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There are a number of fixed point theorems peculiar to symplectic geometry. A
particularly simple example is the theorem that any area-preserving mapping v of the
two-dimensional sphere into itself possesses at least two distinet fixed points (see [6, 8])
although an arbitrary orientation-preserving mapping may have only one single fixed
point. In higher dimensions such global theorems are not available, but it is known
(see [11]) that any symplectic map g which is Cl-close to the identity map of a simply
connected, compact symplectic manifold into itself has at least two fixed points. These
fixed points are found as critical points of appropriate functions on the manifold. In this
note we will derive a generalization of such a perturbation theorem which has various
applications in mechanies.

To formulate our result we need some concepts of symplectic geometry: A smooth
manifold X is called symplectic if there exists a non-degenerate closed 2-form w on X; the
symplectic manifold consists in fact of the pair (X, w). If w is even exact and given by
w=do, o being a 1-form we call (¥, ) an exact symplectic manifold. The most familiar
example of an exact symplectic manifold is the cotangent bundle of any manifold with
its natural 1-form.

A differentiable mapping ¢ of X into itself is called symplectic if it preserves the
two-form w, i.e. if y*o=c. Similarly, we call a mapping ¢ exact symplectic if (Z, «) is
exact and ¢*ou—a is exact, i.e.=dF where F is a function of X. We apply the same
terminology for mappings y of an open set D,<X into another D,<X.

Of course, every exact symplectic mapping is also symplectic since y*a=x+dF
implies

Yo =d(y*a) =do =w.
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18 J. MOSER
The converse, however, is not true in general. Indeed from y*w=w we conclude that
diy*a—a) =0

ie. y*o—a is a closed 1-form which need not be exact. But for simply connected, exact
symplectic manifolds the two concepts coincide.

We illustrate the difference of the two concepts with a simple example in the plane.
The z—y-plane with 1-form ydx=a is exact symplectic and the corresponding two-form
w=dux=dy Adz is the area element. Any mapping whose Jacobian is identically =1 is
symplectic. But in the non simply connected domain R>\ {0} the mapping y: (z, )~ (X, Y)

82 1/2 82 1/2
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given by

is symplectic, but not exact symplectic for any £=0, as one easily verifies.

In geometrical terms an exact symplectic mapping in the plane does not only preserve
the area elment w but also the line integral §a over any closed curve.

The next concept we need is that of a coisotropic submanifold of X. For this purpose
we first define the concept of a coisotropic subspace V of a symplectic vector space (S, w),
where w defines an alternating non-degenerate bilinear form. We denote by V¢ the sub-
space of all w€S for which w(w, v) =0 for all v€ V. In other words, V¢ is “orthogonal with
respect to w” to V.

One calls a subspace V<=8 “isotropic” if V< V*, i.e. if w vanishes in V. Similarly, a
space V is called “coisotropic” if ¥*< V, which is the same as saying that its ¢-orthogonal

complement Ve is isotropic. (See [11].) Since w is nondegenerate dim §=2# is even and
dim V +dim V® =dim § = 2n.

Hence for a coisotropic subspace we have 2 dim V*<2n, ie. dim VZn=4 dim §. Inci-
dentally, every subspace V with dim V =2xr—1 is clearly coisotropic.

Let M be a smooth manifold and j: M -2 an embedding of M in X. Then dj(T, M)
is a subspace of T, Z and we call M coisotropic if dj(T,M) is a coisotropic subspace of
TimZ for every p€M. We will denote the dimensions of X, M by 2n, 2n—r so that
Osr<mn.

For a coisotropie manifold M the space (dj(T, M) is, by definition, an r-dimensional
subspace of T';,,Z and therefore has a preimage in 7'M under j. We denote this preimage
simply by (TM)®, defining an r-dimensional distribution in M. It turns out that this

distribution is integrable so that, by Frobenius’ theorem, one has an r-dimensional foliation
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of M. We denote the r-dimensional leaf through p€M by L,; so that L, is tangential to
the given distribution.

