POTENTIAL TECHNIQUES FOR BOUNDARY VALUE
PROBLEMS ON C*-DOMAINS

BY

E. B. FABES, M. JODEIT JR. and N. M. RIVIERE

University of Minnesota, Minneapolis, Minn., U.S.A4.

Introduction

In this work we consider the Dirichlet and Neumann problems for Laplace’s equation
in a bounded domain, D, of R*, »>3. Assuming the boundary, 6D, to be of class C* and
the boundary data in LP(6D), 1 <p < oo, we resolve the above problems in the form of
classical double and single layer potentials respectively. More precisely, given g€L*(9D)
we find a solution to the Dirichlet problem,

Au=0in D, u|zp=g,
in the form

wX)= 1 ~<~——X — @ Ny

T D
o |, TR o @0 @de, Xe

where 7' is a continuous operator from L*(@D) to L(0D). Here N, denotes the unit inner
normal to 8D at @, <-,-> denotes the usual inner product in R*, and w,, is the area of the
surface of the unit ball in R*. (See Theorem 2.3.) Using the form of our solution and
properties of the operator 1' we are able to obtain gradient estimates near the boundary
when the data, ¢, has a derivative in L?(@D). (Theorem 2.4.) For the Neumann problem,

ou
=0 in D, —= , =0),
Au in an, g on oD (fang )

our solution is written in the form

— 89(Q)
HH= (n—2)a, fap | X — Q2 i@ (n>3),

where S is also a continuous map on the subspace of L*(6D) consisting of functions with

integral or mean value zero. (Theorem 2.6.)
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Recently Bjérn Dahlberg through a very careful study of the Poisson kernel of D
resolved the Dirichlet problem in the case of (' domains for data in LP(9D), 1 <p<eo,
and in the case of Lipschitz domains for data in LP(@D), 2<p<oo. (See [3].) While
Dahlberg’s results did not cover the Neumann problem nor give the regularity mentioned
above for the Dirichlet problem, there remains along the lines of this work thé very open
question of the use of the double and single layer pdtentials in the case of Lipschitz
domains.

Throughout this work D will denote a bounded domain of R”. Points of D will
generally be denoted by the capital letters X and Y, and points on the boundary of D,
oD, will be represented-by- the capital letters P and Q:

Definition. DEC! (or 9D €C") means that corresponding to each point Q €9D thereis a
system of coordinates of R™ with origin @ and a sphere, B(Q, 8), with center ¢ and radius
6>0, such ‘that;Witbh' respect to this coordinate system

Dn B, 8) = {(x, t): x€R"L, t >gp(z)} N B(Q, 5)

where @ €C3(R™ ), the space of functions in C(R" ') with compact support, and @(0) =
(Bplox;)(0)=0, 1=1, ..., n—1.

Remark. If D€ and ¢ >0 is given we can find a finite number of spheres, { B(Q,.8,)}/*1,
@,€0D, such that oD< UL, B(Q,,9,) and

D0 B(Q,,8,)={(z,t):t>p,x)} N BQ,, )

with
1 n—1 ( :3‘}’; _ . -
@ EC(B™7), 94(0) 5;(0)~0, i=1,...,n—1,
. t
and
st (s (. 2 ).
2 A AR VA O

1. The double and-single layer potentials over a Cl-domain

We begin this section with a discussion in local coordinates of the integral patt of the-
trace of the double layer potential on the boundary .of a C'-domain.

Suppose @(z) GCé(R"‘l'l){; For »; zER™ !, x4
set
P(x) = tz) — <VP(e), &~ 2>

H A (o= + (i)~ T
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and

R.f(x)= f k(z,2) f(z)dz, €>0.

lz~2|>¢

LeMmaA L1, There exists my>0 such that if m=max |Vp| <my and 1 <p<oo then

(a) the operator K .f(x)=sup,.o|K.f(x)| is bounded on I*(R™!) and 1B af|| o < Cullfll2o
where C',,, depends only on m, p, n and tends to zero when m—0+,

(b) Rf=lim, . R,f exists in LP(R™") and pointwise almost everywhere (a.e. Lebesgue).

Proof. Part (a) is a very special case of Theorem 4 in [2], whose proof will appear
elsewhere. We will present here an argument for this case.
For £>0 and fixed

K. f(x)= %f (k(x, x—2) flx—2z) + k(x, x +2) flx+2))dz

|2l>e
=%f Tq!ef(x)da
=
where X ={c€R""": |o| =1}, do=usual surface measure on X,
T, f(x) = r [k(x, x— r0) f(x — ro) + k(x, & + r6) f(x + r0)] " *dr.
Setting 7', f(z) =sup..o | T,,.Ef(a:'ﬂz it is immediate that
&4 o <[ Wl o

However for o fixed each x€R""! is uniquely written as x:=fc +w where {€(— oo, ) and

{o, w)>=0. Hence
fl T, f()|Pdz = f (fw [T, f(to + w)|"dt) dw,

and it is easy to see that-

T, f(to + w)=sup

>0

f @(to +w) — @(ro +w) — (V@(re +w), o (t— 1) f(ro +w) P
|t~rl>e [l + {(‘p(ta+u))_. (P(TO"*"MJ))/@*- 7)}2]'”2 (t'—]')z '

