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§ 1. The class B,(R2)
1.1, Let ¥ be a complex separable Hilbert space and C(H) denote the collection of

bounded linear operators on }. A basic problem in operator theory is to determine when
two operators S and 7 in C(}) are unitarily equivalent, that is, when there exists a unitary
operator U on H satisfying S —U*TU. In a real sense the problem has no general solution
but one restricts attention to special classes of operators. An important approach to this
problem is via spectral theory in which one attempts to synthesize operators from elemen-
tary “local operators”, where ‘‘local” refers to the spectrum. For example, a normal operator
on a finite dimensional space can be obtained as the orthogonal direct sum of scalar opera-
tors on eigenspaces, where the scalars are just the eigenvalues which together with their
multiplicity determine the operator up to unitary equivalence. On infinite dimensional
spaces direct sum must be replaced by a continuous direct sum or direct integral but the
result is essentially the same. For an aibitrary operator on a finite dimensional space the
direct sum is no longer orthogonal, consists of generalized eigenspaces, and the local
operators are scalars plus nilpotents.

Conventional spectral theory attempts to extend such representations to as large a
class of operators as possible. However, there exist operators which can not be synthesized

in this sense from local operators. One example is the backward shift U} on I2 defined by

Ul (otg, o, &gy -o0) = (04, Gy, Ogy .-
for (o, &y, ey, ...} in I2. Since

U(1,4, 22, ..) =A(1, 4,22, ...)

and (1,4, A2, ...) is in 2 for ]1[ <1, we see that the open unit disc D consists of eigenvalues
for U*. Such behavior is quite different from that for the finite dimensional case. More-
over, it can easily be shown that one can’t express /2= + H, where M and N are in-
variant for U?%. Thus one can not study U* using conventional spectral theory.

However, we probably know as much about this operator and its adjoint, as we do
about any single operator. In the functional representation, the adjoint U, acts as multi-
plication by z on the Hardy space H? and an enormous literature exists on it (cf. [8], [15]).
This theory does not apply, however, to operators as closely related to the shift as multi-
plication by z on the Bergman space. What we hope to supply in this paper is the be-
ginnings of a systematic approach which will apply to a whole class of operators. We
define this class after introducing some notation.

For T in C(¥) let ran T'={Tz: x€ Y} and ker T ={z€ }: Tx=0}.
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Definition 1.2. For Q a connected open subset of € and » a positive integer, let B,(Q)
denote the operators T in L£(H) which satisfy:

(a) Q<= a(T) ={w€C: T —w not invertible};
{(b) ran (7 ~w) = # for w in Q;

(¢) Vkeryeq (T --w)—=H; and

(d) dim ker (T —w) —n for w in Q.

The collection B,(£2) is void unless ¥ is infinite dimensional. Conditions (a) and (b)
insure that £ is contained in the point spectrum of 7 and that 7 —w is right invertible
for w in Q. And since we intend to study 7' by investigating its eigenspaces, it’s not un-
reasonable to assume fhat they span H which is (c). Lastly, since (a) and (b) imply that
dim ker (T'—w) is constant, condition (d) imposes only that it is finite.

To see that the dimension is constant we recall a few facts about semi-Fredholm
operators. An operator T in L(H) is said to be semi- Fredholm if ran T is closed and at least
one of ker T and ker T* is finite dimensional. The index is defined for a semi-Fredholm
operator T by ind (T') —dim ker 7 —dim ker T*, is continuous, and satisfies ind (ST') —
ind (S)+ind (T') for semi-Fredholm operators S and T as long as ind (S)+ind (7T is
defined. Now since T -~ is right invertible we see that ind (7 —w)=dim ker (7 —w) is

constant.

L3. If Q, is an open subset of Q, then B,(Q)< B,(€,) because V keryeq, (T —w) —
V ker, o (T —»). We shall prove this later in this section. Thus 7" can be associated with
any open subset of 2. There would seem to be some advantage in choosing Q as large as
possible. One kind of hypothesis implying that is the assumption that the closure of Q
is a K-spectral set for T'. This means that ||r(T)|| < K], for each rational function with
poles outside (2, where |||l denotes the supremum norm on Q. In general, for 7' in B,(Q)
there is no open set A which fulfills this hypothesis. A further possibility is to replace the
supremum norm ||7||, by a norm involving derivatives of 7. We shall not explore this

further in this paper.

1.4. Now B,(Q) is an especially rich class of operators containing the adjoint of many
subnormal, hyponormal, and weighted unilateral shift operators. For example if u is a
finite measure supported on &D, m is normalized Lebesgue measure on éD, and H(u +m)
is the closure of the analytic polynomials in L2(u +m), then the adjoint of multiplication
by z belongs to By(D) [4]. If IZ. denotes the Hilbert space of square-summable C*-valued
sequences and {P,} is a sequence of positive operators on C" satisfying 0 <cI <P, <CI,
then the backward shift operator S on I&» defined by (Sf) (k) = P, f(k + 1) belongs to B,(D).
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Moreover, operators in these classes have been the subject of intense investigation during
recent years [15], [20].

1.5. The local operators associated with 7" in B,(£2) are defined as follows. Since T'—w
is a semi-Fredholm operator for @ in Q and ran (7' —w)* = for each positive integer %,
it follows that

(1.5.1) dim ker (T —w)* =ind (T —w)* =k ind (T —w) =nk for w in Q.

Now the generalized eigenspace ker (T —w)* is invariant for 7' and hence we can define
an operator N3 =(T —o)|ker (T —w)+! with N,=N{. The local operator associated to
T at w is N,. Since (N,)=(T —w)*|ker (T —w)** we see that N, is nilpotent of order
n+1 and thus our spectral picture for an operator in B,({2) is very reminiscent of the
finite dimensional situation. However, whereas there one must assume information about
the relative angles between the different generalized eigenspaces, in our situation the

geometry makes that unnecessary and we obtain as our main result:

TaEOREM 1.6. Operators T and T in B,(Q) are unitarily equivalent if and only if
N, is unitarily equivalent to N, for each w in Q.

We prove this as a consequence of our equivalence results on Hermitian holomorphic
bundles in § 4.2. Actually, as we shall see in § 4 for “most”’ operators 7' in B,(£2) it is enough
to know N® for e in Q.

1.7. Before continuing we make several remarks. First, we emphasize that there is
no requirement on the behaviour of the unitary which implements the equivalence of N,
and N, as a function of w. Secondly, if one knows that N% and N® are unitarily equi-
valent for a fixed w, in Q but for all &, then it is easy to show that 7 and 7' are ﬁnitarily
equivalent. One chooses a weak limit of a sequence of partial unitaries which effect the
unitary equivalence of the local operators. Next one shows that it is unitary and inter-

twines the two operators T and 7'. For this one needs the fact that (c) is equivalent to
[e2)

(1.7.1) V ker (T —wy)r=H.
k=1

Thus the depth of the theorem lies in concluding unitary equivalence on the behavior of 7'
on the generalized eigenspaces of order n+1.

Further, it is possible to obtain a complete set of unitary invariants for T in B,(Q)
by recalling the result of Specht [21] and Pearcy [18] that a complete set of unitary in-

variants for an operator F on an N-dimensional Hilbert space is provided by the traces of
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a finite collection of words in F and F*. Using this we obtain a finite collection of real
analytic functions on Q, the number depending on n, which form a complete set of unitary
invariants for T in B,(£2). We treat in detail only the case n=1.

Suppose N is a non-zero nilpotent operator of order two defined on a two-dimensional
space. If ¢, is a unit vector in ker N, then choose a unit vector e, orthogonal to ¢, such
that (Ney, e,) =h>0. Relative to this orthonormal basis the matrix for NV has the form

1.7.2) (g g)

and % is a complete unitary invariant for N. In connection with our earlier comments
observe that 4% =trace (N*N). Applying this to an operator 7' in B,(Q) and observing that
NiN,=P,T*TP,, where P, is the orthogonal projection onto ker (T —w)?, we obtain

COoROLLARY 1.8. Operators T and T in B,(Q) are unitarily equivalent if and only if
trace (N5 N,) =trace (N4 N,) for w in Q or equivalently if and only if trace (P, T*TP,) =
trace (P, T*TP,) for w in Q.

Thus unitary equivalence for operators in B,({2) is reduced to the equality of two
functions on Q. We see later in this section that trace (N, XN,) is real-analytic and we
calculate some examples. The problem of characterizing which positive real-analytic func-
tions on € can occur as trace (N3 N,) for some 7 in B,(Q) and reconstructing 7' from it is
solved in § 4.

As we mentioned earlier certain weighted backward shift operators belong to B,(D).
The preceding result can be used to characterize those operators in B,(D) which are.

CoroLLARY 1.9. An operator T in B,(D) is a weighted unilateral shift operator if and
only if the function trace (N N,) depends only on |w)|.

Proof. Since T and €T are unitarily equivalent for 7' a weighted unilateral shift
operator [20], one direction is clear. Conversely, by Corollary 1.8 if trace (NywoN,0)
depends only on 7, then 7"and e* T are unitarily equivalent. Thus T'|ker T* and ¢'¢ T | ker T*
are unitarily equivalent for each ¢ and k=1,2,3,.... We can choose an orthonormal
basis for ker 7%* such that the matrix for T'|ker 7%*! is

0 & PBa...Pu
0 0 [~ 2 "'ﬁZk
0 0 ...
0 0 0

o o ..
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where «a;>0, j=1,2, ..., k. Moreover, such a matrix is unique. Now the corresponding

matrix for e T |ker T+ is

2, € Bp...e VB

0

0 0  a ..e'®™Dog,
0

0

0 o ... o,
0 o ... 0

and hence if 7T is unitarily equivalent to e T for 6/ irrational, then §,=0, 1<j<I<k.
Therefore T is a weighted shift operator.

Although we have stated this result only for =D, on the basis of Corollary 1.8 one
can see that for Q containing the origin 0 in C, that an operator T in B,(Q) is a weighted
backward shift if trace (N0 N,.0) depends only on r on some small disk about 0. The obvi-

ous generalization of the corollary to 7' in B,(D) is not correct.

1.10. To proceed further we must examine more carefully the nature of the subspace
valued mapping w—ker (7 —w). To do this we need to introduce the notion of a Hermitian
holomorphic vector bundle. Let A be a manifold with a complex structure and n be a
positive integer. A rank n holomorphic vector bundle over A consists of a manifold E with
a complex structure together with a holomorphic map = from E onto A such that each
fibre E;=n"1(A) is isomorphic to €* and such that for each 4, in A there exists a neigh-
borhood A of 4, and holomorphic functions y,(4), ..., ¥,(4) from A to E whose values form
a basis for E; at each 4 in A. The functions y,, ..., y, are said to be a frame for E on A.
The bundle is said to be trivial if A can be taken to be all of A. A cross-section of E is a
map y from A to E such that n(y(1)) =2 for 1 in A. A bundle map is a map ¢ between
two bundles E and E over A which is holomorphic, and defines a linear transformation
from E; to E; for 2 in A.

The trivial bundle over Q of rank % is obtained by taking E" == x C" and defining
7t(w, ) =w. A holomorphic cross-section of this bundle is just a C"-valued holomorphic
function on €. A function f from ‘an open set A in C to a Banach space X is said to be
holomorphic if it can be defined locally by a power series with vector coefficients which
converges in norm. A bundle map for E™ is just an M,(C)-valued holomorphic function
on Q.

The mapping w—ker (T —w) will be shown to define a rank » holomorphic vector
bundle E; over Q for T in B,(Q). Since all holomorphic bundles over € are trivial as
holomorphic bundles by Grauert’s theorem [12] and the fact that all such bundlesover

Q are topologically trivial, we shall be interested in additional structure which E; possesses.
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A Hermitian holomorphic vector bundle E over A is a holomorphic vector bundle such that
each fibre ), is an inner product space. The bundle is said to have a real-analytic [C*®]
metric if A—|y(A)||? is real-analytic [C] for each holomorphic cross-section of E. Two
Hermitian holomorphic vector bundles £ and E over A will be said to be equivalent if
there exists an isometric holomorphic bundle map from E onto E. In what follows we
shall sometimes use the terminology ‘‘complex bundle” to refer to a Hermitian holomorphic
vector bundle.

For T an operator in B,(Q) let (E;, ) denote the sub-bundle of the trivial bundle
Q x U defined by

Er={(w, 2)EQ x H: 2€ker (T ~w)} and z(w, 1) =w.

That E; is a complex bundle over Q is due to Subin [22]. We offer a slight generalization
of his result which will be useful in future work. First we need to recall a few more facts
about Fredholm operators. If T'—ew, is Fredholm, then T --w is Fredholm for w in some
neighborhood of w, but whereas ind (7 —w) is locally constant, dim ker (7' —w) need not
be. It is, however, except at isolated points. Thus we call w, a point of stability for T if

T —wq is Fredholm and dim ker (7 --w) is constant on some neighborhood of w,.

ProrositionN 1.11. If wy is a point of stability for T in L(H), then there exist
holomorphic H-valued functions {e(w)}i-1 defined on some neighborhood A of w, such that

{e1(w), exfw), ..., ex(w)} forms a basis for ker (T —w) for w in A.

Proof. We assume that w,=0. There exists S in £(H) such that ST =1 --P, where P
is the projection onto ker 7. If we define S(w)=(I —w8)-1S and P(w)=(I —wS)'P for
o in A={w€C: |o| <1/||S||}, then P(w) is rank » and

ker (T —w) < ker (S(w)(T ~w)) = ker (I — P(w)) < ran P(w).

Since dim ker (7' —w) =n =dim ran P(w), it follows that ker (7'—w)=:ran P(w). Hence, if
€y, €3, ..., &, is a basis for ker T, then the functions e,(w) =P(w)e,, i=1, 2, ..., n defined for

w in A have the required properties.

CoroLLARY 1.12. For T in B,(Q) the mapping w—ker (T - w) defines a complex
bundle E, over Q.

Before continuing we use the proposition to take care of some unfinished business.

CoroLLARY 1.13. If Q,<Q are bounded connected open subsets of C, then B,(£2)<
Bn(QO)'
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Proof. It is enough to prove that V,.q, ker (T —w)=V,cq ker (T —w). Suppose z
in 3 is orthogonal to ker (T —w) for w in Q,. If w, is a boundary point of A =:interior
of {w€Q: z Lker (T —w)} in Q, then by the proposition there exists an open set 4, of Q
about w, and holomorphic functions e,(w), ex(®), ..., e,{(w) defined on A, which form a
basis for ker (T —w) for each w in A, Since the holomorphic functions (e,(w), ) for
1=1,2, .., n vanish on A, they vanish identically and hence A, is contained in A. Thus

A =Q which completes the proof.

THEOREM 1.14. Operators T and T in B,(Q) are unitarily equivalent if and only if
the complex bundles E, and E5 are equivalent as Hermitian holomorphic vector bundles.

This is a consequence (see §4.1) of our generalization of Calabi’s rigidity theorem

which is stated and proved in the next chapter.

1.15. There is an older concept in operator theory which is related to our approach.
Let T be an operator in B,(£2) and y be a non-zero holomorphic cross-section of E, (which
exists by Grauert’s theorem [12]). Then corresponding to y there is a natural representa-
tion I" of H as a space of holomox"phic functions on Q* ={®: w €Q} defined by (I'z)(w) =
{(z,p(@)y for z in H and w in Q*.(}) Moreover, since (I'T*r) (w) =(z, Ty(®)) = (=, dy(®))—
o(['(z)) (w) for w in Q*, we see that 7 is the adjoint of multiplication by w. If we set k(A, ) =
(y(®), y(4)), then k is a reproducing kernel for this space of holomorphic functions or I'}
is a kernel Hilbert space [1], [15]. Now different cross-sections yield different representa-
tions. However, if y; and y, are both non-zero holomorphic cross-sections of Er, then there
exists a non-zero holomorphic function f defined on Q such that y,(w) =f(w)y,(w) and thus
I';# and ', | differ by a holomorphic multiplier.

In general, there is no canonical representation of H as a space of holomorphic func-
tions on (Q, since there is no canonical cross-section of E;. However, in some instances
there is a preferred or natural choice. For example the Szegd kernel k(z, w)=(1—d@z)~1
corresponds to the preferred cross-section p(w)=(1, w, ®? ...) for the shift operator U%.
Moreover, if B2(D) denotes the closure of the analytic polynomials in L*m?), where m?
is normalized Lebesgue measure on D, and B, is the operator on B*D) defined by
(B.f) (w) =wf(w) for fin B%D), then B% belongs to B,(D) and a preferred cross-section
corresponds to the Bergman kernel k(z, w) =n"1(1 —@z)~2.

1.16. Now although cross-sections are not themselves invariants for an operator in
B.(Q2), they can be used to calculate the invariant described in Corollary 1.8 as follows.

(1) If Q is symmetric with respect to the real axis then it is possible to take y anti-holomorphic
and represent H as holomorphic functions on (.
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Let T be an operator in B,(£2) and y be a non-zero holomorphic cross-section of E;. Thus

(T —w)y(w)=0 and differentiating we obtain

0 ={(T-w)y()} = —y() +H(T—w)y'(®)

or {I'—w)y'(w)=y(w). Therefore, ker (T —w)? is spanned by p(w) and y'(w). An ortho-
normal basis for ker (T —w)? is

al)= ||7 ||

(y(w), (w)))’(w)—(? (w), p(w))y(w)
{ly@)[I*]l7 (@) =10 (@), y(@)) || y(e) [[E}7

eg(w) =

and we have by (1.7.2)

e )2
MOV = (= )l N = ) T3 o) [ | ), o) P

Thus we obtain

THEOREM 1.17. 4 complete unitary invariant for T in B,(£2) 1s the real-analytic func-

tion

_0/ (@), y@) = llp@lPly' @)l _ @ log || y(w)|*
(1.17.1) Kr(w)= ”'}’ w)”d Y ’

where y is any non-zero holomorphic cross-section of E..

The reason for choosing this particular function is that, as we shall see in § 2, X(w)
is the curvature of the bundle E;.
As a consequence of this calculation, we see that trace (NoN,) = — Kr(w)1 is real-

analytic as promised. Also using the Szeg6 and Bergman kernels we calculate that
trace (U,,U%t,) = (1—|w|?)?

and
trace (B, B%,) = (1 — |o|2)?

Thus we see that U, and B, are not unitarily equivalent. Although there are easier ways
to prove this (using for example the fact that U is an isometry), it’s not always easy to
decide when two operators in B,({2) are unitarily equivalent.

One direct connection between 7' and E; is contained in

ProposiTION 1.18. An operator T in B,(Q) is reducible if and only if the complex
bundle E, is reducible as a Hermitian holomorphic vector bundle.

13 — 782902 Acta mathematica 141. Imprimé le 8 Décembre 1978



196 M. J. COWEN AND R. G. DOUGLAS

Proof. Suppose H=M® H, where M and H reduce T. If z in ker (T —w) is written
T=x,®x, for z; in M and =z, in A, then Tz,® Tz, =Tz =0wr=wz, Do, implying that
both z; and x, are in ker (7 —w). Thus ker (T —w) decomposes into {ker (T'—w) N M}®
{ker (T —w)N N} and hence T, =T|M is in B, (Q) and T,=T|H is in B,,(Q), where
n=ny +n,. Therefore E;=E, ® E,, is reducible.

Now suppose Er=E,® E, is a reduction of E;. Fix w, in Q and let A be a neighbor-
hood of w, in Q on which there exists a trivialization e,(w), ..., e,(w) of Ez, where ¢,(w), ...,
e, (w) span E; and e, (), ..., e,(w) span E,. To show that T is reducible, it is enough to
show that V. {e1(®), ..., e, (0)} and V4 {en,41(@), ..., €(w)} are orthogonal, since as
in the proof of Corollary 1.13 together they span H. But (e (w), e,{w)) =0 for 1 <i<n, <j<n
and differentiating with respect to w (viewing the functions as functions of the variables

w and @) we obtain

0=£ (el(w), e’(w)) = (e;(w)’ e’((l))).

