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In troduct ion  

In  this work we consider the Dirichlet and Neumann problems for Laplace's equation 

in a bounded domain, D, of R ' ,  n >~ 3. Assuming the boundary, ~D, to be of class C 1 and 

the boundary data in/2 '(~D),  1 < p  < 0% we resolve the above problems in the form of 

classical double and single layer potentials respectively. More precisely, given g ELr(8D) 

we find a solution to the I)irichlet problem, 

in the form 
A u = 0  in D, u [ ~ v = g ,  

1 f (X- Q, No) 
u ( X ) = ~ , j ~  IX-Q[" (Tg)(Q)dQ, XED 

where T is a continuous operator from Lr(OD) to Lr(aD). Here N o denotes the unit inner 

normal to ~D at  Q, ( . , . )  denotes the usual inner product in R n, and con is the area of the 

surface of the unit ball in R ' .  (See Theorem 2.3.) Using the form of our solution and 

properties of the operator T we are able to obtain gradient estimates near the boundary 

when the data, g, has a derivative in Lr(0D). (Theorem 2.4.) For  the Noumaun problem, 

ON ~ g on ~D, vg=O , 

our solution is written in the form 

- 1 •g(Q) 
u(X)=  (n---~oJ~ for[X- QI n-2 dQ (n >/3),  

where S is also a continuous map on the subspace o f /2 (0D)  consisting of functions with 

integral or mean value zero. (Theorem 2.6.) 
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Recently BjSrn Dahlberg through a very careful study of the Poisson kernel of D 

resolved the Dirichlet problem in the case of C ~ domains for data in L~(~D), 1 <p < ~ ,  

and in the case of Lipschitz domains for data in L'(~D), 2~<p< ~ .  (See [3].) While 

Dahlberg's results did not cover the Noumann problem nor give the regularity mentioned 

above for the Dirichlet problem, there.remains along the lines of this work -th6 very open 

question of the use of t hb  double and single layer p0ten~ials in the case of Lipschitz 

domains. 

Throughout this work D will denote a bounded domain of R ~. Points of D will 

generally be denoted Jay the capital letters X and Y, and points on the boundary of D, 

~D, will be representedoby �9 the capital letters P and Q: 

Definition. D ~ C ~ (or ~D ~ C ~) means tha t corresponding to each point Q eaD there is a 

system of coordinates of R" with origin Q and a sphere, B(Q, 6), with center Q and radius 

6 >0, such t h a t l w i t h  respect to this coordinate system 

DO B(Q, 6) = {(x, t): x~l~ "-1, t ) ~(Z)} n B(Q, 6) 

where q~EC~(R ~ 1), the space of functions in CI(R ~ -1) with compact support, and ~(0)= 

( a~ /az , ) (0 )  = 0 ,  i = 1 . . . . .  n -  ~. 

Remark. If D E C 1 and e > 0 is given we can find a finite number of spheres, (B(Qj, 6~.)}'j~ 1, 

B QjE~D, such that  ~D~ U]-I (Qj, 61) and 

with 

and 

D N B(Qj, 6j) = {(x, t): t > ~j(x)} N B(Qj, 6j) 

~ j ~ C ~  (R ~ 1), ~ j (0)  = ~ " = 0 ,  i = l  . . . . .  n - l ,  
oxt 

maxlv~,lx)l  < vCj(x) = (a% x \ ~ x l  (x), )) . . . .  a ~ i  (~) ' 

1. The dohble and'single layer potentials over a Cl -domain  

We begin this section with a discussion in local coordinates of the inte~al, pai't o f  the. 

trace of the double layer potential on .the boundary .o~ a Cl-domain. 

Suppose ~(x)EC~(R~"I~: :For ~ .  z E R " I ,  x~zk 

set 
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t" 
I~/ (x)  = Jlx-~l>~ k(x, z)/(z) dz, ~ > O. 

L~.'MMA 1.1. There exists m0>O such that i/ m=maxlV9~ I <m  0 and l < p < o o  $hen 

(a) the operator I~./(x) =sup~>o [Rd(x)] is bounded on /2 (R  ~-1) and [[~./[[L{< Cm[[/ilLp 

where Cm depends only on m, p, n and tends to zero when m-+O +, 

(b) :~1-= hm~_~o, : ~ 1  ex/sts in L~(R ~1) and pointurise almost everywhere (a.e. Leb~vgue). 

Proo/. Part  (a) is a very special case of Theorem 4 in [2], whose proof will appear 

elsewhere. We will present here an argument for this case. 

For ~ >0 and fixed 

/~,/(x) = ~I >, .(/c(x, x - z ) / (X-  z) + k(x,. x + z),/(x + z)) dz 

-~- l f ~  To,. , l (x)da 

where E={aER~-X: lal =1}, da=usual  surface measure on Z, 

T~.,/(X) = ~ [k(x, x "  ra)/(X - ra) + k(x, x + ra)/(x + ra)] r n- 2dr. 

Setting Te/(x)=sup,>0 I Ta.e/(xiI ~ it is immediate tha t  

< IITo/II - -b d~ 

However for a fixed each xER "-~ is uniquely written as x:=ta+w whore r E ( -  ~ ,  ~ )  and 

<a, w> =0. Hence 

and it is easy to see t h a t  

~>o Jit-r >~ [ l+~(q)( ta§  !~, (t ~-r) 

From A. P. Calder6n's result ![1], Theorem 2) it follows that  there is a number m0>0 

such that  if max IV l- m<mo, then for l < p < o %  

d d 
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where U~.~ depends only on p and m and tends to zero with m. Since 

f f l l(ta + w)l*dt dw = f m - ,  I 1(~)1"~ 

part  (a) of Lemma 1.1 follows. 