From A. P. Calderdn’s result ([1], Theorem 2) it follows that there is a number m,>0

such that if max |Ve|=m<m,, then for 1<p<oo,

jlmw violPdt<C, f \fito + wyPat,
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where C, ,, depends only on p and m and tends to zero with m. Since

f | f(te + w)|Pdt dw = fm_l | f(z)|Pdec

part (a) of Lemma 1.1 follows.
Because of (a) and Lebesgue’s dominated convergence theorem, to show part (b)
it is sufficient to prove the existence of the pointwise limit almost everywhere in R"%.
Since @ €CG there exists a sequence {y,}<CF, the space of infinitely differentiable

functions with compact support, such that

yp;~>p, and Vg,V uniformly.

Set
) — ) — (V) =2
k@2 = 2 2P + () — 9 )T
and
Bofw= ke fe)de

fx-2|>8

For j fixed it is easy to see that lim,,o, K, .f(x) exists pointwise a.e. for fELP(R").
For a meaaurable set E<R"' let | E| denote the Lebesgue measure of E. Also for
fELP(R™1) set
A(x) =lim sup K, f(x) — lim inf K, f(x).
o0 20
and
Ay(x)=lim sup K, ; f(x) — lim inf K, , f(x).

&0 e=>0

Since A;(z)=0 a.e.

|[{z: A(x)>A>0}| = |{2: A@)— A,(z) > 1}]
<|{z:sup (K. - K, f@)| > 4/2} |-

As a consequence of the argument of Theorem 1 in [1] the measure of the last set is
e;A~? § |f|?dx wheree,~0asj— oo. Hence | {z: A(x) >2>0}| =0, and thisimplies A(x) =0 a.e.

Now set w,, equal to the area of the unit sphere in R®. For P€2D we will let

K;f(P)=if B9 N0 rayag, &>,

Wy J1p—Q|>e P"QI"
and
K, f(P)=sup| K.f(P).
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TEEOREM 1.2. If DEC! and 1 <p<oo then
(8) | Kyf||zeony <Clf|lzocony with C depending only on p, 8D, and n;

P-@Q, N>
|P-e[

exists in LP(0D) and pointwise for a.e. PEJD;
(¢) K is compact.

(b) lim K, f=p.v. & f #Q)dQ=Kf(P)
e=>0 wn D

Proof. By the use of a partition of unity the proof a part (a) is reduced to showing
that the Euclidean operator,

sup
e>0

f 9(@) — ¢(2) —{Ap(), 2~ 2
)

d
22|+ (p(x) - N> & [| xr—2 |2 + (tp(x) — ,p(z))z]n/z f(z) 2

maps LP(R*Y) continuously into itself where p€C}R"') and max |Vp| <m,, m, being
the constant given by Lemma 1.1. If we set m =max |Vp| and observe that

{z:V]z— 2+ (p(x) — (2))*> &}

€ e
=z|ex—z2|>=—— zle—z|>——= and V|e—zP+ (p)— z2<e}
fala=al> o2\ falasl> = ana V=P r G- pET<e),
then the above operator is bounded by

sup
>0

j k(z, 2) f(z)dz
lz—2l<e

+ 2(1 + m?)" Y2 gup eni_l f | f(2)| dz
e>0 |

z-2|<e
where

_p(x)—p(z) —{Ve@(z), x—2)
M 2) = o2 + (pl@) — p @)™

The second term in the above sum is of course equal to a constant times the Hardy-
Littlewood maximal function of f (see [6]) and, hence, is continuous on L?(R*""). That the
first term is also continuous on LP(R*"!) follows from Lemms 1.1.

As usual the proof of part (b) is completed once we have shown the existence of the
limit, in L?(@D) or pointwise a.e;, for a dense class of LP(@D), say C'(¢D). Hence, assume
f€CY{2D). Now

1 PNy L e-eNo
gip=5- [ GEE2ue-nenaeen- [ i

It is clear that the first term is a bounded function of P€2D and £>0, and, moreover,
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converges pointwise as eé~0+. For the second term we have

P-0Q.No»
DN@B(P,s) IP-—an

f (P-Q,No
IP-Qi>e¢

A Q7 d
P=Qf ¢

dQ= —
and fiom this identity follows the boundedness in £ >0 and P€dD and the pointwise con-
vergence of the second term to f(P)w,/2.

We now set Kf(P)=lim,_K,f(P). Again through the use of a partition of unity in
order to prove K is compact it will suffice to show the compactness on L?(B),

B={z€R"}, [z| <1},

of the Euclidean operator

lim k(z, z)f(z)dz

>0 [z— 2§34 () - p(2N*>&*
where

_plx) —p(2) —VPR), z—2) 1/ pn-1
ko = 2 + (o) — g PEOET)

and max|Ve|<m,, the constant of Lemma 1.1. For any 77> 0 we can write the above
limit as

f k(z,2)f(z)dz +lim k(z, z) f(z) dzx.
lz—-z|>n

e=>0 J|z-2|<n
|2- 2+ (D) —w())*> e

Observing that the L”-norm of the second function tends to zero we conclude that

him k(zx, ) f(z)dz =lim k(z,2)f(z)dz (a.e.).