The second term in the product rule vanishes because the right hand side of the inner

product is anti-holomorphic. Similarly we have (e{”(w), ¢,(w))=0 for £=0,1,2, ... and

therefore
[0 0] (k)
(ew), &;(wy)) = (120 ‘%6!0—0) (0= ), e,-(wo)) =0

for |w —w,| sufficiently small. Again as in the proof of Corollary 1.13 we are finished.
CoroLLARY 1.19. An operator T in B,(Q) 8 srreducible.

1.20. Important in the study of an operator T is an explicit characterization of its
commutant (7')’, that is, the weakly closed algebra of operators which commute with 7'
For each of the operators U} and BY, the commutant can be identified with the algebra
H=*(D) of bounded holomorphic function on D. We show that the commutant of an operator
in B,(€2) can always be identified with & subalgebra of H*(Q) and for T in B,(£2) we identify
(T) as a subalgebra of the bounded bundle endomorphisms on E;. Recall that a bundle
map ® from E to E is a holomorphic map such that ®(w) = ®| E,, is a linear endomorphism
on the fibre E, over w in Q and we shall say that it is bounded if sup,eq || P(@)| <oo.
We denote the collection of bounded bundle endomorphisms on E by HZe(S2). For E
the trivial bundle over Q, HZ Q) is just the bounded holomorphic matrix-valued func-

tions on Q.

ProrosiTiON 1.21. For T in B,(Q) there is a contractive monomorphism Uy from the
commutant (T)' into Heg,(Q). In general, Iz s not onto.
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Proof. f XT~=TX, then X ker (T —w)<ker (T —w) for o in Q. Moreover, if e(w) is
a local holomorphic cross-section of Er, then so is Xe(w). Therefore X defines a holo-
morphic bundle map 'y X on Ey. Since ||(I':X) ()| = || X |ker (T —w)|| <||X|| we see that
'y X lies in HRg,,(Q) and I'; is contractive. That I'; is a homomorphism is clear and it is
one-to-one since V,.q ker (T —w)=H. Since I'; is not onto for T the Dirichlet operator

(cf. [23]), it is not onto in general. (*)
Which bounded bundle maps are in the range of I';? Before answering that we need

the following result on a basis for generalized eigenspaces.

LEMMa L.22. If yy, .., ynare holomorphic functions from Q to H such that y,(w), yx(w), ...,
vnlw) forms a basis for ker (T —w) for each w in Q, then

1) (T— ) yP(w)=kyFP(w) foral k and i=1,2, ..., n;
and

(i) P@); «evs Val@)s «ony YED(@), ..., Y5 P(w) form a basis for ker (T — w)* for k=1
and o in L.

Proof. We first prove (i) by induction on k. Differentiating the equation 7'(y,(w))=

wy;(w) we obtain
T(yi(w))=yi(w)+ wyiw

which proves (i) for k=1. Assuming (i) holds for k and differentiating we obtain
— AP () + (T — o) p+O() = ky{()

which is (i) for £+1. Moreover we have

(1.22.1) (T — 0}y (w) = by (@)

for all k£ and w in Q.
To prove (ii) we need only show that ker (T —w)*/ker (T —w)*~! has basis [y (w)], ..,

[7% P(w)], where [ ] denotes residue class. Now if > 7.1 a,[y{* ()] =0, then
(T - o)! (Z “i?gk_l)(w)) =0
i=1
and by (1.22.1) we have

(T~ w)e-? (2 a.«/i"-"«»)) - z afk—1)! p ().

(1) We will define the Dirichlet operator later in this section.



198 M. J. COWEN AND R. G. DOUGLAS
Therefore a;=0 for ¢=1,2, ..., n so that [y “(w)], ..., [y% P(w)] are independent which

completes the proof since the dimension of ker (7 —w)*/ker (T —w)*!is n by (L.5.1).

1.23. Now suppose ® is an element of Hgg,,({2) for which there exists a bounded
operator X in (7') such that I'' X =®. If y,(w), ..., Ya(w) is a basis of local holomorphic

cross-sections for K, then by differentiating we obtain

Xyi(w) = (Xy(w)) = D(w)yi(w)+ O () y ()
Xyl (w) = (Xpi(0))" = O(w) yi(0) + 20 (0) yi(0) + ©"(w) (®)

XyiV(w) = (Xyiw))® = (@) y{"(0) + NO' (@) 7i" (@) + ... + O(0) y(w).

In other words the block matrix for X |ker (7 —w)" ™! relative to the basis {y{" ()}, is

[ ®(w) D'(w) D(w) ... PM(w)
0 O(w) 20'(w)... NO¥ V()
(1.23.1) 0 0 0w .. YT Newng)
_ 0 0 0 .. Ow) i

Let ®y(w) denote the operator defined on ker (7' —w)" ! by this matrix. Note that to
calculate ||®y(w)|| we need only know the value of ® and its derivatives at w together
with the Gram-Schmidt orthogonalization of the basis {y{’(w)}";;%. Our result char-

acterizing the range of I'; is:

ProrosiTron 1.24. For @ in HEz,,(Q) the following are equivalent:

(1) ®=I';X for some X in (T
(2) sup {||Ppiw)|: w€Q, N=0,1,2,..}=C, <, and
(3) sup {[| Dulwe)||: N=0,1,2,3, ..} =Cy< oo for some w, in Q.

Moreover, if these conditions hold, then || X|[ =Cy=C,.

Proof. That (1) implies (2) implies (3) is obvious as is the inequality || X| >C,=C,.
To show (3) implies (1) recall that V2., ker (T —w,)* = ¥ and take a weak limit of the
uniformly bounded sequence of operators ®(w,) defined to be 0 on [ker (T —w,)" ']*. If
we call X the limit, then || X|| <C,, X commutes with 7, and I'; X — @ since ([ X)® (wg) =
OP(wy) for k=0,1,2, ....
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This procedure becomes much simpler in case n=1 when ®=¢ is a function in
H*(Q). Let us calculate the matrix for ®,(w) relative to the orthonormal basis obtained
in § 1.16. We obtain

Dy (w)ey(w) = plw) e ()
and
D, () e5(w) = () ex(w) +¢' () hw) e, (),

and hence the desired matrix is

Thus we obtain as

CororLrLaRY 1.25. For T in By(2) a necessary condition that @ in H®(L) define a
bounded operator in (T) is for the function

¢ (@)

v 2 - _
19/ @)f trace (VN = — T2

to be bounded.

1.26. In certain instances one knows that the commutant of T in B,({) is all of H*(Q)
in which case the preceding corollary can be used to obtain inequalities on the growth
of the derivative of bounded holomorphic functions on Q. However, by applying the
corollary to the Dirichlet operator, for example, one obtains necessary conditions for a
function to be a multiplier.

The Dirichlet space D* D) consists of the holomorphic functions f on D for which
f(0)=0 and ' lies in L¥(m?) where ||f||3 =271 n]a,|? for flw)=27 1 a,w" Again D%, the
adjoint of multiplication z, lies in B,(D). However, in this case I'p* is not onto [23]. One
can calculate the curvature of E,+ using the kernel function

k(z, w) = log —1_—2
(1—2@)
for D*(D) [19] by Theorem 1.17 and then apply the corollary. After some work one obtains
that a necessary condition for a bounded holomorphic function ¢ on D to be a multiplier
on D%(D) or equivalently to be in the range of Iy is for the function
()
—log(1-|o[*)
to be bounded on D. Shields informs us that this necessary condition was known to him
and that it is not sufficient. The necessary conditions involving higher derivatives are

quite complicated and it is difficult to decide the nature of the further restriction imposed.
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We obtain a complete characterization of the commutant only when the Oth order
condition is sufficient. Although we could appeal to general results, we give a complete
proof hoping that the techniques will be useful in future generalization.

Let us call an Q reasonable, if for ¢ in H<(Q) there is a sequence of rational functions
7, with poles outside the closure Q of Q such that ||, |5 < ||¢||g and 7,(w)—~¢(w) for w in Q.
If the interior of Q is finitely-connected, then Q is reasonable; there are other properties
implying this (cf. [10], VIII § 11).

ProprosiTION 1.27. If Q is reasonable and Q is a spectral set for T in By(Q), then Ty

18 an isometric tsomorphism from {T) onto H{Q).

Proof. By definition the map r—r(T) for rational functions with poles outside
is contractive. For ¢ in H®(Q) let {r,}=-; be a sequence of rational functions which con-
verge pointwise to ¢ and satisfy ||7,|lg <||¢|la. We may assume that {r, (7T}, converges
weakly to some X in (7')'. Moreover, since

n-—+00 n—>w0
for ¢, a unit vector in ker (T —w), we see that ['yX =g and || X|| <|lp||q. Hence I'y is
onto and isometric.

With a similar proof we can also establish

Prorosirion 1.28. If Q has the property that @ in H®(Q) can be pointwise boundedly
approximated by rational functions and Q is a K-spectral set for T in B,(Q), then Ty is an
tsomorphism.

We conclude this section with one geometricial implication of the assumption that Q
is a K-spectral set. Analogous results with different rates of growth are undoubtedly true

when Q is a “CO"-spectral set”.

ProprosiTioN 1.29. If 9Q consists of finitely many C-smooth simple closed curves and
T in B,(Q) has Q as a K-spectral set, then Lim gigs 0, g0ys0 Kplw) = — o0, where K is defined
by (1.17.1).

Proof. For w, not in Q we have by Corollary 1.25, the definition of K-spectral set,
and the fact that (7' —w,)~1 is in (T')’ that

(G5 P2
m”wo w—wo

Q
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which implies
K|w— w4
Mo)< dislt (o, z;slz)
for w in Q.

Now for o sufficiently close to €}, there exists w, exterior to { such that | —w| =
2 dist (w,, 2Q) and hence we obtain A(w) < 4K dist (w, 6€2) which implies using the compact-
ness of Q that limgg e, s0)-s0 Krlw) = ~ .

§ 2. The rigidity theorem and the canonical connectioﬁ

2.1. In the first chapter we showed that every operator in B,(Q) gives rise to a Hermi-
tian holomorphic vector bundle over Q. In order to obtain the results stated in Chapter 1
we must begin a rather detailed study of certain aspects of complex geometry. In this
chapter and the next we concentrate on complex geometry. In Chapter 4 we finally draw
it all together.

For  a separable complex Hilbert space and » a positive integer, let Gr(n, H) denote
the Grassmann manifold, the set of all n-dimensional subspaces of . When the dimension
of H is finite, Gr(n, W) is a complex manifold.

For A an open connected subset of C* we shall say that a map f: A= Gr(n, H) is holo-
morphic at A, in A if there exists a neighborhood A of 4, and n holomorphic }-valued
functions y,, ..., p, on A such that f(A) =V{p,(4), ..., y,(A)} for 1 in A. If f: A~ Grn, W) is
a holomorphic map, then a natural n-dimensional Hermitian holomorphic vector bundle
E, is induced over A, that is,

E;={(x,A)eHxA: x€f(4)} andn: E,~A where n(z, 1) =A.

Equivalently, E, is the pull-back *S(n, H#) of the tautological bundle S(n, H) defined over
Gr{n, W), where
S(n, W) ={(z, V)EH x Gr(n, H): €V}

and
a: S(n, ¥)— Gr(n, #¥) such that m(z, V)=7V.

Our interest in such bundles is obvious since E, arises as the pull-back of the map t: Q—
Gr{n, H) defined by t{w) =ker (T —w) for T in B,(Q). A map f: Q— Gr(n, H) for Q an open
set in C is said to be a holomorphic curve.

Now given two holomorphic maps f and f: A Gr(n, H), we have two vector bundles
E;and E; over A. If there exists a unitary operator U on ¥ such that /= Uf, then f and f
are said to be congruent and E, and E; are obviously equivalent. The Rigidity Theorem
states that is the only way they can be equivalent.
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TueorEeM 2.2. (Rigidity.) Let A be an open connected subset of C* and f and f be holo-
morphic maps from A to Gr(n, H) suck that V;ca f(}»)=V1e AfA)=H. Then f and | are
congruent if and only if E; and Ey are locally equivalent Hermitian holomorphic vector bundles

over A.

Proof. Congruent maps obviously define equivalent bundles. Thus suppose E; and E7
are locally equivalent and that ® is a holomorphic isometric bundle map from E/|A onto
E7 | A for some open set A in A. Assume that A is an open ball in A on which both E, and
Ef are trivial. If {y,, ..., »,} are holomorphic cross-sections of E, defined on A which form
a frame on A and we set ,=®y,;, i=1, 2, ..., n, then {§,, ..., ,} is a frame for Ef on A.
Moreover, we have

id), v5(A) = (Fi(A), P AA))
for 2in A and

Further, since the y; are hblomorphic, we have

i (A), yi2(A) = (%(/1), ¥4(4))

oz "6"’
for A in A, where p and g are multi-indices (p,, Py, ..., D) and (gy, g, ---; G)-

am—q 6171+...+pk+ql+...+qk

027078 ... oelreEl ... 9ZW

and

(P) —

Vi

2P o Vit
Therefore, we have that

"), %2(A) = FP(A), Fi2(A))

for Ain A, 1<4, j<n and all p and q.
Thus we can define an operator U, from V, Vi, y{?(4) to V, Vi, $(4) by

U, 7P () =7P(A)
for 1 <i<n and all p. Moreover, U, is isometric, since

(UpP(A), U, y2(2) = (iP(4), vi2(A))
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for 1 <4, j<n and all p and ¢, and thus is well-defined. Further, since y; and % can be
expanded in a Taylor series in some ball A;, about each 4, in A, and using the proof of

Corollary 1.13 we see that

VYV 7?»(20)2 V Vyd)=V jh)=H

p i=1 AGAM i=1 ieA

and
VV#PA)= V VHd)=V fA)=1.
p i=1 “Alo i=1 A€A

Therefore, U is a unitary operator defined on 3 for each 1 in A. Now for 4 in A, we have
A=) (i
ooy =3 4 e,

where (A —4g)" =IT5.1(A,—2;,)" and r! =[], r;!. Since U,, is bounded, we have

A=)
Ui =3 4 U )
A=) ... -
=5 =B gy =500
~ U0P()

and hence U, =U;. If we set U =U,, then f(A)=Uf(A) for A in A. Since the subset of A
on which {=Uf is open and closed we see that f and f are congruent.
The first instance of a Rigidity Theorem for curves in Gr(n, H) is due to Calabi [2],

in the case n=1.

2.3, Although we stated the Rigidity Theorem in the context of several complex
variables, we now deal exclusively with the one-variable case. Much of what follows makes
sense in the several variables context and we hope to consider that in future work.

Here our principal concern is deciding when two pull-back bundles over an open sub-
set of the plane are equivalent. In § 3 we show that this is the same as “equivalence up to
finite order”. For this we need the canonical connection on such bundles which we define
later in this section. We now define when two holomorphic curves have finite order of
contact and relate that to the operator-theoretic invariants introduced in the first chapter.

For €) a connected open subset of C we follow Griffiths [13] in saying that two holo-
morphic curves f and f: Q— Gr(n, W) have order of contact k if for each w, in Q there exists
a unitary U on ¥ such that Uf and f agree to order k at w,, that is, if yy, p,, ..., y, are
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holomorphic spanning cross-sections for E: at w,, then there exists holomorphic spanning

cross-sections 9;, ¥, ..., 7, for E7 at w, such that
Uy(J)(w )_ ~(J)(wo)

for 1 <¢<n and 0<j<k, where the choice of the  may depend on w,.
Before relating this to the local operators defined in § 1 we need the following technical

lemma.

Lemma 2.4, If f: Q> Gr(n, W) is a holomorphic curve and y,, p,, ..., ¥, are holomorphic
cross-sections of the vector bundle E, defined over Q such that y,(w,), ..., yn(wy) s an ortho-
normal basis for f(w,), then there exist holomorphic cross-sections ¥y, ..., ¥, of E, defined on

some open set A about w, such that J,(we) =y,(w,) for i=1,2, ..., n and
(PP (o), Pilewy)) =0 for 1<i,j<n andk=1,2,....

Proof. The matrix function ((y,(w), y;(w,)))i +=1 is invertible on some open set A con-
taining w, with inverse (Cj(w))i;-1. If we set $,(w)=271 Ci(w)y {w), then Py, ..., ¥, are
holomorphic cross-sections of E, which satisfy 7(wy) = (w,)-

Moreover, since ((F,(w), 7,(w,))) is the identity matrix, we see that (F{(w,), ¥:(w,)) =
for £>0.

ProrosITION 2.5. For T and T in B,(Q) definet, t: Q— Gr(n, H) by t(w) =ker (T —w),
lw)=ker (T —w) and NP =(T —wo)|ker (T —w)*"!, N®=(T —w)|ker (T' —w)***. Then t
and ¥ have contact of order k if and only if N and NP are unitarily equivalent for each w
in Q.

Proof. Assume t and # have contact of order k on Q. For w, in Q there exists a unitary
U on Y, holomorphic spanning cross-sections y,, ..., y, for ker (T —w,) and holomorphic
spanning cross-sections ¥, ..., #, for ker (7' —w,), such that

U@yP(we)) =FP(wy) fori=1,2,...,n and 0<j< k.
By Lemma 1.22 we have
UN G Pw,)) = U (we) = N Uy (wy))

and hence UN® =N® T . Since w, is an arbitrary point in Q, this completes one half of
the proof.

Conversely, suppose N% and N are unitarily equivalent for each e in Q. Moreover,
let U be a unitary defined on ¥ such that U {ker (7' —w,)**'} =ker (T —w,)**" and satis-
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fying UNP=NPU. If y,(wy), ..., Yaley) is an orthonormal basis for ker (7 —w,), then
Pi(wo) = Upy(w,) for i=1,2, ..., n defines an orthornormal basis for ker (7' —w,). Moreover,
using the preceding lemma we can choose holomorphic cross-sections y,, v, ..., ¥, for Ep

and Py, ¥, ..., ¥, for Bz defined on some open set A containing w,, and satisfying
(2.5.1) (7(y), Yil@y)) = (FiP(02y), Fr{w)) =0
for 1<¢,I<n and j>1. We claim that
(2.5.2) U (wy)) =5P(wy) for i=1,2,...,n and 0<j< k.
Statement (2.5.2) is valid for =0 and we assume it holds for some j <k. Then
FO{US(eq) — 9+ V(wg)} = U{(j + 1) ¥(eaq)} ~ (i + 1) 7(wo) =0

by hypothesis which implies Up{*P(wy) —F7P(wp) is in ker (7' —aw,). But ker (7 —w,)
is spanned by $,(cwy), ..., P.{w,), while

(U(Vgﬂl)(wo)) - %Hl)(wo)s Vi) = (U(?’gi“)(@o)): Uyi(0)) — (%Hl)(")o), Pi(03g)) =0

since U is unitary and (2.5.1) holds. Therefore (2.5.2) holds for j+1 which completes the

proof since w, is an arbitrary point in Q.

2.6. Thus the proof of Theorem 1.6 is reduced to showing that pullback bundles which
agree to sufficiently high order of contact are equivalent. Unfortunately, we are unable to
prove this without involving the geometry already implicit in this context. The reason is
that our analysis of two Hermitian holomorphic vector bundles to decide whether or not
they are equivalent takes us out of the category. In particular, we consider non-holo-
morphic sub-bundles. Hence we show that the equivalence problem for Hermitian holo-
morphic vector bundles can be replaced by a standard equivalence problem in differential

geometry which we then proceed to solve.

2.7. Let E and E be n-dimensional Hermitian holomorphic vector bundles over the
connected open subset Q of C. We are interested in finding invariants for £ and £ which
will determine, at least locally, when the bundles are isometrically and holomorphically
equivalent. We do this by making explicit the geometry already implicit in this context.
By geometry we are referring to vector bundles equipped with a compatible connection
which then allows one to compare vectors in fibres over different points of Q. In general,
there exist many connections on a Hermitian bundle which are compatible with the metric.

However, for Hermitian holomorphic bundles there is a natural or a canonical choice. We
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briefly describe this in our context. For more details on these matters the reader is advised

to consult [26, Chap. III], whose notation we shall follow.

