r not  identically zero. Since ~ is constant ,  ~ ' = 0 =  
t r ~ i~t (w)x~(w)+~=~ $~(r implies x,+l is dependent  on xl . . . . .  x ,  which is a con- 

tradiction; t h a t  is, p is indeed less t han  m + n. 

I f  % is just in C m-=, then %.~Y~4~-~x/~zm~"-x(o~)=O implies xm+~ is dependent  on 

x 1, ..., xm+ ~ ~, so again p is less t han  m + n .  

3.12. We can now state  our theorem for M-umbil ic  bundles. Le t  E be M-umbil ic  

over  ~ (Definition 3.6). For  I and J distinct in ~/k(~2), the  m a p  qJ'~1(3.7.4) induces C ~~ bundle 

maps  ~F'H and ~I~rl f rom Ej to E z by  decomposing u/'zj, 

(3.12.1) ~tF1~ = u~"lj dz + ~ dL 

We recall Definition 2.11, so tha t ,  for example,  

t t t t t 

Note  tha t  by  (2.12.1), with D = b ,  ~ =P~, a in ~ (~ ,  Ej) and ~ in E(~ ,  E,), we obtain  

(3.12.2) (~F'u)* = - ~I~n. 

THEOREM 3.13. Let E and ~ be C ~~ n-dimensional Hermitian vector bundles over the 

open connected subset ~ el C, with metric preserving connections D and rJ. I /  E and I~ are 

M-umbilic on ~ ,  with the same eigenvalue structure, then there exists a closed nowhere dense 

subset ZE. ~ O/ ~ such that E and 1~ are locally equivalent on ~ - Z s .  ~ i / a n d  only i/ /or each 

to in ~ and I in JM(~) there exists an isometry VI.~: ( E z ) ~ ( E z ) ~ ,  where (El)~o is the fibre 

el E z at w, such that 

' ( ~ . ) ~ , ~ ( o ~ ) o  V+, (3.13.1 ) VI. ,, o (tFz:)~,~,(r = " '  

/or all 1 and J distinct in :lM(~2 ) and all r and s satis/ying either r + s <~Mz + M j - 2  or r =0 

and s = m z  + m J -  I. 

Note t ha t  if mz=  l for all I in ~/M(~2), then (3.13.1) mus t  hold for r = 0  and s - 0  and  I.  

When  r and s are both  zero we o b t a i n  II~Fij][ = H~CiJll . Then (3.13.1) holds for r = 0  and  
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t 2 t - 1  s = l  if and only if it holds for r = l  and s = 0 ,  since W'~*= I[ HII %~ and (~*)~=(~F~)* 

by  Lemma 2.12. I t  is a generalization of this technical fact that  we use .  

Proo[. I f  E a n d / ~  are locally equivalent on ~ minus a closed nowhere dense subset, 

then the existence of the V~.~ is immediate ((3.7.5) with V~.~ =~j(r 

Conversely, suppose tha t  (3.13.1) holds, and let Zs.~ be the complement of the set 

in ~ on which E and/~'  are locally equivalent. Since E and E are M-umbilic, E~ and Ez 

are 0-nmbilic for I in YM(~). Furthermore, since E and ~' have the same eigen-value 

structure, we have trace ~z  equals trace ~z. Thus if there exists a non-empty open set 

~0 contained in Zz. ~ we can apply Lemma 3.2 to obtain orthonormal frames a~ = {a 1 ..... a~ ~} 

for Ez and 51 = {dl, ..., #~} for ~ ,  defined on ~0 such tha t  

(3.13.2) D,(a~)=~,a~ and ~ i ~ ( # i ) = v , # i  forT,  in ~1(~'~0). 

We wish to show tha t  there exists no such set ~0- 

We seek to construct a C ~ isometric bundle map r E2-~ $~ which wilt satisfy the 

conditions (3.7.3) and (3.7.5). I f  U z is the matrix for ql relative to the frames ax and dz, 

then by  (3.13.2) qz is isometric and connection-preserving if and only if dUz=0,  tha t  is if 

and only if U z is a constant unitary. 

Let ~F'u have the matr ix  A n with respect to the frames az and as and similarly let 

An be the matrix for ~ j  with respect to the frames az, ~i for I ,  J in ~M(~). Then for qz 

to satisfy (3.7.5) by (3.12.2) it suffices to find constant unitary matrices {Vl} l~M(a ) such 

tha t  

(3.13.3) U~An =.~nU~ for 1 4  J .  

I f  ~z=Tl' idz+~dz,  then the matrix of (u,2"'n)z is (~'1-~'j)An+OAu/~z, and in general the 

~F' matrix of ( H ) ~  is just Or+SAzj/(azrO~ s) plus terms involving lower order derivatives of 

A n multiplied by  derivatives of ~/~-~/~ and ~ - ~ .  So (3.13.1) imphes tha t  for each co 

in ~0, there exists a unitary matrix UI. ~ such tha t  

(3.13.4) UI o, ~r + ~AH_ or+sA1s U~. ~, 

for 0 ~ r, s ~< r + s ~< ml + mj - 2 and r = 0, s = mz + m j -  1. The proof now follows from Lemma 

3.11. I f  for fixed i and j we set 

x(w) = ((A)Ij)xs, ..., (AH)m, i, (Xtj)t 1 . . . . .  (2izj),mj) 
and 

~ = ((U1. ~)tl . . . . .  (U , .  ~),ml,  - ( Uj. ~ ) .  . . . . .  - ( Uj.  ~)mjJ) 
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then x: ~0-+C mtx C mJ, a~ lies in 8 r • S 2~J-1, and a~,. ~'+'x/~zT~.s--O by (3.13.4) for the 

appropriate r and 8. Thus there exists a closed nowhere dense subset S of i20 such tha t  on 

any component A of ~ 0 - S ,  we may use the {UI.~.} for any w0 in A to define the ~ and 

hence an isometric connection preserving map ~0 between E la and $1~' But  then A is 

not contained in ZE. ~ and hence Z~. ~ is nowhere dense which completes the proof. 

3.14. Although Theorem 3.13 gives a geometrically plausible condition for two bundles 

to be equivalent, its usefulness is severely limited in practice. One must  not only show 

that  E and ~ have the same eigenvalue structure, but also one must exhibit the structure 
p 

in order to find the uFu s and check (3.13.1). Now for n >~5, it is not possible to find the 

eigenvalues of 3( and :~, much less the whole eigenvalue structure. Yet one can in principle 

compute whether or not 3( and :~ have the same eigenvalues (without finding them) 

simply by finding the traces of 3( and :~ raised to powers less than or equal to n. Thus we 

would like to state Theorem 3.13 in a form which is eomputationally more convenient, in 

terms of pointwise equivalence (Definition 2.17). 

An additional reason for doing this is tha t  in the operator theoretic ease (w 1) we can 

give an interpretation of the eigonvalues of the curvature 3((w) for the bundle E r in terms 

of the nilpotent N~ '), by  Proposition 2.20. However we have not been able to put N<~ ) into 

any canonical form when k is greater than 1 and we have no interpretation of the whole 

eigenvaluo structure of E r in terms of the nilpotents. We do have a relationship between 

the nilpotents and pointwise equivalence (Propositions 2.5 and 2.18) and in w 4 we will 

use this to prove Theorem 1.6. 

3.15. In  order to reformulate Theorem 3.13 we first find the relationship of the 3(1 

and ~ . ~  to the "partial  derivatives" of 3(. So let E be a Hermitian bundle with metric- 

preserving connection D over ~l, where ~ has a regular n-eigenvalue structure for E and 

dimension E equals n. Fix I = (i 1, i 2 ... .  , it) in Y,(~), 0 ~< l ~< n - 1, and let 1 ~< i, j ~< n(E1). Since 

n(El) 

P,. ,[D,,  3(1]P, . j= ~. P,., '[D,, 22.~, P~a,]P,., 
k=l 

n(gl) 

then 

(3.15.1) 

(3.15.2) 

Pz. ,[Dt,  3(;]Pz., = dAl.,P;., and 

1 
uFcz. t)(l., - 21. j - 21. i PI. ~[DI, 3(i] Pl. j 

1 
- ~'l.j - ~.1., P l . , {3 (udz  + 3(l~dg}Pt.j.  
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Further ,  the ident i ty  

n(E 1) 

P+.~3f~PmdzdS=P~.~D'~Pm = ~ P~.~D~P~.~D~Pm 
k 1 

implies 

(3.15.3) 

P~ , ~ P ~  ~dzd~= ~*~'~ 
' ' ~ ~F,.~)(~.k)W(l.~)(~.o + ~.~dzd~ i= ] 

or by (3.15.2), 

1 
(3.15.4) 4"~.r t = P.,, ~X,, + ~" X ~x~. P I ,  ~ z )  ~' P~i. ' ' t  ~*~(2~.~--2m) i - ~ z P z ' j X ~  ' J ' 

i . i  

Note  tha t  when i and ] are not  equal, the left hand  side of (3.15.3) is zero, so there is a 

relationship among the ~F's and their derivatives. We do not  make use of this relationship, 

but  it has proved to be an obstruction to producing examples. 

Now for I and J distinct in Jk(~), I = ( i1  . . . . .  i k )  and J = (Jl ..... ]~) let 1 be such tha t  

i~=]~ for a = l  .. . .  ,1 and it+l=~jvev If  L=( i I , .  .... iL) , then L is in yl(~)), EICEL.,z+CEL 

and 

~Fu = P~DPr = P~Pr. ~. ~PL DPr.Pz. ~,, ~Pj = PzPz. ~,.~ Dr.PL.~,+~P~. 

Thus by (3.15.2) we obtain 

(3.15.5) 1 

We note tha t  if I and J are in :Tk(~), I and J not  necessarily distinct, and if ~lJ: Ej-~EI 

is a C ~ bundle map,  the~ 

which implies 

(3.15.6) 

DI ~vll - q:H Dj :- PI(DPI q:HPs - PI chsPs D) Pj 

(qJu)~ = P,(P,q~PJ)~P~ and (~0n)~ = P~(P~q~P~)~Ps, 

where Pzq)zjP~ is considered as a bundle map of E into itself. We emphasize tha t  the z and 

~ubscripts refer to covariant  differentiation with respect to different connections on the 

two sides of the equations (3.15.6). 

THEOR]~M 3.16. Let E and I~ be C ~ n-dimen,sional Hermitian vector bundles over the 

open connected subset ~ o/C with metric-preserving connections D and •. I / E  is M-umbilic 
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on ~,  M >~ 1, then there exists a closed nowhere-dense subset Z~. ~ o/ ~ such that E and 

are locally equivalent on ~--ZE.2, i / and  only i/ E and FJ are equivalent to order k~, where 

(3.16.1) k ~ = M - l +  max {ml+ms} 
I, ] e ~M(~) 

and thus 

(3.16.2) M + I <~ k~ <~ n. 

Proo/. The one direction is obvious (Remark 2.16). For the other, suppose E and 

are equivalent to order k E at  each eo in ~ and let V~: E ~  * $~ be an isometry effecting this. 

Since M ~> 1, E is not 0-umbilic, and thus YM(~) has at least two distinct elements. Since 

each m z is greater than 0, ]c E is at least M + 1. Since E and E are equivalent to order l, 

it follows tha t  2~(w) =2~(w) for i = 1 .... , n(E), and tha t  ~2 has a regular 1-eigenvalue struc- 

ture for E (which agrees with the ()no for E) and V~P~=PtV ~. Let Vt.~: Et-~J~t be V~ 

restricted to E~. 