207 J [z-2[* - (@(x) - pl2))*>er >0+ J|z-2|>¢€

Since @ €CH(R™") there exists a sequence {p,}< CF(R*?) with supports eontained in a
fixed compact subset of R""! such that 9,~¢ and Vi,~Vg uniformly in R*"'. Set
_¥i(@) —9se) — Vpy2), 2 — 2

k@2 = 2P+ gl - T

The operator [pa-1 kj(z,z)f(z)dz is easily seen to be compact on L?(B) and, using A. P.
Calderén’s result, ([1]), the operator,

lim (’C(IE, 2)— kj(x9 z))f(z) dz

&30+ J |z -2l>e
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has norm on L”(B) small with § large. This implies the compactness of the operator

lim Kk(z, z) {(z) dz.

>0+ J|z-2|>€

In the next theorem we consider the double layer potential over 9D with. DE€C! and
study its behavior near the surface when the density of the potential belongs to L”.

TrrorEM 1.3. For DEC! and f€LP(@D), 1 <p< oo, set

_1 [ <X-QNy
uX)= o | X—@QI"

Given o, 0<a<1, there exists a constant d=8, p, such that the nmon-tangential maximal

f(@dQ, z€D.

function of u, i.e.
u*(P) = sup {|u(X)|: X€D, | X—P| <8, (X—P, Ny>a| X—P|},
belongs to L*(@D) and ||u*| Lecopy < C||f]|zoony with C independent of f. As a conseguence
u(X) —>3f(P)+ Kf(P) pointwise for almost every P€0D
as X—>P, X€D,<X—-P,Ny>«| X -P|.

Proof. We cover 9D with a finite number of balls, B,= B(P,, d,), =1, ..., I, with center
P,€8D and radius §, so that

B(P,, 48N D=B(P,, 48, N {(x,t): z€R" ", t>p(x)} and |Vo|< %‘.
Using a partition of umty subordinate to the cover B,, j=1, ..., ! we may assume the support
of f is eontained in B,.

Set d—min {8, j=1,..,1}. If P¢B(P, 30, and | X —P| <6 then for all QEB,,
| X -@Q| =>4, and

Y
WP < g [, 1100 v

In the case P€B(P,,34,;) we have X€B(P,,44,). Using then the. coordinate system
described above, we see that the inequality

| * | oo < C || || oo

will be valid once ‘we -can show -that the operator
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Tf(%)—sup{ fﬂ P(z) —<Ve(2), 2 —2)

xr— z|2+(t @z ))2]7;/2 f(zydz: (z, 1), t> @(x) and

b= (o) = {VP(o), €~ Tod > )1 + [V p(o)P V] — 2 2 + (p(x) — (p(xo))z}

is a bounded map from LP(R*") to itself.
We set k(t, z; z) equal to the kernel of the above integral. We observe that the
conditions on (x, t) and max |Vg| imply the inequality

t—@(wg) > (= | V(o)) |2 — 20| = S| 2 — 2, |-
Hence,

| [, 52|/ d2 < O

{ze— 2l <max(8|z~ ol t— @(T0))
where

1
M=t e
r>0 T |2—zol <1

the classical Hardy-Littlewood maximal function.
Now set A=max (3|z—u,|, t —p(x,)). We have

f k(t, x;2) f(z) dz =J' k(t, zy; 2) f(z) dz + f (k(t, ; 2) — k(t, y; 2)) [(2) dz.
|z-%el >4 |2—x0]>2 lz—zol>4

Since

| — |
k(t, x;2) — k(E, xg; 2)| < C =,
|kt 7= Bty 22| < O[]

the second integral is majorized by CMf(x,). Finally

L_IM k(t; o; 2) f(2) dz | < fl_ | llk(t,xo;z)—k(q)(%),xo;Z)l|f(2)|dz+K:f(xo)

where K, is the operator introduced in Lemma 1.1. Using the fact that

t— (o)

k(t, zg;2) — K » %3 2)| < C 5
I (t, Zo; 2) — k{(@(ao), %o z)l Ixo—zl

the first term on the right side above is bounded by CM{(z,;). We have finally shown that
Tf(zy) < C(Mf(w,) + R (%)) and, hence,

I T omn-n < Cll fllrgn-n, L<p < oo

Since the map f—wu* is bounded on LP(9D), to show the nontangential pointwise limit of
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u a.e. on 8D it is sufficient to show the pointwise limit for f€C%(@.D), a dense subspace of
L?(@D).- For if we let u,(X) denote the double layer potential with density f and