Because of (a) and Lebosgue's dominated convergence theorem, to show part  (b) 

it is sufficient to prove the existence of the pointwise limit almost everywhere in R ~-1. 

Since 90eC~ there exists a sequence {v/j}c6~0, the space of infinitely differentiable 

functions with compact support, such that  

Set 

and 

~oj->9~, and V~oj~Vg~ uniformly. 

k l ( x ,  z )  = V ' j ( x )  - ~ j ( z )  - <V~vj(z), x - z> 
[I z -  z I ~' + (r - r n'2 

P 

gJ'"/(:~) = Ji,-zl>, kj(x, z)/(z) dz. 

For j fixed it is easy to see that  lim~o+]~,.,l(x) exists pointwise a.e. for/eLY(R=11). 

For a meaaurable set E c R  =-1 let ] g  I denote the Lebesgue measure of B. Also for 

/ e /2 (R  ~-1) sot 

A(x) = l imsup g.l(x) - tim i.~o~ ]~. [(x). 

and 
Aj(~) = lira sup/~i.d(x) - lira in /~ j . ,  [(z). 

Since Aj(x)= 0 a.e. 

I{~: A(x) > ~ > o}l = l{~: A(~)- A,(~) > ~}I 

-<1{~: sup I(~r ~,.,)1(~)1 > ~./2} I. 
~>0 

As a consequence of the argument of Theorem 1 in [1] the measure of the last sot is 

*, ~-" f It I'dxwheroe, -*0 asj-~ oo. Hence ] {z: A(z) > t  >O}l =0 ,  and this implies A(x) =Oa.e. 

Now set ton equal to the area of the unit sphere in R n. For PE~D we will lot 

and 

K, I(P) = sup I K,/(P)I. 
e>O 

e>O, 
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THEOREM 1.2. I[ DEC t and l < p < o o  then 

(a) I IK. / I I~ . (oo ,<oII / I I~(~ .  ) with C depending only on p, OD, and n; 

(b) lim K ~ [ -  P'V" l e - , o  to, feD ( P - Q b ~  P /(Q)dQ--K/(P) 

exists in I_2(~D) and pointwise [or a.e. P E OD; 
(c) K is compact. 

Proo[. By .the use of a partition of unity the proof a part (a) is reduced to showing 

that  the Euclidean operator, 

su- { f ~ (x)  - ~ (z )  - <A~(z ) ,  ~ -  z> 
~>o IJ,~-~,,§ + (~(~)-~(~))  ] l(~)e~J 

m a p s / 2 ( R  n-l) continuously into itself where ~0EC~(R "-1) and max [V~] < m  o, m o being 

the constant given by Lemma 1.1. If we sot r e=max  IV~o[ and observe that  

{~: 1/I x -  z ? + (~(:~)- ~(~))~ > d 

= ~:1~-~1> ~ \ ~:1~-~1> V l+m ~ and Vlx -z la+(~ (x ) -e f (z ) )2<< .e  , 

then the above operator is bounded by 

If I sup k(~, ~) t(~) ~ + 2(1 + m~) n-''~ sup I t(z)l dz 
~>o Idlz-zl<8 t s > O  dlz-zl<e 

where 

/r z~ - ~(x) - ~(z) - (V~(z), �9 - z) 

The second term in the above sum is of course equal to a constant times the Hardy- 

Littlewood maximal function of [ (see [6]) and, hence, is continuous on/~(R'-a) .  That the 

first term is also continuous o n / ~ ( R  "-1) follows from Lemma 1.1. 

As usual the proof of part (b) is completed once we have shown the existence of the 

limit, in/P(SD) or pointwise a.e., for a dense class of/P(SD), say CI(~D). Hence, assume 

[ E Ca(~D). Now 

K~I(P)=oj--~, _ [p_Q[ ,  a~. 

I t  is clear that  the first term is a bounded function of PEOD and e>0,  and, moreover, 
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converges pointwise as e ~ 0 + .  For the second term we have 

ft~- QI>~ <P ~ Q' NQ> NQ> 
Ip-Qp fo~ <P-Q' dQ IP-QP 

and horn this identity follows the boundedness in e > 0 and P EaD and the pointwise con- 

vergence of the second term to f(P)to,/2. 

We now set K/(P)=hm~oKJ(P). Again through the use of a partition of unity in 

order to prove K is compact it will suffice to show the compactness on Lr(B), 

of the Euclidean operator 

where 

B = {  xfiR~-' ,  Ixl <1}, 

lira f l  k(x, z)/(z) dz 

k(x, z) = [I x -  z p + ( ~ ( x ) -  q(z))~] "~2' 

and m a x ] V ~ ] < m  0' the constant of Lemma 1.1. For any ~ > 0  we can write the above 

limit as 

f k(x,z)/(z)dz+lim fl k(x,z)[(z)dx. 
X-zl>tl ~--~ x-zl<t~ 

ix-  zi '  4 ( ~ z ) -  u(z))l>~ ' 

Observing that  the LV-norm of the second function tends to zero we conclude that  

lim fl k(x,z)l(z)dz=lim f k(x,z)l(z)dz (a.e.). 
t - .0+ z - z l '  �9 (ggx) - ~z ) ) l> t  �9 t-~o+ d lx - z l>e  

Since ~EC~(R =-x) there exists a sequence {~j}cC~(R =+1) with supports contained in a 

fixed compact subset of R " ~  such that  ~j -*9 and V~r uniformly in R =-~. Set 

kgx, z) = ~j(x) - ~gz) - <V~gz), x ,  z> 

The operator ~R'-~ k~(x, z)/(z)dz is easily seen to be compact on I?(B) and, using A. P. 