Now we claim tha t  if E and /~  are equivalent to order k + 1, then E~ a n d / ~  are equi- 

valent to order k via V~.~ for each i in yl(~).  This follows from (3.15.4), (3.4.2), (3.15.6) 

and the Leibnitz rule (2.11.1). 

Thus by induction, ~ has a regular k~-eigenvalue structure for /~ which agrees with 

the one for E, and for each I in Jk(~), O~k~kE- -1 ,  Ez and ~z are equivalent to order 

k ~ - k ,  via V~.~: E ~ - ~ ,  where V~.~ is the restriction of V~to E~. Since for an M-umbilic 

bundle the (M-t-1)-eigenvalue structure contains all the information of the n-eigcnvalue 

structure, and since k~ is at least M + 1, then ~ is M-umbilic, with the same eigenvMue 

structure as E. Note, we need the (M + 1)-eigenvalue structures of E and E to show that  

the eigenvalues for the 0-umbilic bundles E~ and ~i, I in ~M(~), are the same. 

In order to apply Theorem 3.13 we need to show that  (3.13.1) holds. Now by (3.15.5), 

for I and J distinct in :~M(~), (~'H)~,~ can be expressed in terms of (i) the ordinary partial 

derivatives of )'L.*~,~ and 2 L . ~ ,  (ii) (P~)~, and (P~)~,,, and eovariant partial derivatives 

of total order less than r +s,  and (iii) ( :K~)z~, and covariant partial  derivatives of total 

order less than r + s + 1. Thus (3. i 3.1) holds if 

(3.16.3) 

and 

V~+(P1):,~= (Pl):~~ VI.+ 

Vj. :(PA,,~ = (P+):,~ v+.: 

for each eo in ~ and r and s such that  either r+s<~mz+ml-2  or r = 0  and s = m ~ + m j - l ,  

and 

(3.16.4) VL. +(~z):,~ = (](L):,-~ VL.+ 
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for each oJ in ~ and r and s such that  either r + s ~< mz + m~-  1 or r = 1 and s ~ m  z % mz - 1. 

Note that by the technical result Lemma 3.11 we were able to avoid requiring (3.13.1) to 

hold for r = m ~ §  and s=O and thus we do not require (3.16.4) to hold for r=m1+m ~ 

and s = 0. 

Now E I and $ i  are equivalent to order k s - M ,  so by definition of ks we obtain (3.16.3) 

for I, and similarly for J.  Since I is less than M, E L and ~L are equivalent to order k s - l  

which is at least m~+mj, and thus (3.16.4) holds. We have therefore shown that  (3.13.1) is 

satisfied. 

To complete the proof, note that the total number of Ez's for I in JM(~) is at least 

M + 1. Since m z is the dimension of E z, we have 

M - l + m l + m 1 < ~  ~ dim E K = n  

which proves (3.16.2). 

Of course to determine whether a bundle is M-umbilic requires that  we know the eigen- 

value structure. Using Theorem 3.16 we can now give an equivalence result which requires 

no knowledge of the eigenvalue structure. 

THEOREM 3.17. Let E and ~ be n-dimensional Hermitian vector bundles over the open 

subset ~ o/C with metric-preserving connections D and rJ. Then there exists a closed nowhere- 

dense subset ZE.~ O/ ~ such that E and ~ are locally equivalent on ~--ZE.~ i/ and only i/ 

E and 1~ are equivalent to order n on ~.  

Proo[. There exists a closed nowhere dense subset Zn of ~ such that  if { ~ }  are the 

components of ~ - Z n ,  then ~ has an n-eigenvalue structure for E for each ~. Thus E 

restricted to ~ is M-umbilic for some M. By Theorem 3.16, if E and/~' are equivalent to 

order n on ~ ,  there exists a closed nowhere dense subset Z~, ~ of ~ such that  E and 

are locally equivalent on ~ - Z ~ .  5. If  Z~. ~ is the union of Zn and all the Z ~E. E," then Zs, 

is closed and nowhere dense in ~. 

Although in general n will suffice, a much better estimate can be given in the generic 

c a s e .  

De/inition 3.18. A Coo Hermitian vector bundle E over the open subset ~ of C with 

metric-preserving connection D is said to be generic if ~ has distinct eigenvalues of multi- 

plicity one at each point of ~.  

COROLLARY 3.19. Let E and ~ be generic C oo Hermitian vector bundles over the open 

subset ~ o/ C with metric-preserving connections D and 1~. Then E and ~ are locally equi- 

valent o / / a  closed nowhere dense subset Z~. ~ o/ f~ i / a n d  only i / E  and J~ are equivalent to 
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order two on ~ ,  that is, i/ and only i/ J~, ~-,, ~ are simultaneously unitarily equivalent to 

~ ,  ~ ,  ~ at each point o / ~  -- ZE. ~:. 

Proo/. I f  E and  ~ are generic, then  they  are both  1-umbilic and  m~ = 1 for each i in 

3~(~). Thus  ke is 2. 

COROLLARY 3.20. Let E and ~ be 9eneric C OO Hermitian vector bundles over the open 

subset s o/f~ with metric-preserving connections D and ~). Then E and 1~ are locally equivalent 

o / / a  closed nowhere dense subset o / ~  i / a n d  only i / the/oUowing conditions hold: 

(3.20.l) t race ~ t ~ t r a c e  ~ /or i ~ 1, 2 ... . .  n or equivalently the eiflenvalu~s o/ ~ are equal 

to those o/ ~ ;  and 

(3.20.2) t race  ~ : ~ : K J ~  ~, t race  ~ K ~ z ~ X  ~, and t race  ~ ' ~ '  ... : ~ z ~  ~' are 

equal to the correspondin 9 traces in ~ /or O<i,  ], l <~n-1 and distinct O<i~ . . . .  , iv<<.n-1, 

where p >1 2. 

Proo/. Let  a~ be a uni t  section of E~ for each i in :/~(~), pu t  P ~ P ~ a ~ = a ~ a ~  and 

P~z~P~a~=b~a~; similarly for d~, d~ and ~i~. Then  E and ~ are locally equivalent  ff and  

only if for each w in ~ there exist ~ ,  ~ . . . . .  ~n, [~[  = 1  such tha t  

(3 .20 .3)  ~ a ~ = d ~ ,  i # j  and 

(3.20.4) ~ b ~ = b ~ ,  whenever  a~=i=0, 

since b y  (3.15.5) a~r vanishes identically in an open set if and  only if ~F'~ vanishes identi- 

cally. Thus  if (3.20.3) holds, then  (3.20.4) is equivalent  to 

(3.20.5) 

Now (3.20.3) holds if and  only if 

(3.20.6) - ~ = atiatj =aflai) 

at j~  t =ati~t.  

and a ,  ,,a~, ~, ... a,s,,, =dr, f,d,, ~, ... d~v~, 

for all distinct i~ . . . . .  i r, and p ~> 2 (p > 2 is needed since some a~/s could be 0). 

Note  by  L e m m a  2.12 and by  (2.15.5) applied to  ~ :  E ~ E ,  :K~ is self-adjoint. Thus  the  

b~/s are real; (3.20.5) and  (3.20.6) hold if and  only if 

trace P i ~ P j ~ P ~  = trace P ~ P j : K ~ P ~  for 1 ~< i, i <~ n, i #  i, 

t race Pt~zPr = t race  P ~ P j X ~ P ~ ,  for 1 ~ i, j <~ n, i ~  j and 

t race  P~,~zPt, ... P~v~zPt, = t race  P~,:~'zP,, ... P,s,:~zP ~, 

for dist inct  1 <<. i 2 . . . . .  is, <~ n, p >1 2. 

Now (3.20.2) follows f rom (3.4.2). 

15 -782902 Acta mathemattca 141. Impdm6 le 8 D6~embre 1978 
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3.21. Corollary 3.20 is slightly neater than the formulation given in [6], though it in 

fact involves more traces. Note further that  the genericity of E and J~ can be determined 

by  the non-vanishing of a polynomial in the traces of :~ .  Thus the corollary gives a com- 

plete set of invariants for local equivalence of generic bundles. 

To give similar invariants for non-generic bundles would be difficult but  the following 

lemma shows that  a finite set does exist. We will also use this result to strengthen our 

equivalence results for bundles with real analytic metric by  omitting mention of the 

closed nowhere dense subset. The following lemma seems to be well-known but we have 

been unable to find a suitable reference. 

L~,MMA 3.22. I /  L 1 . . . . .  J~ and Z 1 ..... L~ are complex n • n matrices, then there exists 

a unitary matrix U such that UL~=]~i U /or  i = 1 ..... p i / a n d  only i / the  trac~ o/a'Jinite 

number o/words in L 1 ..... Lp, L* ..... i *  agree with the trac~ o/ the corresponding words in 

Proo/. Setting M j = L ~ + L * + a I  and N j = i ( - L j + L ~ ) + a I  and the same for the ~ 

where a is a real number, we have the Lj's and the Lj's simultaneously uuitarily equivalent 

if and only if the self-adjoint matrices {Ms} U {Nj} and {Ms} U {~j} are simultaneously 

unitarily equivalent. Moreover by choosing a sufficiently large we can assume that  all are 

positive definite matrices. 

Let  C be the ( 2 p + l ) n •  nilpotent matrix with all entries zero except the 

entries above the diagonal which consists of G1, G, ..... G2~, where Gt= Mt and Gt+~=N, for 

i = 1, 2, ..., p, and similarly for ~. If the two collections are simultaneously unitarily equi- 

valent, then l~ and ~ are unitarily equivalent. Conversely, if C and ~ are uuitarily equi- 

valent via the unitary ~ ,  then 71 must be block diagonal with entries U 1 ..... Uw+l.eA 

calculation yields U, G, = (~i U,+I for i = 1 . . . .  2p which implies U, G~ U~ = 0~. By uniqueness 

of the positive square root, we have U, G, U~ = 0,  which implies Ui = Ut+l and hence setting 

U = Ut, we have UL, =L,  U for i = 1, ..., p. 

Now the result of Pearcy [18] and Specht [21] completes the proof since the trace of 

a word in E and s will be a polynomial in ~ with coefficients the trace of a word in the 

L~ and L~. 

Of course, the number of traces required to show unitary equivalence of two m • m 

matrices might be enormous (Pearcy requires 4 ~' traces). 

3.23. We emphasize that  the preceeding results, on equivalence of Hermitian bundles 

with metric-preserving connections, apply to holomorphie Hermitian bundles where 

equivalence refers to both the holomorphic and metric structures. The converse of  this is 
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also true, tha t  is, given a Hermit ian bundle E, over f2 contained in C, with metric preserving 

connection D, E can be given a complex structure so tha t  it is a holomorphic Hermit ian 

vector bundle and D is the canonical connection. Indeed, if a 1 ... . .  an is a frame for E in 

a neighborhood A of the point coo in f2, and 0 the matrix of connection 1-forms relative to 

a, then we can find a C ~ n • n matrix A which solves the differential equation 

(3.23.1) OA +O"A = 0 

in a neighborhood of coo with initial condition A(co0)= I ,  where we have written 0 =O'dz + 

0"dS. To see this, assume tha t  co o is the origin and let ~(co) be a C ~~ function with compact 

support  in the disk Dr of radius r such that  Q is identically 1 on Dr,, ro<r. Let A o be 1 

and define Am+ 1 by  

�9 1 1 
(3.23.2) Am+l(co)=I-~l~. f ~(~)O'(~)Am(~){-~-~-~}d~d~.. 