A(P)= limsup u(X)— liminf u(X),
X—>P, XeD X—>P, XeD

(X-P,Np)>alX-P| (X—P,Npy>u|X~- P}

then [{P: A(P)>1>0}|=|{P: A;_((P)>1>0}| for any g€CY2D), where |E| denotes
the (surface) measure of the set £E<@D. Hence

|{P: A,/(P)>2}| < |{P: u;—a(P)>l/2}|<%"f—g"??(aD)

for any g €CY(@D). This immediately implies that |{P: A/(P)>A1>0}| =0 and the almost
everywhere nontangential limit of u, for f€L”.
So now assume f€CY@D). Then
1 X-Q, Ny
wWX)=— | o —{(P))dQ + f(P).
@=, | STxop V@ fP)dQ+/P)

It is easy to see that when X-—>P we can pass the limit inside the integral sign and,
therefore,

. 1 P—-Q,N,

tim wX)= - | SN g)— iy ag-+ 1)

X—>P Wy Jop |P_Q|"

m L[ PN
lim j,,,_ol” [P-qI (HQ) — KP))dQ+ f(P)

Remark. In the case f€LY0D) the double layer potential, u( X), with density f has the
property that u* belongs to weak-LY(2D) i.e. there exists a constant C such that for each
A>0,

. c
[pup)>2)|<F [ [11d0.

This inequality is valid because the operator K of Lemma 1.1 is bounded from
LYR"') into weak-L{R™?) and this in turn implies that the operator K, and, therefore,
K are bounded from L(2D) into weak-L'(0D). Exactly as in the proof of Theorem 1.3 we
conclude that u(X)—3}f(P)+ Kf(P) nontangentially for a.e. PESD when fE€L'(2D).
{Specifically we mean, as before, that u( X)—>}f(P) + Kf(P) for a.e. PE8D as X~P, X€D,
(X-P,Npy>a|X—-P|.)
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We now turn to the study of the regularity of the double layer potential when the
density is regular. We begin by studying the behavior of the Euclidean operator, K, on

smooth functions.
We will denote by LZ(R™") the space of functions f(x)€LP(R*~') whose gradient, Vf,

also belongs to L?(R""'). We set
£ 1l = I o2 + | VF lzome-»-

LeMMA 1.4. Suppose p €CP(R™'). For f€LYR"), 1 <p<oo, set

Rf(x)= f - k(z,2) f(z)dz
: Rn—l

where once again

bz, 2) = PE) = B2 — V@), 2 — N
i ‘ -z lz + ((p .’L‘) — (p(z))Z]n/Z .

Then

d ok . _
a—zin(x)=fm-_l-a;l,(x,z)(j(z)~f(x))dz, i=1,...,n— 1

Proof We first establish the formula for f ECP(R"'). Let ¢y, ..., e,_; denote the standard

basis of R*1. Since g~ 1k(z, z)dz is constant we can write

—_ k s - 9
Iff(ﬂ_he’:&=féu 1( @+ he Z) k(@ 2) o)~ fa))de

[ et R0 g e
lz—z}>2|h| lzt-2zI<2h
= Ay(@)+ By(2).

It is easy to see that A,(x) converges to
ok
| S wate- e

and Bj(x)—>0 when A-0.
- To ‘obtain the formula for. feLZ(R*') we first note that when p€CP(R"™ ') the

operator

k
% (#,2) (f(e) — f(z)) dz
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is continuous from LI(R"!) to LP(R"!), 1<p<co, This implies that K maps L}(R" ')
into itself continuously, and -we also obtain the formula,

ok

2 i)~ f % (@3) (10— e .

TurorEM 1.5. Suppose g(x) ECH(R™') and |Ve(x)| <m,, the constant of Lemma 1.1.

Then for 1 <p<oo the operator

Rf(z)=lim k(z, 2) f(2) dz

>0 Jlr-2|>¢

maps LY(R"™) continuously into itself. Moreover

2 . ok
o Rf(x)=lim oz (2, 2) (f(z) — f(z)) dz.

=20 J|r-2|>¢ i

All of the above limits exist in- LP(R™") and pointwise almost everywhere. (See {2].)

Proof. Since @ €C3(R™™") there exists {p,}<CP(R""') such that ¢;~¢ and Ve,~Vg
uniformly. We may then suppose that max |Vg,| <m, for all j.
Set

_ 9®) — ¢y(2) —V@s(2), 2 —~ 2)
oD = o= 2Pt @) — @) T

and
R, f(x)= fm_lk,(x,-z) f(z)dz.
From Lemma 1.4

5% R, f(x)= fnn—'i ai ky(zy2) (f(2) — f(x)) dz

Ty
and as a special case of Theorem 4 in [2] we have

0.
fo,K’f

<c| f"z.{’(m-l)
LP(R*—1)

where € is independent of j. Hence K : LY(R*™") > L{(R" ') continuously with norm bounded



176 E. B. FABES, M. JODEIT JR AND N, M. RIVIERE

independently of j. Since K,f->Kf in L?(R*"!) we conclude that Kf€L{(R""') whenever
fELEZR™ ') and || Kf|| 2 <C|/f|| 2. Also, in the sense of distributions,

2 R=tim 2 &,f~tim [ 2 .2 1) o e
~lim J, Mé—‘k(x, 2) (f(z) — f(w)) d.

Definition. For 1<p<oo, L{(@D) will denote the space of functions f€L?(@D) with
the property that for any covering, {B,}/_;, of 2D with the properties described in the
definition of a C! domain, D, and for any y € Cj(B;) the function y(z, ¢,(2))f(x, (pj(x))E;;)}
has partial derivatives, in the sense of distributions, given by functions in L*(R"*"1). If we
fix a covering {B,}j_; and a partition of unity, {,}, of 8D subordinate to this cover we

can define.