Calder6n's result, ([1]), the operator, 
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has norm o n / 2 ( B )  small with j large. This implies the compactness of the operator 

lira f l  k(x, z)/(z) dz. 
e--~0+ x zl>~' 

In the next theorem we consider the double layer potential over ~D with DEC 1 and 

study its behavior near the surface when the density of the potential belongs to L v. 

TH~.OREM 1.3. For DeC 1 and fE/2'(~D), 1 < p < ~ ,  set 

u(X) 1 f~ <X-Q,N& ...~ 
=~-, D [ X - Q ~  /(Q)a~r xeD. 

Given a, 0 < a < l ,  there exists a constant ~--~.n such that the non-tangential maximal 

/unction o/u,  i.e. 

u*(P) =sup  { [ u ( / ) [ :  XED, I i - P  I <~, ( X - P ,  N~)>o: I i - P [ } ,  

belongs to I2(~D) and [[U*I[LP(OD) ~'~CH/]]LP(OD) with C independent o/ /: As a consequence 

u( X ) -~ �89 + K /(P) pointwise /or almost every P e a D 

as X ~ P ,  X e D ,  ( X - P ,  ~V,>>a]X-P I. 

Proo/. We cover ~D with a finite number of balls, Bj:-B(Pj, (~j), ] :  1 ..... l, with center 

PjEaD and radius 5j so that  

B(Pj, 4 5 j ) ~ D = B ( P j ,  4~i) fl{(x,t):xeRn-~,t>~v(x)} and [V~v]<~ 

Using a partition of unity subordinate to the cover B~, j = 1, ..., I we may assume the support 

of / is contained in Bj. 

Set 5=min{Sj ,  ~=1 ..... 1}. If PCB(Pj, 35j) and I X - P [  <(~ then for all QEBs, 

[ X - Q  I >~5, and 

< f., I/I c 111 I1 , oo,. 

In  .,the ease PEB(Pj ,  36j) we have XEB(Pj,  4~a). Using then t h e  coordinate system 

described above, we see that  the inequality 

I1 ~,* II~,oD)~ c II/11~.,oo, 

will be valid once 'we .can show-that t h e  operator 
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[ IJt l~_=l ,+(t_, , (~))~] , , , ,  I(~)a~ (x,O,t>~(~)  a~d 

, -  r - <v~o(~o), ~ -  ~o> > ~ I/t + Ivr VI ~ -  ~ol' + (r - r 

is a bounded map from LF(R n-') to itself. 

We set k(t, x; z) equal to the kernel of the above integral. We observe that  the 

conditions on (x, t) and max IVy01 imply the inequality 

t -~(~o)  > ( ~ -  Iv~(~o)l) I ~ -  ~ol > ~ 1 ~ -  ~ol. 
Hence, 

where 

r>0 r .]lz-xel<r 

the classical Hardy-Littlewood maximal function. 

Now set ~ = m a x  (3[x-xo[ ,  t-~(Xo) ). We have 

f l~.>~ k(t~ x; z~ ~(z~ dz= f ~x~.>~ k(t~ x~; z) ~(z) dz + f lz~x~.>~ (k(t~ x; z ) -  ~(~x~; z) ~ ~(z) dz. 

Since 

the second integral is majorized by CMf(xo). Finally 

where ]~, is the operator introduced in Lemma 1.1. Using the fact that  

t - ~O(Xo) 
I k(t, Xo; ~ ) -  k(~(~o), ~o; ~)1 < C l~ ~ 

the first term on the right side above is bounded by CM[(xo). We have finally shown that  

T/(xo) <<. C(M](xo) + ~,[(x0) ) and, hence, 

Since the map ]-*u* is bounded on LF(OD), to show the nontangential pointwiso limit of 
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u a.e. on 0D it is sufficient to show the pointwise limit for /E CI(~D), a dense subspace of 

LV(OD). F o r i f  we let uI(X ) denote the double layer potential with density / and 

Aj(P) = lira sup uj(X)- l iminf u1(X), 
X-~ P, XED X-'> P. XcD 

( X -  P, Np) > o~[X- P[ ( X -  P. Np> > o~[X- p[ 

then I{P: AflP)>2>O}I =l{P:Az_g(P)>~>O}[ for any geCl(aD), where IEI denotes 
the (surface) measure of the set E~e3D. Hence 

C 
I{P: Aj(P) > ~}1 < I{P: ui"_g(P) > ~/~} I < ~ II ! -  g I1#,~.) 

for any g e C~(~D). This immediately implies that  [{P: Ar(P ) >~ > 0} [=  0 and the almost 

everywhere nontangential limit Of u r for /EL  p. 

So now assume ] s CI(OD). Then 

u(X)=l  f~ (~;~Q_'-Q~ ) (I(Q)-I(P))dQ+ I(P). 

I t  is easy to see that  when X-+P we can pass the limit inside the integral sign and, 

therefore, 

x-~vlim u(X) =le.o,~ fa D (P-Q'~)IP-Q (/(Q)-/(P))dQ+/(P) 

= lim 1__ ~ < e -  Q, Ne> 
e - ' ~ o + W ' ` J I v - e l  >e [p_Q[,, (](Q)-/(P))dQ+/(P) 

= �89 + K / (P) .  

Remark. In the case/ELI(aD) the double layer potential, u(X), with density / has the 

property that  u* belongs to weak-Ll(~D) i.e. there exists a constant C such that  for each 

2 > 0 ,  

ofo I{e:u*(P)>a}l<-s I/Idq. 