~ $  J D r 

Then Am+l(0)= I, (OAm+l/~5)= -~O"Am on D~, and thus 

(3.23.3): OAm+l O"An on D~~ 
0~ 

For r 0 small enough, the Am's converge uniformly to A, a continuous matr ix  valued func- 

tion such tha t  A(0)= I .  I t  is easy to check tha t  A gives a distribution solution to (3:23.1) 

on D~0, and thus is G ~ by  [29, p. 86]. Moreover, if {A,} is a covering of A by  open sets, 

and A~ is a non-singular C ~ matrix which solves (3.23.1) on A,, then on A~ fl A~, 

(3.23.4) O(Ag~At~) = - A ~  OA~Ag~ A~ + Ag~ ~A~ 

= A glO"At ~ _ Ag i O"Ar = O. 

Thus the Ag x Ao are holomorphic and can be considered transition data for a holomorphic 

bundle on A which by  Grauert 's  Theorem [12] is trivial. So there exist holomorphic matrices 

q), on A~ such tha t  A~(I), equals A~qlo on A,  N A~ and this defines a non-singular solution 

A of (3.23.1) on all of A. 

I f  6 j = ~  A~W~, on A, then ffl ..... 8,  form a frame for E and D"#~=O, i = 1  ..... n. Thus 

if we trivialize E restricted to A using the frame 61 . . . . .  ~n and give E the complex structure 

of the trivial bundle, then we may  consider the 6~ ..... ff~ as holomorphic sections. Relative 

to this structure D satisfies (2.9.2) and (2.9.3) so it is the canonical connection, (cf. [30, 

p. 62] for another proof). 

We want to show tha t  for Hermitian holomorphie vector bundles with real analytic 

metric we can get equivalence on all o f ~ .  To do this we first give the following undoubtedly 

well-known lemmas:  
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L E ~ M ~  3.24. Let E and ~ be holomorphw Hermitian vector bundles with real analytic 

metrics, over an  open subset s contained in C. I / E  and ~ are equivalent to in/inite order at 

a point coo in ~,  that is i / E  and ~ are equivalent to order k /or  all k = l, 2 .. . .  at coo, then E 

and ~ are equivalent in a neighborhood o/o9 o. 

Proo/. Note  tha t  by  the compactness of the n • n uni ta ry  group, we can find an iso- 

met ry  V~,: E~~ such tha t  V ~ ~  ~,z~ V~~ for all i and ]. 

Now let a = {ax ... .  , an} be a holomorphic frame for E in a neighborhood o f  w0 and let 

h(a) -- ((ar ai)) be the matr ix  of inner products.  Then h is real analyt ic  and if for simplicity 
cO we assume tha t  co o is the origin then h ( a ) = ~ . j _ 0  htJz~5 j If  we let B = ( ~ o h i ~  -1, then 

B exists, is holomorphic, and is non-singular in a neighborhood of 0. Let  ~,j = ~ B~sa t so 

tha t  ~ = {~x, ..., ~n) is a holomorphic frame for E in a neighborhood of 0. Since h@) equals 

B*h(a) B, we have 

(3.24.1) ~h(~) ~ ( 0 ) = 0  for a l l i = l , 2  . . . . .  

Since h(y) is self-adjoint, (3.24.1) holds for the 5 derivative as well. I n  a similar fashion 

we can find a holomorphic frame ~ for ~ such tha t  (3.24.1) is satisfied for )~(~). Using 

(2.18.5), as in the proof of Proposit ion 2.18, we  obtain for U, the matr ix of V 0 relative to 

Yl .... , )'n and ~1 ..... ~n, 
Uh ~j =~JU for all i, j 

which implies tha t  Uh(y) =s U in a neighborhood of O. Thus if we define q~: E-+/~ in a 

neighborhood of 0 by  letting the matr ix  of q relative to the frames 71 ..... yn and ~1 ... . .  Y, 

be the constant  matr ix U, then ~ is a holomorphic isometry, tha t  is, E and ~ are equi- 

valent. 

L]~M~A 3.25. Let E and J~ be holomorphic Hermitian vector bundles with real analytic 

metrics, over an open connected subset ~ contained in C. 1/ E and 1~ are equivalent in any 

non-empty open subset o / ~ ,  then they are locally equivalent on ~.  

Proo/. By Lemma 3.22, equivalence to order k is given by  the equali ty of certain 

traces in the covariant  partial derivatives of :K and ~ ,  which are real analytic since the 

matrices relative to holomorphie frames are real analytic.  Thus if E a n d / ~  are equivalent  

to  order k on any  open subset of s they  are equivalent  to order k on s Since they  are 

equivalent  to order k for all k on an  open subset, they  are equivalent  to infinite order at  

each point  of s and the lemma follows from the previous lemma~ 

3.26. I f  E and E are any  C r176 Hermit ian bundles with metric-preserving connections 

such tha t  locally there are frames relative to which the matr ix of inner products  and  the 
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connection 1-forms are real analytic,  then we can solve (3.23.1) for a real analyt ic  A,  so 

we can consider E and ~ locally as holomorphic vector  bundles with real analyt ic  metrics. 

Then by  using Lemma 3.25 we can delete the set ZE.~ from Theorems 3.16 and 3.17, and 

Corollary 3.20. 

3.27. We conclude this chapter  with an example of two Hermit ian bundles on C 

with metric-preserving connections which are locally equivalent  on (~ minus the y-axis 

but  are not  equivalent  in any  neighborhood of a point on the y-axis. A similar example 

gives two bundles which are locally equivalent on (~ but not  globally equivalent.  

We let E be the trivial 2-dimensional Hermit ian bundle over •, with the global ortho- 

normal  frame ~ = {~1, ~2}. Let / (x)  be a real C ~~ function of the real variable x which vanishes 

to infinite order at  x = • c, c a non-negat ive constant ,  and such tha t  / a n d / '  are non-zero 

for Ix] >c  and identically zero for Ixl ~<c. Define real C ~ functions a and b of the complex 

variable z = x + iy by  

a(z) = �89 b(z) = ~( / (x) -] ' ( z ) ) .  

Define the  connection D on E by  letting the matr ix 0 of connection 1-forms relative 

to the f rame a be 
0 = ~ l ( d z -  dS) a d z -  b d ~ .  

\ bdz - ad5 0 ] 

Since 0 is skew-adjoint,  D is metric preserving. The matrix,  ~(~),  of 3( relative to the 

frame a is then given by  

b2_a2 ~a ~ b ~ _ � 8 9  
7~((~) = ~ ~z " ) aa ~b 4_ �89 a 2 - b  ~ 

~z ~ 

= ( - l(x) l'(x) o 
o l (x) l ' (x) ) ;  

We construct  the bundle /~ and connection D in exact ly the  same manner  using the 

function f(x) to define d, b, and 0, where 

f(x)={ /(x) x>lO 
-/(x) z<0.  

Note  tha t  0 equals ~ on ~ [ ,  the set of z such tha t  x >  - c ,  and 
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on ~ [ ,  the set where x <c. Thus E and ~ are equivalent on ~+ and ~ [  via ~+ and ~_ 

respectively, where ~+(al)=dl, ~+(a~)=(72 and ~-((~1)=al, ~0_(a~)= - ~ .  

Let  ~ be a connected open subset of C and ~: E-~J~ an equivalence on ~ represented 

by the 2 • 2 unitary matrix U = (u~j) relative to the frames a and d. Then since U~(a)  = 

:~(~) U, and Yf(a)= :~(5) is diagonal with unequal entries except when Ix I ~<c, we have 

u12=u~1 =0 on the intersection of ~ with the set of z for which Ix[ ~>c. Thus ulna, etc. are 

identically 0. Now ~0 preserves the connection if and only if UO=OU+dU,  that  is if and 

only if 

(3.27.1) 

(3.27.2) 

d u ~ = O  f o r i = l , 2  and 

u~(bdz - ad~) = (~dz - ddS) u11. 

Thus by (3.27.1) ui~ is constant on ~ for i = 1  and 2. Since a equals d and b equals 

on x > c and a or b is always non-zero there, (3.27.2) imphes that  u n equals u~ on ~ ~ (x > c}. 

Similarly, since a equals - d  and b equals - ~  on x <  - c ,  we have Ull equal to -u~2 on 

s N ( x <  -c} .  Thus if ~ is not contained in ~+ or ~ [ ,  then since the u~ are constant on ~,  

we must have ull=u~2=O, so U is 0 on 5 N (Ix[ >~c}, so ~ would not be an equivalence. 

Hence ~ is contained in either ~+ or ~ [ .  

When c is positive, this gives an example of bundles which are locally equivalent but 

not globally. When c is 0, E and ~ are not equivalent on any open set ~ which contain 

points on the y-axis. 

Note that  by continuity of the traces in :~,~ and :~z,~, since the bundles E and 

are equivalent to infinite order at every point of ~0 ~ and ~g,  they are equivalent to in- 

finite order at each point of C. 

We emphasize finally tha t  by the discussion in w 3.23 we could consider our bundles 

E and $ to be holomorphic Hermitian bundles over C and thus obtain equivalence to 

infinite order at every point, but  local equivalence only off the y-axis. Therefore the bad 

set cannot be eliminated even for Hermitian holomorphic vector bundles with canonical 

connection if the metric is not real analytic. Similarly, local equivalence for Helmitian 

holomorphic vector bundles does not imply global equivalence even when the domain is 

simply connected. 

w 4. Conclusion and open problems 

4.1. In the first section we introduced the class of operators ]~,(~) and indicated how 

their s tudy could be related to that  of Hermitian holomorphic vector bundles over ~ and 

stated various theorems without proof. Now having obtained the necessary results in 

complex geometry in w 2 and w 3, we put  it all together. 
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Recall given an operator T in B~(~) we have the Hermitian holomorphie vector bundle 

Er  defined over ~ as the pullback of the map t defined by t(w) =ker  (T -o~). Consequently, 

if T and ~ are unitarily equivalent operators in Bn(~) and W is a unitary operator such 

that  T =  W * f W ,  then W defines a congruence on ~r(n, 74) taking t onto t. Therefore, 

E r and E~ are equivalent as Hermitian holomorphic vector bundles. Conversely, if E r 

and E~ are equivalent bundles, then by Theorem 2.2 it follows that  there exists a unitary 

W on ~ such that  

W kcr ( T - a ) )  = k e r  (~-o~)  for eo in ~.  

But then for x in ker (T--o)) we have 

W * ~ W x -  T z  = W*(~ -co) Wx = 0 

and hence W * ~ W = T  since V,,.,~ ker ( T - w ) = ~ .  Thus we have proved Theorem 1.14 

showing that  the study of operators in Bn(~) up to unitary equivalence can be reduced 

to the study of the associated Hermitian holomorphic vector bundles. 

4.2. Now recall that  the local operator N~ is defined by 

N ~ , = ( T - w ) l k e r ( T - a , )  "*t for m in ~.  

Thus if T and ~ in B,(~) are unitarily equivalent and W is a unitary which satisfies 

T = W * ~ W  then 

W ker (T-oJ )  "§ = ker ( ~ - w )  ~+1 and Vohro = / ~  Vo, 

where V~: ker (T-oJ)"+X-~ker (~-r  n+x is the isometric restriction of W. Thus the local 

operators are unitarily equivalent. Conversely, suppose T and ~ are operators in Bn(~) 

such that  N o and ~ are unitarily equivalent for each o) in ~.  Then the associated maps 

t, ~: ~-~ ~r(n, ~)  have contact of order n by Proposition 2.5. Further, by  Proposition 2.18 

we have that  for each ru 0 in ~,  there exists an isometry V: ker (T-oJo)-~ker ( ~ - o J  0) such 

that 

V ~ ( W o )  =fC~(Wo) V for 0 ~<p, q < n - l ,  

where ~ and ~ denote the "curvatures" relative to the canonical connections on Er  and 

E~, respectively. Finally, by Theorem 3.17 there exists an open subset ~o of ~ on which 

the restrictions of E r and E~, are equivalent. Now using Corollary 1.13 and Theorem 1.14 
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we see by viewing the operators T and ~ as being in B~(~0) that  they are unitarily equi- 

valent. This completes the proof of our main Theorem 1.6. 