7 \2omr = I/ ”LP(aD) +2 " V¥ f |l pr -

(We are assuming that each y,€C}(R").) It is not difficult to see that using a different
covering and a different partition of unity subordinate to the cover will give rise to a norm
equivalent to the one we have defined. (See [4].)

As a consequence of Theorem 1.5 we have

THEOREM 1.6. For 1 <p<co the operator

<P @, Noy

Kf{(P)= PV |P Ql

1(Q)dQ
maps LY@D)—~Li(@D) continuously and, moreover, K is compact on L3(dD).

Proof. As stated above the continuity of K on L{(@D) follows immediately from
Theorem 1.5. Concerning the compactness of K it is enough to show the compactness on
LY(R"?) of the Euclidean operator

[y R) fl(=) = p(x) R(f) ()

where p(x) €C5(R"!) and K is the operator of Theorem 1.5. Again let {p,}<CF(R""?) be
a sequence of function such that ¢,~¢ and Vg,~Vg uniformly. From Theorem 1.5
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Vig—9) (x) —Vip — @) (2)
[lz—2P+ (p(x) — p(2))*1"®

y(x) VRf(z) =y () p.v. (f(z) — f(x)) dz

_ i P~ @) (@) — (@ — @) (2) =<V (@ — ;) (2), 2 — 2)]
ml’(x) p.v. f(f(z) f(z)) [l zr— 212 + ((P(x) _ ¢(z))2]nl2+1

X (x—z+ (p(x) — @(2)) Vo(x)) dz

Vos(z) — V@, (2) _
+1P(x f[l xr— le + (p(x) - (2))2]71/2 (f(z) — f(x))d=

— (o) [ (1)~ fo AP Ve L]

X (x—z+ (p(x) — @(2)) Vo()) dz.

The first two operators on the right hand side of the above equality as operators from

2(R*"') into LP(R"*) have noims tending to zero as § tends to c°. (Again use Theorem 4
in [2].) For j fixed the final two operators are compact from L{(R""!) into LP(R"""). From
these observations it easily follows that R is compact on LZ(R™ ).

THEOREM 1.7. Assume fELYOD), 1 <p<oo, and let

L[ XN
wn=,- [ G i@, xep.

Then given a, 0 <a<1, there exists § =0, , such that the noniangential maximal function of
Vu, ie. (Vu)(P)=sup {|Vu(X)|: X€D, |X—-P| <6, (X—P,N,y>a|X-P|}, belongs
to L?(@D) and

(Ve pony < C || fll 2oy (C tndependent of f).

Proof. The proof follows closely that of Theorem 1.3. We may assume for example
that f is supported in BN oD where B is a sphere with center on D such that

BN D =Bn{,t):z€R*, t>p(z), p€Co(R" )}

and |Vg| <af/6. The problem is reduced to proving that the function

o P () — (V9(2), @
W t)= fn- ([lz— 2P+ (= ¢<z>>2]"'2f‘ 2)dz

has the following property:
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(Vai)* () = sup{|V1i(x, t)|]: z€R*, t>@(z) and

_ (%)‘(V‘P 0), & — z0>>otl/:t z
e e + (p(x) — @(xp))
e 2=+ 9@~ plao]
belongs to LP(R*"!) and

(V@)oo < Ol Fll 2egn-»-

As in Theorem 1.3 we seot

t—@(z) —<Vo), 2 —2)

Hb 5™ o2t (- g™

and we observe that

Vi, t) = ‘[(Vz.tk(x’ t;2) (f(2) — f(xp)) d2.

Set Vk(z,t; 2) =V, k(z,1; z) and 1 =max (3|x—x,|, t—¢(x,)). Proceeding as in Theorem

1.3 we have

|vate, )| < fl e VE@ 52| 2) = flzo)] d2
+ fl | 1|Vk(x, t; 2) — Vk(2o, p(2o); 2)| | f(z) — flzo) | d2

+fl | ;Vk(xo, p(x,); 2) (f(z)—f(zo))dzl_

The first and second terms on the right side of the above inequality are dominated by a

constant times f*(x,) where

Fa=sups [ (Vi@

r>0

Again we have [*€LP(R*') and |f*|| U<C||f||L, Finally from Theorem 4 in [2] the
sup;so| j,z 2> Vk(xo, P(xo); 2) (flz) — flzo)) dz| belongs to LP(R""') with norm bounded by a
constant times the norm in LP(R™~ 1 of f. This concludes the proof of Theorem 1.7.

We now turn our study to the behavior of the single layer potential over a C*-domain
with density in the class L* of the boundiry.