This inequality is valid because the operator ~ of Lemma 1.1 is bounded from 

/~(R n-l) into weak-Ll(R "`-1) and this in turn implies that  the operator K .  and, therefore, 

K are bounded from LI(~D) into weak-Ll(OD). Exact ly  as in the proof of Theorem 1.3 we 

conclude that  u(X)~�89 nontangentially for a.e. PE~D when /ELI(~D). 
(Specifically we mean, as before, tha t  u(X)~�89 for a.e. PE~D as X~P, XED, 
<x-P, zv~)> ~ I x-PI.) 
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We now turn to the study of the regulari ty of the double layer potential when the 

density is regular. W e  begin by studying the behavior of the Euclidean operator, /~, on 

smooth functions. 

We will denote by L~(R ~-1) the space of functions [(x)ELr(R n-l) whose gradient, V/, 

also belongs to LV(R~-l). We set 

II I I1~'(~--,, = II l II,-(~.-1) + II v t  I1~,(~-, .  

L~,MMA 1.4. Suppose q0EC~o (R=-I). For [EL[(R~-t), l < p < o %  set 

where once again 

Then 

~l(x) = fR,'-x k(x, .z) l(z) dz 

k(x ,  z)  = q ( x )  - ~ ( z )  - < V q ( z ) ,  x -  z )  

i7 ~ ;~ :~-~ (xi ~ - ) ~  �9 

Ok 
vx, ~- Rl(x)= jl~ x--(x'z)(f(z)-l(x))dz' i= 1,- ....  n - 1 .  

Proo[ We first establish the formula for [ E 6~0(R n- 1). Let e 1, ..., e,_ 1 denote the standard 

basis of R =--1. Since SR ~ Ik(x, z)dz is constant we can write 

I~l(x+he~):-R/(x) C (k(z+he.z)-k(x,z)) 
- - - h - -  = JR'-1 h (/(z)-/(x))dz 

= fl + f (k(x+he,,z)-k(x,z)) 
z-zl>21~l JIz-zl~2h h 

= Aa(x ) + Bt,(x). 

(/(z)-/(x))dz 

I t  is easy to see that  Ah(x ) converges to 

fR  Ok (x, z) ([(z) - / (x))  dz 
. ~ ~ ~x  t 

and. Bh(x)oO when h-~O. 

�9 To obtain the formula 

operator 

f o r  ]EL[(Rn-!) ' w e  first n o t e  that  when ~0E0~o(R n-l) t h e  

~, (x,  z ) ( / ( z l  - l ( ~ ) )  dz 
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is continuous from L~(R n-l) to L~(R~-I), l < p < c r  This implies tha~ _~ m~ps L~(R ~ 1) 

into itself continuously, and.we also obtain the formula, 

ax--~ ~ f4(x) = f~ko~ (x, z)(l(z)-l(x))d~. 

THEORE~ 1.5. Suppose cf:(x)EC~(R ~-1) and IVy(x)[ <too, the constant o/Lemma 1.1. 

Then /or 1 < p < c~ the operator 

f~/(x) = lira [ k(x,z) [(zi dz 
e--~.O ,] lx-zl>~ 

maps L~(R ~-t) continuously into itsel]. Moreover 

f~ Ok ~x--~ 1~/(x) = lim - -  (x, z) ([(z) -/(x)) dz. 

All o[ the above limit.~ exist in L~(R "'~) and pointwise almost everywhere. (See [2].) 

Proo/. Since ~0EC~(R n-l) there exists {~0j}c~o (R "-1) such that qj-,9~ and Vqj-~V9~ 

uniformly. We may then suppose that  max [V~oj[ < mo for all ~. 

Set 

and 

From Lemma 114 

ks(x, z) = ~ j (x )  - ~j(z)  - (V%(z)~  x -  z~ 
[I  x - z I ~ + (9~/(x)  - % ( z ) ) 2 ]  n/2 

R fl(x) = ~a.- i kj(=i'=) / (=) &. 

and as a special case of Theorem 4 in [2] we have 

where_ C is iadepr of j, I-tenet ~/~ ~.: L~( R ~71 )~L~(Rn- 1), oonti~auousty :with aorta bo ,mAde4 
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independently of ~'. Since ~ j f - ~ / i n  L~(R "-1) we conclude that  ~]EL~(R ~-1) whenever 

/EL~(R n-~) and IIt~/[IL~CII/IIL~. Also, in the sense of distributions, 

0 e / =  lira 0 e , / = l i m  (.~0 k,(x,z)([(z)-[(x))dz 
Ox~ ~ Ox~ ~ j ox~ 

= l i r a  k (x ,  z)  i f ( z )  - l ( x ) )  dz. 

Definition. For 1 ~<p ~< o% L~(OD) will denote the space of functions f e/2C~D) with 

the property that  for any covering, {B~}~=I, of 0D with the properties described in the 

definition of a C 1 domain, D, and for any ~ E C~(Bj) the function y~(x, q~j(x))fix, q~j(x))=y~/ 
has partial derivatives, in the sense of distributions, given by functions in L~(R'-I). If we 

fix a covering {Bj}~=I and a partition of unity, (~pj}, of ~D subordinate to this cover we 

can define. 

II 1 = II/II,.,,oD, + II v ,l 

(We are assuming that  each ~jECI(R").) I t  is not difficult to see that  using a different 

covering and a different partition of unity subordinate to the cover will give rise to a norm 

equivalent to the one we have defined. (See [4].) 

As a consequence of Theorem 1.5 we have 

THEOREM 1.6. For l < p < ~  the operator 

K/(P)= P ' v ' l  foD(PF~'-Q~ )- 

maps L~(aD)~L[(OD) continuously and, moreover, K is compact on L~(OD). 