4.3. I t  is now clear why we can restrict our at tention to local equivalence. As proved 

in the previous section, if bundles Er  and E~ are locally equivalent, they are globally 

equivalent. This is not true for Hermitian holomorphic vector bundles, in general (cf. 

3.27) except those induced as pullbacks of maps into a Grassmanian. 

4.4. I f  the bundle Er  corresponding to T is generic, then the same argument given in 

w 4.2 but with Corollary 3.19 replacing Theorem 3.17 shows that  "local operators" for T 

could be defined as TIker  ( T - w )  a. Moreover, if we uTite T lker  (T -w) 2 as a 2 • 2 matrix 

with n • n blocks as in Proposition 2.20, then ET is generic if and only if the eigenvalues 

of the upper right hand block are distinct. 

4.5. There are several ways in which we could generalize our results. First, we could 

allow the operator T to have both a kernel and cokernel, for example, in the generality 

covered by Proposition 1.11. I f  we do, we obtain two bundles, E~ defined by ker ( T - w )  

which is holomorphie and El: defined by kei ( T - m ) *  which is anti-holomorphic. Now 

while our results apply to each bundle separately, there is an ingredient missing in order 

to construct T. Since V ~  ker ( T - w )  = ~ and V ~  ker ( T - m ) *  = TI are orthogonal 

and span ~ ,  the matrix for T relative to :~ = ~ ( ~  ~ is 

(0 
where Er  determines T 1 and ET determines T2. However, the operator X is not deter- 

mined by T 1 and Te. We have succeeded in classifying these operators (and in fact a larger 

class) by considering the local operators in two parameters w I and w~ obtained by com- 

pressing T to ker (T -Wl )n l~ke r  ( T - w 2 )  *n' for sufficiently large integers n 1 and n 2. 

Details will be given in a sequel. 

A different situation arises if ~ contains isolated points. In  that  case it may  be 

impossible to resolve the bundle at  such a point. From the operator theoretic point of 

view, what may  happen is tha t  T - w  0 fails to be onto or the dimension of ker (T-we) 
increases. 

4.6. A different generalization would be to the context of several variables. Although 

we have made some progress on this, it is complicated at  both ends, both in the operator 

theory and in the complex geometry. For the operator theory one would consider a com- 

muting m-tuple of operators and use the homological analysis introduced by J.  L. Taylor 
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[24] to s tudy the notion of joint spectrum. Assuming the m-tuple is onto on an open subset 

of (~m but  not  invcrtible, one can show tha t  the joint kernels form a holomorphic vector 

bundle. (This a rgument  was shown to us by  D. Voiculescu.) Thus one can define an analog 

of the class Bn(~2) for open subsets of C m. Moreover, one would like to allow complex 

submanifolds of lower dimension but  how is an open problem. Now al though the notion 

of local operator is rcplaccd natural ly  by tha t  of a local m-tuple, we would need to know 

much more about  such m-tuples than  we do. 

For  the geometry,  the rigidity theorem holds without  restriction. Thus the operator 

theoretic s tudy  can be reduced to tha t  of geometry.  The equivalence problem, however, 

now poses real difficulties. The curvature  is no longer a single operator  but  one must  either 

consider sectional curvatures or some other algebraic combination. We have obtained one 

result, however, in case the sectional curvatures generate the full matr ix algebra at  each 

point. This corresponds to Proposit ion 3.3 where n = I. We believe it should be possible 

to  generalize most  of our results to this context  but  tha t  this will require a more conceptual 

unders tanding of our equivalence proofs. 

4.7. I n  w l we associated a Hermit ian holomorphic vector bundle to an operator in 

Bn(~) and more generally in w 2 to a holomorphic curve in Or(n, ~) .  We now analyze the 

problem of which bundles can arise in this manner.  We first discuss generalizations of 

the Frenet  formulas ([3], [7], [13]) for a Hermit ian holomorphic vector bundle, and the 

obstructions they  give to inducing the bundle from a holomorphic map into a Grassmannian 

(Propositions 4.9 and 4.17). The reader interested in applications to operator  theory  can 

proceed to w 4.2! without  loss of continuity.  

Let  E be a Hermit ian holomorphic bundle of dimension n over the open subset ~2 

of C. For  each k = 0 ,  1 .. . .  we associate to E a (k+ l )n -d imens iona l  holomorphic bundle 

Jk(E),  the holomorphie k-jet bundle of E (1) as follows: 

If  a = {al . . . .  , an} is a holomorphic frame for E, on an  open subset A contained in ~ ,  

then Jk(E) has an associated holomorphic frame J~(a)={alo ..... ano ... . .  al~ .... , ank} de- 

fined on A. If  (~ is another  holomorphic frame for E defined on A, then on A N A, we have 

~j= ~ aijai, where A = (atj) is a holomorphie, n • n, non-singular matrix,  and we denote 

this symbolically by  

= aA. 

Let Jk(A)  be the (k + 1) n • (k + 1) n, non-singular, holomorphic matr ix 

(1) Although unnecessary for what follows, the reader may consult [11] for information on jet 
bundles and their uses in other contexts. 
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(4 .7 .1)  J~(A) = 

A A' A" ... (klc)A(~) 

0 . . . . . .  A 

Then  b y  definition the  f rames  Jk(a) and Jk(a) are related on A fl/~ b y  

(4.7.2) gk(5) = gk(a) gk(A ). 

A st ra ightforward computa t ion  yields t h a t  if A and ~ are holomorphic n x n matrices,  

then  
Jk(A,~) = Jk(A )JK(~) 

so the  bundle Jz(E) is well-defined (el. [26], p. 14, for  a discussion of construct ing a bundle 

f rom the t ransi t ion functions). 

The  t t e rmi t i an  metr ic  h on E induces a Hermi t i an  form Jk(h) on Jk(E) such t h a t  if 

h(a) is the ma t r ix  of inner products  ((aj, (rt)), then  

h(~)  . . . - ~  

(4 .7 .3)  J~(h) (J~(~))  = : ! 

is the  ma t r ix  of Jk(h) relat ive to the  f rame  Jk(a). To see t h a t  Jk(h) is well-defined, we need 

(4.7.4) J~(h) (gk(#)) = Jk(A) * {Jk(h)(gk(a))}Jk(A) 

which follows f r o m  an easy  computa t ion .  

I n  a na tura l  way  E is Jo(E) and Jk(E) is a holomorphic  sub-bundle  of J~(E) for l~k,  

with Jk(h) the  restr ict ion of Jl(h) to Jk(E), and Jo(h)=h. 

Note  t h a t  in general Jk(h) is not  posit ive on Jk(E), so Jk(E) has no na tura l  Hermi t i an  

metric,  just  a Hermi t i an  form. 

4.8. :If ]: fs ~r(n ,  ~ )  is a holomorphic  curve and  a is a holomorphic  f rame for E r 

on A contained in ~ ,  then  each a~ is a holomorphic  funct ion a~: A-~ ~4. We say  t h a t  / is k- 

nondegenerate if al(W) . . . . .  an(w), ..., a(lk)(w) . . . .  , (r(nk)(m) are independent  for each eo in the 
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open set A, and for all such A. If this holds for all k = 0 ,  I . . . . .  then / is infinitely non- 

degenerate. 

If f is k-nondegenerate,  then  f induces a holomorphic map  ?~(I): ~ ~ r ( (k+  1)n, :H) 

such tha t  ~(f) (w) is the span of a~(o~) . . . . .  a(,~)(~o). If a is a f rame for Er on A, let ?'~(a) = 

{al . . . .  , a , ,  ..., a(~ ~) .. . . .  a~ )} be the induced frame for Eel(r). Then  Jk(Er) and E~(~)are 

natural ly  equivalent  Hermi t ian  holomorphie vector  bundles by  identifying at, with a~ '), 

since (a~,, a~) = ~ ( a ~ ,  a~)/~z'~5"=(a~ "), a~')). We emphasize tha t  in this case J~,(h) is a 

Hermi t ian  metric for J~,(E~), t ha t  is, J~,(h) is positive. 

Note  tha t  if T is in B,(s and t: ~ ~t (n ,  :H) is the induced holomorphic curve, then 

if a is a f rame for ET, by  Lemma 1.22 the a~ ~) are independent  a t  each point, so t is infinitely 

nondegenerate.  

PROPOSITION 4.9. Let E be an n-dimensional Hermitian holomorphic vector bundle 

over ~ contained in C. Then locally E is equivalent to a bundle E I /or / a k-nondegenerate 

holomorphic curve (0~<k<oo) in ~r(n,  C (*+l)n) if and only if Jk(h) is a (positive) metric 

on E and the curvature, induced by the canonical connection on Jk (E ) , / s  zero on ~.  

Proof. If f is a holomorphic, k-nondegenerate curve in ~t (n ,  C (k'l)~) then ?'k(f) maps 

to the one point  space Qr((k + 1)n, C (**~)~) and EjCr)is the trivial Hermi t ian  holomorphic 

(k+ 1)n-dimensional bundle, so the curvature  is zero, and the same holds for any  bundle 

equivalent  to E I. 

Conversely, if the curvature  induced by  J,(h) is zero, then  by  I ~ m m a  3.2 there exists 

a (local) frame 7={~q . . . . .  ~(k-~)~} for Jk(E) such tha t  7 is or thonormal  and Dy , - -0  for 

each i, t ha t  is, 7t is holomorphie (since D" extends ~ (2.9.3)). Let  aj=ajo=~k_i 1)~ aij~, 

define holomorphie maps #j = (5lJ .. . . .  #(,~ 1),.j) into C (k+~)~, where a is a frame for E.  Then  

(a ,  a~) = (#j, #,) 

since the 7~ are orthonormal.  Thus E is equivalent  to E/, where / is the span of {dl . . . . .  dn}, 

so ] is a curve in Qr(n, C(~+I)"). Since the matr ix  J~(h) (Ja(a)) is the matr ix  of inner products  

of j~(d), then  / is k-nondegenerate.  

4.10. Note  tha t  there need be no globally de f ined / :  ~ -~  0r(n ,  C (~'l)n) such tha t  E 

and E r are equivalent  or even locally equivalent.  For  example,  let E be the 1-dimensional 

bundle defined on ~ = {z 10 < I z I < 1}, with global frame given by  one section a such tha t  

Uall~=l + [z I . Then E is locally equivalent  to  E I, where / (z)  is the span of (U~z, 1) in C 2, 

so [ is only locally a well-defined holomorphic curve. Now if there is a holomorphie curve 

[: ~ -~  0r(1,  C 2) such tha t  E and E~ were locally equivalent,  then by  the  Rigidity Theorem 
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(2.2), ] is locally congruent  to f. By  the uniqueness of analytic continuat ion (cf. w 4.2) ~ is 

globally congruent  t o / ,  and hence is multiple valued. 