LeEMMA 1.8. For feLP(R" ), I <p<oo, and £>0 sel

b8y =f p(x) — @(2) — (Vo) xz 2> J
ﬂx) lz—2}>e [|x—z|2 ( (P(Z)) ]nl f(z)dz
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with @ ECHR™™1). There exists a constant my>0 such that if max |Vep| <m, then

(a) "SuPs>0IK:fl ”LP(Rn—l)gO”f”LP(Rn—l), C independent Of f,
(b) lim, o K} f = K*f exists in LP(R"") and pointwise almost everywhere,

Proof. Both parts (a) and (b) are proved in the exact same manner as the cor-

responding parts of Lemma 1.1.

THEOREM 1.9. For fELP(@D), 1 <p<oo, and £>0 set

* 1 <P Qa
S M= S L)

Then

) ||sup.| K7 f| || 220y < C||f|| srom» with C' independent of f,
and
(b) lim, o, K7 f=K*f exists in L*(0D) and pointwise almost everywhere.

{c) K*is compact.

Proof. The proof of (a) follows the same line of argument of part (a) in Theorem 1.2
and is left to the reader. For part (b) it is again sufficient to show the existence of the
limit for almost ever P€8D. This last statement will be justified if we can show the

existence of

(@) ~ @(2) — V=), «

lim dz
e=0 Jjr-2p+(p(m)~ W»a>e.[|x—z|2+ (p(@) — @(2)) 2]"/2 ﬂ i

for almost every z €R** when fELP(R""!), p € C5(R""?), and max | V| <my, the constant of

Lemma 1.8. We now pick a sequence {y,}<CPR"') such that y,~¢ and Vy,—~Vg

uniformly, and we set :

R*fz)= fl p(x) — 9(z) — V().  —

e @o-gemse [| £ — 2 [P+ (p(x) — ¢(2))

2]11/2 f

and

R Fa) = f VD) = WD) = V@) 8= g

le-ap+o@-pemse | €= 2+ (@) — p(2)*T"®
For j fixed lim,,oK},f(x) exists for almost every z€R" ! and, using Theorem 4 in [2],

| sup| £2f(e) ~ 2T < s P e

where C;—~0 as j—>oo. As in the proof of part (b) of Lemma 1.1, we now can conclude the
existence almost everywhere of lim, o K7 f(x).

12 — 782902 Acta mathematica 141. Imprimé le 8 Décembre 1978
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In virtue of Theorem 1.2, K* is the adjoint of an operator, K, compact on each L*(6D),
1 <p< oo, hence the same holds for K*.

THEOREM 1.10. For f€ELP(@D), 1 <p<<oo, and X 0D, set

-1 Q)
n(t—2) Jon| X —Q["*

(a) there exists d =0, >0 such that the functions

u(X)=Zo dQ. Then given o, 0 <a<1,

(Vu)! (P) =sup {|Vu(X)|: X€D, | X—P|<é (X-P,N,)>a|X-P|}
and

(Vu): (P) =sup {|Vu(X)|: X€ER"\D, | X —P| <9, (<X-P,N,y)<—a| X-P|}
belong to LP(@D) and
[|(Ve)i || zocomy + | (V)2 zocomy < Cl|fllzvopy € independent of f,

(b} oufoN,(X)=(Vu(X), Nyy—~(3I—K*)f(P) pointwise for almost every P€gD as
X->P, X€D,{X—P, Ny)>a| X—P|, and 0u[oN,(X)~(}+ K*){(P) pointwise for almost
every PEAD as X-P, XeR™\D, (X~P,N,>< —a| X—P|. Here K* is the operator of
Theorem 1.9.

Proof. The prooof of part (a) follows the exact lines of the first part of Theorem 1.3
and is again left to the reader. For part (b) it is sufficient to prove the existence of the
pointwise limit for almost everk P€2D when f€CY2D). We will consider only the case
of the interior nontangential limit, i.e. X € D, the exterior limit, X €R™ D, being handled

analogously.

X-Q,N,
L[ XNy b MP) [ CX-QN,~No
. 2, — {PY)dQ+ (P dat dQ.
o | e t@-reyae+ ey ) [ S ReRea

Since f €CY(8 D) it is clear that the limit of the first term above when X — P exists and equals

1 (P-Q, N,

— XY (4Q) — f(P)) dQ.

wn oD IP_an (f( ) f( ))
N, is a continuous function on ¢D and hence we can find a sequence of (vector-valued)
functions, N, ,, belonging to C(0D) such that N; ,—~N, uniformly on dD. Henco
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1 [ X-QN,~No, 1/ . X-¢
Wy, Jop | X-q[ ,dQ_wn\Np /Nj'p’J\ | X — Q|ndQ/

1 [ X~Q,N;o—No» (X—-Q,N;p—N; o
“ar x-oF 7w ) TIE-qF

aQ

The arguments of Theorem 1.2 imply the existence of a positive number 4 >0 such that the

functions

|, N,,|sup{U [F—F dQ}Xemx P|<8,(X~P,Ny>a|X - PI}

sup {

belong to LU9D) for all ¢, 1 <q<oe, and each L? norm tends to zero as j—oo. For j fixed

and

<X_Q’NJ.Q—'NQ>
éD IX_QI"

dQl:XED,|X—P|<6,<X—P,Np>>cx|X—P|}

1 [ (X—QN,,~N,o 1 [ <P—QN,,~N, o
lim — AR T T1Q7 a0 %4 g
X->PWy J oD |X_Q|n Q @, Jap IP_an

dQ.