We illustrate these concepts with a simple example: Let X =R with coordinates
Ly, ooy Tyy Yoy -o0s Y a0d 0= 7_; 9y, dx, which makes R*™ into an exact symplectic manifold.
We consider a submanifold of codimension 1 which is always coisotropic. We describe this
submanifold M by a function H=H(zx, y) as

H=0,

where we assume that dH =0 on M. The one-dimensional space (1',M), is, in this case,
spanned by the tangent vector ‘
I S
T oy Y o’

(1)

which is clearly tangent to the “energy surface” M. The leaves L, of M are in this case
simply the orbits of the above systems on H=0. Clearly these leaves need not be
compact, in general, and may even be dense on M.

In the following we frequently will identify j(M) and M as well as j(L,) and L,, and
set y|y=yoj; j=idy. This is, of course justified for embeddings j, but we point out
that the result holds for immersions 4§ also.

THEOREM. Let (Z, o) be a simply connected exact symplectic manifold and let
j: M—-Z

define a smooth embedding of a s smooth, compact coisotropic manifold into Z. Finally,
let p be a differentiable, exact symplectic mapping of a neighborhood U(j(M)) of j(M) into X
such that

lpoj —jle
s sufficiently small.

Then there exist at least two points p €M such that

¥i(p) < (L),
.e. p and wj(p) lie on the same leaf in X.
We discuss some consequences of this theorem:
1. For r=0 we can take M =Z, j =identity if X is also compact. In this case the leaves

L,=(p) are points and the above theorem asserts: Every symplectic mapping v, Cl-close
to the identity, on a simply connected compact, symplectic manifold has at least two
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fixed points. Here one can drop the requirement that v or M be exact symplectic, since g
is defined on a simply connected manifold; see {11], p. 29. ‘

2. For r=n one has L,=M, if M is connected. In this case M is called a Lagrange
manifold. In this case the theorem asserts that the image woj(M) of any Lagrange mani-
fold j(M) intersects j(M). This follows from Weinstein’s results [10] on intersection of
nearby Lagrange manifold and our case can be viewed as an extension of this statement.

3. For the intermediate case, r=1, we have a submanifold of codimension 1 with a
1-dimensional foliation. For example, if ¥ =R", x=>%_,¥,dx, (notation as above) and
M is given by

H=0

where H =H(x, y) is a C?-function with dH =0 on M. Then the foliation on M is given by

L _0H . _ o
* P Y 898,"

To apply our theorem to this situation we assume M to be compact, and assume that
is any exact symplectic mapping in U(M) such that |, is close to id|,. In particular,
v need not map M into itself. In this case the theorem asserts the existence of a point
p€M such that y(p) lies on the orbit of the above systems through p; for this point
w(p) €M, thus M and y(M) intersect at y(p).

For n=1 this result just states that a closed curve M in R? and its image under v
intersect, which follows simply from the preservation of the area ¢ « enclosed by such a
curve.

For the higher dimensional case consider the example

n

a=4(3 -1
k=1

where M is the unit sphere and the leaves are circles z, + 4y, =ce ", i1 ]e|?=1. i p

is the translation, say, ;) +¢eay; y,— y5 then there is at least one circle intersecting its

image circle. Incidentally, this example shows also the necessity for the smallness condition:

If ¢ is sufficiently large no such intersection exists.

4. Poinecaré’s perturbation theory of periodic orbifs. We consider a system (1) in
R*" and assume that the energy surface M ={(x, y)| H =0} is a regular compact manifold
such that all orbits on M are periodic of a constant period =7'. We claim that for any
system with a Hamiltonian H for which |H —H|c is small, there exists at least one

periodic orbit on A =0 whose period is close to 7.
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To show how this result follows from the theorem we denote by ¢* the flow associated
with the system (1) and ¢ that for the perturbed system, so that |§*—¢¢|c small for
0<t<T. Moreover, let j be a mapping taking M ={(x, y)|H=0} into } ={A =0}, eg.
along normals of M. Since ¢”|, =id we set y =@ so that ypoj is close to j. Moreover, y is
exact symplectic as is well known. The foliation j(L,) on M =j(M) is given by the flow
@". Thus the theorem asserts the existence of a point j(p)=¢€M such that

(q) =yoj(p) €j(Ly)
or

Y(g) =9*(q)
for some small s. Hence

P9 =1

and the orbit through ¢ has period T-—s~7T. We did not assert the existence of two
orbits since the two points of the theorem may lie on the same periodic orbit.