4.11. L e t / :  ~ Qr(n, ~t) be a holomorphic curve. Then just as in Proposit ion 2.20 we 

can find a frame a for Ef such tha t  at  a fixed point  o9 in f2 the a~ are orthonormal,  the a'~ 

are orthogonal,  and the al r) are perpendicular to the aj for all r~>l. Thus by  (2.18.3), at  

co we have 

(4.11.1) Jl'(~) = i 

o 

so ~ is negative semi-definite. Applying this to the curve ]k(/) we find tha t  the curvature  

of Jk(E/) is negative semidefinite. Thus a necessary condition for a bundle E to be equi- 

valent to a bundle of the form E / f o r  / a k-nondegenerate curve in ~r(n, 71t), is t ha t  the 

curvature  induced by  the metric Je(h) on Ju(E) be negative semi-definite. 

Since Jk(h) is induced by  a metric on an n-dimensional bundle, its curvature  involves 

much cancellation, as we see from the following Lemma.  

LEMMA 4.12. Let E be an n-dimensional Hermitian holomorphic vector bundle over 

in C. I / /or  k>~l, Jk(h) is a metric on Jk(E), then Jk_l(E) is contained in the kernel o/the 

curvature induced by Jk(h), which thus ha~s rank at most n. 

Proo[. For  simplicity we assume 0 is in ~ and find the rank of the curvature  at  0. Let  

a be a holomorphic frame for E in a neighborhood of 0, which is or thonormal  at  0. I f  we 

s e t  

[ (k~-~)n 1 arh(a) . . . .  ~-1 
B = I  2 . \  ~-o r! ~ .  ( . )z  ) 

then B is n • n, holomorphic,  and non-singular in a neighborhood of 0. Let  5 be another  

frame defined by  5 =aB. Then h(d)--B*h(a)B,  and 

~ r h ( ~ )  
. . . . .  (0) = 0 Oz r for r= 1 . . . . .  ( k+  1)n. 

There is nothing to prove if k = 0. If  k is at  least l ,  let/~ be the Hermit ian  form on E 

determined by  

~h(?r~, ?rj) 
( 4 . 1 2 . 1 )  i f (0 , ,  &j) = - 0 z ~ -  -" 
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(: X(J~(~)) = 

where 

Then at 0, 

(4.12.2) jk(h)(j~((~,)=(: jk_l(~)(Oj~_,((~)))" 
Since the upper left block of J~-,0~)(J~_,(5)) is ~(d), the positivity of J~(h) implies 

that  )~ is positive definite at 0, and hence ~ is a Hermitian metric on E in a neighborhood 

of 0. Le t /~  denote Jg_,(~)(Jg_,((~)). Then by (2.18.3), at 0 we have 

Thus 

So 

Jk(h) (Jk(~))= \ H  u 

I ~HI~I_I~HI I OH, fI-,aB ~2Hx\ 
~z-~(~) ~ a~ a ~ |  

X(gk((~)) = ~11  ~ i~1 ~HI, ~2H111 I~11 ~I-~ ~ 1  ~I~I ~2~I I #" 
- l ~  - ~z ~-;~zj  - ( ~  - ~ ~ a ~ j /  

Now aH,/a5 is just the first "row" of ~ and aH,,/az is just the first "column". 

Thus 

0HII31_1=(I0...0) andlffl_l~Hzl (I0 I 

OH*~ -l~Hs' I,((,) a2h(a) ~(~)=0, 
a~ ~z az a~ 

OHI, a~Hu 
~_%/~-1 = 0, 
~2 az az a~ 

all1 I-'i I ~I~ a2H1 = O. 
~ ~z ~ z ~  

and 

Thus if we let :~ denote the curvature of J~_I(E) induced by the metric Jk_x(h), then 

we have shown that  at 0, 

0 
(4.12.3) ~(Jk((~))=(: ~(jk_!(t~))) 

and the Lemma follows by induction on k. 
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4.13. Let W be a finite dimensional complex vector space, with a Hermitian linear 

form ( , ) .  Then there is a Hermitian form induced on h vW, the p-fold wedge product of 

W, by 
(w 1 A ... A wv, wl A ... A ~ )  = det ((w~, ~j)). 

Furthermore, if F is a proper, non-zero subspace of W and the t termit ian form is 

positive definite on V, then it induces a Hermitian form on W~ V by 

(4.13.1) ([w], [z~])= Ilv, A ... A vnll-*(v, A . . . v ,  S w ,  v , A  ... A v ,  Az~), 

where [w] denotes the equivalence class of w in W~ V and v 1, ..., v. is a basis for V. I t  is 

easy to check tha t  this is well-defined on equivalence classes and independent of the choise 

of basis for V. 

I f  v I ..... v. is chosen to be an orthonormal basis, then 

II[<o]ll"=det 

1 0 (Vl, w ) )  

�9 . i 

0 1 (vn, w) 

(w, v~) (w, vn) Ilwll" 

=llwll"- y l(w, v,)l., 

and thus the Hermit ian form is positive on W if and only if the induced form is positive on 

w/v. 

4.14. Let  [ ]k denote equivalence class in Jk(E)/Jk_l(E), where we put  J_I(E)=O. 
Then there is a natural isomorphism ~k of the holomorphie bundles J~+I(E)/Jk(E) and Jk(E)/ 

Jk_l(E) given by  

(4.14.1) 

By (4.7.2) this is well-defined and independent of the choice of frame. 

Let ~lk(h) denote the curvature on Jk(E) induced by  Jk(h) if Jk(h) is positive. By 

Lemma 4.12, since the kernel of ~Jk(h) contains J~_I(E), ~J~(h) induces an endomorphism 

Jk(J() of J~(E)/Jk_l(E ) defined by 

{Jk( :~ ) } ( [S ]k )  = [:~Jk(h)(S)]k, for  s in  J~(E). 

Since ~1~(h) is self-adjoint relative to Jk(h), ~1k(h) is completely determined by  Jk(~)-  

PROPOSITION 4.15. Let E by an n-dimensional holomorphic vector bundle over 
contained in C, with a C oO Hermitian metric h. I/Jk(h) is positive on J~(E), and ( , )k+l denotes 
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the Hermitian /orm induced on Jk+x(E)/Jk(E) by Jk+l(h), then/or s and g in the same fibre o/ 

J~+I(E), 

(4.15.1) ( [ & + l ,  [&+1)~+1 = - ( { A ( : ~ ) }  ( ~ . d [ & + l ) ) ,  n.,,([~],,+l)),,. 

Note  in pa r t i cu la r  t h a t  Jk+l(h) is pos i t ive  on Jk+l(E) if and  only  if t he  cu rva tu re  of 

Jk(h) is nega t ive  semi-def ini te  and  has  r a n k  n, and  t h a t  Jk(h) is f la t  if and  only  if the  

induced  H e r m i t i a n  form on Jk+l(E)/Jk(E) is zero, b y  w 4.13. 

Proo/. W h e n  ]c is 0, the  met r ic  induced  b y  Jl(h) on JI(E)IJo(E) satisfies a t  0 

(4.15.2) ( [ (~ j l ] ,  [ 0 " t l ] ) " ~ - ( ~ 1 A  . . .  A 5 n A 5.t l ,  5 1 A  , . .  A 5 n A ,MIls1 A . . .  A ]]-" 

= a~h(aJ, ~'~) 
b y  (4.12.2) 

= - ( : ~ ( 5 j ) ,  5 , ) ,  

where a is the  f rame for E defined in L e m m a  4.12, and  thus  proves  (4.15.1) in t h a t  case. 

F o r  ]c bigger  t h a n  0, assume the  propos i t ion  is t rue  for I t - 1 .  Consider the  metr ic  

def ined b y  (4.12.1). Then  b y  (4.12.3) and  the  induc t ion  hypothes is ,  we need only  f ind 

the  H e r m i t i a n  form induced  on Jk(E)/Jk_l(E) b y  Jk(~). Bu t  

(510 A ... A 5no A ... A 51k A ... A Onk A 5/k+l , 510 A ... A 5n0 A ... A (~lk A ... A 5nk A 5ik+l)h 

: (511 A ... A 5nl A ... A 51k A ... A 5nk A 5/k+l , 511A ... A 5nl A ...51k A ... A 5nk A 5~k+l)h 

= (510 A ... A 5n0 A ... A 51k-1 A ... A 5nk-1A din, 51o h ... A 6~0 A ... A 51k-1 A ... A 5nk_ 1A 5ik)~ 

where ( , )h and  ( , )~ denote  the  H e r m i t i a n  forms wi th  respect  to h and  ~. S imi la r ly  

[[510 A ... A 5nk[[a = []510 A ... A 5nk_l[[~. Thus  Jk(E)/Jk_l(E) with  the  H e r m i t i a n  form induced  

b y  Jk(]~) and  Jk+l(E)/Jk(E) with  the  H e r m i t i a n  form induced  b y  Jk+l(h) are  i somorphic  

a t  0, and  the  propos i t ion  follows. 

4.16. The  bundle  Jk(E)/Jk_l(E) is naturally i somorphic  (as a holomorphic  bundle)  to  

E ,  where [a~k] is sent  to  at. This is jus t  the  composi t ion  of gk-1 . . . . .  n0. 

I t  migh t  be of in teres t  to  f ind  the  induced  H e r m i t i a n  form, ( , )k on E ident i f ied  wi th  

Jk(E)/Jk_l(E), in t e rms  of the  covar ian t  der iva t ives  of ~( on E.  F o r  example ,  b y  (4.15.1), 

if s and  ~ are  sections of E ,  t hen  under  th is  ident i f ica t ion  

(4.16.1) (s, $)1 = - ( ~ ( s ) ,  ~). 
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Similarly, if :~ is negative definite, then at 0 

(s, ~), = -(:~(s), ~)~ by (4.16.1) applied to h 

= - ( : k ( s ) ,  ~), 
=(:Kerr(s), ~), by (4.16.l). 

We claim that  

(4.16.2) 

so we have 

(4.16.3) (s, ~)~ = ({2:Ke + ~ J ~ - l ~ -  J~s} (s), ~). 

To prove (4.16.2) we compute at 0 using the frame 5 of Lemma 4.12. Now 

/~hh_ ~ h  ~ h l  
X(~)=h -~LD 7 ~ ~ j  

where we abbreviate h((?) to h, so 

Thus at 0, 

(4.16.4) 

~ ( ~ )  _ 

~z 
h_l~hh_lI~hh_l~ ~2h I 

t~ ~ ~ J  
+ h-l l ~ 2h h-l ~ h ~h h_l ~h h-l ~h ~h h_l ~ h  

l ~ z  ~ - ~ ~ ~ + ~ 
~ j "  

X(a) ~2h ~X(~)_ ~ah ~ ( ~ )  ~3h 
~z~5' ~z ~z ~ '  ~5 ~z~5 ~' 

and 

~ z a ~  \ ~ ]  ~ z ~  ~" 

Now since d is a holomorphic frame, 

X ; ( & )  = _ _  
~X(~) 

~5 ' 

and since d is orthonormal at  0, then at 0 

~'~(&)]* ~ ~(~) 



Furthermore, 

Thus 
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~ ( ~ ) = ~ . ( ~ )  by (2.15.5) 

[h-1 Oh 

--O2X(~ at 0. 
~z05 

-- ( - ~ ( ~ ) ) - '  {( - ~ ( o ) )  ( - X ( ~ ) ) - '  ( - ~ , ( ~ ) )  - 2 ( X ( ~ ) )  ~ + X ~ ( o ) }  

by (4.12.1) and (4.16.4), which proves (4.16.2). 

By Proposition 4.15 and the computations (4.16.1) and (4.16.3) we have shown 
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(4.17.1) is negative de/inite, and 2:K~+ ~ - I ~  z - ~ = 0. 

4.18. As we see from (4.16.3) the formulas for ( , )k can be very complicated and we 

don't compute them when ]r is bigger than 2. We have done some related computations 

which generalize the "Frenet formulas" which are used in Value Distribution Theory 

(el. [3], [7]). 