Proo]. As stated above the continuity of K on L[(OD) follows immediately from 

Theorem 1.5. Concerning the compactness of K it is enough to show the compactness on 

L[(R n-l) of the Euclidean operator 

[(~_~)/] (x) = ,p(x) R(1) (x) 

where ~p(x)EC~(R n-l) and R is the operator of Theorem 1.5. Again let {<pj}c C~0(R n-l) be 

a s e q u e n c e  o f  function such that  ~ j - ~  and V~#-~V~ nniformly. From Theorem 1.5 
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v f V ( ~  - %) (x) - V@ - %) (z) . . . .  
~(~) v-~/(~) = ~(z) p. .1 ~ i - Z - - ~  ~-~i : - T ~ ]  ~ ~r~ - / (~ ) )~  

f [(~o - %) (x) - (~o - ~oj) (z) - <V(~ - ~o~)(z), x - z > ]  
- n ~ ( x )  p . v .  (l(z) - l ( x ) )  [ l  x -  z f f  + ( ~ ( x )  - ~ ( z ) ) ~ ]  "j~§ 

x (x - z + (q(x) - q(z)) V~(x)) dz 

f V ~ ( x )  - V%(z) 
+ w ( - )  [I x -  z r + (~(~) - ~ ( z ) ) ' ]  n'~ ( /(z)  - 1(~)) dz 

n (z)f(l(z) [w,(x)- %(z)- z>] 
- , ,  ,, TIV:-;_ ~I~T ~(~V_ ~ I V ~  

x (x - z + (~(x) - ~(z)) V~(x)) dz. 

The  first two opera tors  on the  r ight  hand  side of the  above  equal i ty  as operators  f rom 

L~(R"-1) into LV(R "-1) have  no lms  tending to zero as ?" tends to oo. (Again use Theorem 4 

in [2].) For  j f ixed the  final two operators  are compac t  h e m  L~(R ~-I) in to/2(R~-~) .  F rom 

these observat ions  it easily follows t h a t  ~ is compac t  on Lf(R=-I) .  

THEOREM 1.7. Assume /EL~(aD), l < p < ~ ,  a n d / e t  

u(X) = 1 f~ <x--Q, No> ~ o I X _ Q I  = l(Q)dq, XED. 

Then given ~t, O < c t < l ,  there exists ~=6a.D such that the nontangential maximal function of 

Vu, i.e. (Vu)*(P)=sup {[Vu(X)l: XeD, IX-Pl<~, ( X - P ,  Nr>>a]X-P]}, belongs 
to /2(OD)  and 

ll(w)*lM~,-< c II t Ikr, oo, (C independent of 1). 

Proo]. The  proof follows closely t h a t  of Theorem 1.3. We  m a y  assume for example  

t h a t  / is suppor ted  in B f3 aD where B is a sphere wi th  center  on OD such tha t  

Bfl  D = BN {(x, t): x e R  "-~, t >~(x) ,  ~peC~(Rn-1)} 

and IVy01 < a/O. The  problem is reduced to  proving t h a t  the  funct ion 

f t - ~0(z) - <V~o(z),  x -  z> ~, . . z  

has the following proper ty :  
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f 
(Va)*(Xo)  = s u p / I r a ( x ,  t) I l: x E a n - l '  t >~p(x) a n d  

t - ~ (~o)  - < v ~ ( x o ) ,  * -  *o> > ~ VI * .  Xo I ~ + (~ (~)  - ~ (~o i )~ l  
VI + 1 vv(~o)l ~ J 

belongs to LV(R ~-1) and 

II (v~)*ll~,(~--,)~< c II t II~r(~--,)- 

As in Theorem 1.3 we sot 

k(t,  x; z) t - q~(z) - <V~p(z), x - z> 
[Iz-zl~§ (t- ~(z))~] "'~ 

and we observe that  

V~(x, t )= I (V,.t k(x ,  t; z) ([(z) I(~o)) dz. 
d. 

Set Vk(x, t; z ) = V , , t k ( x , . t ;  z ) a n d  2= max (3lX-Xol, t-q(x0)). Proceoding as in Theorem 

1-.3 we have 

§ f~ ..~>, I Vk(~, t; ~) -  Vk(Xo, ~(xo); ~)l lf(~) - f(Xo)ldz 

+ f "v k(x 0, q(xo); z)(](z)  - [(xo))dz  I. 
31 z *d>~ 

Tho first and second forms on the right side of tho abovo inequality are dominated by a 

constant times ~*(x0) where 

['(x.) = sup _~-1_1 f Ivfl(x)d~. 
' r > 0  r .  z - xd<r  

Again we have, /* e/Y(R "-1) and U/*IIz~<C]I[I[L~. Finally from Theorem 4 in [2] the 

sup~.>01Su~:-*o)>~. Vk(xo, ~~ z) ( [ ( z ) s h x o ) ) d z l  belongs t0 LV(R~: ~) with norm bounded by a. 

constant times the norm i n / 2 ( R  ~-1) of [. This concludes the proof of Theorem 1.7. 

We now turn our study to the behavior of the single layer potential over a Cl-domain 

with density in the c~ms' L ~" Of the boundary. 

LEM~tA 1.8. For /eLr{.R~-l),l<p~<~r and ~>0 set 

~ * / ( x )  = fl ~o(x) - ~(z) - <V~(x), x - z> [(z )dz  
�9 -~t~. [I z -  z I ~ + (~(x)  - ~ ( z ) ) q  "~ 
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w/th  ~0ECICRn-1). There exists a constant mo>O such tho~ i / m a x  lV~l < t o o  then 

(a) llsup,,~.01-+:~'l ll.,-."m"-'-)~ClIIlI,+"(E--+), +' i',+,+epende~ o! .t, 
(b) lim~,oKPl = K*I exists in/_Y(R ''-:t) and pointwi+e almost everywhere. 