Arguments proving similar results go back to Poincaré [7] and our proof can be viewed
as a generalization of his. The basic idea is to construet an auxiliary function on M whose
critical points are the desired points which are mapped along the foliation.

We recall Poincaré’s idea for a mapping

X:f(x, y)s Y=g(1‘, y)

in R?® which is assumed to be exact symplectic, hence

3

(Y da, — yp day) = df

k=1

[}

is exact. Poincaré constructed in place of this the differential

MS

B=

I

) {(Yi—9)dX, — (X — ) dyk}

k

M=

(Y d Xy + 2 dyy) — d (12’1 Y Xk) (2)

k

=a(f= 3 i) = dg

1

[]

which is also exact. It has the added advantage that at critical points of g, i.e. at a point
where dg=p8=0 one has

Yi=y Xp=mn



22 J. MOSER

ie. a fixed point, provided that the differentials d X, dy, are linearly independent there.
This is certainly the case if the given mapping is close to the identity.

Before giving the proof in § 3 and § 4 we describe a simple application of our theorem
to a time dependent nonlinear perturbation of a system of oscillators. The theorem can
also be used to show the preservation of homoclinic orbits of Hamiltonian systems, even
if these homoclinic orbits are degenerate. For systems of two degrees of freedom such
results were known (see, for example, {4]) but for higher degrees of freedom they seem to
be new. Application of this nature giving the existence of homoclinic orbits can be found
'in the work by Easton and McGehee [1]. In fact, this investigation was prompted by
discussion with R. McGehee on this topic.

For belpful comments and encouragement I am indebted to R. McGehee and C.
Conley in whose seminar this work was discussed as well as to E. Zehnder. Furthermore T
want to express my gratitude to the University of Wisconsin, Madison and the Mittag

Leffler Institute where this work was carried out.

§2. An application

We consider a system of » harmonic oscillators given by the Hamiltonian

Hy= %kZl o (%% + Yi)
in R*, where the frequencies a, are positive numbers, so that the energy surface H=c
for ¢>0 is compact. In the special case where all &, are integer multiples of a positive
number a all solutions are periodic of period 27/a; we refer to this case as the periodic case.

We perturb this system by a time dependent perturbation Hamiltonian P =P(z, y, )
where we assume that P€C? and [%||P||c:dt is small. Here || ||cs refers to the space
variables z, y only. Moreover, we assume that P(x, y, t) =0 for |t| > T where T is a fixed
positive number.

The perturbed system is governed by the Hamiltonian H=H,+P. It describes a
slightly coupled time dependent system and, of course, the energy is not any more con-
served for the system.

We study the connection between the solutions for ¢< ~7 and for ¢t>7 and will
show that on any energy surface there exists at least one orbit which for ¢>7' agrees
up to a phase shift with the continuation of the unperturbed orbit coinciding for ¢ < — 7.
In particular, for this orbit the energy is strictly preserved from < —T to ¢>T.

To describe the mapping in question more precisely we introduce cocordinates
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2=y, 2oy =i, (=1, 2, ..., n) in R?" and set z=(z,). Denote by 2 =¢"“({) the solution of the

i-dependent system

. eH .,  oH
B U o

which for ¢=1, takes on the value z=,. Then

i, ts

wth tao(sz. ts g,

if these mappings are defined. For the unperturbed system, given by H,, we denote this
mapping by @§ "=g¢h™"; it depends on the difference ¢,—t, on account of the auto-
nomous character.

We choose numbers a, b in a< —7T, 6>T and define

p= (993. a)-l (pb. 4 ¢g-boqpb. a

which is the mapping in question. Consider a solution

z=g"%()
80 that
z=¢§%) fort< ~T.

On the other hand, for #> T this solution agrees with

2=g" 0@ %Ly =gl o™ (L) = g 0§ o™ (L) = g (D))

Thus the initial value { for t=a is replaced by w(().