Let ]: ~-*Or(n, ~) be a holomorphic curve. Let ~={~1, ..., ~,} be a holomorphic 

frame for g r and define F~ for each 0 ~</r < oo by 

(4.18.1) F~(a) =a lA  ... Aa~A ... A (~(1~-1) A ... Aa~ -1) Aa~ ~) 

and let h~(a) be the matrix 

(4.18.2) / ~ (a )  = ( (F~(a) ,  F~(a) ) ) .  

Note that  (det h~_x(a))-Xh~(a) is the matrix of inner products of the induced metric 

( , )~  of w 4.16. 

Define :lt~k)(a) by 

~(k)(a) = -  ~ { h k ( a ) - ' ~ }  

whenever hk(a) is non-singular. 

1 6 -  782902 Acta mathematica 141. lmprim$1r 8 D&:cmbre 1978 

PROPOSITIO~ 4.17. Let E be a Hermitian holomorphic bundle o/dimension n over 

contained in C. Then locally E is equivalent to a bundle EI,/or ] a 1.nondegenerate curve into 

0r(n, C 2") i /and only i/ 
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PROX'OSlTIO~I 4.19. I /  ho(a ) ..... h~(a) are all positive definite /or 0--<k<oo, then 

hk+l(a) is determined by 3~*)(a) as/ollows: 

(4.19.1) ~(a) = -ho(a)-lhl(a) (dot:h0(a)) -I, 

and/or k bigger than O, 

(4.19.2) 
k 

3((k)(a) = hk(a)-lhk+ l(a) l-[ (det hi(a)) ~k-' 

where 

k - 1  

+ (hz_~(a)-lh~(a) - [trace(h~_~(a)-Xlb,(a))]I} ~ (det h,(a))'~-'-~ 
t .O 

In  particular, when n = 1 

O:o=-I and ots=n(1-n)S-1 /or ~>~ l. 

X(a)  = hl(a) /h(a)  2 

X<~)(a) = {h~_l(a) h~+l(a)}/h~(a!~: 

(which are the Frenet equations). 

We sketch the proof. First, (4.19.1) follows immediately from (4.16.1). Then one cart 

chock that  both sides of (4.19.2) transform in the same manner under change of frame. 

Then (4.19.2) can be computed relative to the frame ~ of I.emma 4.12 b y  induction, as in 

Proposition 4.15, with the induction step provided by (4.16.4). 

4.20. The proof of Proposition 4.19 would seem to go through, almost word for woId; 

for any Hermitian holomorphie bundle, where we replace the a~ r) by a~r, the section of the 

jet  bundle, in (4.18.1). This gives necessary conditions for embedding ~ in ~r(n, :H). For 

~t(1, ~)=P(~H) Griffiths ([13], p. 794) showed these conditions were also sufficient. 

4.21. Finally, we characterize those Hermitian holomorphic vector bundles with real 

analytic metric which are (locally) equivalent to the pullback of 'a l{oi0morphic curve in a 

Grassmanian. In case n = 1 this is due to Calabi [2] and our proof is essentially his. Fur the~', 

although we state the result for bundles over open subsets of (~, the same result with 

basmally the same proof hoIds for bundles Over open subsets of C m. 

THEOREM 4.22. I /  E is an n-dimensional Hermitian holomorphic vector b~ndle over 

with real-analytic metric h the~ E is locally equivalent to E r at (o o/or some holomorphic 

curve /: ~ r ( n ,  ~)  where ~ has dimension 2V, l ~ N  <<.t%, i/ and only i/ Jk(h)(a)o) is 

non-negative and has rank at most N [or k = 1, 2, 3, .... 
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Proo/. Suppose al, ~ ,  ..., an are holomorphic functions from ~ to ~ which form a 

frame a for E I and tha t  h is defined by 

A( ,~)  = ( (a , (o~) ,  ~(~))~,,_~. 

I f  we let jk(a)= {(~1 ..... a~ ..... ~k) ..... ~ )} ,  then Jk(h) is the matrix of inner products of 

?'k(a) and is thus non-negative. Since a t  most N o~ the elements of Jk((~) are independent, 

Jk(h) has rank at  most N. 

Conversely, suppose t h a n E  is an n-dimensional Hermitian holomorphic vector bundle 

over ~ with metric h such that  each J~(h) is non:negative and has rank at  most N, 1 ~< N ~< ~0- 

Since h is real analytic we can expand it about eo 0 in s in a Taylor series 

h(aO= ~ Mira ( ~ - 0~o) l (Co - COo)"  
l , m ~ O  �9 �9 

which converges for IW-~o[ <2(~ for some ~>0,  where Mira is an n •  matrix. Hence, 

there exists a constant C such tha t  

(4.22.1) HM~H < Vl!m!(~8) -('~'~) for 0 <  l, m <oo .  

If  we multiply the infinite block matrix J~(h) on each side by the block diagonal 

matrix w i th / th  diagonal block 8t/l! times the identity, we obtain the block matrix 

Moreover, the upper left hand Ion • kn submatrix of ~ is non-negative since Jk(h) is non- 

negative. Further,  by (4.22.1) the matrix entries of y are square:summable and hence y 

defines a Hilbert--Schmidt operato~ on the Hilbert space E =l~0 of sequences (x0, x~ ....  ), 

whore xk is in E~. and il(x0, zi, :i )ll = r.0 II  ll S ce y defines a bounded n~ 

operator on E of rank at most N, there exists a bounded operator A from :s to a Hilbert 

space : / /of dimension N such that  

(4.22.2) ~ = A*A. 

We choose an orthonormal basis for ~ and exp.ess A as a matrix to obtain 

i ~ ( a ~ l ' ' ' a l l ' ' ' a l k ' ' ' a ~ k ' ' "  

\ a~l ... N a~ anl an~ 

Let a~l=(a~,a~ , ...,a~) denote the vector i~ ~ and sot a~(m)=~l-oa,(~ (co-~o0) t for 

i = 1, 2 ..... n. Since 



246 M. J .  COWEN AND R. G. DOUGLAS 

Mtj  A ( l + m )  N lm v 

a)/afro = (at / ,  a f t )  (4.22.3) l!m! ~ k-k 
k-1 

by (4.22.2), it follows from (4.22.3) that  [[at~]12/62' <~lM~[/(l!)2-<< C(2/36)2~ and therefore 

the Taylor series for at(to) converges for Ito-tOo[ <& Further, we see by (4.22.3) that 

h(r ~ M.~ l, ~-o ~ (tO - r176176 - w~ = ((aj(tO), e~(tO))~,e.i 

for [tO-tOol <& Therefore, / = ( a l  ..... a.) defines a holomorphic curve in Or(n, ~)  such 

that EI. is equivalent to the restriction of E to {tO: ]tO -tOo[ <~} which completes the 

proof. 

4.23. There is an appealing way to conceptualize the preceding proof, at least heuristi- 

cally. H we let J+(E) denote the inductive union of the jet  bundles, we obtain the bundle 

of formal Taylor polynomials for E and we can use J+(h) to define a metric on J+(E)" 
Completing J~,(E) we obtain a Hilbert bundle J~(E) which contains E and the preceding 

proof can be regarded as showing that  J~(E) is flat by pushing the non-zero part  of the 

curvature off to infinity in Lemma 4.12. H we identify J~(E) with ~ / •  we obtain the 

embedding. 

4.24. The preceding proof required that  E have real-analytic metric. I t  is possible, 

however, that  in the C ~ case the hypothesis that  the Jk(h) are all non-negative implies 

rcal-analyticity (cf. Proposition 4.9). 

4.25. Now not every pullback bundle is associated with an operator. For example, a 

necessary condition for E! to be associated to an operator is for the subspaces/(tO1), [(r176 ..... 

[(tOk) to be'independent for each finite subset tO1, tOs ..... tO~ of distinct points in ~.  Although 

the condition is not very tractable we can obtain necessary and sufficient conditions for a 

pullback bundle to be associated with an operator. We continue the notation of the last 

few sections and introduce a little more. For k >~ 1 let J~k(h) denote the matrix obtained 

from that  for J~(h) in which the left column and top row have been replaced by 0. Further 

let Sk denote the (k + 1) • (k + 1) matrix with n • n blocks defined by 

0 I 0 . . . 0  0 -1 

1 
0 0 2 . . . 0  0 

0 0 0 . . . 0  0 

: : : " . i  i 

0 0 0 0 k - 1  

0 0 0 . . . 0  0 
Our result is: 
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THEOREM 4.26. I / / :  ~ Or(n, ~ )  is a holomorphic curve over ~ such that V.,~ ](w) = 

and coo is a laoint in ~ ,  then E t is equivalent to Er  /or some operator T in B,(A)/or  some 

ne~lhborhood A o/co o i /and  only i/there exist constants 0 < m <~ M such that 

(4.26.1) MJk(h} >~ S*Jk_t(h) S/> mJ~(h) [or k = 1, 2, 3 ..... 

Proo]. For simplicity we give the proof for n equal to I. Then a dense collection of 

vectors in :H can be written in the form ~.~-o ~,o~(coo), where 0~, ~ ..... ~k are complex 

and k = 1, 2, 3 ..... Moreover, using Lemma 1.22 we see that  if there exists T, then 

(4.26.2) (T-coo)  ~zo~l)(r - ~ (1 + 1) ~z+x ~l)(COo). 

Using the fact that  T -coo is bounded and is bounded below on the orthogonal complement 

of its finite dimensional kernel, inequalities (4.26.1) follow. Conversely, if the left hand 

inequalities (4.26.1) hold, then defining (T-co0) by (4.26.2) yields an operator X with 

bound at most M and after setting T = X  +m0, the right hand inequalities (4.26.1) imply 

that  T - c o  has closed range for to in some sufficiently small neighborhood A of coo. Since 

the range of T-co0 is obviously dense in ~H, we see that  T is in Bx(A) and we can easily 

check that  the restriction of E t to A is equivalent to Er  which completes the proof. 

4.27. Thus far we have dealt solely with unitary equivalence for operators in B,(~) 

and the related complex differential geometry. We now present some results pertaining to 

similarity for such operators, directions in which further investigations might proceed, 

and some open questions. Our results are of two types. The first is a necessary condition 

on the curvature for similarity in the general case. The second is a theory of similarity for 

curves in finite dimensional Grassmannians, for which we have no generalization to curves 

in 0r(n, :H) when :H is infinite dimensional. Both types of results suggest that  additional 

hypotheses will be necessary, particularly on the maximality of ~ (cf. w 1.3), in order to 

formulate a comprehensive theory. 

De]inition 4.28. Let / and [ be two holomorphic curves from the open subset ~ of C 

into 0r(n, :~). Then ] and f are similar if and only if there exists a bounded invertible 

operator S on ~ such that  

(4 .28.1)  [(co) = ~(/(co)) 

for all co in ~.  If for each co there exists such an S~ so that  (4.28.1) holds to kth order at 

co, then ] and [ are similar to ~h  order at ca. 
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Jus t  as in the case of unitary equivalence, if t and t are curves in 0r(n, ~H) induced by 

T and ~P in Bn(~), then T.and ~ are similar if and only: if t and t are similar. 