2.8. For Q a connected open subset of C let z and Z denote the co-ordinate functions
defined by z=x+1y and z=z—1iy. If T*(Q) denotes the co-tangent bundle of €, then a
basis for each fibre is given by dz and dz. Thus a basis for the fibre of the exterior algebra
bundle AP(T*(2)) is 1 for A%(T*(£2)), dz and dz for AYT*(Q2)), and dzdz for A2(T*(Q)). We
let £(Q) denote the algebra of complex-valued C* functions on Q and O(£2) the subalgebra
of holomorphic functions on Q. For F a C® vector bundle over Q, we let £(Q, F) denote
the C® cross-sections of F and if F is holomorphic, then O(Q, F) denotes the holomorphic
cross-sections. We let £°(Q)= £(Q, A?(T*(QQ))) denote the C® differential forms of degree
p on Q. Thus we have £%Q)=E(Q), ENQ)={fdz+gdz: [, g€ E(Q)} and EXQ)={fdzdz:
f€ E(Q)}. We further decompose £1(Q) = EVHQ)@ £%YQ) into (1, 0)- and (0, 1)-forms such
that E-9(Q)=:{fdz: f€ £(Q)} and £>Y(Q) ={gdz: g€ E(Q)} and set £9-9(Q) = E(Q), EVHQ) —
E:(Q), and E2°(Q) = £%2(2)=0. Then the exterior derivative d: E2(Q)— E'*(Q2) defined
for p=0, 1, 2 can be decomposed to obtain 8: £7-9(Q)— £7+1-9Q) and g: £7-9(Q)— EP- Q).
Observe that f in £(Q) is holomorphic if and only if 3f==0.

Now for F a O vector bundle over Q let £2(Q2, F) = £(Q, A(T*(Q))® F) be the dif-
ferential forms of degree p on  with coefficients in F, that is, £ is in £7(Q), F) if it can be
written £ — 31, 7,0, for 7, ..., 5, in AP(T*(Q))and oy, ..., 0. in E(Q, F). Again £%(Q, F) =
EQ, F), EY(Q, F)={dz®0,+dZR0,:0,,0,€ E(Q, F)},and EXQ, F) ={dzdZ®0:0 € E(Q, F)}.
TUsing the Hermitian structure on F we can define a map E7(Q, F) x £Y(Q, F)— £79Q)
such that, for example for & in £°(Q), # in £4Q) and gy, 0, in (L, F) we have
28.1) (E®0;, 190) () = @) An() (0,(0), 0:(@)),
where the bar denotes complex conjugation of forms which satisfies

dz = (da+ idy) = do— idy = dz
(2.8.2) dz - (t_ix:Td;) =dzx+tdy=dz
deds =dzdz = — dedz

2.9. Let E be a Hermitian holomorphic bundle over Q. A connection on K is a first-
order differential operator D: £%Q, E)— £(Q, E) such that

(2.9.1) D(fo) =df®c+fDo for f in £Q) and ¢ in E%Q, E).

On any Hermitian holomorphic vector bundle E over Q there is a unique canonical connec-

tion D which preserves both the Hermitian and holomorphic structures, that is, such that

(2.9.2) D is metric-preserving or d(o, ) = (Do, &) -+ (o, Dd)
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for ¢ and G in £%Q, E), and
(2.9.3) D"¢ =0 foroin O(Q, E), where D = D'+ D"

is the decomposition of D into (1, 0)- and (0, 1)-form valued operators, or equivalently
D" extends 0.

Since all holomorphic bundles over Q are holomorphically trivial by Grauert’s Theorem
[12], there exist cross-sections oy, ..., 0, in O(R2, E) which form a frame for £ on Q.
The metric on E defines a positive-definite n x n matrix function {,(w)} =(0;(w), ¢.(w))
which depends on {o,}i.;. If we define § =h=10h or 0,(w)= %1 gi(w)(Ohy;/0z)dz where
gilw) =(A(w) ™)y, then 6 is the matrix of connection 1-forms for E and the canonical
connection D is defined by

(2.9.4) (2 f,o’,) s df,@o’ + 2 s f, 0,0, for "Zf,a, in EQ, E).
i1

il;

Now although D is C-linear, it is not £((Q2)-linear and hence is not a bundle map. How-
ever, the commutator of D with a bundle map is also a bundlé map. Before proving this
we observe that if ¢ is a bundle map between bundies £ and £ over £, then ¢ induces a
bundle map from E® A”(T*(Q)) to £ ® AP(T*(Q)) which we also denote by g.

LeEMMA 2.10. Let E and E be C® vector bundles over Q with connections D and D,
respectively. If @ is a C bundle map from E to E, then Dp —@D is a C® bundle map from
E to E@T+Q).

Proof. It is enough to prove that D —@D is £(Q)-linear, or equivalently that
(Dp —@D)(fn) = fl(Dp—pD)y] for fin £QQ) andyin EYQ, E).
Using (2.9.1) we obtain
(Do —@D)(fn) = D(f(en) —¢D(fn)

— df@gn +/D(gn) —g(df©n) —¢(f D)
== {D{gm) — fo(Dn) = f(Dg — ¢ Dln

which completes the proof.

We use this lemma, to define partial derivatives of bundle maps in this context.

Definition 2.11. For C* bundles E and E over Q with connections D, D and ¢ a C®
bundle map from E to £ we define the covariant partial derivatives ¢z and @; to be the
bundle maps from E to £ defined by

Dy —¢D = ¢,®@dz +¢;@dz.
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Moreover, we define @,={(@,-1),, @z =(@ss-1); and @z =(@,): for 1 <r, s. Note that we
include the possibility that E = E, D =D. Further g, is always relative to the connections
on the domain and range of ¢, which should be clear from the context.

If B, B, and F are 0= bundles with connections D, D, and D, and ¢: E—E and
y: B~ £ are bundle maps, then

Diyoy) —(yog) D = (Dy—yD)p +y(Dy —¢D)
which gives the Leibnitz rule

(2.11.1) (@), = .0 +yp, and (p@): = p:p +ye:.

If £ and E are Hermitian holomorphic vector bundles and D and D are the canonical
connections, then the matrix for g; relative to holomorphic frames is just the usual Z-
derivative of the matrix of ¢ relative to the same frames. Moreover there is a simple rela-

tion between our z- and Z-partial derivatives.

LemMA 2.12. If E and E are C® Hermitian vector bundles, D and D are metric preserving
connections (2.9.2) and ¢ is a bundle map from E to E, then (p,)* =(¢*); and (¢5)* =(p*)..

Proof. For ¢ and & in £Q, E) and £(Q, E), respectively we have using (2.8.1) and
(2.9.2) that
(2.12.1) ((Dp —¢ D), 6) — (0, (Dg* —¢*D)5)
= [(Dgo, &)+ (go, D)1 —[(Da, ¢*6) + (0, Dg*)]
=d[(po, 6) — (0, ¢*6)] = 0.

Therefore appealing to Definition 2.11 we have
(20, 6)dz -+ (g:0, 6)dZ = (0, (¢):6)dz + (0, (¢*).6) d2

and hence (.)* =(¢*): and (@z)* = (9*)..

We can now show that the equivalence problem for Hermitian holomorphic bundles
equipped with this canonical connection is just'the standard equivalence problem in
differential geometry. Although this is well-known, we include a proof for completeness.

LemMa 2.13. Let E and E be Hermitian holomorphic vector bundles over Q with the
canonical connections D and D, respectively, and let p: E—~E be a O isometric bundle map.
Then @ is holomorphic if and only if @ is connection-preserving, that is, if and only if

(2.13.1) .. Dogp=goD.
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Proof. The bundle map ¢ is holomorphic if and only ¢; =0. Analogously, ¢ holomorphice
implies ¢* =~ is holomorphic and hence (@,)* =(¢*):=0. Thus Dp —¢D =¢,dz +¢;dz=0
or ¢ is connection-preserving. The converse follows similarly.

Thus by the lemma we may generalize the equivalence problem for Hermitian holo-
morphic vector bundles as follows:

Let E and E be n-dimensional C~-Hermitian vector bundles over Q with metric-
preserving connections D and D. We wish to find invariants which will determine when

there exists a connection-preserving isometric bundle map between E and £.

Remark 2.14. 1f there is a connection-preserving isometry ¢, it is unique up to the
action of the group J(E) of connection-preserving isometries of £, and J(E) may be identi-
fied with a Lie-subgroup of U(n, C). In particular, if E and £ are irreducible as Hermitian
vector bundles with connection, then ¢ is unique up to multiplication by a scalar of absolute

value one.

2.15. The connection D: £%Q, E)— EYQ, E) can be extended in a natural way as a
derivation of £7(Q, E) to £7*Y(Q, E) for p=0, 1, 2 so that

(2.15.1) Dio®a) =Do®a+o®da for oin £(Q, E) and « in E2(Q).

One checks easily that sz(f0)= f(D%0) for ¢ in E(E) and f in E(Q). Thus D? is a bundle
map from E to E® A?(T*(Q)) and we define the curvature K(E, D) as the C® cross-section
of Hom (E, E® A2(T*(Q))) by

(2.15.2) " K=K(E, D)= D=

It is also useful to define a related “curvature” X (more precisely X(E, D)) as a C® cross-
section of Hom (Z, E) such that

(2.15.3) Ko = Kodzdz for ¢ in £(Q, E).
Using (2.8.1), (2.9.2), and (2.15.1) we obtain

(D20, 6)+ (0, D?G) = (Do, Dé) +d(Do, ) — (Do, D) +d(o, Dé)
=d¥o,6) =0 foro, 6in E(Q, E).
Therefore we have

(2.154)  (Xo, 6)dzdz = (Ko, 6) = — (0, K6) = — (0, K6)dzdz = (0, KG)dzdz

and hence J is self-adjoint.
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An identity involving the curvature and partial derivatives is
(2.15.5) (X, ¢] = (@:),— (@,)s for ¢: E—~ E a bundle map.
To verify this we write

{((pé)z - ((pz)i}dZdE = [D’y <Pé] dz + [D”’ (pz] dz
=D'[D", ¢)+[D", ] D'+ D'[D', p] +[D’, @] D"
—[D'D"+ DD, ¢] = (K, @] = [ K, ¢]dedz

where (D’)2=(D")2 =0 since there are no non-zero (2, 0)- or (0, 2)-forms on .

Remark. 2.16. If E and E are C® vector bundles over Q with connections D and D
and g: E— F is a connection preserving bundle map (2.13.1) then D2p —¢ D2, so J~C<p =gpX.
Thus [B, X]g=¢[D, K], which implies (2.11) that K,p =X, Ksp =X Continuing in

this fashion, we clearly have
(2.16.1) Kesip — pXow, all 0<i, j < oo,
We can now state our definition of local equivalence.

Definition 2.17. Given n-dimensional Hermitian vector bundles K and £ over Q with
metric-preserving connections D and D, we say that E and E are equivalent to order k at @

in Q for some k>1 if and only if there exists an isometry V from E, onto £, such that
(2.17.1) Vs = Kz V. for 0 <i, § <i+] <k, (i,7)+ (0, k), (k, 0).

Note that since X and J~( are self-adjoint, by Lemma 2.12 it suffices for (2.17.1) to
hold for ¢ <.

In the next section we show there exists k < such that if E and E are equivalent to
order k at each @ in Q, then E and E are locally equivalent off some closed nowhere dense
subset of Q and that £ is 2 in the generic case. Before beginning the proof of this, however,
we connect this notion to that of finite order of contact we introduced for holomorphic

curves earlier in this chapter.

ProrosiTiON 2.18. Let f and | be holomorphic maps from Q into Gr(n, #) and E,
and E7 be the associated Hermitian holomorphic vector bundles with canonical connections
D and D, respectively. The holomorphic curves f and f have contact of order k at wy in Q if
and only if there exists an isometry V: f(we)—~ f(wo) such that

(2.18.1) V Kopsalwy) = Kvzelwo) V. for 0 <p, g <k—1.
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Proof. Let f and f be holomorphic curves over ) having contact of order k>1 at w,
and let {0y, ..., 0,} and {G,, ..., ,} be frames for E, and E; and U a unitary operator on
H such that

(2.18.2) U(c{(wy)) =6{"(wy) for 0<j< k.

Obviously, we can assume that ¢,(w,), -.., 0(®wy) are orthonormal which in turn implies
that &(w,), ..., 6,(wp) are orthonormal. Let h=((c}, 5,)) and k==((G,, 5,)) be the matrix of
inner products for E, and Ej, respectively. Note that h(wy) = I =h(w,). Further, for ¢ a
bundle map on E, let ¢(s) denote the matrix for ¢ with respect to the frame o, ..., 0,. By
2.15.2,2.9.4 and 2.15.1 we have

K(o)=K(E, D)(o)=0A0+d0
=h"tohh‘oh+8(h~18h) +8(h " 0h)

=3(h™¢ch)
which implies
(2.18.3) Kio)= — (h“ 6h) for all @ in Q
o oz oz @ ’

Moreover, from Definition 2.11 it follows that for any C® bundle map ¢ on £ we have

9:(0)= - (<P(<7))

(2.18.4) o
7o) =2 plon+ [+ 2

, q)(o)]

Thus by (2.18.3) and (2.18.4) we can express K.x(c) in terms of k-1 and &' **h[o2"07°
for 0<r<p+1 and 0<s<g+1. Similarly, we can express 322951(6) in terms of A1 and
9 *h)oz"07°. Since

aYTSh ar+sh

oo (@0) = (0(@0), 0P (@0)) = (6”(@0), (o)) = . (o)

for 0<r, s<k by (2.18.2), this implies J(zpz(a)=7~(zra(o) at w, for 0<p, g<k—1. But
K.rze and j(ngq are bundle maps and hence (2.18.1) holds where V: f(w,)—>f(w,) is defined
by Va=Uz for z in f(w,).

Now assume that V is an isometry defined from f(w,) to f(w,) satisfying (2.18.1). If
Oy, ..., G, 18 any frame for E,, then from (2.18.3) we obtain

Fh_oh, 1ah

8.
(2.18.5) azaz az

— kX (o).

14 — 782902 Acta mathematica 141. Imprimé le 8 Décembre 1978
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We claim that ¢""°h/d2"0z° can be expressed in terms of A3, &*h/0z* for 0 <i<r, &'h/0Z for
0<j<s and K.x(c) for 0<p<r-.-1 and 0<¢<s—1. This is trivially valid for r+s<1.
Assume it is true for r +s<m. Then if r+s=m, 8™ 'h/02"+10z°—0/0z{0™h[0z" 07} can be
expressed in the specified terms, except possibly when s =m. But 8"™+h/0z0z™ =0™/oz™1
(9%h/020zZ), which by (2.18.5) and the induction hypothesis can be expressed in the specified
terms. Similarly for &"*'h/dz" 925+, and hence the claim is true for r +s<m + 1.

If (2.18.1) holds, then we can choose frames gy, ..., 6, for E, and §,, ..., 6, for E, such

that the o,(wy), ..., 0,{wy) and the &,(w,), ..., F,(w,) are orthonormal and

(2.18.6) Korzol0) = Ko@) at g for 0 <p, g <k—1.

We can further normalize the ¢, and &, as in Lemma 2.4, so that
(65(o), 51{eg)) = 0 = (&(y), Fi{wy)) forI>1.

Note that (2.18.6) still holds because the ¢ and & are unchanged at w,. But since 0'h/0z* =
0'h[07' =0 at w, for this frame, we can express 0"* *h/02"Z%(w,) in terms of A1 and K.»x(o) at
wy for 0<p<r—1 and 0<q <s— 1. Therefore we have (0} (w,), 6{*(wy)) = P+h /02" 87%(w,) =
P+h 027 07 w,) = (6P(w,), 6i%(w,)) for 0<p, ¢<k which implies f/ and f have contact of
order k at wy.

2.19. If 7 is in B,(£2), then Propositions 2.5 and 2.18 show that there is some relation-
ship among the N and the X3, where K is the curvature of E,. We shall see (§ 3) that
the Xz are fairly tractable, but we have been unable to put the N\ into any reasonable
canonical form. To illustrate the difficulties in going from the X.x to N’ we give the

following generalization of Theorem 1.17 which shows that the relationship between X(w)
and N is non-linear.

ProrosiTioN 2.20. Let T be tn B,(L2) and let X be the “‘curvature” of the bundle £,

with the canonical connection. Fix wy in Q, and let
A <. <A,

be the eigenvalues of K(w,). Then the A, are strictly negative and there is an orthonormal basts
of ker (T —wq)? such that relative to this basis NG has the matrix

0

(U

where uy—=(—A)~1.
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Proof. Since JK(w,) is self-adjoint, let vy, ..., v, be an orthonormal basis of (£;),, such
that H(wy) (v,) =4;v;, 1'<2<n. Let gy, ..., 6, be holomorphic sections of E, such that at
g, O4w,) =2, for all 7. By Lemma 2.4 we can assume that (6{”(w,), 0;(w,))=0 for 1<1,
ji<nand k=1, 2, .... By (2.18.5), at w, we have

K(o) = — ((0}(eo), Tiewy))

which implies that the oj(w,) are orthogonal, and ||oj(w,)|| =(—4,)}. By Lemma 1.22, if

we let v,,,=0i(w,), i==1, ..., n, then v, ..., v,, form a basis for ker (7' —w,)?, so 4, is less
than 0 for each i, and NQ)(v,)=0 and NQ)(v,,,)=v; for i=1, ..., n. Thus relative to the
orthonormal basis v, ..., ¥y, Vnia/||Vnsal, - Ven/||v2a]| for ker (T —w,)?, NG has the required
form.

§ 3. Invariants of C* hermitian vector bundles with metric preserving connections

3.1. Let E and E be C® Hermitian vector bundles of dimension n over the open subset
Q of C, with metric preserving connections D and D. We show in this section that point-
wise equivalence of E and £ over Q to some finite order not greater than n determines local
equivalence of £ and E at any point in the complement of a closed nowhere dense subset
of Q. One case where this is easy is when the scalarized ‘“‘curvatures” X and J~( of £ and
E are scalar multiples of the identity. This we call the 0-umbilic case. For the general case
we first put £ and E into a canonical form, where we can reduce the equivalence problem
to equivalence of direct sums of 0-umbilic bundles with some auxiliary conditions. We
solve this problem, and relate the solution to equivalence of order % (Definition 2.17).

The basic idea of the proof is not difficult, but there are two complicating factors.
One is the introduction of a certain closed nowhere dense subset of QQ, which is unavoidable
in the case of C* bundles. For the Hermitian holomorphic case with real analytic metric
(which is all we need for the applications to operator theory) we show that local equivalence
holds at every point of (). Nonetheless, the subset enters into the proof even in that case.

The other complicating factor is the indexing necessary to effect the reduction of
a bundle to its canonical form, and the bookkeeping involved in obtaining the bound of n
on the order. Indeed we show that the order of pointwise equivalence necessary for local
equivalence depends on the canonical form-of the bundles, and that equivalence ta order
two suffices for “‘generic”’ bundles.

Equivalence problems have of course been much studied in geometry. Classical
arguments of Veblen [25] and E. Cartan [16] seem to indicate that equivalence to some

finite order implies- local equivalence in.our situation, at least for' the. real analytic tase.
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However, we have been unable to find a reference which gives an upper bound on the order
for equivalence of holomorphic Hermitian vector bundles. Furthermore, although our
bound of 7 appears to be dictated by the geometry, we are unable to show that the bound
is sharp. Examples which require equivalence to order » would necessarily be highly non-
generic and thus presumably quite complicated.

We have not attempted to deal with global equivalence (but cf. (3.27)), which has a
topological aspect. Our results are purely local and suffice for the applications to operator
theory due to the uniqueness of analytic continuation. The proof also uses the one complex
dimensional nature of Q in an essential fashion. We hope to deal with domains in C" at
a later date (cf. § 4).

We begin with the case of 0-umbilic bundles or bundles for which the curvature is
essentially a scalar function. What we need follows more or less directly from the fact
that such a bundle is a flat bundle tensored with a line bundle. That is essentially the

content of the following Lemma.

LemMa 3.2. If E is a Hermitian vector bundle over an open subset Q of € with metric
preserving connection D such that J(E, D)=AI, then there exists (locally) an orthonormal
frame oy, ..., 6, for E over Q and 5 in EYQ) such that = —17 and Do, =n0;, where the choice
of n depends only on A.