It is good to notice that an orbit of the unperturbed system need not go into an
orbit again, since the mapping depends on the phase. Otherwise ¢ would have to commute
with @ which need not be the case in general.

As is well known, the mapping ¢”° and ¢§~* and p =g~ "¢>® are exact symplectic with
respect to a=>7.,¥.dz,. Moreover, y is O close to the identity map since %, ||P]cdt is
small. Thus our theorem applied to this mapping v and an energy surface Hy=¢, ¢>0 as
coisotropic manifold guarantees the existence of a point (* on Hy((*)=c¢ such that,
P(&*) =@5({*) for some small s. In other words the solution

z =g"%(C)
which for ¢ < — 7 agrees with @§ %(L*) is for t>7T equal to
2=gb “op(l*) =g (),

i.e. agrees with the unperturbed solution up to a phase shift s. This is what we wanted to
show.
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We illustrate the case of a coisotropic manifold of codimension r>1. We note that

the functions

are integrals of the motion for the unperturbed problem. Moreover the Poisson brackets
{G,, G,}=0, which implies that the manifolds
r—1
Gy =0, >0, ¢ > a,c, 0=1,2,...,r (3)
e=1
are coisotropic, as will be shown in §3. We included H, as one integral to ensure
compactness of these manifolds. We use such a manifold as M in our theorem. It is of the
topological type of T"~! x 8™ "*! where T"~' is an (r —1)-dimensional torus, and S™ an m

dimensional sphere. Indeed, with polar coordinates

Y i
Ty + iy = 1€

one has r2=c, for p=1, ..,7—1 and D7_, 0.1, =C, — 24-0%,6,>0. The flow generated by
G, is given by 0,0, +0y, Tp; 7~> 7, Where 6, is the Kronecker symbol. The leaves through
a point (r*, 6%) are given by

r~1
r,=rr; 0,=0;+ zléke'rg-l—ockr,, k=1,2,...,n
o

where 7, 7y, ..., T, are 7 parameters on the leaf.

By the above theorem, on every manifold of the form (3) there exists a solution
@6 () for ¢t < — T which aside from phase shifts 7;, 74, ..., T,y, T, Of 01, 0, ..., 6,_;, t returns
to the continuation of the unperturbed orbit. In particular, for this orbit all integrals
G, Gy, ..., G, have the same value for < — 7T and t> 7. Of course, for other solutions the
integrals G, ..., G, of the unperturbed system are generally not preserved.

In this example one could allow functions P(x, y, t) which decay sufficiently rapidly
as |t| >oo. Then we would have to describe the asymptotic behavior of the orbits for
t—> & oo and study the scattering mapping relating these asymptotic data for = —cc and
t= + co. The above theorem yields orbits for which this mapping is the same as for the
unperturbed flow aside from phase shifts.

Similarly the above theorem can be used to show that homoclinic orbits are con-

served under small perturbation of the Hamiltonian vector field, even in degenerate
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situations. This can be found in Easton and McGehee [1], and we indicate a simple example
only:

Consider the Hamiltonian

(@i + Y2+ e Yo+ (x5 + 45)

M2

Hy=

k=1

Here we have dim X =2r=2m +2.

The manifold N: 2y =y,=0, H,=1 is a 2m — 1 dimensional sphere on which all orbits are
periodic. Due to the term xyy, they are unstable and each periodic orbit S! possesses an
unstable manifold W+(S') and a stable manifold W—(81) of dimension 2. In fact both

these manifolds agree for this example and are given by
ToYo+ (@5 + ¥5)' =0

and (@, ..., Z,, ¥y, ..., Y,) o0 the periodic orbit. However, if we subject H, to a perturba-
tion, then these two manifolds need not agree any more.

In this situation the theorem of § 1 applies and shows if P =P(x, y, , ¥,) is & smooth
function of support outside of N and ||P||c. sufficiently small then there exists a periodic
orbit S} on N such that

W+(SL) 0 W—(SL) +@.

An orbit on this intersection—a homoclinic orbit—approaches the same circle §, for
t—~ +oo and t— —oo. In this respect this result is analogous to the earlier one of this

section. For the details we refer to [1].