PROPOS~TZO~ 4.29. Let / and ~ /rom ~ into Or(n, ~)  be holomorphic curves which are 

similar via the bounded invertible operator "S (4.28.1). Define a bundle isomorphism (Ps: 

E t ~ E  ~ by restricting S to each fibre. Then the negative semi-definite (4.11) endomorphisms 

and ]C satis/y 

Proo/. For fixed a~ in ~ choose frames a for Er and # for E~ as in (4.11). Since / and [ 

are similar, there exist holomorphic functions s u such that  

S(aj)  = Y s,j a~ 
| 

and the matr ix  of (Ds(r relative to the frames a and ~, is ju s t  (su(o~)): 

Now 

t 

Thus if (a~ .... .  ~tn) is ia C ~, then a t  the point to 

II s ( Z  ~, ~;(~))II e = II ~ ~, 8,',(~) ~,(~)II ~ § II Z ~, s,,(o~) ~;(~)Ii e 
J 1,t I . t  

which implies tha t  
t e �9 ' . . t  2 

Thus by (4.11. l) 

(4.29.1) IISlI*( - 3~(~)) ~> Cs(~)* ( - 3 ~ ( ~ ) ) r  

holds a t  o~, which is an arbi trary point in ~ .  Tho proposition follows by  applying (4.29.1) 

to S -1 and by 

(4.29.2) (I)s-,-- r 

We .now obtain a necessary 'condition for two curves to be similar. 

COROLLAI~Y 4.30. Let / and ]/ tom ~ into Or(n, ~)  be holomorphic curves which are 

similar via the bounded invertible operator S. Then 

IIS-~ll~iisll~llxll  ~ ll:~ll >~ IIs-~ll-~llsll-~ll:ntl , 
at each point o /~ .  
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Proo/. Since (I) s is the restriction of S, 

(4.30.1) Ilsli~x >/II+~ll~I/> r162 

By Proposition 4.29, 

so that  by (4.29.2) 
IIsII ~ II Xll ~ ~> cZ( -  ~)r  

< Ilsll~llS-~ll~llXll 

by (4.30.1), and the corollary follows. 

Note that  

(4.30.2) IlSll IIS-lll >~ 1 

and that  equahty holds if and only if IISII-'S is umtary, that  is to say if and only if / and 

T are unitarily equivalent. 

4.31. The necessary condition in Corollary 4.30 is not very strong. Indeed if we let 

be the curvature induced by the backward shift U* and ~ the curvature induced by 

the adjoint B* of the Bergman shift, then by Theorem 1.17 

ilXll= 112 
IlXll 

although U* and B*+ are not similar. The problem is that  this is a pointwise criterion 

Whereas similarity is obviously a global phenomena. 

In case n equals 1, we can strengthen Corollary 4.30 by means of standard techniques 

in Value Distribution Theory (Generalized Nevanlinna Theory) [27], [14]. Let D~ denote 

the disc of radius R in (3, and let /: DR~ ~r(1, ~/) be a holomorphie curve. Note that  

~r(1, ://) is the projective space'of ~/. Definethe order/unction T r for / by 

;(fo ) (4.31.1) Tgr) : -  ddClog[i/ll • de O<ro<r<R<. - -  C < )  

e q ~) P 

where we decompose d into operators of type (1, 0) and (0, 1) 

d = ~ + ~  

and d c is the real differential operator 

(~i,- ~). de= ~ , 
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Note that  II/ll means Ilff~ll locally, where ~ = {ql} is holomorphic frame for E I. If ~ is'another 

frame, then al = eal for 0 a non-zero holomorphic function�9 Since dd c log 10] ~ is just 

i 0 2 loglOl~dzd~, 
2~z 0z85 

which is zero since log I 01 ~ is harmonic, T I is well-defined. Indeed, 

d ~176 

i 
- 2 r e ( - ~ K ( a ) ) d z d ~  by (2.18.3) 

since the matrix :~(al is 1 • 1. Thus from our point of view, we have 

(4.31.2) T,(r)= �9 ,-~[]XHdzdg --O ' 0<r~  ~"  

The order function measures the rate of growth of a holomorphic curve; in fact, the 

integral J'nt ddc l~ II/11 ~ is the area of/(Dr) in qr(1, :H). When the dimension of ~ is finite, 

the rate of growth of a curve is independent of the metric on the underlying vector space 

of ~ ([27], [14]). The standard proof of this fact (see for example [14, p. 19]) gives us a 

stronger necessary condition for similarity. 

PROPOSITION 4.32. Let / and f / t om DR into ~t(1, :H) be holomorphic curves which are 

similar via the bounded invertible operator S on ~ .  Then /or  r o <~ r < R, 

I T,(r)-  T (r)l -< (ll ll IIs-'ll). 

Proo/. We first compute d ~ in polar coordinates. If z =~ e ~~ then 

't, tO - d~ = �89 + etOd~} and dO = ~ {e d z -  e-'adz} 

so that  if g is a C ~~ function defined on an open subset of C, then 

~g d~ + 
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which implies that  

(4.32.1) 

Thus 

(4.32.2) 

i 

=4~ ~ ao-~ r  

, \JoD, H - ~ - ]  ~- (by Stoke's Theorem) 

';(L o{ 
= 4 g  �9 ~)q~ log H - [ ~ J ~ l d e  (by (4.32.1)) 

2. 8( 2 ) _ 1  ( /, II /)ll ' 
4=Jo t'~ 11--TW ~. dO 

The proposition follows from (4.32.2) and the inequality 

lo Ils(t)ll~-logllS-'ll -~ logllSII ~>~ g i 1 ~ - ~  

used at the end points r o and r. 

4.33. For the backward shift U*, ~ is 02 log (1 -Iz1')/0~0~ and for the adioint B* of 

the Bergman shift, the curvature ~ is 03 log (1 - [z [ 2)2/~z~. Thus by (4.32.2), the difference 

of the order functions is 

which is unbounded as r approaches I, thus giving a purely computational proof that U* 

and/3*+ are not similar. We emphasize that this follows from the behaviour of the curvature 

at the boundary of fl (in this case the unit disc). 

4.84. Of course the order function defined by (4.31.2) could be defined when n is 

bigger than I. Unfortunately, the Value Distribution Theory for curves in 0r(n, ~), n 

greater than I, is not well understood, and we don't know whether Proposition 4.32 holds 

for curves in 0r(n, ~), with T t defined by (4.13.2). 

If ] is a curve in ~r(n, ~),  then / induces a curve A (/): ~-~ ~r( l ,  A'~J), where if 

a = {a x ..... an} is a frame for EI, then A (a) = {ax A... A an} gives a frame for A (/). If oJ 

is a fixed point in ~,  then by normalizing the frame a at co as in (4.11), it can be shown 

that  
~ (  A (a)) = trace ~(a)  
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and Proposition 4.32 applied to A (/) and /\ (~) gives a necessary condition in terms of an 

integral of the traces of :~ (instead of II :KII)" Perhaps this could be generalized to traces of 

powers of ~ ,  or to the elementary symmetric functions of :~: 

I f  the curves / and f from ~ into Qr(n, ~ )  are similar to order 1 (Definition 4.28), 

where the norms of the operators S~ and S/~ ~ are uniformly bounded, then Corollary 4.30 

holds with obvious alterations in the bounds. Results of this type are presumably the first 

in a series of necessary inequalities involving the covariant partial derivatives of the 

curvature. 

4.35. As we mentioned previously similari ty as opposed to equivalence is a global 

phenomena. Thus by assuming completeness of the holomorphie curves in an appropriate 

sense it may  be possible to obtain deeper results on similarity. We discuss one kind of 

conjecture in the context of BI(D): if T, T are operator s in Bt(D) each having D as a K- 

spectral set, then T and ~ are similar if and only if 

:~(o~) 
lim ~ = 1. 

I~,1-,~ X(oJ) 

We are unable to prove or disprove either implication although Proposition 4.32 

makes the one direction seem very plausible. Also the limit equals 1 in the few examples 

we can check. 

4.36. For curves in ~r(n, ~ )  we showed that  equivalence to order n implies congruence. 

We now investigate similarity for curves in certain finite dimensional Grassmannians, and 

show tha t  there is no finite number N(n) such that  similarity to order N(n), for two curves 

in ~r(n, ~),  implies similarity. 

Let ~ be an open subset of C and / :  ~ -~  ~r(n, C (k+l)n) a holomorphic curve which is 

k-nondegenerate (4.8). Let  a = { a  1 ..... ~n} be a h0!0morphic frame for Er ,  defined on an 

open subset A contained in ~.  Represent / by the (k+l)n• holomorphic matr ix  

whose columns are the coordinates of the at relative to an orthonormal basis for C (*+1)". 

Then by the k-nondegeneracy assumption, the columns of y(m) ..... :~(*)(o) span C (k" 1)~ 

for each e0 in A, so there exist holomorphic n • n matrics $0 ..... Sk such tha t  

k 

(4.36.1) :~ .... '(o) == ~ :~(')(r S,(w): 
t=O 

I f  # is another f rame for E I on A, then there is a holomorphic n x n non-singular matrix 

A such that  5 = aA or equivalently 
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where :~ represents ] 'via the'd~. Thus by  (4.36.1) 

(4.36.2) :)~+~ = E 
y-D 

Now locally in A we can solve for A such that  

(4.36.3) (k+ I ) A '  + SkA = O. 

In  that  ease, ~(k+l) is in the span of ~ ..... .~(~-.1) and thus in the span of .~ ..... ~(~--1', 
which is to say that  Sk is identically zero. 

Definit ion 4.37. A representative ~ for a ]c-nondegenerate curve [ into ~r(n,  C (kl)n) 

is a Schwarzian representative if and only if Sk is identically 0. The n • n matrices $0, .... 

Sk-x are the generalized Schwarzian derivatives o f / .  

We have shown that  we may  cover ~ by open sets, on each of which there is a Schwar- 

zian representative. 

4.38. A Schwarzian representative is unique up to multiplication on the right by a 

(constant) element of ~l(n, C), since if ~ is another such representative then ~ equals 

:~A, for A holomorphie, non-singular, and n • n. By (4.36.3) A'  is zero, so A is constant. 

4.39. For example, if k is 1, we may always choose an orthonormal basis for C ~n Such 

that  f is represented by :~, where 

for F an n x n holomorphie matrix, with F '  non-singular (ef. t.44). Then for ~, 

S0 = 0 .and $1 = (F')  - I F ' .  

A Sehwarzian representative ~ must be of the form ~ A ,  where by (4.36.3) 

2A'  + (F')  -~ F " A  = O. 

Then from (4.36.2) we get that  

5o = A-1A"  

= - ~A- I { (F ' )  -~ F "  - ~(F')  -~ F"(F ' )  -~ F ' }  A 

by taking the derivative of (4.36.3) 
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Note  tha t  the expression in braces is the non-commuta t ive  version of the classical 

Schwarzian derivative.  

PROPOSITIO~ 4.40. Let [ and f be k-nondegenerate holomorphic curves/rein ~,  a con. 

nected open subset o[ C, into Or(n, C(~+l)n). Then / and fare similar i /and  only if there exist 

an open subset A o / ~ ,  Schwarzian representatives ~ and ~ /or [ and f on A, and a non: 

singular n • n constant matrix A such that 

(4.40.1) A S , =  SfA /or i = 0  . . . .  , k - 1 .  

Proo[. If [ and f are similar, then  there  exist an element S of Ol((k+ 1)n, C) and an 

n • n, holomorphic,  non-singular matr ix  A such tha t  

(4.40.2) S:~ = :~A. 

But  then 
k - I  k-1 

(4.40.3) (S~)(k+l)= S~(~. 1)= S ~ ~(')$t = ~ (S~)(~ 
| - 0  t-O 

which implies tha t  $9: is a Schwarzian representat ive for f. By  section 4.38, A is constant  

and (4.40.1) follows from (4.40.3), since 

(S~) (') = ~(')A. 