Proof. Since Adzdz=(2A/i)dxdy is a closed, pure imaginary two-form, there exists a
pure imaginary 7 in £4(Q) such that dy=Adzdz. If 7,, ..., T, is an orthonormal frame for
E over Q, which is possible since E is trivial, then there exists a matrix 6 = {0,;} of connec-
tion one-forms such that Dr,=> 0,7, We seek a C® unitary matrix function U={U}

such that o,=> U7, satisfies

’7(‘2 Uyt)) =no;=Do,= D(? Uyty)= ‘Z aUyT, + g Ui Ou T
or equivalently such that
dU = —(0—nI)U.

Tf we define a new connection D on E by setting Dz,=3, §,,7,, where =0 —71I, then
we seek U such that dU = —6U or equivalently such that Do,=0. Since an easy computa-
tion shows that the matrix for K is given by df +6 A § (cf. (2.18.3)), we have

R=d0—dnI+0A0=K—dnl =(Adzdz—dn)I =0,

and hence D is flat.
The existence of U follows from the Frobenius Theorem as follows (cf. [9, p. 102]):
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Let L be the one-form on Q x M,(C) defined by L =dZ +0(z)Z. Then
dL=d0Z ~0dZ =dbZ +6 A 0Z —6L = —0L

and hence by the Frobenius Theorem, there exists a C® matrix function 4(z) with prescribed
initial value at z, such that Z=A is an integral submanifold of L =0, that is, such that
dA=—6A. Tf A(z))=1, then we put B=(A4*)-1, so that B(zy) =1 and

dB = —A*1dA* 4*1 = —(A1dAA-1)* = (A-16)* = —6B,

since f is skew-adjoint (since D is metric preserving). Thus by uniqueness B=4, that is,
A is unitary.

Thus we can find the desired U and defining ¢,=>; U,,7; completes the proof.

We now show that equivalence to first order at every point of { implies equivalence

for 0-umbilic bundles. This is well known and follows in standard fashion from Lemma 3.2.

ProprosiTION 3.3. Let E and E be O n-dimensional Hermitian vector bundles over
the open subset Q of C with meiric-preserving connections D and D. If E and E are 0-umbilic,
that is, if =A1-1 and J~C=i - I for C® real-valued functions A and ion Q, then there exists
(locally) an isometric connection-preserving bundle map : E— E if and only if A =ior equi-
valently, if and only if trace () =trace (J~().

Proof. If such a ¢ exists, then obviously A=1. Conversely, if both £ and E are 0-
umbilic, then by the lemma there exist frames 0y, -, 0p and &, ..., 6, for E and E re-
spectively such that Do,=7%o,; and D§, =7, where dn—=Adzdz and dij — Adzdz. Further, if
A=A, we can take n =7 and hence if we define ¢: E— E such that go,=5,, then ¢ has the
desired properties.

Note that by Definition 2.17, equivalence to first order means precisely that A equals
2, in the 0-umbilic case. In the general case, E and E are equivalent to first order if and
only if X and X are unitarily equivalent at each point. By (2.15.4), X and X are self-
adjoint. In view of Proposition 3.3, it seems very natural to diagonalize X and X and to
investigate the decomposition of £ and E into eigen sub-bundles, with the hope that this
decomposition will simplify the equivalence problem, and it does.

To analyze the function ) we need some results on self-adjoint matrix functions (cf.
[17]; [28], Chap. II, § 6):

Lemwma 34. If H: A~ M ,(C) is a O® self-adjoint n x n matriz valued function defined
on the open subset A of R™, then there exists a closed nowhere dense subset Zy of A such that if
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A, is a component of A —Zy, then there exist C° functions A, < ... <A, and C® (orthogonal)
projection valued functions Py, ..., P defined on A, such that

(3.4.1) M), .., Al)

are the distinct eigenvalues of H(w) and P (w) ts the orthogonal projection onto the eigenspace
of H(w) for the eigenvalue A(w) for w in A,.

Proof. Let f,(z) be the characteristic polynomial of H(w), ¥ the maximal number of
distinct roots of f, for w in A, and A the set of @ such that f. has k distinct roots: 4,(w) < ...
<2(w). Fix w, a point in A and let m, be the multiplicity of A,(w,). Let Ay, ..., A, be dis-

joint discs centered at 4,(w,), ..., A.(w,). For w close enough to w,,

1 ful2)
— | 24
2708 o, ful®)

is continuous in @, hence is equal to m;, and thus w is in A by the argument principle.
This implies by pigeon-holing that ,(w) is in A,, that the multiplicity of 4,(w) is m,, and
since

L[ fa®
Hlew)= 2mimy Jaa, fo(2) wdz

it follows that the A, are differentiable.

To show that P,(w) is a C® function on A we recall that

’

1

We can continue this procedure on the interior of A ~A, absorbing the boundary of
A into the set Z, and etc., which completes the proof.
We now proceed to analyze a C© Hermitian vector bundle £ over £, an open con-

nected subset of €, where E is equipped with a metric-preserving connection D.
Definition 3.5. An open connected subset A of Q has a regular 1-eigenvalue structure

for E if there exist C real-valued functions

(3.5.1) Mlw) < ... <Ang(w)

defined on A which are the distinct eigenvalues of X(w). Each A; has multiplicity m;
(necessarily constant on A) and a corresponding eigen sub-bundle £, of K restricted to A
such that

(3.5.2) E=E®..0Eus.
The index set {1, ..., n(E)} is denoted by J,(A).
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Throughout this section we will use the notation A,(E, w), m(E), J(A, E) and so
forth when we wish to emphasize dependence on the bundle E.

By the previous lemma there is a closed nowhere dense subset Z; of Q such that each
component of 2 —Z, has a regular 1-eigenvalue structure for E.

Note that if E is a holomorphic Hermitian vector bundle and D the canonical connec-
tion, the £,’s will not in general be holomorphic sub-bundles of E, since K{(w) is not at all
holomorphic (it is self-adjoint). Nonetheless if P; denotes the orthogonal projection of the
C® Hermitian bundle E onto E,;, then

(3.5.3) D,=P,DP,

gives a metric preserving connection on E,.

Let A have a regular 1-eigenvalue structure for £. We say that A has a regular 2-
eigenvalue structure for E if A has a regular l-eigenvalue structure for each X, for ¢ in
Ji(A). Wo decompose E; into eigen sub-bundles K, ..., Bz, corresponding to the
eigenvalues 1;(w) < ... <Anmgylw) of K;=K(E,;, D;), the “curvature” of E, with respect
to the connection D,. Then J,(A) is the set of all (¢, 1), ..., (z, »n(E})) for 7 in J,(A). Conti-
nuing in this fashion, we say that A has a regular k-eigenvalue structure for E if A has a
regular (k—1)-cigenvalue structure for E and has a regular l-eigenvalue structure for
each E; with its connection D;and “curvature” X,—= X(E,, D,), I=(iy, ..., % 1)in Jp 1(A).
We put A; equal to A, (E;) for J —(iy, ..., ), where 1 <4, <n(E,) and let J, be the set of
all J of this form. Then m; denotes the multiplicity of 4,, E, the eigen sub-bundle of E;

corresponding to 4;, and P, the orthogonal projection of £ onto E;. Define
(3.5.4) D,=P,DP,

which gives a metric preserving connection on Ej, for J in Ji(A).

To keep our notation consistant we put Jy(A) equal to {D}, Ey equal to E, Dy equal
to D, and X4 equal to XK.

By Lemma 3.4 there oxists a closed nowhere dense subset Z, of  such that the com-
ponents of Q —Z, have a regular k-eigenvalue structure for E. Note that if E is 0-umbilic
on £, then it trivially has a k-eigenvalue structure for all k.

Let A have & regular n-eigenvalue structure for E, where the dimension of ¥ is n.
If Iisin J(A) for 0<k<n- 1, then n(E,), the number of eigen sub-bundles of E,, is at
least one and hence the dimension of each eigen sub-bundle of E, is strictly smaller than
the dimension of E,, unless E, is O0-umbilic, that is, unless J{;=A.1, - identity. Thus there
exists m, 0<<m <n—1 such that E, is O-umbilic for all I in J,(A). Let M(A, E) be the
smallest integer m for which this is true.
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Definition 3.6. A C® Hermitian vector bundle E of dimension n over the open subset
Q of € with metric preserving connection D is said to be M-umbilic on an open connected

subset A of Q, if A has a regular n-eigenvalue structure for £ and
(3.6.1) M=MA, E).

3.7. Let E and E be n-dimensional Hermitian vector bundles over Q with metric
preserving connections D and D. If ¢: E~ E is a O® isometric bundle map which is con-
nection preserving, then tpoJC:Jzotp (2.16.1), which implies that the eigenvalues of X
and X are equal. Thus if A, contained in Q, has & 1-eigenvalue structure for E, then it has
a l-eigenvalue structure for . In addition J,(A, E) equals J,(A, E), A(E) equals 1,(E),
the multiplicities agree, and poP; =P op.If ¢;: B~ £, is ¢ restricted to £, then ¢, preserves
the connections D; and D, on E, and £, and hence @,0 X; is J~(,.o<p,. Continuing in this
fashion we see that if A has a regular n-eigenvalue structure for E, it has one for £, and
the following hold for all 1 <k <n:

(3.7.1) JdA, E) =T (A, B)
(3.7.2) A(E)=2(E) and m E)=myE) foreach I in J,(A).

Furtherniore, @oP,=Pop for I in Ji(A), so if we let ¢;: E,~ B, be the restriction of ¢

to B 1, then g, is an isometry and
(3.7.3) @;0D,; =D;og,.

Thus we have shown that the J. (A, E), A{E, w), and m,(E) for I in J, (A, E) and
1<k<n are invariants of £ and we call them the eigenvalue structure of E on A. If A
has a regular n-eigenvalue structure for both E and £, we say that E and £ have the same
eigenvalue structure if (3.7.1) and (3.7.2) hold.

Moreover, if for I and J in J,(A), I=.J, we define

(3.7.4) V,,=P,DP,

then it is easy to check that ¥ is function-linear on the sections of E,, so it is a %
bundle map from E, to £, T*(A), and

(3.7.5) ‘ o ¥y =IPU‘PJ

3.8. If E and £ have the same eigenvalue structure on A, and for fixed &, 1<k<n,

there are isometries g, from E, onto £, for each I in J,(A) which are connection preserving
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(3.7.3) and satisfy the auxiliary conditions (3.7.5) for all I and J in J(A), [+ J, then E

and E are equivalent, since

(3.8.1) D=3 D+ > ¥,
Ieyy I.IJ:J:;;C

This observation is not very useful for general k, but if we let k be the integer M such
that E is M-umbilic, then E is M-umbilic and the Es and E,’s are all O-umbilic for I in
Ju{A). By Proposition 3.3 we can completely determine which ¢, are connection preserving
isometries of E, onto &,, and thus we need only check when the conditions (3.7.5) can also
be satisfied. These are conditions on bundle maps (or equivalently on matrix valued func-
tions) rather than on connections, which makes them much easier to handle.

In order to analyze the auxiliary conditions, we need a technical lemma which we

prove after giving the following well known result from differential geometry.

LEMMA 3.9. Let A be a connected open set in R* and oy, ..., 6, A—>C" be O functions
such that 6y(x), ..., 0,(x) are independent for each x in A and (80,/0x,)(x) is in V{oy(2), ...,
(@)} =V(@), forall x in A, i=1, ..., m, and j=1, ..., k. Then V(z) is constant.

Proof. Fix xy in A. Then there exist C® maps 7y, ..., Tt A—>W(2,)* and a O® matrix
function (o) with o,(x) =2, a;,(®)0,(xe) + T;(x), for j=1, ..., m. In some neighborhood A,
of z,, («;;) is invertible with inverse (8,;). Setting &,(x) =2 B;(x)o;(x) we obtain € maps
such that &,(x) =0,(x,) +T(x), where %,(z) lies in W(z,)*. But then o6,(x)/ox,;=oT,(x)/ox, is
in W(xy)*, while at the same time 86 (x)/0x; is in W(x) =V{oy(2y) +T,(%), .-, Om{@o) + Tm(®)},

which implies 8§,/0x;=0. Thus &y, ..., 6,, are constant, so W(z) is also.

Remark 3.10. Let f: R>R be a O function such that f?(0) is 0 for :=0, 1, ..., but

f(x) is never zero for x non-zero. Define ¢, from R into €2 by

(f(x),0) forx <0

(@) :{ 0, f(z)) forz=0.

Then 61(x) is in Y(x) for all z, but W(x) is not constant. Thus the independence of the ¢

is a necessary hypothesis in Lemma 3.9.

LemMA 3.11. For Q an open subset of C and positive integers m and n let x: Q—C™*"
be a C= function. For each w in Q, let a,, be in 8*™1 x §2"-1< C™ x € such that

8T+Sx

0270%°

[+ o

(w)=0

forr,s20,r+s<m+n—2and for r=0,s=m+n—1,
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where (@, ..., @pmon)- (byy - bun) =2 a;b;. Then there exists a closed nowhere dense subset
8, of L such that « - =0 in each component of Q —8,, where o=, for any w inthe component.
Moreover, if each «, is just assumed to lie in C™", then the same conclusion holds if we

require r=m+n—1, s=0 as well.

Proof. It Q'={w: z(w)+0} and Q2 is the interior of {w: 2(w) =0}, then Q —(Q! U Q2)
is a closed nowhere dense subset of Q. On Q? the lemma is trivial so we may assume by
deleting a closed nowhere dense subset that z never vanishes on Q. Now do the same for
x A 0x[0Z, that is, we may assume (neglecting a closed nowhere dense subset) that x A &x/0Z
never vanishes or vanishes identically. Continuing in this manner we set #, =« and having
chosen «;, we choose z,,, to be the first of z, 02/0%, dx/oz, E%x 072, D%x|020%, %x[622, ... after x,
such that =, Az, ... A2, is never zero. Let x, be the last one which can be chosen. Let
V() =V{x\(w), ..., z,(w)}. Sitice the partial derivative of any vector function in V(w)
remains in Y(w), then Y(w) =V, is a constant subspace of C"*" by the previous lemma. We
consider two cases (1) x A dx/0Z never vanishes and (2) x A 0z/02=0.

In (1) if x A 0x/0z A Ox/0z is never zero (so m+n>3), then since the dimension of U,

is not greater than m +n, we see that

V,= V{:;r;; r+s<m+n—2},
where we use the fact that if all the partials of total order k are dependent on the lower
order derivatives, then U, is spanned by the lower order derivatives. Hence o, L Y, for
all ® in the component, from which the result follows. On the other hand if z A 8x/0Z A
oz/0z=0, then there exist C® functions f, and f, such that éx/oz =f, x +f,(0x/0z) and & +*x/
(6270%°) is in the span of =z, 0x[0z, ..., 0™+ 1x[oz™+ L. Therefore a, - (¢"+x/02"97°) =0 for all
0<r+s<m-+n-—1, hence «, L ¥ from which the conclusion follows.

Now suppose x A 02/6Z2=0 and let { be the non-vanishing C® function such that ox/6z =
fr. If we set &=gx, where 0 log g/0z= —f, then 0%/0z =0. Thus without loss of generality
(replacing x by ) we may assume 8z/6Z=0 or that x is holomorphic which implies z;=
&*1z/oz*-1. If p, the dimension of ¥,, is not greater than m +n —1, then we proceed as in
(1) and we are done. If not, then x(w) is a holomorphic curve from QcQ into C"*™ such
that {z,(w)} ‘i=‘l, - m+n, form a basis for each w. Let y,, ..., Y, be the dual basis, that
is, the basis which satisfies y,-x,-%é,-,.. If z,(w) =3 A;,(w)e;, where {e,} is a basis for C"*"
then y;,=> B,(w)d,, where d, is the basis dual to e¢; and B=(4-1)t is holomorphic. Thus
the y,’s are holomorphic. Since «, is necessarily a non-zero multiple of y,,.,, and &, isin

S 1% 821 we have y,..—= V(w)® V(w) where V(w), 7(w) are holomorphic curves in
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€™, C" respectively, and || V(w)| = || P(w)]|. Let #=V,ea{V(w)}and b =V,ea{V(w)}. By
an obvious variation of the rigidity theorem (2.2), there exists U: H~ H an isomorphism
such that U(V(w))= V(w). Let P, denote orthogonal projection on H. Define T in
End (C™*") by T'(e, &) = (0, UPy(e) —é&). Then T (Y, n(@)) - (0, U(V(w)) — P(w)) =0, and T +0.
Since T(Ymen)* €:=Ymin- Tte; =0, then THC™") is contained in Vi.1,. . m.» 1{Z(w)}. Let
& in THC™™) be non-zero; then there exist holomorphic functions &; such that & -
St Efw)zw), r<m+n—1, and &, not identically zero. Since & is constant, £ —=0=
ST 1 &)z (w)+ i1 Ew)x,,, implies z,,, is dependent on w, ..., z,, which is a con-
tradiction; that is, p is indeed less than m +n.

If o, is just in C™", then o, -8™ " 1z/3z™' " () =0 implies z,_, is dependent on

Ty, or Tymyn 1, SO agAIN P is less than m+n.

3.12. We can now state our theorem for M-umbilic bundles. Let E be M-umbilic
over Q (Definition 3.6). For I and J distinct in J,(Q2), the map ¥;(3.7.4) induces C* bundle
maps ¥, and ¥, from E, to E, by decomposing ¥';,

(3.12.1) ¥, =¥, dz +¥7,dz.
We recall Definition 2.11, so that, for example,
(Yu).dz=D; ¥, — Y1, D
Note that by (2.12.1), with D=D, ¢ =P,, 5 in E(Q, E,) and ¢ in £, E,), we obtain

(3.12.2) (W)=Y

THEOREM 3.13. Let E and E be C® n-dimensional Hermitian vector bundles over the
open connected subset Q of C, with metric preserving connections D and D. If E and E are
M-umbilic on Q, with the same eigenvalue structure, then there exists a closed nowhere dense
subset Zg i of Q such that E and E are locally equivalent on Q —Zg 5 if and only if for each
w in Q and I in Jyu(Q) there exists an isometry V, o: (E),~(E,),, where (E,), is the fibre
of E, at w, such that

(3.13.1) V1,00 (Fir)us(e) = (Ti)rs(@)o Vi
for all I and J distinct in Jp(Q) and all r and s satisfying either r+s<M,+M,—2 or r =0
and s=m;+m;— 1.

Note that if m;=1 for all I in J,,(Q), then (3.13.1) must hold for r =0 and s =0 and 1.
When 7 and s are both zero we obtain ||| =||‘i’},” Then (3.13.1) holds for =0 and
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s=1 if and only if it holds for r=1 and s =0, since ¥;} = || ¥ |2 ¥ and (¥77): = (¥0)?

by Lemma 2.12. It is a generalization of this technical fact that we use .

Proof. I E and E are locally equivalent on Q minus a closed nowhere dense subset,
then the existence of the V; , is immediate ((3.7.5) with V; , =@, (®)).

Conversely, suppose that (3.13.1) holds, and let Zg z be the complement of the set
in Q on which E and E are locally equivalent. Since E and & are M-umbilic, E; and £,
are O-umbilic for I in J,/(Q). Furthermore, since £ and £ have the same eiéen-value
structure, we have trace X; equals trace j(,. Thus if there exists a non-empty open set
Q, contained in Zy, z we can apply Lemma 3.2 to obtain orthonormal frames ¢, = {0, ..., 071}
for E, and 6,={61, ..., 677} for E,, defined on Q, such that

(3.13.2) Dyot) =m0 and D,(ah) =n,6¢ fornm, in EYQ).

We wish to show that there exists no such set .

We seek to construct a C® isometric bundle map ¢;: E,~ E; which will satisfy the
conditions (3.7.3) and (3.7.5). If U, is the matrix for ¢, relative to the frames ¢, and &,
then by (3.13.2) ¢, is isometric and connection-preserving if and only if ¢U,=0, that is if
and only if U, is a constant unitary.