Proo/.  Both parts Ca) and (b) are proved in the exact same manner as the cor- 

responding parts of Lomma 1.1. 

THEOREM 1.9. For  [ELV(OD), l < p < c + ,  and e > 0  set 

K * / ( P )  ffi - 1  [ <P - Q, N~> ~to~ dO 
o+, ~,~_+,>, i-P--=-Q-V " + '  + "  

Then  

(a) Ilsup. I K:[ I  IIv+<+D>-<< Cll/ll+,(+o) with C ind+endent o/1, 
a n d  

(b) lim+_~+ K*/=-K*/exis ts  in  IF(aD)  and pointwise almost everywhere. 

(c) K* is compact. 

Proo/.  The proof of (a) follows the same line of argument of part (a) in Theorem 1.2 

and is left to the reader. For part  (b) it  is again sufficient to show the existence of the 

limit for almost ever PE~D. This last statement will be justified if we can show the 

existence of 

r I" ~ (z )  - ~ ( z ) -  <vq~(x), x -  z> . . . .  
s - - -  - ~ - -  - -  - -  ,~-~nti l(z) az 

~.+o J ~x_++(~(,+)_~>>.>+. [I x -  ~ I + (,r(x) - (p(~)) ] 

for almost every x E R "-1 when/E/Y(R"- ' ) ,  ~o E CI(R"-'), and max I Vvl < too, the c o , r a n t  of 

]+emma 1.8. We now pick a sequence (~oj}cC~o(R n-t) such that  ~oj-+~0 and V~oj->V~ 

uniformly, and we set 

J i+-+l,+(+(=)-~+)),>. [ I  x - z I '  + (+,(x)  - , r ( + ) ) ' ] ' +  " ' +  

and 

-~*., I(x} = ( ~p,(x)-- ~j(~) - <wp~(x)__~, x -  z_____~ hz) dz. 

For j fixed lJm~0/~*j[(x) exists for almost every xER "-1 and, using Theorem 4 in [2], 

II ~ I ~,+I(x) - -~:., I(x)I ll.~m,,-1)< c, II I ll,-+,,m,,-,.) 

whore Uj->0 as j-> oo. As in the proof of part  (b) of Lemma 1.1, we now can conclude the 

existence almost everywhere of liln~oJ~ ff[(x). 

1 2 -  782902 Acta mathemattca 141. Imprim6 1o 8 D~,embro 1978 
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In virtue of Theorem 1.2, K* is the adjoint of an operator, K, compact on each L'(SD), 

1 < p  < oo, hence the same holds for K*. 

and 

THEOREM 1.10. For leI2'(OD), l < p < ~ ,  and Xr set 

-- 1 f /(Q) dO u(X): og,(n---2) j o D I X ~ Q I , _  2 ~. Then given ~ , 0 < a < l ,  

(a) there exists ~-(~a >0 such that the [unction~ 

(Vu):(P) = sup  {IVu(X)l:  X eD, I x - P I  <,~ < x - p ,  N,>>~[  x - P  I} 

(Vu)*(P) = sup (IVu(X)l: Xea"\~, Ix -P[  <~, < X - P ,  N~)< - a l  x - P I }  

belong to LP(8 D) and 

II(Vu) ' II(Vu): < c  ndepende  ol 

(b) au/aN~(X)-=<Vu(X), N~>-~(~I-K*)I(P) pointugse for almost every Pe~D as 

X-~ P, X E D, ( X - P ,  ZV~) > ~1 X - P [ ,  and 8u/SzVu( X) ~ ( �89 + K*) /(P) pointurise for almost 

every PeSD as X-~P, X E R ' \ D ,  < X - P , N ~ ) < - ~ I X - P I .  Here K* is the operator o/ 

Theorem 1.9. 

Proo/. The prooof of part (a) follows the exact lines of the first part of Theorem 1.3 

and is again left to the reader. For part (b) it is sufficient to prove the existence of the 

pointwise limit for almost everk PE~D when/ECI(OD). We will consider only the case 

of the interior nontangential limit, i.e. X E D, the exterior limit, X E R"\/) ,  being handled 

analogously. 

1 fa ( X - Q ,  Np> <Vu(X) ,N~>=~-  D I X - Q P  ](Q) dQ 

. . . . .  t(P) f 
:=~--. D ~ - Q T  ~? (ItM)-/(P))dQ+/(P)+ o9. J~D IX-QP 

Since f ECI(~D) it is clear that  the limit of the first term above when X ~ P  exists and equals 

~V~ is. a continuous function on 8D and heneg we can find a sequence of (vector-valued) 

functions, Nj.~, belonging to CI(19D) such that  Nj.~--,.N~, uniformly on ~D. Hence 
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/ N  N x l f e o ( X - Q ' N ' - N ~  d Q = I \  " -  ""fad "Q dQ) 

+--l fe (X--Q, Nj.o-No~_,~. __1 I(X-Q,N,.~,-N,.o) a~'~" 

The arguments of Theorem 1.2 imply the existence of a positive number 5 > 0 such that  the 

functions 

X - Q  
[N~'- NJ'~'l sup { Jee VZZ~x ,~dQ :XED, I x - P t < , ~ , < x -  P, ~v~> > ~ [ / - P [ }  

and 

sup ~ ]X_Q[~ dQ :XeD, I X - P I < 6 , < X - P ,  iV:>>~Ix-PI  

belong to Lq@D) for all q, 1 < q <  + ,  and each L q norm tends to zero as j=++. For j fixed 

lim 1 fe (X-Q'NJ.*'-Ns.o) 1re (P-Q"NJ'*'-N"~ 
~-+P~--. D IX-Q[  n dQ=~ D IP-QI  n 