§ 3. Outline of proof for T =R*"

We first outline the proof in the special case when £ =R*". Using the coordinates

2=y, Zpin =Y, for k=1, .., n we introduce the exact symplectic structure by

NM =

— 1
&=z

(% A2 — 2 dyye) = 3< T2, d2)

=7 0)

and {,> denotes the Euclidean inner product. Thus

k=1

where

w=da= > dy, A dz,
k=1
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and for two tangent vectors

2n a 2n Fl
V=2 Vi, W= 2. Wi
k=1 0% k=1

3Zk

we can represent w(V, W) in terms of the inner product by
oV, W) =4IV, W)

where we identified V, W with the vectors with the components V,, Wy.
To describe the idea of the proof we make the direct product X x X =R*" into an
exact symplectic space (symplectic space) by introducing the forms

& =3I 2y, dZ> ~ I Z,, d 2y, (0 =da)
where (Z,, Z,)€X x 2. The 1-form which is basic for the following is
B=¥J(Z,—Z,), (AdZ, +dZ,)) (3.1)
which differs from & by the exact form
1dJZ,, Zyy,

and vanishes on the diagonal A: Z, = Z,. These two properties will be essential for the
following:

(i) B vanishes on the diagonal AcX x X,

(ii) f—a is exact.

To describe the outline of the proof we consider the embedding j: M—2 of the
coisotropic manifold and the given exact symplectic mapping , so that yoj takes
M3, Moreover, we will construct a mapping : M —M which preserves the leaves in M
and is chosen so that jp(p) is the point on j(L,) closest to yoj(p). We then look for points
$ for which yoj(p)=jop(p), or y(q) €L, for ¢=j(p).

These points are found as critical points of a function which is constructed as
follows: Let

wM->Xx%
be the mapping given by
1) = (Gp(p), yi(p)) (3.2)

and consider the 1-form u*8 on M. We will show that it is exact, i.e. equal dF with a
function F on M, and the critical points of F turn out to be the desired points. In the
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special case when M =3, j=id, ¢=id this argument is precisely the one given at the
end of § 1.

Before proceeding with the proof we characterize coisotropic submanifolds M in X
locally and show that the distribution (7'M)v is integrable. Here we identify j(M) and M
and describe M N U in a sufficiently small neighborhood U of a point of M by the equa-
tions

Gy2) =0, o=1,..,71,

where d@, are linearly independent in U.
ProrosiTioN 1. MNU is coisotropic in Z if and only if the Poisson brackets

{Gg? Go} = <JVGQ) V&,
vanish on MNU.

To prove this we associate with a function @ the Hamiltonian vector field Vg =J-1VGQ,
whose Hamiltonian G is. For two such functions @, H we form the bilinear form

20(Vg, Vig) = I Vg, Vi = (JJIVG, JAVHY = (JVG, VHY={G&, H}  (3.3)

which is the Poisson bracket of G and H. In particular, V¢, Vg are orthogonal with
respect to w if and only if {@, H}=0.

There is another way in which the Poisson bracket is related to @, H: The commutator
[Vg, Vil is a Hamiltonian vector field with the Hamiltonian —{@, H} i.e.

Ve Vil = = Vie.m- (34)
To prove the proposition we note that TM consists of those vectors { for which
VG, 0> =0

or equivalently, with V,=J-1V@,,
w(V, ) =0.

Hence V,€(TM)» and since they are linearly independent they span (T M)». Therefore the
condition (TM)*< TM is equivalent to

(Vg Vg)=0 on MNU

which, by (3.3), proves the proposition.
Incidentally this proposition does not imply that the vector fields V,=J ' V@, com-

mute as one may expect from (3.4). Since the Poisson brackets {G,, G,} vanish only on
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Mn U one cannot conclude that the corresponding vector field vanishes. However, we

have

ProrosiTION 2. If MNU is coisotropic then the distribution (TM)° is integrable.