Let W'}, have the matrix 4, with respect to the frames ¢, and o; and similarly let
A4,, be the matrix for ‘f"}, with respect to the frames 6;, 6; for I, J in J4(€2). Then for ¢,
to satisty (3.7.5) by (3.12.2) it suffices to find constant unitary matrices {U };es,,q) such
that

(3.13.3) U Ay =A4,U, for I+J.

If u,=nidz+;dz, then the matrix of (¥y), is (;—7;)A;+04y/02 and in general the
matrix of (V') is just &7°A4,,/(@270z°) plus terms involving lower order derivatives of
A,;; multiplied by derivatives of 5;—; and #; —77. So (3.13.1) implies that for each w

in Q,, there exists a unitary matrix U, , such that

an—sA”: ar+s£”
Lo ooz ooz ¢

(3.13.4)

for 0<r,s<r+s<m;+m,;—2 and r=0, s=m;+m;— 1. The proof now follows from Lemma
3.11. If for fixed ¢ and j we set

#(w) = ((A) s - (AIJ)ij7 (Au)iv oo (gll)sm,)
and

&y = ((Ul.w)il, ety (Ul.w)lmp _(Ul.w)lj’ it _(Uf.w)mli)
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then z: Q—>C™ xC™, «, lies in §*™~ ' x 8> -1 and a,- & **x/c2’0z° =0 by (3.13.4) for the
appropriate r and s. Thus there exists a closed nowhere dense subset S of €, such that on
any component A of ,—8, we may use the {U,,,} for any w, in A to define the ¢, and
hence an isometric connection preserving map ¢ between E|, and E|,. But then A is
not contained in Zg ; and hence Zg, ; is nowhere dense which completes the proof.

3.14. Although Theorem 3.13 gives a geometrically plausible condition for two bundles
to be equivalent, its usefulness is severely limited in practice. One must not only show
that E and £ have the same eigenvalue structure, but also one must exhibit the structure
in order to find the ¥;,’s and check (3.13.1). Now for #>5, it is not possible to find the
eigenvalues of X and X, much less the whole eigenvalue structure. Yet one can in principle
compute whether or not X and XK have the same eigenvalues (without finding them)
simply by finding the traces of X and X raised to powers less than or equal to n. Thus we
would like to state Theorem 3.13 in a form which is computationally more convenient, in
terms of pointwise equivalence (Definition 2.17).

An additional reason for doing this is that in the operator theoretic case (§ 1) we can
give an interpretation of the eigenvalues of the curvature J}(w) for the bundle E; in terms
of the nilpotent N, by Proposition 2.20. However we have not been able to put N& into
any canonical form when & is greater than 1 and we have no interpretation of the whole
eigenvalue structure of K, in terms of the nilpotents. We do have a relationship between
the nilpotents and pointwise equivalence (Propositions 2.5 and 2.18) and in §4 we will
use this to prove Theorem 1.6.

3.15. In order to reformulate Theorem 3.13 we first find the relationship of the X,
and ¥, ; to the “‘partial derivatives” of X. So let E be a Hermitian bundle with metric-
preserving connection D over (), where () has a regular n-eigenvalue structure for £ and
dimension E equals n. Fix I =(iy, 4y, ..., 3;)in J,(Q), 0<I<n —1, and let 1 <¢, j <n(E,). Since

nED

Pl.i[Dh 3(1] PIJ= kzl PI.{'[DD }'l.k Pl.k] Pl.;

nE])

= kZI {P1,s Py PpydA; o+ A Pr Dy Py Pry— Ay Py Pry Dy Py g},

then
(3.15.1) Pr[Dy, X)Py, =dA;, Pry and
1
(3.15.2) Yunun=7——5—Pr D, X]1P,,
Ary—2r,
1

= *Pu{xud" + xlEdZ}PI.I'
}-1.1_11.4
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Further, the identity

n(Eyp)

P, X,P,,dzdz=P, DiP, ,= zl P,,D,P, D P,,
k
implies

(3.15.3)
Z lIJ‘(I.i)(l.k)‘F(I. k). i) + Dl,i ‘F(I.i)(l.i) + ‘F(l.f)(l.l) DIJ "’ :*:7

k4,4

P K Py ydzdz= c_ s
kZ‘ YinanYawant+ K dedz i=j

or by (3.15.2),

(3.15.4) K. PH{JC1+Z K PpyKis — J(IQPI.IJ(IZ)}PIJ'

I#l l A1 I 1)2
Note that when ¢ and j are not equal, the left hand side of (3.15.3) is zero, so there is a
relationship among the ¥"’s and their derivatives. We do not make use of this relationship,
but it has proved to be an obstruction to producing examples.

Now for I and J distinet in J,(Q), I=(4, ..., %) and J =(j;, -.., ji) let I be such that
1=, for a=1,..,1 and 4, *7,,. If L=(i}, ..., %), then L is in J,(Q), E,<<E; ; <E,
and

¥, =P, DP, =P P, 4., L1 DPLPy, i, Pr=P/P,, PL/;HP

Thus by (3.15.2) we obtain

1
e TT PI(J(L)ZPJ

_;'L"zzl

(3.15.5) -

L,J1+1

We note that if I and J are in J,(Q), I and J not necessarily distinet, and if ¢,;: £~ K,
is a C* bundle map, then

D@1, —¢1 Dy = Pz(DPI_%JPJ—PI‘PuPJD)PJ

which implies
(3.15.6) (Pr): = P(P,pyP;), P; " and (¢y): =P1(P1(7’IJPJ)2‘PJ’

where P, ¢, P, is considered as a bundle map of ¥ into itself. We emphasize that the z and
Z subscripts refer to covariant differentiation with respect to different connections on the

two sides of the equations (3.15.6).

THEOREM 3.16. Let E and E be C® n-dimensional Hermitian vector bundles over the

open connected subset Q) of C with metric-preserving connections D and D. If E is M-umbilic
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on Q, M =21, then there exists a closed nowhere-dense subset Zg 3 of Q such that E and E
are locally equivalent on Q --Zg 3 if and only if E and E are equivalent to order kg, where .

(3.16.1) ke=M—-14+ max {m;+m,}
1, Jeap())
I+J
and thus
(3.16.2) M4l<k<n.

Proof. The one direction is obvious (Remark 2.16). For the other, suppose E and E
are equivalent to order kg at each w in Q and let V,: E,,-> E, be an isometry effecting this.
Since M >1, E is not O-umbilic, and thus J,,(Q) has at least two distinct elements. Since
each my is greater than 0, ky is at least M +1. Since £ and £ are equivalent to order 1,
it follows that 1,(w) =it(w) for i =1, ..., n(E), and that Q has a regular l-eigenvalue struc-
ture for £ (which agrees with the one for E) and V,P,=P,V,. Let V, : E,~E, be V,
restricted to E;.

Now we claim that if £ and £ are equivalent to order k+1, then E; and £, are equi-
valent to order k via V, , for each i in J,(Q2). This follows from (3.15.4), (3.4.2), (3.15.6)
and the Leibnitz rule (2.11.1).

Thus by induction, Q has a regular kg-eigenvalue structure for £ which agrees with
the onc for E, and for each / in J(Q), 0<k<ky--1, E; and E, are equivalent to order
kg- -k, via V,,: E;~ E;, where V,, is the restriction of ¥, to E,. Since for an M-umbilic
bundle the (M --1)-eigenvalue structure contains all the information of the n-eigenvalue
structure, and since kg is at least M -+ 1, then E is M-umbilic, with the same eigenvalue
structure as K. Note, we need the (M 4-1)-eigenvalue structures of E and E to show that
the eigenvalues for the 0-umbilic bundles £, and E, Iin Ju(Q), are the same.

In order to apply Theorem 3.13 we need to show that (3.13.1) holds. Now by (3.15.5),
for I and J distinet in J,,(Q), (¥};).r» can be expressed in terms of (i) the ordinary partial
derivatives of A, ,,, and A, , , (i) (P)).z and (P;).s: and covariant partial derivatives
of total order less than r+s, and (iii) {K,).7+1;¢ and covariant partial derivatives of total
order less than r +s+ 1. Thus (3.13.1) holds if

(3.16.3) ViolPus=(Pluu Vi

and
ViwlPpos= Pz Vi

for each o in Q and r and s such that either 7 4-s<m;+m; -2 or r=0.and s=m;+m, -1,

and

(3.16.4) Vil K )orse = (K)o Vi
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for each w in Q and r and s such that either r+s<m;+m;—1 or r=1 and s =m;+m;—1.
Note that by the technical result Lemma 3.11 we were able to avoid requiring (3.13.1) to
hold for r=m;+m;—1 and s=0 and thus we do not require (3.16.4) to hold for r =m; +m,
and s=0.

Now E, and E, are equivalent to order k, — M, so by definition of k5 we obtain (3.16.3)
for I, and similarly for J. Since I is less than M, E, and E, are equivalent to order kz—!
which is at least m;+m,, and thus (3.16.4) holds. We have therefore shown that (3.13.1) is
satistied. '

To complete the proof, note that the total number of E,’s for I in J,(Q) is at least
M +1. Since m; is the dimension of E,, we have

M-1+m+m< 2 dimEg=n
Kepr(€d)

which proves (3.16.2).
Of course to determine whether a bundle is M-umbilic requires that we know the eigen-
value structure. Using Theorem 3.16 we can now give an equivalence result which requires

no knowledge of the eigenvalue structure.

THEOREM 3.17. Let E and E be n-dimensional Hermitian vector bundles over the open
subset Q of € with metric-preserving connections D and D. Then there exists a closed nowhere-
dense subset Zy 5 of Q such that E and E are locally equivalent on Q —Zy 3 if and only if

E and E are equivalent to order n on Q.

Proof. There exists a closed nowhere dense subset Z, of Q such that if {Q,} are the
components of Q—Z_, then Q, has an n-eigenvalue structure for £ for each «. Thus &
restricted to Q, is M-umbilic for some M. By Theorem 3.16, if £ and £ are equivalent to
order n on Q,, there exists a closed nowhere dense subset 2% 7 of Q, such that £ and £
are locally equivalent on Q,—Z% ;. If Z. 3 is the union of Z, and all the Z% z, then Zz 3
is closed and nowhere dense in Q.

Although in general n will suffice, a much better estimate can be given in the generic

case.

Definition 3.18. A O Hermitian vector bundle E over the open subset Q of € with
metric-preserving connection D is said to be generic if J{ has distinct eigenvalues of multi-

plicity one at each point of Q.

CorOLLARY 3.19. Let E and E be generic C° Hermitian vector bundles over the open
subset Q of C with metric-preserving connections D and D. Then E and E are locally equi-
valent off a closed nowhere dense subset Zg, z of Q if and only if E and E are equivalent to
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order two on Q, that is, if and only if K, Kz, K. are simultaneously unitarily equivalent to
JZ, JZ'E, K. at each point of Q - Zg 3.

Proof. If E and E are generic, then they are both 1-umbilic and m;=1 for each i in
J1(Q). Thus kg is 2.

CorOLLARY 3.20. Let E and E be generic C*° Hermitian vector bundles over the open
subset Q of C with metric-preserving connections D and D. Then E and E are locally equivalent
off a closed nowhere dense subset of Q) if and only if the following conditions hold:

(3.20.1) trace K'—trace i fori—=1,2, ..., n or equivalently the eigenvalues of X are equal
to those of J~(; and

(3.20.2) trace I H'IGIK, trace K'ILI' KXK', and trace JI,H ... XK, K" are
equal to the corresponding traces in K for 0<i,j, I<n—1 and distinct 0<i, ..., psn—1,
where p=>2.

Proof. Let ¢, be a unit section of E; for each ¢ in J,(Q), put P, X.P,0;=a;,0, and
P, X.:P;0,=b0,; similarly for 6, &,; and 5,-,. Then E and E are locally equivalent if and

only if for each w in € there exist g,, 0s, ..., 0,, |0:| =1 such that
(3.20.3) 0ia;=a,0;, i+j and
{3.20.4) 0:b;,—b,,;0,, Wwhenever a,;+0,

since by (3.15.5) a,, vanishes identically in an open set if and only if ¥, vanishes identi-
cally. Thus if (3.20.3) holds, then (3.20.4) is equivalent to

(3.20.5) ayby=a,b,.
Now (3.20.3) holds if and only if
(3.20.6) @18y =0y@; and @y ,a,,, ... Cipty =@y 4y Biy gy - Gy

for all distinct ¢y, ..., 4,, and p =2 (p> 2 is needed since some a,’s could be 0).
Note by Lemma 2.12 and by (2.15.5) applied to X: £~ E, X is self-adjoint. Thus the

b,/’s are real; (3.20.5) and (3.20.6) hold if and only if

trace P;X,P,X:P; = trace B, K, P,X.:P, for1<i,j<n,i%j,

trace P ), P, );P; = trace P,j(zp,j(gp,, for1 <¢,j<n,t%j and

trace P, X, Py, ... P, X, P, = trace PP, . P pK.Py,

for distinet 1<1,, ..., 3, <n, p > 2.

Now (3.20.2) follows from (3.4.2).

15 — 782902 Acta mathematica 141. Imprimé le 8 Décembre 1978
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3.21. Corollary 3.20 is slightly neater than the formulation given in [6], though it in
fact involves more traces. Note further that the genericity of E and £ can be determined
by the non-vanishing of a polynomial in the traces of JX* Thus the corollary gives a com-
plete set of invariants for local equivalence of generic bundles.

To give similar invariants for non-generic bundles would be difficult but the following
lemma shows that a finite set does exist. We will also use this result to strengthen our
equivalence results for bundles with real analytic metric by omitting mention of the
closed nowhere dense subset. The following lemma seems to be well-known but we have

been unable to find a suitable reference.

LeMMA 8.22. If Ly, ..., L, and L,, ..., L, are complex n xn matrices, then there exists
a unitary matriz U such that UL,=L,U for i=1, ..., p if and only if the trace of a_finite
number of words in Ly, ..., L,, LT, ..., Ly agree with the trace of the corresponding words in

Lo L It . I

Proof. Setting M,=L,+L}+al and N,=i(~L;+L])+al and the same for the L,
where « is a real number, we have the L,’s and the L,’s simultaneously unitarily equivalent
if and only if the self-adjoint matrices {M,} U {N,} and {M,} U {N,} are simultaneously
unitarily equivalent. Moreover by choosing « sufficiently large we can assume that all are
positive definite matrices.

Let L be the (2p+1)n x (2p +1)n nilpotent matrix with all entries zero except the
entries above the diagonal which consists of G;, G, ..., Gy, Where Gy =M and G, =N, for
t=1, 2, ..., p, and similarly for f If the two collections are simultaneously unitarily equi-
valent, then C and  are unitarily equivalent. Conversely, if £ and C are unitarily equi-
valent via the unitary U, then U must be block diagonal with entries Uy, ..., Uy, YA
calculation yields U,G;=@,U,,, for i=1, ... 2p which implies U,G? U} = G?. By uniqueness
of the positive square root, we have U,G, Uf =G, which implies U, = U, and hence setting
U=U,, we have UL,=L,U for i=1, ..., p.

Now the result of Pearcy [18] and Specht [21] completes the proof since the trace of
a word in € and £* will be a polynomial in o with coefficients the trace of a word in the
L, and L}.

Of course, the number of traces required to show unitary equivalence of two m xm

matrices might be enormous (Pearcy requires 4™ traces).

3.23. We emphasize that the preceeding vesults, on equivalence of Hermitian bundles
with metric-preserving connections, apply to holomorphic Hermitian bundles where
squivalence refers to both the holomorphic and metric structures. The eonverse of this is
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also true, that is, given a Hermitian bundle E, over Q contained in C, with metric preserving
connection D, E can be given a complex structure so that it is a holomorphic Hermitian
vector bundle and D is the canonical connection. Indeed, if oy, ..., 0, is a frame for F in
a neighborhood A of the point w, in Q, and § the matrix of connection 1-forms relative to

g, then we can find a C® n x n matrix 4 which solves the differential equation
(3.23.1) 0A+6"4 =0

in a neighborhood of w, with initial condition Afwy) =1, where we have written 0 =6"dz +
0"dz. To see this, assume that w, is the origin and let p(w) be a € function with compact
support in the disk D, of radius r such that g is identically 1 on D,,, ro<r. Let 4, be I
and define 4, ., by

1 1

. 1 .
(3.23.2) Ann@)=I—o fnre(f) 6"(£) Am(&) {5—_”(; 3

Then A, 1(0) =1, (0An+1/0Z) = — 00" A, on D,, and thus

}d&df.

(3.23.3)' 94’2—“ =—6"4,0nD,,

‘ 0z
For 7, small enough, the 4,,’s converge uniformly to 4, a continuous matrix valued func-
tion such that 4(0)=1. It is easy to check that 4 gives a distribution solution to (3:23.1)
on D,, and thus is C® by [29, p. 86]. Moreover, if {A,} is a covering of A by open sets,
and 4, is a non-singular C* matrix which solves (3.23.1) on A,, then on A, N Ay,

(3.23.4) A Ag)= — A;'0A, A" Ag+ A1 04,
=A;'0"4,— A;10"4,=0.

Thus the A;" A4 are holomorphic and can be considered transition data for a holomorphic
bundle on A which by Grauert’s Theorem [12] is trivial. So there exist holomorphic matrices
®, on A, such that 4,®, equals A;®; on A, N Ag and this defines a non-singular solution
A of (3.23.1) on all of A.

If 6,= A0, on A, then &, ..., §, form a frame for £ and D"6,=0, =1, ..., n. Thus
if we trivialize  restricted to A using the frame 6, ..., &, and give E the complex structure
of the trivial bundle, then we may consider the &y, ..., , as holomorphie sections. Relative
to this structure D satisfies (2.9.2) and (2.9.3) so it is the canonical connection, (cf. [30,
p. 62] for another proof). ‘

We want to show that for Hermitian hblomorphic vector bundles with real analytic
metric we can get equivalence on all of Q. To do this we first give the following undoubtedly

well-known lemmas.’
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LEMMA 3.24. Let E and E be holomorphic Hermitian vector bundles with real analytic
metrics, over an open subset Q contained in C. If E and E are equivalent to infinite order at
a point wgy in Q, that is if E and E are equivalent to order k for all k=1, 2, ... at w,, then E
and E are equivalent in a neighborhood of w,.

Proof. Note that by the compactness of the n x n unitary group, we can find an iso-
metry V,,: Eo,— B, such that V,, K= Kuz V., for all i and j.

Now let 6 —{oy, ..., 6,} be a holomorphic frame for E in a neighborhood of w, and let
k(o) = ({0}, o)) be the matrix of inner products. Then & is real analytic and if for simplicity
we assume that w, is the origin then A(c)—=> 5. A2'7. If we let B=(> %, £'%')~1, then
B exists, is holomorphic, and is non-singular in a neighborhood of 0. Let y,=> B,;0, so
that y ={y,, ..., ¥} is a holomorphic frame for £ in a neighborhood of 0. Since A(y) equals
B*h(c) B, we have
(3.24.1) ‘9—‘(,’;—})- 0)=0 foralli=1,2, ....

Since h(y) is self-adjoint, (3.24.1) holds for the Z derivative as well. In a similar fashion
we can find a holomorphic frame % for £ such that (3.24.1) is satisfied for A(¥). Using

(2.18.5), as in the proof of Proposition 2.18, we obtain for U, the matrix of V relative to
Vi oo Y a0d Py, ooy P, _

Uh =90  for all 4, §
which implies that Uh(y)=h($) U in a neighborhood of 0. Thus if we define p: E—~E in a
neighborhood of 0 by letting the matrix of ¢ relative to the frames y,, ..., y, and §,, ..., ¥,
be the constant matrix U, then ¢ is a holomorphic isometry, that is, £ and E are equi-

valent.

LeMMaA 3.25. Let E and E be holomorphic Hermitian vector bundles with real analytic
metrics, over an open connected subset Q contained in C. If E and E are equivalent in any
non-empty open subset of Q, then they are locally equivalent on Q.

Proof. By Lemma 3.22, equivalence to order k is given by the equality of certain
traces in the covariant partial derivatives of X and .7~C,_ which are real analytic since the
matrices relative to holomorphic frames are real analytic. Thus if £ and £ are equivalent
to order k on any open subset of €, they are equivalent to order & on (. Since they are
equivalent to order k for all £ on an open subset, they are equivalent to infinite order at

each point of Q and the lemma follows from the previous lemma.