Combining together the above observations we conclude that  for almost every PEaD 

1 J0~'D (X - Q, N~, - No) .~  

converges as X-)-P nontangentially, X ED, to 

1 f ( P  - Q, _,V~ ~- ~V&...., 
- -  l i m  / - -  ~ a~r 
(On ~ o  J IP-OI>e P "  Q I 

and, therefore, for almost every P EaD 

:~ (X)+~/(P)-K*/(P) as X+P, X6D,(X-P,N~, )>~IX-P I. 
p 

2. The Dirichlet a n d  N e u m n n n  problen~ 

We recall the operator 

i K/(P) = ~ p.v. fad (P -- Q' N~ . . . .  dQ. 

THEOREM 2.1. Assume DEC a is bounded and Rn\D is connected. Then [I+K is 
invertible on I2'(aD) /or each p, 1 <P < ~. 
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Proo[. We will in fact show that  the adjoint of �89 + K, namely �89 + K* is invertible on 

each/2(aD),  1 <p  < oo. Since K* is compact it is enough to prove that  �89 + K* is injoctive. 

So let's assume t h a t / E I 2 ( a D )  and (�89 +K*) [=0 .  

We first observe that  [ELq(a'D) for every q, 1 < q <  ~ .  To see this we take a sphere, 

B= B(Po, ~), with center on 8D such that  

BN D = {(x, t): t >~(x), ~ eC01(Rn-1), m a x  IV~I < e )  

where e is a fixed small positive number. We also take two functions ~p, OEC~(B) with the 

properties 

0={~  in B(Po, e)/3 ) 
in Rn\B(P0,~(~), ~ -=I in B(P o,~). 

Then 0[ = - 2OK*/= - 2(0K* - K*O) / - 2K*(0/) and finally 

0 /+  2(~K*~) 0 / =  - 2~(0K* - K*O) / -~ g. 

The function, g, satisfies the inequality 

-<C ~" [/(Q)I dQ. 

If 1/p-1/(n-1)=-l/q>O, gELq(SD); if 1/p-1/(n-1)<~O, geLq(~D) for all q, l < q < ~ .  

Since the norm of ~pK*~p is small on L q we conclude that  0/, and, hence, /ELq(SD). Con- 
tinuing in this manner we prove the observation that  [ELq(OD) for each q, 1 < q <  ~ .  

We now introduce the single layer potential over OD of the funct ion/ ,  i.e. 

o~,(n-2)  DIX_ I,_2/(Q)dQ, XeIt". 

Since/EIY'(SD) for each p, 1 < p < o o ,  we can integrate by parts in the integral, 

fIt,X I Vu(X)12 dX 

and obtain that  it is equal to 

f~vu ~ o  dQ=O 
~U 

since - - =  - (~I + K*)  / = O .  ONQ 

Therefore u(X) is identically constant in Rn\/).  Since limixi_~ u ( X ) = 0  and Rn\/)  is 

connected, u(X) -0  in Rn\/).  u(X) is a continuous function on R n, and, hence, in D, u 

is harmonic, and uiov=O. 
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From the classical uniqueness theorem on harmonic functions, u(X) ---0 on R n. Using 

now part (b) of Theorem 1.10, 

(�89 and -(�89 + K*)[=O. 

I t  follows immediately that  [ - 0  on aD, and we have then proved that the null space of 

�89 is {0}. 

COROLLARY 2.2. For 1 < p < ~ ,  �89 + K is invertible on L~(SD). 

Proof. From Theorem 1.6, K is compact on L~(SD) and since �89 + K  is one-to-one on 

/ 2  it is afort iori  injeetive on L~(SD). The Fredholm theory of compact operators implies 

the invertibility on L~(SD). 

THEOREM 2.3. Suppose DEC 1 is bounded and Rn\D is connected. Given gEI2(SD), 

1 < p < co, there exists a unique harmonic/unction u(X), de/incd in D such that/or each 

~r 0<~r 1, there exists 6 > 0 / o r  which 

(i) the nontangential maximal/unction o/u, namely, 

= sup {lu(X)l: [x-Pl <6, ( x - P ,  N~) >~l x - P [ } ,  

belongs to/2(8D) and Ilu:ll .( o, <cllgllL <0.,, 
(if) u(X)~g(P) [or almost every PESD as X-+P 

< X - P ,  lV~> > ~[ X - P ] .  

In fact u has the form of the double layer potential 

1 
Tg(Q)dQ where T=(I+K) -1. 

Proo/. I t  is immediate from Theorems 1.3 and 2.1 that  the double layer potential of 

Tg satisfies (i) and (if). 

To begin the proof of uniqueness we introduce the (Green's) function 

1 l f <Y-Q, No>,.[ 1 ) 
G(X' Y ) - I X -  YP-~ ~,  z) f ~ -Z_~  "J'[ix_ .[,-2 (Q)dQ. 

Fixing e>O we take ~fle(Y)EC~(D) satisfying 04v2,~<1 , ~ - 1  on 

O" 
{Y,D:dis t (Y ,  OD)<~e}, I~--~ ~,I ~< e~l. 
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Fixing now also X E D we have for small e, 

u(X) = (u~f~) (x) = f .  G(X, y) Ay(~ u) ( Y) d Y. 