Combining together the above observations we conclude that for almost every P€dD

1 f E-QN,-No
oD

, [X-Qp
converges a8 X —P nontangentially, X€D, to

1. (P—Q,N,~Ng>
—hmJ. r
1P-Ql>e |P—-q|

dQ,

wn £—>0
and, therefore, for almost every P€0D

ou

o, (X)>1f(P)— K*f(P) as X-P,X€D,(X—P,N)>>a|X—P|

2. The Dirichlet and Neumann problems

We recall the operator

] P— .
KiP) = g-p. [ TEESe @ de.

TurEOREM 2.1. Assume DEC! is bounded and R™\D 1is connected. Then }I+K is
tnvertible on LP(@D) for each p, 1 <p < oo,
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Proof. We will in fact show that the adjoint of I + K, namely 41 + K* is invertible on
each L?(9D), 1 <p < oo, Since K* is compact it is enough to prove that $J + K* is injective.
So let’s assume that f€L?(@D) and (31 +K*)f=0.

We first observe that fELY2D) for every q, 1 <g<oo. To see this we take a sphere,
B=B(P,, §), with center on 2D such that

BN D ={(,t): t>p(z), pECHR" '), max |Vp| < ¢}

where ¢ is a fixed small positive number. We also take two functions v, 6 € 03°(B) with the
properties

_{1 in  B(P,,4/3) w=1 in B(Py 1)

|0 in RM\B(P,, ),
Then 6f = —26K*f= —2(6K*— K*0)f —2K*(0f) and finally
0f +2(pK*y) 0f = —2p(6K* — K*0)f =g.
The function, g, satisfies the inequality

api<arf A1 a0

If 1/p—-1j(n—1)=1/g>0, gELYOD); if 1/p—1/(n—1}<0, g€L¥@D) for all ¢, 1 <g<oo.
Since the norm of pK*p is small on L we conclude that 6f, and, hence, f€L%dD). Con-
tinuing in this manner we prove the observation that f€L%@D) for each ¢, 1 <g <oo.

We now introduce the single layer potential over 9D of the function f, i.e.

1 1

Ux)= w,(n—2) Jop | X - Q]

n-2 /(Q) dQ; XER"
Since f€LP(@D) for each p, 1 <p<oo, we can integrate by parts in the integral,

f |vu(X)[FdX
RM D

and obtain that it is equal to

ou : ou 1 *
— dQ= = — =0.
aDuaN‘)dQ 0 since oW, GI+K%f
Therefore u(X) is identically constant in R™ D. Since lim xjse %(X)=0 and R™\D is
connected, u(X) =0 in R"\ﬁ. u({X) is a continuous function on R”, and, hence, in D, u

is harmonic, and u|,p=0.
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From the classical uniqueness theorem on harmonic functions, »(X) =0 on R". Using
now part (b) of Theorem 1.10,

(3 -K*)f=0 and —(}I+K*)f=0.
It follows immediately that =0 on 9D, and we have then proved that the null space of
41+ K* is {0}.
CoROLLARY 2.2. For 1 <p<oo, LI+ K 1s invertible on LY(0D).
Proof. From Theorem 1.6, K is compact on L7(2D) and since {1 + K is one-to-one on

L7 it is a fortiori injective on L3(@D). The Fredholm theory of compact operators implies
the invertibility on Li(2D).

TraEoREM 2.3. Suppose DEC! is bounded and R™\D is connected. Given g€LP(dD),
1<p< oo, there exists a unique harmonic function u(X), defined in D such that for each
o, 0<a<l, there exists § >0 for which

(i) the nontangential maximal function of u, namely,
#y(P) =sup {|w(X)|:| X ~P|<d, <X—-P,N,y>a|X—P|},

belongs o Ll’(aD) and "’U«:"Lp(ap)<0”g"Lp(aD),
(ii) w(X)—>g(P) for almost every PEOD as X—>P

(X-P,Ny>a|X-P|.
In fact % has the form of the double layer potential

wm=L [ =N

= -1
w, Jop | X—-Q[" Tg(@)dQ where T=@3+K)™"

Proof. 1t is immediate from Theorems 1.3 and 2.1 that the double layer potential of
Tq satisfies (i) and (ii).
To begin the proof of uniqueness we introduce the (Green’s) function

|X——Y|"'2 W, Jop |'_Y_Q|" T(lX-—-I"'Z)(Q)dQ'

X, ¥)=

Fixing £>0 we take y,(Y)€CF(D) satisfying 0<yp, <1, p,=1 on
C,

<%,
£l

7

({YED: dist(Y,2D) < ¢}, ‘ayazpe
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Fixing now also X €.D we have for small ¢,

w(X) = (up) (X) = f G(X, ¥) Ay(pew) (V) dY.