3.26. If £ and £ are any C* Hermitian bundles with metric-preserving connections

such that locally there are frames relative to which the matrix of inner products and the
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connection 1-forms are real analytic, then we can solve (3.23.1) for a real analytic 4, so
we can consider E and E locally as holomorphic vector bundles with real analytic metries.
Then by using Lemma 3.25 we can delete the set Z; 5 from Theorems 3.16 and 3.17, and
Corollary 3.20.

3.27. We conclude this chapter with an example of two Hermitian bundles on €
with metric-preserving connections which are locally equivalent on C minus the y-axis
but are not equivalent in any neighborhood of a point on the y-axis. A similar example
gives two bundles which are locally equivalent on C but not globally equivalent.

We let E be the trivial 2-dimensional Hermitian bundle over C, with the global ortho-
normal frame o ={g;, 05}. Let f(x) be a real C* function of the real variable # which vanishes
to infinite order at = -+c, ¢ a non-negative constant, and such that f and f* are non-zero
for |x| >c and identically zero for |z| <¢. Define real C* functions a and b of the complex
variable z=x +1dy by

a(z) = $(f@) +1@), b = 1(fz) ().

Define the connection D on E by letting the matrix 6 of connection 1-forms relative

to the frame ¢ be
- (%(dz —dz) adz~— bdZ) )
bdz — adz 0

Since 6 is skew-adjoint, D is metric preserving. The matrix, X(o), of X relative to the

frame ¢ is then given by

b —a® —z—:—z—z-f-%(a.—b)
K(o)=
? L B b)) ar—p
o o7 °

=(—f(x)f’(x) 0 )
0 @@

We construct the bundle £ and connection D in exactly the same manner using the

function f(z) to define @, b, and 0, where

fle) x>0
—fx) x<0.

Note that 6 equals 6 on 7, the set of z such that x> —c, and

SO

fio) = {
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on 7, the set where z<c. Thus £ and E are equivalent on Q;/ and Q; via ¢, and ¢_
respectively, where ¢ .(0,) =8,, ¢, (0,) =6, and ¢_(0,) =6;, ¢_(G3) = —F>.

Let Q be a connected open subset of € and ¢: E—~ £ an equivalence on Q represented
by the 2 x 2 unitary matrix U =(u;) relative to the frames ¢ and 6. Then since U X(0)=
,72(6) U, and X(o)=J(5) is diagonal with unequal entries except when |x| <c, we have
U35 =g =0 on the intersection of () with the set of z for which || >¢. Thus u,,a, etc. are
identically 0. Now ¢ preserves the connection if and only if U6 =0U +dU, that is if and
only if

(3.27.1) du;; =0 fort=1,2 and
(3.27.2) Uge(bdz —adz) = (bdz —adz)u,,.

Thus by (3.27.1) u,; is constant on Q for i=1 and 2. Since a equals @ and b equals b
on z>c¢ and @ or b is always non-zero there, (3.27.2) implies that »,, equals u,, on Qn {x>c}.
Similarly, since a equals —d and b equals —b on < —¢, we have u,; equal to —u,, on
Qn {r < —c}. Thus if Q is not contained in QF or Q, then since the u;; are constant on f),
we must have u;; =u,,=0, so U is 0 on QN {l#| =¢}, so ¢ would not be an equivalence.
Hence Q is contained in either QY or Q7.

When ¢ is positive, this gives an example of bundles which are locally equivalent but
not globally. When ¢ is 0, £ and £ are not equivalent on any open set  which contain
points on the y-axis.

Note that by continuity of the traces in X.-» and _')~(zr5., since the bundles ¥ and E
are equivalent to infinite order at every point of Qf and Qj, they are equivalent to in-
finite order at each point of C.

We emphasize finally that by the discussion in § 3.23 we could consider our bundles
E and E to be holomorphic Hermitian bundles over € and thus obtain equivalence to
infinite order at every point, but local equivalence only off the y-axis. Therefore the bad
set cannot be eliminated even for Hermitian holomorphic vector bundles with canonical
connection if the metric is not real analytic. Similarly, local equivalence for Hermitian
holomorphic vector bundles does not imply global equivalence even when the domain is

simply connected.

§ 4. Conclusion and open problems

4.1. In the first section we introduced the class of operators B,(Q) and indicated how
their study could be related to that of Hermitian holomorphic vector bundles over Q and
stated various theorems without proof. Now having obtained the necessary results in
complex geometry in § 2 and § 3, we put it all together.
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Recall given an operator 7' in B,{£2) we have the Hermitian holomorphic vector bundle
E; defined over ) as the pullback of the map ¢ defined by #(w) =ker (T’ —w). Consequently,
if T and T are unitarily equivalent operators in B,(Q) and W is a unitary operator such
that 7= W*T'W, then W defines a congruence on Gr(n, H) taking ¢ onto . Therefore,
E; and E7 are equivalent as Hermitian holomorphic vector bundles. Conversely, if #;
and E7 are equivalent bundles, then by Theorem 2.2 it follows that there exists a unitary
W on ¥ such that

W ker (T —w) =ker (T'—w) for w in Q.
But then for z in ker (T —w) we have
W*TWx—Tx = WHT -~w0)Wz =0

and hence W*T'W =T since Vyeq ker (T —w)=HN. Thus we have proved Theorem 1.14
showing that the study of operators in B,({2) up to unitary equivalence can be reduced
to the study of the associated Hermitian holomorphic vector bundles.

4.2. Now recall that the local operator N, is defined by
N,=(T—~w)|ker (T—w)*'' forwin Q.

Thus if 7 and 7' in B,(Q) are unitarily equivalent and W is a unitary which satisfies
T =W*TW then

W ker (T —w)"*! =ker (T —w)*** and V,N,=N,V,,

where V,: ker (T —w)"**—ker (T —w)"*! is the isometric restriction of W. Thus the local
operators are unitarily equivalent. Conversely, suppose T and 7' are operators in B,(Q)
such that N, and N, are unitarily equivalent for each w in Q. Then the associated maps
t, & Q— Gr(n, H) have contact of order n by Proposition 2.5. Further, by Proposition 2.18
we have that for each wj in €, there exists an isometry V: ker (T —wy)->ker (T —w,) such
that

V Kopzelwg) = Jzngq(wo) V for0<p,g<n-—1,

where X and j( denote the “curvatures’ relative to the canonical connections on E; and
E7, respectively. Finally, by Theorem 3.17 there exists an open subset { of { on which
the restrictions of E; and E7, are equivalent. Now using Corollary 1.13 and Theorem 1.14
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we see by viewing the operators 7' and 7' as being in B,(Q,) that they are unitarily equi-
valent. This completes the proof of our main Theorem 1.6.

4.3. It is now clear why we can restrict our attention to local equivalence. As proved
in the previous section, if bundles K and E5 are locally equivalent, they are globally
equivalent. This is not true for Hermitian holomorphic vector bundles, in general (cf.

3.27) except those induced as pullbacks of maps into a Grassmanian.

4.4. If the bundle E corresponding to 7T is generic, then the same argument given in
§ 4.2 but with Corollary 3.19 replacing Theorem 3.17 shows that ‘“‘local operators” for T
could be defined as T'|ker (T —w)?. Moreover, if we write T'|ker (T -w)? as a 2 x 2 matrix
with n x n blocks as in Proposition 2.20, then K, is generic if and only if the cigenvalues

of the upper right hand block are distinct.

4.5. There are several ways in which we could generalize our results. First, we could
allow the operator T' to have both a kernel and cokernel, for example, in the generality
covered by Proposition 1.11. If we do, we obtain two bundles, Ey defined by ker (T —w)
which is holomorphic and E; defined by ket (T'—w)* which is anti-holomorphic. Now
while our results apply to each bundle separately, there is an ingredient missing in order
to construct 7. Since V. ker (T —w)=M and V. ker (T —w)*="H are orthogonal
and span #}, the matrix for 7T relative to ¥=M> H is

T, X
b 2)

where E; determines T, and E; determines 7,. However, the operator X is not deter-
mined by 7', and T',. We have succeeded in classifying these operators (and in fact a larger
class) by considering the local operators in two parameters w, and w, obtained by com-
pressing T to ker (7 —w,)" @ker (T —w,)*™ for sufficiently large integers =, and n,.
Details will be given in a sequel.

A different situation arises if @Q contains isolated points. In that case it may be
impossible to resolve the bundle at such a point. From the operator theoretic point of
view, what may happen is that 7 —w, fails to be onto or the dimension of ker (T — ;)

increases.

4.6. A different generalization would be to the context of several variables. Although
we have made some progress on this, it is complicated at both ends, both in the operator
theory and in the complex geometry. For the operator theory one would consider a com-

muting m-tuple of operators and use the homological analysis introduced by J. L. Taylor
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[24] to study the notion of joint spectrum. Assuming the m-tuple is onto on an open subset
of C™ but not invertible, one can show that the joint kernels form a holomorphic vector
bundle. (This argument was shown to us by D. Voiculescu.) Thus one can define an analog
of the class B,(Q) for open subsets of C™. Moreover, one would like to allow complex
submanifolds of lower dimension but how is an open problem. Now although the notion
of local operator is replaced naturally by that of a local m-tuple, we would need to know
much more about such m-tuples than we do.

For the geometry, the rigidity theorem holds without restriction. Thus the operator
theoretic study can be reduced to that of geometry. The equivalence problem, however,
now poses real difficulties. The curvature is no longer a single operator but one must either
consider sectional curvatures or some other algebraic combination. We have obtained one
result, however, in case the sectional curvatures generate the full matrix algebra at each
point. This corresponds to Proposition 3.3 where n=1. We believe it should be possible
to generalize most of our results to this context but that this will require a more conceptual

understanding of our equivalence proofs.

4.7. In § 1 we associated a Hermitian holomorphic vector bundle to an operator in
B.(Q2) and more generally in § 2 to a holomorphic curve in Gr(n, H). We now analyze the
problem of which bundles can arise in this manner. We first discuss generalizations of
the Frenet formulas ([3], [7], [13]) for a Hermitian holomorphic vector bundle, and the
obstructions they give to inducing the bundle from a holomorphic map into a Grassmannian
(Propositions 4.9 and 4.17). The reader interested in applications to operator theory can
proceed to § 4.21 without loss of continuity.

Let E be a Hermitian holomorphic bundle of dimension »n over the open subset {2
of C. For each k=0,1, ... we associate to K a (k+1)n-dimensional holomorphic bundle
J(E), the holomorphic k-jet bundle of E (1) as follows:

If 6={oy, ..., 0,} is a holomorphic frame for E, on an open subset A contained in Q,
then J,(E) has an associated holomorphic frame Ji(0)=1{0yg, ..., Ongs s Orgs - Oniey de-
fined on A. If § is another holomorphic frame for E defined on 1~\, then on A N /~X, we have
Gy=2 ay0;, where 4=(a;) is a holomorphic, n xn, non-singular matrix, and we denote
this symbolically by
d=0cA.

Let J,(A) be the (k+1)n x (k+ 1)n, non-singular, holomorphic matrix

(*) Although uhnocessary for what follows, the reader may consult [11] for information on jet
bundles and their uses in other contexts.
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A 4 A" .. (k) A®
. k
’ k k—1)
4 24 .. (k_l)A
(4.7.1) Ju(d) = y :
(k—2)
A.HQ_JA
0 - « « « « . A

Then by definition the frames J, (o) and J,(5) are related on AN A by
4.7.2) J(5) = Ji(0) J(A).

A straightforward computation yields that if 4 and 4 are holomorphic » x n matrices,
then
J(Ad) = J(4)T(4)

so the bundle J,(E) is well-defined (cf. {26], p. 14, for a discussion of constructing a bundle
from the transition functions).
The Hermitian metric & on E induces a Hermitian form J, (k) on J, (&) such that if

k(o) is the matrix of inner products ((¢;, 0;)), then

o h(o)

k(o) ... p

(4.7.3) Ji(h) (Ji(0)) = :
&h(c) ¥ h(o)

oz ' oo

is the matrix of J, (k) relative to the frame J, (o). To see that J, (k) is well-defined, we need
(4.74) Ju(B) (T (&) = Ji(A)* {J3(R) (Ji(0)) } Ti(4)

which follows from an easy computation.

In a natural way £ is Jo(E) and J(E) is a holomorphic sub-bundle of J;(E) for I=F,
with J,(h) the restriction of J,(k) to J(E), and Jy(h)=h.

Note that in general Jy(k) is not positive on J,(E), so J,(E) has no natural Hermitian
metric, just a Hermitian form.

4.8. If f: Q- Gr(n, H) is a holomorphic curve and ¢ is a holomorphic frame for Z,
on A contained in Q, then each g; is a holomorphic function o;: A— . We say that f is k-

nondegenerate if o,(w), ..., G4(®), ..., 6P(w), ..., cP(w) are independent for each w in the
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open set A, and for all such A. If this holds for all k=0, I, ..., then f is ¢nfinitely non-
degenerate.

I f is k-nondegenerate, then f induces a holomorphic map j,(f): Q- Gr((k+1)n, H)
such that j,(f)(w) is the span of o,(w), ..., 0% (). If ¢ is a frame for E, on A, let ji(o)=
{61, s Oy o, 01, ..., 0P} be the induced frame for E,. Then J (E,) and Ey, are
naturally equivalent Hermitian holomorphic vector bundles by identifying o, with of”,
gince (oy,, 0y) =8 %(0y, 0,)/02702° = (0", 6{”). We emphasize that in this case J,(k) is a
Hermitian metric for J,(E,), that is, J,(k) is positive.

Note that if 7' is in B,(Q2) and ¢: Q- Gr(n, H) is the induced holomorphic curve, then
if o is a frame for E;, by Lemma 1.22 the o{” are independent at each point, so ¢ is infinitely
nondegenerate.

ProrosiTioN 4.9. Let E be an n-dimensional Hermitian holomorphic vector bundle
over L contained in C. Then locally E is equivalent to a bundle E, for f a k-nondegenerate
kolomorphic curve (0<k<o) in Gr(n, C**P") if and only if J, (k) is a (positive) metric
on E and the curvature, induced by the canonical connection on Jy(E), is zero on Q.

Proof. f f is a holomorphic, k-nondegenerate curve in Gp(n, C* V") then j,(f) maps
to the one point space Gr((k+1)n, C**V") and Ej, is the trivial Hermitian holomorphic
(% +1)n-dimensional bundle, so the curvature is zero, and the same holds for any bundle
equivalent to E,.

Conversely, if the curvature induced by Ji(h) is zero, then by Lemma 3.2 there exists
a (local) frame y={y,, ..., yk-1n} for Jy(E) such that y is orthonormal and Dy,;=-0 for
each i, that is, , is holomorphic (since D" extends ¢ (2.9.3)). Let o,=0,,= 21" G4y,

define holomorphic maps &,= (8, ..., G 1yn,;) into C**" where o is a frame for E. Then
(05, 0,) = (6, 6))

gince the y; are orthonormal. Thus E is equivalent to E,, where f is the span of {§, ..., 6},
so f is a curve in Gr(n, C**P"). Since the matrix J(h)(J,(0)) is the matrix of inner products

of j,(§), then f is k-nondegenerate.

4.10. Note that there need be no globally defined f: Q— Gr(n, C* V") such that E
and E, are equivalent or even locally equivalent. For example, let £ be the 1-dimensional
bundle defined on Q={z|0<|z| <1}, with global frame given by one section ¢ such that
llo]l>=1+|z|. Then E is locally equivalent to E,, where f(z) is the span of (Vz, 1) in C?,
so f is only locally a well-defined holomorphic curve. Now if there is a holomorphic curve
f: Q— Gr(1, €?) such that E and Ej were locally equivalent, then by the Rigidity Theorem
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(2.2), f is locally congruent to f. By the uniqueness of analytic continuation (cf. § 4.2) f is
globally congruent to f, and hence is multiple valued.

4.11. Let f: Q— Gr(n, H) be a holomorphic curve. Then just as in Proposition 2.20 we
can find a frame ¢ for E, such that at a fixed point w in Q the ¢; are orthonormal, the a1
are orthogonal, and the o{” are perpendicular to the g, for all »>1. Thus by (2.18.3), at

w we have

—|oiff... O
(4.1L.1) J((U)=( el )

0 Ak

so X is negative semi-definite. Applying this to the curve j,(f) we find that the curvature
of J,(E,) is negative semidefinite. Thus a necessary condition for a bundle £ to be equi-
valent to a bundle of the form E, for f a k-nondegenerate curve in Gr(n, H), is that the
curvature induced by the metric J,(k) on J,(E) be negative semi-definite.

Since J, (k) is induced by a metric on an n-dimensional bundle, its curvature involves

much cancellation, as we see from the following Lemma.

LeEMMA 4.12. Let E be an n-dimensional Hermitian holomorphic vector bundle over
Q in C. If for k=1, J () is a metric on J (E), then J,_,(E) ts contained in the kernel of the
curvature induced by J(h), which thus has rank at most n.

Proof. For simplicity we assume 0 is in {2 and find the rank of the curvature at 0. Let

o be a holomorphic frame for E in a neighborhood of 0, which is orthonormal at 0. If we

* "1 aho) ,)—1
B_(,%o e OF

set

then B is n x n, holomorphie, and non-singular in a neighborhood of 0. Let ¢ be another
frame defined by ¢ =¢ B. Then k(G) = B*h(c) B, and

9"h{3) o = _
p (0)=0 forr=1,...,(k+1)n.

There is nothing to prove if k=0. If k is at least 1, let & be the Hermitian form on £
determined by

O®h(,, &
(4.12.1) K&y, 5))= .,_6%2212.
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Then at 0,

I. 0
(4.12.2) J()(Jk(“))_(o Terthy(J (&)))'

Since the upper left block of J,_,(k)(J,_,(G)) is k(6), the positivity of J,(k) implies
that % is positive definite at 0, and hence 4 is a Hermitian metric on E in a neighborhood

of 0. Let H denote J;,_,(k)(J;_,(5)). Then by (2.18.3), at 0 we have

—1 -1 2
I o 0 a—I’_[’ I o\ (o 0 k(&) a—H_’
x(J )~ 0z e 0:0%
* - off o oH, of *H, #H
0 H 0 — 0 H — — —= —
07 oz 0z 020z 020%
where
T, (1,(6) (’”(6) H)
§)) = ).
k k H" H
Thus
oH, g0l o, 5 10 _OH,
B 0z oz 0z 0z 0=20%
K(T(3) = . ‘ A od 2
it @g-l@_aHu -1 8_ ﬁ~1a_H el
o0z oz 020% o0z oz 3282

Now 9H,/0z is just the first “row” of H and 0H [0z is just the first “‘column”.
Thus

I
0
Iﬂl (10.. O)andﬂlalgzu= )
0

So
8H H—laHII iz() ( ) ﬁ(a)

oz oz 3 oz

OB g yoHy &Hy_
oz 0z 020%Z
oH; g 100 _&°H,_
o0z gz 020%

and

Thus if we let X denote the curvature of J. «—1(E) induced by the metric J,_,(%), then

we have shown that at 0,

0
(4.12.3) K(Ju(@)) = (?) X (6)))

and the Lemma follows by induction on k.
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4.13. Let W be a finite dimensional complex vector space, with a Hermitian linear
form (,). Then there is a Hermitian form induced on APW, the p-fold wedge product of

W, by
(wy A oo Ay, @y A L AD,) = det ((wy, ©;)).

Furthermore, if ¥ is a proper, non-zero subspace of W and the Hermitian form is

positive definite on V, then it induces a Hermitian form on W/V by
(4.13.1) ([w], [@]) = |loy A o Awg|| 2 (0 A v A, 03 A L Aoy ATD),

where [w] denotes the equivalence class of w in W/V and vy, ..., v, is a basis for V. It is
easy to check that this is well-defined on equivalence classes and independent of the choise
of basis for V.