Conversely, if there is a matr ix  A in el(n, C) so tha t  (4.40.1) holds, define a holo- 

morphic (k + 1) n • (k + 1) n non-singular mat r ix  S by 

S = ( 3  ... ~ k ) ) A ( ~  ... ~'(k)) -1,  (4.40.4) 

whore 
A . . . 0 )  

A =  " i 
O . . . A  

and (3 ~ ... ~(k-1) )  is the matr ix  whose eolumn~ are the coordinates of al . . . . .  an . . . .  , a~ k) . . . . .  

a~, k) relative to  the or thonormal  basis, and is thus non-singular. 

Now by (4.36.1) 

(:~ ... 3 ~ )  ' = (:~ ... 3 ~k~) S 
where (i 0sS)0 

$ =  

I 
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Thus 

S ' =  ( 7  ... :/(~))' A( :~  ... 3~))  -~ 

- ( 7  ... ~ (k) ) ,~(~  ... ~ (k ) ) - l (~  ... ~ ,k) ) , (~  ... ~(k))-I 

= ( ~  ... ':i (~)) ( S A  - A S ) ( : ~  ... : r ~ ) )  - ~  = 0 

by  (4.40.1). Thus  S is constant  and satisfies (4.40.2) by  (4.40.4). This implies tha t  [ and ] 

are similar on A. By  the uniqueness of analyt ic  continuation,  / and ] are similar on f~ 

(cf. w 4.2). 

4.41. Jus t  as we proved (3.13.3) from (3.13.4), we may  use Lemma 3.11 and the unique- 

ness of analytic cont inuat ion to show tha t  (4.40.1) is equivalent  to  

(4.41.1) S(~)(o)), ..., S~_1(~o) for i = 0 . . . . .  2n - 1 

are simultaneously similar to 

~'(~)(oJ) . . . . .  ~'~)l(OJ) for i = 0 .. . . .  2 n -  1, 

for each (o in A, where the similarity can depend on ~.  There does not  seem to be any  easy 

method  to  show simultaneous similarity, as there is for simultaneous un i ta ry  equivalence 

( I~mma 3.22). 

Note  tha t  when n is 1, (4.40.1) is equivalent  to 

(4.41.2) $t = St for i = 0 . . . . .  k - 1 .  

4.42. Let  $0 .. . . .  Sk-~ be n • n holomorphic matrices defined in a neighborhood of 0 in 

C. Then  by  the existence and uniqueness theorem for holomorphic differential equations,  

the  system 
k-1  

| = 0  

has, in a smaller neighborhood of 0, a holomorphic solution ~, a (k + 1)n • n matr ix,  such 

tha t  a t  0, (3: ... ~(k)) is the identi ty.  If [ is the  curve  in 0r (n ,  C (~§ spanned by  the 

columns of :~, then  [ is a holomorphic k-nondegenerate curve in a small enough neighbor- 

hood of the origin, 3: is a Schwarzian representat ive for [, and S0 .. . . .  Sk-1 are the  generalized 

Schwarzian derivatives. 

Le t  S0 . . . . .  S~-1 be another  such collection of holomorphic matrices, such tha t  $0(0), ..., 

$k+1(0) are not  simultaneously similar to  S0(0) . . . . .  Sk_t(0). Le t  ~ be a k-nondegenerate 

curve in Or(n, ~k+l),) defined in a neighborhood of 0, with Schwarzian representat ive :~ 
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and Schwarzian derivatives the St- Let  A be any  fixed matr ix in ~l(n ,  C) and define S by  

(4.40.4). Then at  any  point co, S(w) satisfies 

S(w) :~"(o~) = ~ (" (w)A ,  i = 0 . . . . .  ]r 

and thus / and [ are similar to order k in neighborhood of 0, but  are not  similar, since they  

don ' t  satisfy (4.40.1). 

Thus we have shown tha t  for each n and k, there exists a finite dimensional Hflbert 

space ~ such tha t  similarity to order k is not sufficient for similarity of holomorphic 

curves in ~r(n,  "~). 

4.43. We conclude with a discussion of the sharpness of our results, and some examples 

of curves in ~t(n ,  C~). 

I n  a beautiful paper [13], Griffiths states tha t  second order contact  imphes equi- 

valence for 1-nondegenerate holomorphic curves in ~r(n,  C2~). He gave a proof only for 

what  we call the 0-umbihc and generic cases. We have been unable to show via our methods 

tha t  second order (rather than nth order) always Suffices in this case, or to give what  

would necessarily be a non-generic counter-example. Furthermore,  we  have no operator 

theoretic examples which require.contact  of order greate r than  two, or indeed even greater 

than  1. I t  would be valuable to find some non-generic examples, which are not  direct 

sums of generic curves. 

Griffiths conjectured tha t  first order contact  was not  sufficient in his case, and we 

show this is indeed true. 

4.44. We first compute  the  curvature  for a curve in ~r(n,  Chum). L e t / :  ~ -~  ~r(n,  Cn-m) 

be holom0rphic, and let a be a holomorphic frame for E r, such tha t  a is normahzed at a 

fixed point  ~o in ~ as in section 4.11. Let  v 1 ..... vn~m be an or thonormal  basis for C =~ ,  such 

tha t  

v~ -- a~(eo), for i = 1 .. . .  , n. 

Sinco:alr)(m) iai pe rpen~cula r  t o  Vl; "..., Vnfor all r; t h e n  

m 

aj-:-vj+ ~"[is%~, 
= 1  

where F =  (/i j ) i s  a hol0morphic n • n m a t r i x / T h u s  

h(a),~, I ,+ .~*F  



and 

(4.44.1) 

Now 
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~/C(a)=h_lDh l~h h_ 1 ~ h  

= (~ "[- _~*F)-1  {F '*F( I  + F * F ) - ' F * F '  - F '*F'}  

= (I  + F ' F )  -~F'*{F(I + F * F ) - I F  * - I }  F ' .  

{ F ( I  + F * F ) - I F * - I } { I  + F F  *} = F ( I  + F * F ) - I ( I  + F * F ) F  * - - F F * - I  = - I ,  

Thus by (4.44.1) we obtain 

(4.44.2) ~(a)  = - ( I  + F ' F )  -~ F '* ( I  + FF*)  -~ F' .  

4.45. Let g: C--* (~r(n, C2n) be the holomorphic curve represented by the n • n matrix 

~ e r ~  
O(z) = \e_r~ ] 

(4.45.1) 

where F is the diagonal matrix 

F 

with ),~ non-zero and constant. Note that 

__ ~ eFz 

( 6 ,  0 ' )  - 

and 

0 ) ( i  I. 
e -r~ ' I - F  I 
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:iA 

thus (6  6') is always non-singular, and g is 1-nondegenerate. 

Let T and ~ be elements of Ol(2n, ~) ,  and define holomorphic, cur~es . /and ] from 

C into 0r(n, C~n), representing / by ~ and [ by :~, where 

(4.45.2) :~ = TO, ~ ~ 0 '  

The curves / and f are 1-nondegenerate since g is. 

Suppose that  / and f are congruer/f via a unitary on ~C2n; then there exists U in U(2n) 

and a holomorphic n • n non-singular matrix A such that  
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or equivalently 

(4.45.3) B 0 OA, 

where 

(4.45.4) B = ~'-IUT. 

Let  

(4.45.5) 
\B~I B22/ 

where each B~j is an n • n matrix.  

LEMMA 4.46. I /  / and [ are holomorphic curves in 0r(n ,  C ~') de/ined by (4.45.2), they 

are congruent only i/there exists a 2n • 2n unitary U such that i/the B~j are de/ined by (4.45.4) 

and (4.45.5), then 

(4.46.1) BII  = B ~  and Bx~ = B~I, 

where 

(4.46.2) F B  u = B I I F  and FB12 = - B I ~ F .  

Proo/. Now 

0-= OF~ 

so 0 is a Schwarzian representative for g and $0 is r ~. B y  Proposit ion 4.40, (4.45.3) implies 

t ha t  .4 is constant .  

By  (4.45.3), we have 

(4.46.3) ~ BI '  er~ + Bl2e-Fz~ = ~ erZA 
\B~I e TM + B~2 e -r~] \e -r~A/  

and  by  taking derivatives (since A is constant)  we get 

B u  F e r z -  Bl~F e -r~ = F er~ A 

= FBl l  erz + FBI~e -r~ 

which implies 

(B u F - rBl~) e ~r~ = FBx~ + BlaF. 

Thus  (4.46.2) holds, which implies tha t  

(4.46.4) B n e rz = e TM B u and Blue -rz = e rz BI,. 
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Thus from (4.46.3), 

so by (4.46.4) 

and (4.46.1) follows, since 

A = B l l  + B i2  

e - F Z A  - F z  F z  = B i l e  + B~2e 

' " r z  " - F z  = B21e +B22e by (4.46.3) 

(Bzl - Bl~)e 2r~ = B22 - Bll. 

LrMMA 4.47. Let / and [ be curves in 0r(n, C ~) defined by (4.45.2) where we assume in 

addition that P is real diagonal and 

for some positive de/inite n x n matrix P. Then / and [ have contact of order 1. 

Proo/. The curve / is ropresented by 

e l'z ' ~ _  . I 

pe-rZ]-(pe-'Zrz) er~ 
and thus / is also represented by 

where I~= - 2 F .  By (4.44.2) 

(4.47.2) :K(a) = - (I + ei'Zp2ero-ler~FP(I + per~eI%p)-~PPe ~ 

= e-F~{ _ (e-f~e - f'~ + p2)-~ ~e-P~e-P'~(e-i,~e-i,'~ + p2)-~pg_~) ep~. 

In a similar manner [ is represented by 

e._rz ] = ( e l p )  P-lerz, 

so ~ is represented by 

and 

(4.47.3) ~((~) = - (I + Pe~'~ e'rzP)-lpFer'~(I + ef'zp2 ef~)-l erzFp 

1 1 UZ F z  2 FZ ~'z  Uz  F z  2 1 = P -  F- (e-" e - " + P ) e "  :K(a)e ~" (e-" e - " + P ) -  FP. 

17 - 782902 A c t a  m a t h e m a t i c a  141. l m p r i m ~  le 8 D ~ c e m b r e  1978 
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Thus :~(~) and :~(a) are similar which implies (since ~ and ~ are self-adjoint) that  

and ~( are unitarily equivalent and / and T have contact of order one by Proposition 2.18. 

:PROPOSITION 4.48. Let / and f be defined as in Lemma 4.47, where F 2 ~ distinct 

entries on the diagonal and I n is not diagonal. Then / and f have contozt o/order one but are 

not congruent. 

Proo/. The curves / and f have contact of order one by the previous Lemma. By Lemma 

4.46, if / and ~ are congruent, then F 2 commutes with B12, so B12 is diagonal and thus by 

(4.46.2) B12 is 0, and B n is diagonal. 

By (4.45.4), 

is unitary,  so 

p2 = BI 1 B~I 

which is diagonal, a contradiction. 

4.49. Note that  if n is 2 then / and f are necessarily generic off a closed nowhere dense 

subset of C. The only other possibility when n is 2 would be for E I and E~ to be 0,umbihc, 

but then E / and E~ would be equivalent to order one, so equivalent, and thus [ and T 

would be congruent. 

For n greater than 2, we are unable to show if there exists a choice of T and ~ so that  

and T have contact of order 2, but are not congruent. By Proposition 4.17 it would suffice 

to work with C ~ bundles with metric preserving connections that  satisfy (4.17.1) and 

investigate the eigenvalue structures which could arise, but this seems very difficult. 
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