D

If « is harmonic in D integrating by parts we have

D

u(X)= —2f {VyG(X, Y),Vy%(Y)>u(Y)dY-'f G(X, Y) Ap(Y)u(Y)dY .
D

Let {y,(Y)}L; be a finite set of functions such that ,€CPR"), 7 ,y,=1 on
{Y€R™ dist (Y, 0D) <0} and the support p?< B, where BN D=B,N {(z,1): t>g ),
@,(z) €CH(R™1)}. Then

fDIVYG(X: )V Y)| |w(Y) |9 Y)Y
C &
<é—fl I<c JO |VyG(X; 2 ¢+ 9(2))] Iu(z,t+<])(z))|dtdz

<O'f sup | Vy (X, z, 7+ ¢(2))| Ef [u(z, t + @(2))| dt dz.
| 0

2l<c 0<rge

Since G(X, @)€EL§(6D) for each ¢, 1 <g< oo,
sup |VyG(X, 2z + rp(2))| < (Vy H(X))*(z, p(2)) ELY({z:|z| < ¢}).

0<r<e

Here we have used the result and notation of Theorem 1.7. It is easy to see that there is
ana, 0 <a<1,suchthatsupy.,., |u(z, t +@(2))| <uz(z, 9(2)). If in addition to being harmonic,
u%(z, 9(2)) ELP({z: [2]| <c}), and u(z, t+@(2z))—>0 as t—>0 for almost every z, |z| <c, then

under these conditions on % we have shown that
fDIVyG(X,Y)HV#JS(Y)Hu(Y)I|1/1,(Y)|dY—>O as &—0.
In a very similar manner and with these same conditions on # we have
fbla(X,Y)HA%(Y)l|u(Y)|1p,(Y)dY—>O as &0,

An immediate consequence of Theorems 1.7, 2.3 and Corollary 2.2 is

THEOREM 2.4. Assume the hypotheses of Theorem 2.3 on D. If g€L}(oD), 1 <p<<o,
then the solution of the Dirichlet problem given by Theorem 2.3 has the additional property
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(iii) (Vu)*(P)=sup {|Vu(X)|: X€D, | X—P| <4, {X —P, N,y >a| X —P|} belongs to
IL2@D) and

(V)*|| zemr < C 1| g | :2@p» € independent of g.

We turn now to the Neumann problem.

THEOREM 2.5. If DEC! is bounded and connected then (3I—K*) is invertible on the
subspace of LP(@D), 1 <p < oo, consisting of those functions f such that f,p fdQ=0. Here

K*{(P) _hm—i i

— dQ.
&0 |P -Ql>¢ |P Ql f(Q) Q

Proof. Since K* is compact on L?(8D) it is enough to show that 41 — K* is one-to-one.
So assume f=2K*f and {,pf=0. Exactly as in Theorem 2.1 we conclude that f€L%@D)
for every q, 1 <qg <oo. Consider now the single layer potential of f over 8D, namely

_ 1 @)
uX)= (n—2)wnJ‘aD‘X_Q‘"_2dQ.

An integration by parts shows that

fIVu X = f aquQ f 4f—K*f)d@=0.

Hence w(X)=constant in D. In R"\D, «(X) is harmonic and limy«u(X)=0. As noted
ul 2p=¢, a constant. Since the maximum or minimum of « in R"\D must occur on 0D we
conclude that the maximum or the minimum ocecurs at every point P€38D and, therefore
the limit of (9u/0N,)(X) as X—P nontangentially, X €ER™\ D is of constant sign. But this
limit equals —3}f — K*= —f. Hence f is of constant sign. But since {,pf=0 we must have
f=0 on &D.

THEOREM 2.6. Suppose DEC! is bounded and connected.
Given geLP(@D), 1 <p<oo, with [,pg=0, there exists a harmonic function, u(X),
defined in D such that to each a, 0 <a <1, there corresponds a >0 for which
(i) the nonmtangential maximal function of Vu, namely, (Vu)*(P)=sup {|Vu(X)|:
| X —P[ <8, (<X-P,N,>>a| X—P|}, belongs to L*(@D) (and ||(Au)*|lrren)<
O"Q"Lﬂ(am),

(ii) ;;V (X)=(Vu(X), N,>—>g(P) for almost every P€oD as X—P,(X—P,N,>
>a| X~ P|.
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The harmonic function, u(X), satisfying (i) and (ii) is uniquely determined up to a

constant and can be taken in the form

_ 1 Sg(@)
U=~ e faDIX or ™

where S =(31 — K*)~1 on the subspace of L?(@D) consisting of functions with integral zero.

Proof. We immediately conclude from Theorem 1.10 that the above single layer
potential of Sg has properties (i) and (ii).
For the uniqueness we consider the Neumann function,

B 1 1 1 (X—-,N>

An integration by parts shows that
Z j 6Yi(X Y) (Y)dY w(X)+c¢

where ¢ is a constant. However, if (Vu)* €LP(0D) and (eu/éN,) (X)—~0 as X P nontangen-
tially then the left-hand side of the above equality is zero. Hence u(X)=constant in D.
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