If »,, ..., v, is chosen to be an orthonormal basis, then

1 0 (vy, w)

| {e]|]* = det =[lw|? = 2| (w, )%,

0 1 (v,, w)
(@, v)) ... (w, 2,)  ||]?
and thus the Hermitian form is positive on W if and only if the induced form is positive on
WiV.

4.14. Let [ ], denote equivalence class in J,(E)/J,_,(E), where we put J_;(E)=0.
Then there is a natural isomorphism 7, of the holomorphic bundles J, ,,(E)/J,(E) and J,(E)/
Jo+(B) given by

(4.14.1) ([0 i+1le+1) = (Ol

By (4.7.2) this is well-defined and independent of the choice of frame.

Let X denote the curvature on Ji(E) induced by Ji(h) if Jy(h) is positive. By
Lemma 4.12, since the kernel of X, contains Jy_;(E), X;,m induces an endomorphism
I (K) of J (E)[J,_(E) defined by

{Jk(x)}([s]k) = [J(Jk(h)(s)]k’ for s in J(&).

Since X, is self-adjoint relative to Jy(k), Ky, is completely determined by Ji(X).

ProPposITION 4.15. Let E by an n-dimensional holomorphic vector bundle over Q

contained in €, with a C° Hermitian metric h. If J,(h) is positive on J(E), and ( , )41 denotes
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the Hermitian form induced on J,, (E)|J (E) by Jy,,(k), then for s and § in the same fibre of
ch+1(E)7

(4.15.1) ([8Les1s [Fesa)ies = _({Jk(x)}(nk([‘s]k+l))’ A

Note in particular that J; (k) is positive on J, ,(E) if and only if the curvature of
Ji (k) is negative semi-definite and has rank n, and that Ji(h) is flat if and only if the
induced Hermitian form on J,_,(E)/J(E) is zero, by § 4.13.

Proof. When £ is 0, the metric induced by J,(k) on J(E)/J,(E) satisfies at 0

(415.2)  ([64), [6u]) = (B2 A e AGu NGy, 1A oo ANBR AGY)|IG1 A oo AEW]I7°
_32h(&j7 61)

020%
= ("K(&j)z.éi);

by (4.12.2)

where o is the frame for E defined in Lemma 4.12, and thus proves (4.15.1) in that case.

For k bigger than 0, assume the proposition is true for k¥ —1. Consider the metric A
defined by (4.12.1). Then by (4.12.3) and the induction hypothesis, we need only find
the Hermitian form induced on J,(E)/J,_,(E) by J,(k). But

(GroA o NGrg A oo NGy A oo NGoge ABteprs Fro A woe ABng A coe Az A voe AGrge At )n
= (6’11/\ oes /\&"1/\ Aa’lk/\ /\6‘nk/\6,k+1, 6’11/\ /\6'"1/\ '6'116/\ /\61”:/\6‘110+1)h

= (610/\ e /\6”0/\ PPN /\61}6-—1/\ “es /\&nk—l/\&fk’ 610/\ vee /\6"0/\ P /\6’1'6—1/\ as Agnk—l/\éik);l

where (,), and (, ); denote the Hermitian forms with respect to 4 and %. Similarly
1630 A oo ABuella= |10 A - A Grrs]|5- Thus Jy(E)/J;_y(E) with the Hermitian form induced
by Ji(k) and Jo (E)/J(E) with the Hermitian form induced by Ji,,(k) are isomorphic

at 0, and the proposition follows.

4.16. The bundle J,(E)/J,_,(E) is naturally isomorphic (as a holomorphic bundle) to
E, where [0,;,] is sent to ¢;. This is just the composition of 7;_,, ..., 7.

It might be of interest to find the induced Hermitian form, ( , ), on E identified with
Jx(B)]Jx_1(H), in terms of the covariant derivatives of X on E. For example, by (4.15.1),
if s and § are sections of E, then under this identification

(4.16.1) (8, §)1 = —(K(s), 8).
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Similarly, if X is negative definite, then at 0

(s, §)p = (~() §)i by (4.16.1) applied to A
= —(K(s), &),
— (Ko K(s),8), by (4.16.1).
We claim that
(4.16.2) K =2X+ KKK, — Kz}
so we have
(4.16.3) (8, 8)e = ({2002 + KKK, — Kz} (5), §)

To prove (4.16.2) we compute at 0 using the frame ¢ of Lemma 4.12. Now

g 10k &h
K@) =h {8zh oz 8z8z}

where we abbreviate k() to h, so

63((6)= —h‘lgbh‘l Eﬂ_zh 16h &k
o0z oz 0z o 0202

2h h *h &h
i {a - 1 0h ahh 10k, ah4_a a0 0 }

20z 0z O% oz ) o2 00z
Thus at 0,
2*h  8X(5) *h oG _ PR
4.16.4 5y= — 2 - _ -
(164 K=~ o ~ wtw @ e
and

ﬁxwtﬂ fﬁy o*h.
0203 woz) oo

Now since & is a holomorphic frame,

oX ()

K3(6)= 7

and since & is orthonormal at 0, then at 0

X.(5)= (37‘_(“)) _ oK)

0z 0z
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Furthermore,
X.:(5)=X:(5) by (2.15.5)
2, 0] +2
[h 2’ X:(5) +3Z{JCZ(0)}

_&X(@)
= oz at 0.

Thus

. (o, oh oh

= (= X&) {(— Kx(&)) (= K(&) 7 (— K.(5)) — 2(K(5))* + K.:(5)}

by (4.12.1) and (4.16.4), which proves (4.16.2).
By Proposition 4.15 and the computations (4.16.1) and (4.16.3) we have shown

ProrosiTION 4.17. Let E be a Hermitian holomorphic bundle of dimension n over Q
contained in C. Then locally E is equivalent to a bundle E,, for f a 1-nondegenerate curve into
Gr(n, C*") if and only if

(4.17.1) K is negative definite, and 2%+ J: K1 XK, — H.; =0.

4.18. As we see from (4.16.3) the formulas for ( , ), can be very complicated and we
don’t compute them when % is bigger than 2. We have done some related computations
which generalize the ‘“‘Frenet formulas” which are used in Value Distribution Theory

(cf. [3], [7]).
Let f: Q- Gr(n. #) be a holomorphic curve. Let o={a,, ..., 6,} be a holomorphic
frame for E, and define Ff for each 0 <k <oo by

(4.18.1) FHo) =0y A oo NG A oo AGFON L A D Agl®
and let A,(0) be the matrix
(4.18.2) k(o) = ((Ff(o), Fi(o)))-

Note that (det h,_;(c))~1h{0) is the matrix of inner products of the induced metric
(,)eof § 4.16.
Define X*(a) by

e N o)

whenever k(o) is non-singular.

16 — 782902 Acta mathematica 141, Imprimé le 8 Décembre 1978
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ProrosiTion 4.19. If hkyo), ..., k(o) are all positive definite for 0<k<oo, then
by 11(0) is determined by X®(c) as follows: .

(4.19.1) K(o) = —ho(o)-1h,(0) (det hy(a)) 2,
and for k bigger than 0,

(4.19.2)
k
KP(0) = by () b1 (0) ] (det (o)) -+
i=0

k-1
+ {hi_1(0) " I (0) ~ [trace (hi_1(0) " hy(0))] I} ‘11 (det k(o)) s+

where
ag=—1 and ay=n(l—n)1 forj=1l.

In particular, when n=1
K(0) = hy(0)/h(0)?

Jc(k)_(a )= {hk—l(U ) hk+1(0' )}/hk(o' l2

(which are the Frenet equations).

We sketch the proof. First, (4.19.1) follows immediately from (4.16.1). Then one can
check that both sides of (4.19.2) transform in the same manner under change of frame.
Then (4.19.2) can be computed relative to the frame & of Lemma 4.12 by induction, as in
Proposition 4.15, with the induction step provided by (4.16.4).

4.20. The proof of Proposition 4.19 would seem to go through, almost word for word,
for any Hermitian holomorphic bundle, where we replace the of” by oy,, the section of the
jet bundle, in (4.18.1). This gives necessary conditions for embedding  in Gr(n, #). For
Gr(1, #)=P(N) Griffiths ([13], p. 794) showed these conditions were also sufficient.

4.21. Finally, we characterize those Hermitian holomorphic vector bundles with real
analytic metric which are (locally) equivalent to the pullback of a holomorphic curve in a
Grassmanian. In case n =1 this is due to Calabi [2] and our proof is essentially his. Further,
although we state the result for bundles over open subsets of C, the same result with

basically the same proof holds for bundles over open subsets of C™.

TrEOREM 4.22. If E is an n-dimensional Hermitian holomorphic vector bundle over
Q with real-analytic metric h then E is locally equivalent to E; at w, for some holomorphic
curve f: Q- Gr(n, H) where W has dimension N, ISN <Ry, if and only if J,(h)(w,) is
non-negative and has rank at most N for k=1,2,3, ....
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Proof. Suppose oy, 0y, ..., 6, are holomorphic functions from € to H which form a
frame o for E, and that h is defined by

h(w) = ((0)(w), 6,(®))7 ;1.

If we let ju(o)={0oy, ..., Op, ..., 0, ..., 0%}, then Ji(h) is the matrix of inner products of

jx(o) and is thus non-negative. Since at most N of the elements of (¢} are independent,
Ji(h) has rank at most N.

Conversely, suppose that E is an n-dimensional Hermitian holomorphic vector bundle
over Q with metric & such that each J,(k) is non-negative and has rank at most N, 1 <N <¥,.

Since A is real analytic we can expand it about w, in £ in a Taylor series

h(w)_l ’%0 l'7;:’l| (w_w())l(w_wo)m

which converges for |w —w,| <26 for some 6>0, where M, is an n x n matrix. Hence,
. . A 0| g < im

there exists a constant C such that .
(4.22.1) | Mol SCUm!(38)¢*™  for 0< I, m <-co.

If we multiply the infinite block matrix J (k) on each side by the block diagonal
matrix with Ith diagonal block 81! times the identity, we obtain the block matrix

- ()

m!

Moreover, the upper left hand kn x kn submatrix of J is non-negative since Jy(h) is non-
negative. Further, by (4.22.1) the matrix entries of J are square-summable and hence ¥
defines a Hilbert—Schmidt operator on the Hilbert space. & =l%'wn of sequences (z,, 2, ),
where 2, is in E,, and ||(zy, x;, )||2 =32, ||z ||2 Since F defines a bounded non-negative
operator on £ of rank at most N, there exists a bounded operator 4 from € to a Hilbert
space H of dimension N such that

(4.22.2) J =A*A.

We choose an orthonormal basis for f and exp.ess 4 as a matrix to obtain

1 1 1 1
A1y - Qup oo Qg eve Ape oes
A=|: .
N N N . N
Q11 oo Qpy oo Algg ovo i oo s
Let a;=(aj;, ai, ..., afj) denote the vector in ¥ and set o(w)=220a,0 (w—w,) for

t=1,2, ..., n. Since
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1 I+m N
MY 8 )_ “ ek
= 2. 851 Gin = (3, )

4.22. =
( 3) Um! k=1

by (4.22.2), it follows from (4.22.3) that [[a,2/6” <|My|/(1!)2<C(2/30)* and therefore
the Taylor series for ¢,(w) converges for |w —w,| <d. Further, we see by (4.22.3) that
< Mlm 1= - \m n
ho)= 2, m! (@ — @) (@ — @)™ = ((0y(w), T W)t -1
Lm=g 1!
for |w—w,| <d. Therefore, f=(a,, ..., 0,) defines a holomorphic curve in Gr(n, ¥) such
that E, is equivalent to the restriction of E to {w: | —w,| <0} which completes the

proof.

4.23. There is an appealing way to conceptualize the preceding proof, at least heuristi-
cally. If we let J (E) denote the inductive union of the jet bundles, we obtain the bundle
of formal Taylor polynomials for E and we can use J, (k) to define a metric on J,(E)
Completing J (E) we obtain a Hilbert bundle J(E) which contains E and the preceding
proof can be regarded as showing that J(E) is flat by pushing the non-zero part of the
curvature off to infinity in Lemma 4.12. If we identify J () with 3 xQ, we obtain the
embedding.

4.24, The preceding proof required that E have real-analytic metric. It is possible,
however, that in the C® case the hypothesis that the Ji(k) are all non-negative implies
real-analyticity (cf. Proposition 4.9).

4.25. Now not every pullback bundle is associated with an operator. For example, a
necessary condition for E, to be associated to an operator is for the subspaces f(w,), f(w,), ---,
Hewy) to bé'independent for each finite subset w,, w,, ..., w, of distinct points in Q. Although
the condition is not very tractable we can obtain necessary and sufficient conditions for a
pullback bundle to be associated with an operator. We continue the notation of the last
few sections and introduce a little more. For k>1 let Jy(k) denote the matrix obtained
from that for Ji(k) in which the left column and top row have been replaced by 0. Further
let S, denote the (k+1) x (¥+1) matrix with n x z» blocks defined by

0 1 0...0 O j
00 2...00
0 0 0...0 0

Our result is:
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THEOREM 4.26. If f: Q~ Gr(n, W) is a holomorphic curve over Q such that V,¢q f(w) =
H and w, is a point in Q, then E, is equivalent to Ey for some operator T in B,(A) for some
neighborhood A of w, tf and only if there exist constants 0 <m <M such that

(4.26.1) MJ (k) = 8% ()S = mJoUh) for k=1,2,3, ...

Proof. For simplicity we give the proof for # equal to 1. Then a dense collection of
vectors in } can be written in the form Yo a,0(w,), where &g, a;, ..., @; are complex

and k=1, 2, 3, .... Moreover, using Lemma 1.22 we see that if there exists 7', then
k k-1
(4.26.2) (T — wy) (Z x U(l)(mo)) = Z T+ 1oy Ua)(‘ﬂo)-
1=0 1=0

Using the fact that 7' —w, is bounded and is bounded below on the orthogonal complement
of its finite dimensional kernel, inequalities (4.26.1) follow. Conversely, if the left hand
inequalities (4.26.1) hold, then defining (T —w,) by (4.26.2) yields an operator X with
bound at most M and after setting T'=X +w,, the right hand inequalities (4.26.1) imply
that 7 —w has closed range for w in some sufficiently small neighborhood A of w,. Since
the range of 7' —w, is obviously dense in ¥, we see that T is in B,(A) and we can easily
check that the restriction of E, to A is equivalent to K, which completes the proof.

4.27. Thus far we have dealt solely with unitary equivalence for operators in B,({)
and the related complex differential geometry. We now present some results pertaining to
similarity for such operators, directions in which further investigations might proceed,
and some open questions. Our results are of two types. The first is a necessary condition
on the curvature for similarity in the general case. The second is a theory of similarity for
curves in finite dimensional Grassmannians, for which we have no generalization to curves
in Gr(n, W) when H is infinite dimensional. Both types of results suggest that additional
hypotheses will be necessary, particularly on the maximality of Q (cf. § 1.3), in order to
formulate a comprehensive theory.

Definition 4.28. Let f and f be two holomorphic curves from the open subset Q of €
into Gr(n, H). Then f and f are similar if and only if there exists a bounded invertible
operator 8 on ¥ such that

(4.28.1) () = S(f(w))

for all w in Q. If for each w there exists such an S, so that (4.28.1) holds to kth order at
w, then f and f are similar to kth order at w.
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Just as in the case of unitary equivalence, if ¢ and f are curves in Gr(rn, H) induced by
T and T in B,(Q), then 7".and 7T are similar if and only. if ¢ and  are similar.

ProPoSITION 4.29. Let f and f from Q into Gr(n, H) be holomorphic curves which are
similar via the bounded invertible operator S (4.28.1). Define a bundle isomorphism ®s:
E,~ E7 by restricting S to each fibre. Then the negative sems-definite (4.11) endomorphisms
X and X satisfy

I18112( = H()) >Ps(w)* (— K(w)) @s@) > 87|~ K(w)).

Proof. For fixed w in Q choose frames o for E, and ¢ for Ef as in (4.11). Since f and f

are similar, there exist holomorphic functions s;, such that
S(oy) = ‘Z 8150y

and the matrix of ®Og(w) relative to the frames o and &, is just (s;,(w)):
Now
8(ay) = ‘Z (81764 + 31;5';)~
Thus if (a, ..., &,) is in C*, then at the point w
15 505N =I5 ) |+ [ S s i)
b . : .
which implies that
SIS o @)= 15 2w i@,
Thus by (4.11.1)
(4.29.1) I8]12(~ H(ew)) > Ds(ew)*( — K(w)) Psle)

holds at w, which is an arbitrary point in . The proposition follows by applying (4.29.1)
to 8~1 and by

(4.29.2) O = D,

We now obtain a necessary -condition for two curves to be similar.

CoROLLARY 4.30. Let f and f from Q into Gr(n, H) be holomorphic curves which are
similar via the bounded invertible operator S. Then '

IS== (s 2l = 11l = Js-2)-2isii-2 ek,
at each potnt of 2.
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Proof. Since @y is the restriction of S,
(4.30.1) [1S)I21 = ||Os||2 T = D5 Ds.

By Proposition 4.29,
1811211 K]l 2 = ®3(— F) ®s
so that by (4.29.2)
~ X <||S)2 K] 93 D
<SSz %l 2
by (4.30.1), and the corollary follows.
Note that

(4.30.2) IS] 18- =1

and that equality holds if and only if ||8]|-18 is unitary, that is to say if and only if f and
f are unitarily equivalent.

4.31. The necessary condition in Corollary 4.30 is not very strong. Indeed if we let
X be the curvature induced by the backward shift Ut and j( the curvature induced by
the adjoint B} of the Bergman shift, then by Theorem 1.17

Il

13

although U% and B?Y are not similar. The problem is that this is a pointwise criterion
whereas similarity is obviously & global phenomena.

In case n equals 1, we can strengthen Corollary 4.30 by means of standard techniques
in Value Distribution Theory (Generalized Nevanlinna Theory) [27], [14]. Let Dy denote
the disc of radius R in C, and let f: Dy~ Gr(l, H) be a holomorphic curve. Note that
Gr(1, ) is the projective space of H. Define the order function T, for f by

(4.31.1) T,(r)'=f (fn dde log||f||2) %9, 0<ry<r<R< oo
To (]

where we decompose @ into operators of type (1, 0) and (0, 1)

d=0+0
and d° is the real differential operator

&= 4‘7 @—2).
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Note that ||f|| means [|o, || locally, where o = {o;} is holomorphic frame for E. If & is another

frame, then &, =0a, for 6 a non-zero holomorphic function. Since dd° log |#]? is just

i &log|o]?

2% o203 dzdz,

which is zero since log |62 is harmonic, T, is well-defined. Indeed,

c N —2M) .
i loglleslf =35 2 (22220 ) ez

i -
o (= X(o))dzdz by (2.18.3)

¢ =
—2—n||.7(”dzdz

since the matrix X(¢) is 1 x 1. Thus from our point of view, we have

T ) \d
(4.31.2) Tyr)= f’. (fno 9 ”JC”dzdz) Ee’ 0<ry,<r<B< oo,

The order function measures the rate of growth of a holomorphic curve; in fact, the
integral fp, dd°log ||f||? is the area of f(D;) in Gr(1, }). When the dimension of X is finite,
the rate of growth of a curve is independent of the metric on the underlying vector space
of ¥ ([27), [14]). The standard proof of this fact (see for example [14, p. 19]) gives us a

stronger necessary condition for similarity.

PROPOSITION 4.32. Let f and f from Dy into Gr(1, H) be holomorphic curves whick are
stmilar via the bounded invertible operator S on H. Then for ry<r<R,

| Tr) = T7(r)| < log ([|S]| [|S*]])-
Proof. We first compute d° in polar coordinates. If z=pe', then
do = 3{e %dz + ¢"°dz} and df= ;-9 {e*dz — e~dz}
so that if g is a C® function defined on an open subset of C, then
9 . . %
="do+=df
9 do de 20

.00 1% |
=4e ‘0{69 Qae}dz+1}e’”{ae+gw}dz
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which implies that

e =t
AT
= 4,,(969 de)

Thus
' i)

4322 T —7,— dde1 dg

w  rene [ (], seele)

f
y S ? 4
- f,. (fanodc log " ||;f")2" ) Ee (by Stoke’s Theorem)

S 2 g ISt f)||2} .
47!fr.(fanoag{l°g /I de)de (by (4.32.1))

The proposition follows from (4.32.2) and the inequality

2
g 51> og IO tog 5742

used at the end points r, and 7.