If  u i s harmonic in D integrating by parts we have 

u(X) = - 2fD (V y G(X, Y), V y Y)~( Y)> u(Y) d Y - fD G(X, Y) Av2, ( Y) U( Y) d Y. 

Let {wt(Y)}tm_I be a finite set of functions such that  ~0,eC~0(R'), ~'~_,v?j-1 on 

{YER~: dist(Y,~D)~<($} and the support ~flqcBj where BjN D=Bj(I{(x,t): t>~0j(x), 

q~ j(x) E CI(R'-I)}. Then 

D]VrG(X, Y)I I Vv2,(Y)I lu(Y)IvA(Y) d y  

f2 <-- ]VyG(X;z,t+qJ(z))llu(z,t+~(z))ldtdz 
zl<~c ,~ 

~<C suplVra(X,z,r+q)(z))]- e- [u(z,t+o?(z))[dtdz. 
zinc O<~r<~ 

Since G(X, Q)EL~(OD) for each q, 1 < q <  0% 

sup I Vr  G(X, z + rep(z)) I <~ (V r G(X))*(z, r E/q({z: I z [ ~< c}). 

Here we have used the result and notation of Theorem 1.7. I t  is easy to see that  there is 

a n a ~ , 0 < a < l ,  suchthatsup0<t<~ [u(z, t+q)(z))[ -< * -.~ u,(z, q;(z)). I f  in addition to being harmonic, 

u*(z,q)(z))eL~({z: [z[ <c}), and u(z,t+q~(z))~O as t~O h)r almost every z, [z] ~<c, then 

under these conditions on u we have shown that  

fD]VrG(X ,  Y)I [V~)~( Y)] [ u ( Y ) ]  ly~j( Y) ldY ~O a s  E--~ 0 .  

In  a very similar manner and with these same conditions on u we have 

fD[G(X, Y)l I Ay~( Y)l [u( Y)Iy,j( Y ) d f  ~O as 8-'->0. 

An immediate consequence of Theorems 1.7, 2.3 and Corollary 2.2 is 

T~EOREM 2.4. Assume the hypotheses o/ Theorem 2.3 on D. 1] g~L[(~D), 1 <p< ~,  

then the solution o/the Dirichlet problem given by Theorem 2.3 has the additional property 
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(iii) (Vu)*(P)=sup {IVu(X)[: X E D ,  I x - P  I <8, < X - P ,  N~> >~[ x - P I }  belongs to 

LV(~D) and 

[[(VU)*[]LP(eD) <. C ][ g [[L,P(~D), C independent of g. 

We turn now to the Neumann problem. 

THEOREM 2.5. I /  DEC 1 i8 bounded and connected then ( �89  is invertible on the 

subspace o/ /2(~D),  1 < p  < oo, consisting el those/unctions / such thaA SOD/dQ=O. Here 

K*/(P) = lim - 1 f l  <P - Q' 2Y~> 
~-~o oJ-~, e-~l>, I P - Q I  ~-/(Q)dQ" 

Proo/. Since K* is compact on LV(~D) it is enough to show that  �89 - K *  is one-to-one. 

So a s s u m e / = 2 K * / a n d  S~D/=O. Exactly as in Theorem 2.1 we conclude that/ELq(OD) 

for every q, 1 <q<oo .  Consider now the single layer potential of / over 0D, namely 

1 f~ I(Q) 
u(X) - ( n -  2) eo~ D I X - Q I ~-~ dQ. 

An integration by parts shows that  

Hence u ( X ) - c o n s t a n t  in /). In Rn\/),  u(X) is harmonic and limlxl_~U(X)=0. As noted 

U[eD--C, a constant. Since the maximum or minimum of u in Rn\D must occur on ~D we 

conclude that  the maximum or the minimum occurs at every point P EOD and, therefore 

the limit of (~u[ONr) (X)  as X ~ P  nontangentially, X ERn \b  is of constant sign. But this 

limit equals - ~ / - K * =  - / .  Hence / is of constant sign. But since SOD/=0 we must have 

/ = 0  on OD. 

THEOREM 2.6. Suppose DEC 1 is bounded and connected. 

Given gE/2'(OD), l < p < o o ,  with S~Dg=0, there exists a harmonic /unction, u(X), 

de/ined in D such that to each ~, 0 < ~ < 1, there corresponds a ~ > 0 / o r  which 

(i) the nontange~tial maximal /unction o/ Vu, namely, (Vu)* (P)=sup{ IVu(X) l :  

l x -P[  <~, < X - P , N ~ > > ~  Ix-pl}, be~,s to I2(aD) (and 

~u 
(ii) ~ - ( X ) - < V u ( X ) , N r > ~ g ( P )  for almost every PE~D as X ~ P , < X - P , N , , >  

> lx-PI. 
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The harmonic function, u(X),  satisfying (i) and (ii) is uniquely determined up to a 

constant and can be taken in the form 

1 fo Sg(Q) 
u ( i ) = -  (n--2)e% D I X - Q I  "-2dQ 

where S = ( � 8 9  -1 on the subspaee of/2(OD) consisting of functions with integral zero. 

Proof. We immediately conclude from Theorem 1.10 tha t  the above single layer 

potential of Sg has properties (i) and (ii). 

For the uniqueness we considel' the Neumann function, 

1 1 f0 1 ,~<X- �9 ~%) 
) .lr_Qin_ _ \ (Q)dQ. 

An integration by  parts  shows tha t  

fD y Ou _ (X, ( Y ) d Y = u ( X ) + c  

where c is a constant. However, if (Vu)* e/2(~D) and (~u/~N~) (X)~O as X-+P nontangen- 

tially then the left-hand side of the above equality is zero. Henco u(X) ~ constant in D. 
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