4.33. For the backward shift U%, X is 82 log (1 — |z|?)/6z0Z and for the adjoint B* of
the Bergman shift, the curvature XK is o log (1 — |2]2)?/622Z. Thus by (4.32.2), the difference

of the order functions is

o

s 1_
)d0=1}10g1_r2

1 2 ( l _ I IZ)——Z
— Io
dn Jo a-1p
which is unbounded as r approaches 1, thus giving a purely computational proof that U ¥
and B* are not similar. We emphasize that this follows from the behaviour of the curvature
at the boundary of Q (in this case the unit disc).

4.34. Of course the order function defined by (4.31.2) could be defined when = is
bigger than 1. Unfortunately, the Value Distribution Theory for curves in Gr(n, H), n
greater than 1, is not well understood, and we don’t know whether Proposition 4.32 holds
for curves in Gr(n, H), with T, defined by (4.13.2).

If fis a curve in Gr(n, ), then f induces a curve A (f): Q—> Gr(1, A®H), where if
o={0y, ..., 0,} is a frame for E,, then A(6)={0,A ... Ag,} gives a frame for A (f). If w
is a fixed point in (), then by normalizing the frame o at w as in (4.11), it can be shown

that
X( A (o)) = trace K(o)
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and Proposition 4.32 applied to A (f) and A (f) gives a necessary condition in terms of an
integral of the traces of X (instead of || X||). Perhaps this could be generalized to traces of
powers of X, or to the elementary symmetric functions of X.

If the curves f and f from Q into Gr(n, ) are similar to order 1 (Definition 4.28),
where the norms of the operators S, a,nd.S;1 are uniformly bounded, then Corollary 4.30
holds with obvious alterations in the bounds. Results of this type are presumably the first
in a series of necessary inequalities invdlv,ing the covariant partial derivatives of the

curvature.

4.35. As we mentioned previously .similarity as opposed to equivalence is a global
phenomena. Thus by assuming completeness of the holomorphic curves in an appropriate
sense it may be 'possible to obtain deeper results on similarity. We discuss one kind of
conjecture in the context of B,(D): if T, T are operatorsin By(D) each having D as a K-
spectral set, then 7T and 7' are similar if and only if

lim K@) _

i1 K (w)

We are unable to prove or disprove either implication although Proposition 4.32
makes the one direction seem very plausible. Also the limit equals 1 in the few examples

we can check.

4.36. For curves in Gr(n, #) we showed that equivalence to order » implies congruence.
We now investigate similarity for curves in certain finite dimensional Grassmannians, and
show that there is no finite number N(n) such that similarity to order N(n), for two curves
in Gr(n, H), implies similarity.

Let Q be an opeﬁ subset of C and f: Q> Gr(n, C**P") a holomorphic curve which is
k-nondegenerate (4.8). Let a={¢;1, .. 05} be a holomorphic frame for E, defined on an
open subset A contained in Q. Represeﬁt f by the (k%l)n X1 holomofphic matrix F
whose columns are the coordinates of the ¢, relative to an orthonormal basis for C**1",

Then by the k-nondegeneracy assumption, the columns of F(w), ..., F*(w) span C* V"

for each w in A, so there exist holomorphic 7 x n matrics §,, ..., §; such that
k

(4.36.1) - Fw) = 2 FV(0) Siw):
-0

.If & is another frame for E,on A, then there is a holomorphic n x n non-singular matrix

A such that G —04 or equivalently

F =34,
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where F represents { via the 6. Thus by (4.36.1)

(4.36.2) FoerDd — kg (k+ 1) e IR
' 1=0 97

= i 3(7){(""*& 1) A®H1-D 4 S,A}.
i=0 ]
Now locally in A we can solve for 4 such that

(4.36.3) (k+1)A"+§, 4 =0.

In that case, F**1 is in the span of F, ..., F* D and thus in the span of _f;, ory FD,
which is to say that §k is identically zero.

Definition 4.37. A representative F for a k-nondegenerate curve f into Gr(n, C* D7)
is a Schwarzian representative if and only if S, is identically 0. The n x n matrices $,, ...,
Si_, are the generalized Schwarzian derivatives.of f.

We have shown that we may cover () by open sets, on each of which there is a Schwar-

zian representative.

4.38. A Schwarzian representative is unique up to multiplication on the right by a
{constant) element of Gl(n, C), since if J is another such representative then 7 equals
FA4, for A holomorphic, non-singular, and n x n. By (4.36.3) 4’ is zero, so A4 is constant.

4.39. For example, if k is 1, we may always choose an orthonormal basis for €2 such

*(z)

for F an n x n holomorphic matrix, with F* non-singular (cf. 4.44). Then for F,

that f is represented by F, where

So=0 and §, = (F)1F".
A Schwarzian representativé F must be of the form FA, where by (4.36.3)
24" +(F'y1F"4 =0.
Then from (4.36.2) we get that
So=A4-14"
— BT (P () ) A

by taking the derivative of (4.36.3).
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Note that the expression in braces is the non-commutative version of the classical

Schwarzian derivative.

PrOPOSITION 4.40. Let f and f be k-nondegenerate holomorphic curves from L, a con-
nected open subset of C, into Gr(n, C**V"). Then f and [ are similar if and only if there exist
an open subset A of Q, Schwarzian representatives F and 3 for f and f on A, and a non’
singular n x n constant matrix A such that

(4.40.1) AS,=§;4 fori=0,..,k—1.

Proof. If f and f are similar, then there exist an element S of Gl((k+1)n, C) and an

7 x n, holomorphic, non-singular matrix A4 such that

(4.40.2) SF =94,

But then
k-1 k-1

(4.40.3) (SFD=5FH D=8 T F§,= 3 (SF)®S,
i=0 i=0

which implies that SJF is a Schwarzian representative for f. By section 4.38, 4 is constant
and (4.40.1) follows from (4.40.3), since

(SF® = ij.

Conversely, if there is a matrix 4 in @l(n, C) so that (4.40.1) holds, define a holo-
morphic (k+1)% x (k+ 1)z non-singular matrix S by

(4.40.4) S=(F..F®) A ... 3%,

where
A..0
A=( P )
0..4
(k)

and (F ... F*V) is the matrix whose columns are the coordinates of oy, ..., Gy, ..., 61", ...,
o' relative to the orthonormal basis, and is thus non-singular.
Now by (4.36.1) '
(F ... FOY =(F .. F9)S§

where
.0 S,
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Thus
8 =(F ... FO) A(F ... FO)1
—~(F .. FO)AF ... FO)UTF . FO)(F . FO)
=(F .. FO)(SA-AS(F .. F9)1=0

by (4.40.1). Thus § is constant and satisfies (4.40.2) by (4.40.4). This implies that f and f
are similar on A. By the uniqueness of analytic continuation, f and f are similar on Q
(cf. § 4.2).

4.41. Just as we proved (3.13.3) from (3.13.4), we may use Lemma 3.11 and the unique-
ness of analytic continuation to show that (4.40.1) is equivalent to

(4.41.1) D)y oy SP1(w) fori=0,..,2n-1
are simultaneously similar to
SO(w), .y SP1(w) fori=0, .., 2n—1,

for each w in A, where the similarity can depend on w. There does not seem to be any easy
method to show simultaneous similarity, as there is for simultaneous unitary equivalence
(Lemma 3.22).

Note that when n is 1, (4.40.1) is equivalent to

(4.41.2) $,=S, fori=0,.. k-1

4.42. Let §,, ..., Sx_; be n x » holomorphic matrices defined in a neighborhood of 0 in
C. Then by the existence and uniqueness theorem for holomorphic differential equations,
the system

k-1
Flktb S gos,
120

has, in & smaller neighborhood of 0, a holomorphic solution ¥, a (k+1)n x» matrix, such
that at 0, (F.. F®) is the identity. If f is the curve in Gp(n, C**"") spanned by the
columns of F, then f is a holomorphic k-nondegenerate curve in a small enough neighbor-
hood of the origin, F is a Schwarzian representative for f, and §,, ..., S;_, are the generalized
Schwarzian derivatives.

Let §o, wees §,,_1 be another such collection of holomorphic matrices, such that §,(0), ...,
$4+1(0) are not simultaneously similar to S$o(0), ..., $;_,(0). Let f be a k-nondegenerate
curve in Gp(n, C**1™) defined in a neighborhood of 0, with Schwarzian representative 5:



256 M. J. COWEN AND B. G. DOUGLAS.

and Schwarzian derivatives the § .- Let A be any fixed matrix in Gl(n, C) and define 8 by
(4.40.4). Then at any point w, S(w) satisfies

S(@) FOw) = FP@)A, i=0,..,k

and thus f and f are similar to order % in neighborhood of 0, but are not similar, since they
don’t satisfy (4.40.1). _

Thus we have shown that for each n and k, there exists a finite dimensional Hilbert
space H such that similarity to order k is not sufficient for similarity of holomorphic

curves in Gr(n, H).

4.43. We conclude with a discussion of the sharpness of our results, and some examples
of curves in Gr(n, C*").

In a beautiful paper [13], Griffiths states that second order contact implies equi-
valence for 1-nondegenerate holomorphic curves in @Gr(n, C**). He gave a proof only for
what we call the 0-umbilic and generic cases. We have been unable to show via our methods
that second order (rather than nth order) always suffices in this case, or to give what
would necessarily be a non-generic counter-example. Furthermore, we have no operator
theoretic examples which require contact of order greater than two, or indeed even greater
than 1. It would be valuable to find some non-generic examples, which are not direct
sums of generic curves.

Griffiths conjectured that first order contact was not sufficient in his case, and we

show this is indeed true.

4.44. We first compute the curvature for a curve in Gr(n, C**™). Let [ Q— gr_(‘n, )
be holomorphic, and let ¢ be a holomorphic frame for E,, such that ¢ is normalized at a
fixed point @ in £ as in section 4.11. Let vy, ..., v,,, be an orthonormal basis for €™ such

that

v; =0;w), fori=1, .. n

Since ¢{”(w) i% perpendicular to v;, ..., b, for all r, then

m
oj=v;+ zl"fi/”m—b

whete F'=(f,,) is a holomorphic 7 x n matrix. Thus

k(o) L+ P2 F
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and
oh . _ ok ok
4.44.1 =h 1RV -t
(4.44.1) Koy =k % 2%
=T+ F*F)"Y{F*F(I + F*F) 'F*F — F*F’}
= +F*F)'F'*{F(I+ F*F)'F*~ I} F'.
Now

{FU+F*F)'F*~1}{I+FF*}=F(I+F*F)yY(I+F*F)F*--FF*—1=—1.
Thus by (4.44.1) we obtain
(4.44.2) Ko)=—(I+ F*F)1F*I+FF*1F.

4.45. Let g: C-> Gr(n, C**) be the holomorphic curve represented by the n x n matrix

el
(4.45.1) g(z)=( _Fz)
e
where I' is the diagonal matrix
Y1..-0
i
0 ...y,

with y; non-zero and constant. Note that

Y G I r.
(g,g)_(o e-“),(l -/

dt(z F)—dt(21 0)
“\r )"\ —r

and

thus (G G’) is always non-singular, and g is 1-nondegenerate.
Let T and T be elements of Gl(2n, C), and define holomorphic. curves f and f from
Cinto Gr(n, C?"), representing f by F and f by F, where

(4.45.2) 3-7qG, 3-T7g.

The curves f and f are 1-nondegenerate since g is.
Suppose that f and f are cohg‘ruerﬁ) via a unitary on C2*; then there exists U in U(2n)

and a holomorphic n x » non-singular matrix A such that

UF= jA
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or equivalently

(4.45.3) BG - g4,
where
(4.45.4) B-T-UT.
Let
(4.45.5) B= (B“ B”)
By, By,

where each B, is an n x n matrix.

Lemma 4.46. If f and | are holomorphic curves in Gr(n, C*") defined by (4.45.2), they
are congruent only if there exists a 2n x 2n unstary U such that if the B, are defined by (4.45.4)
and (4.45.5), then

(4.46.1) By, =By, and Bjy= By,
where
(4.46.2) I'B,, =B;I' and I'B;; = — B!l
Proof. Now
g - gr:

50 @G is a Schwarzian representative for g and §, is I'2. By Proposition 4.40, (4.45.3) implies
that A is constant.
By (4.45.3), we have

Iz ~Tz Tz
(4.46.3) (Bne + Bse )=(e A )
By e+ Byye ' e T4

and by taking derivatives (since 4 is constant) we get
B, le™~B,l'et? =T 4
=TBy e +'Be '

which implies
(Bul'—T'By,)e*? =T'Bj,+ By, T

Thus (4.46.2) holds, which implies that

(4.46.4) B,e'* =¢™ B, and Bje 1% =" B;,.
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Thus from (4.46.3),
A4 =By, + By,
80 by (4.46.4)
e T°4 = B, ;e 1?4 B,,el”
— By e 4 Bye ™ by (4.46.3)
and (4.46.1) follows, since
(B~ Bya) €™ = By, — By,

LeMMA 4.47. Let f and | be curves in Gr(n, C**) defined by (4.45.2) where we assume in
addition that T 1s real diagonal and

(447 T=(1 0) an'd’f.r=(P_ 0)
0 P 0 I

for some positive definite n xn matriz P. Then f and f have contact of order 1.

Proof. The curve f is represented by

Iz -
e’ - I oI
Pe™ Tz Pe™ 2rz

(
Pe z]

(4.47.2)  HK(o)= — (I + eTiP%l%) 1el=['P(] + PeFzel%P)~' PT el

= e‘i‘z{ - (e‘fze' Py Pyt I;e‘f‘ze‘ﬁ(e‘f'ze‘ﬁ + P3-1p? f‘} ef2,

where I'= —2I". By (4.44.2)

In a similar manner f is represented by

P—-l T2
()
e e °P

(efip)

(4.47.3) K(o)= — (I + Pel?el2P)"1PeT*(I + 2 P2el%) 10 P

so [ is represented by
and

=P fw—l(e— f‘z.e—f‘é'_*, P2) e'f“z J((O’) er'f‘z(e—’i"aé—f‘é o+ Pz)—l r'P.

17 — 782902 Acta mathematica 141. Imprimé le 8 Décembre 1978
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Thus X(o) and Jz(a) are similar which implies (since X and K are self-adjoint) that X
and X are unitarily equivalent and f and f have contact of order one by Proposition 2.18.

PROPOSITION 4.48. Let f and f be defined as in Lemma 4.47, where I'? has distinct
entries on the diagonal and P? is not diagonal. Then f and f have contact of order one but are
not congruent.

Proof. The curves f and f have contact of order one by the previous Lemma. By Lemma
4.46, if f and f are congruent, then I"* commutes with B,,, so B, is diagonal and thus by
(4.46.2) B, is 0, and B,, is diagonal.

By (4.45.4),
e (P“Bu 0 )
0 B, P!
is unitary, so
P2 = B, B}y

which is diagonal, a contradiction.

4.49. Note that if » is 2 then f and f are necessarily generic off a closed nowhere dense
subset of C. The only other possibility when # is 2 would be for £, and E7 to be 0-umbilic,
but then E, and E; would be equivalent to order one, so equivalent, and thus f and f
would be congruent.

For n greater than 2, we are unable to show if there exists a choice of 7 and 7" so that
f and { have contact of order 2, but are not congruent. By Proposition 4.17 it would suffice
to work with C® bundles with metric preserving connections that satisfy (4.17.1) and
investigate the eigenvalue structures which could arise, but this seems very difficult.

References

[1]. BERGMAN, 8., The Kernel Function and Conformal Mapping. Math. Surveys No. 5, Amer.
Math. Soc., Providence, R.I., 1950.

[2]. CaraBi, E., Isometric imbedding of complex manifolds. Ann. of Math., (2) 58 (1953),
1-23.

[3). CeERN, S. S., Holomorphic curves in the plane, in Differential Geometry, in honor of K.
Yano, Kinokuniya, Tokyo, 1972, 73—94.

[4]. CLarY, W. S., Quasi-similarity and subnormal operators, Thesis, University of Michigan,
1973.

[5). Cowen, M. J. & Douaras, R. G., Complex geometry and operator theory. Bull. Amer.
Math. Soc., 83 (1977), 131-133.

[6]. —— Operator theory and complex geometry, Proc. Sympos. Pure Math., vol. 30, part 2,
Amer. Math. Soc., Providence, R.1., 229-236, 1977.



[71.
[8])-
[9].

[10].
[11].

[12].

(13].

[14].

[15].
[16].

[17].
[18].
[19].
[20].

[21).
[22].

[23].
[24].
[25].
[26).
[27].

[28].
[29].

[30].

COMPLEX GEOMETRY AND OPERATOR THEORY 261

CoweN, M. & GrirFrTss, P., Holomorphic curves and metrics of negative curvature.
J. d’Analyse Math., 29 (1976), 93-153.

Dovucras, R. G., Banach Algebra Techniques in Operator Theory. Academic Press, New
York, 1972.

FLANDERS, H., Differential Forms with Applications to the Physical Sciences. Academic
Press, New York, 1963.

GaMeLiN, T. W., Uniform Algebras. Prentice Hall, Englewood Cliffs, N. J., 1969.

GoLuBITSKY, M. & GUiLLEMIN, V., Stable Mappings and Their Singularities. Springer-
Verlag, New York, 1973.

GraUERT, H., Analytische Faserungen iiber holomorph vollstandigen Réumen. Math.
Ann., 135 (1958), 263-273.

GrrFriTHS, P. A., On Cartan’s method of Lie groups and moving frames as applied to
uniqueness and existence questions in differential geometry. Duke Math. J., 41
(1974), 775-814.

—— Entire Holomorphic Mappings in One and Several Complex Variables. Princeton
University Press, Princeton, 1976.

Harmos, P. R., A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.

Kuraniseai, M., On E. Cartan’s prolongation theory of exterior differential systems.
Amer. J. Math., 79 (1957), 1-47.

Nomizu, K., Characteristic roots and vectors of a differentiable family of symmetric
matrices. Linear and Multilinear Algebra, 1 (1973), 159-162.

Pearcy, C., A complete set of unitary invariants for operators generating finite W*-
algebras of type I. Pacific J. Math., 12 (1962), 1405-14186.

Smarmro, H. S. & SHIELDS, A. L., On the zeros of functions with finite Dirichlet integral
and some related function spaces. Math. Z., 80 (1962), 217-229.

SHIELDS, A. L., Weighted shift operators and analytic function theory, pp. 51-128.
Toprics in Operator Theory, Ed. C. Pearcy, Math. Surveys No. 13, Amer. Math. Soc.,
Providence, R. 1. 1974.

SeecHT, W., Zur Theorie der Matrizen II. Iber. Deutsch. Math. Verein., 50 (1940), 19-23.

SusiN, M. A., Factorization of parameter-dependent matrix functions in normal rings
and certain related questions in the theory of Noetherian operators. Mat. Sb., 73
(113) (1967) 610-629; Math. USSR Sb., 2 (1967), 543-560.

TAYLOR, G. D., Multipliers on D,. Trans. Amer. Math. Soc., 123 (1966), 229-240.

TAYLOR, J. L., A joint spectrurn for several commuting operators. J. Functional Anal.,
6 (1970), 172-191.

VEBLEN, O., Invariants of Quadratic Differential Forms. Cambridge University Press,
1927.

Wziis, R. 0., Differential Analysis on Complex Manifolds. Prentice Hall,* Englewood
Cliffs, N. J., 1973.

Wu, H., The Equidistribution Theory of Holomorphic Curves. Princeton University Press,
Princeton, 1970.

Xaro, T., Perturbation Theory of Linear Operators. Springer-Verlag, New York, 1966.

HORMANDER, L., An Introduction to Complex Analysis in Several Variables. Van Nostrand,
Princeton, 1966.

CorNALBA, M. & GrrFrITHS, P., Analytic Cycles and Vector Bundles on Non-compact
Algebraic Varieties. Inv. Math., 28 (1975), 1-108.

Received 21 June, 1977