Proof. By Frobenius’ theorem it suffices to show that [V,, V,] belong to (TM)*. We
note that by Proposition 1 the function H ={@,, G,} vanishes on M N U, and since the
dG, are linearly independent we have

r

VH= > i1,VG on MnU.

r=1

Hence

and by (3.4)
Ve Vol= —Va=— 2 ALV, E(TM)".
v=1

We note that Proposition 2 holds for general symplectic manifolds: Indeed, by a
theorem of Darboux, locally one can introduce coordinates , ¥, such that the symplectic
form has the standard form so that Proposition 2 becomes applicable in the general case.

By Proposition 1 one can construct examples of coisotropic manifolds by considering
sets of the form @,=c, for functions which are “in involution” in a domain. These are in
two respects very special coisotropic manifolds. First, the corresponding vector fields
V, commute by (3.4) which is a strong restriction. Secondly, these manifolds are given
by global functions G,, which may not exist in general. It is one of the purposes of the
proof of §4 to be free from these restrictions.

More generally coisotropic manifolds are related to symplectic group actions also for

noncommuting groups. In this connection we refer to [2], [3] and [5].

§ 4. Proof of Theorem

(a) In the exact symplectic manifold (X, «), which is also symplectic with respect to
w=da we introduce the standard notations: With any function H on X we associate a

vector field V by
dH =w _|Vy(%).

Then the Poisson bracket of two functions G, H is defined by
{G. H} =0V, Va).

(1) For notation, see [9]. The notation matches that of §3 only up to irrelevant factors.
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Moreover, one has
Ve Vel = — Vi m-

Let j: M~ be the embedding of a coisotropic manifold of codimension r, 0 <r<n.
Then oy =j*x is a one-form on M and the corresponding two-form doy,=j*w=wy has
an r-dimensional nullspace (TM)® in T'M which, by the remarks of the previous section,
defines an integrable distribution. We denote by L, the leaf through a point p€M.

We need the following

ProProsiTION 3. Let ¢ be a Cl-mapping of M into itself, Cl-close to the identity and
@(p)EL, for all p€ M. Then the 1-form

prop— oy =dg

28 exact.

Proof. We interpolate ¢ by a family of such leaf-preserving mappings ¢, (0 <s<1)
such that g,=id, ¢, =g, for example as follows: We introduce a metric in X and define
the exponential map exp, T ,2—2.

Since ¢ is close to the identity the points j(p) and jp(p) are close in 2 and can be
represented by

i@s(p) =4 exp, (s4(q)), g=j(p),

where 1 is the projection of a neighborhood of §(L,) onto j(L;). It assigns to a point r near
j{Ly) the closest point A(r) to r on §(L,). This mapping 4 is well defined and smooth in a
sufficiently small neighborhood of j(L,).
Since ¢y(p) €L, the vector field W,=((d/ds) p,)op;* is tangential to L, and hence W €
(TM)» or
wy_ W,=0.

We have to show that
1
d

oty — oy == fo ds (‘P: o)ds

is exact. Denoting the Lie-derivative along W by Ly we have
d * =o*C
ds (@s otar) = @5 ws Xyt

and, by a general identity, we have

Cws oty = (dotyy) W +d(og, _IW?)
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The first term is equal w, W, and vanishes, the second is exact. Thus we have

1
gray—ay=d (f ‘P:(“M _AW,) ds)

0
proving the proposition.

(b) Next we use a theorem of A. Weinstein who constructed a 1-form £, analogous to
that of the previous section, for general exact symplectic manifolds. For this purpose we
define the product manifold X x ¥ and the projections z,: £ x £+ in » =1, 2 into the first
and second component. Then

o * - ~
d=nia—mro; @& =da

defines an exact symplectic structure on X x X. The diagonal A of 2 x X is the manifold
of points ¢ satisfying 7,(q) =7,(q).

ProrositioN 4. If (T, «) is a simply connected, exact symplectic manifold then there
exists a one-form B on a neighborhood N(A) of the diagonal in Z x % such that

(i) =0 on the diagonal AcZ x Z.

(ii) p—da=df is exact.

We outline the idea of the proof: A tubular neighborhood N(A) is differentiably

equivalent to the cotangent bundle T*X of X and one constructs a diffeomorphism
k: N(A)— T*Z

which takes the diagonal A into the zero section of T*E. If » is the natural 1-form of T*X
(which vanishes on the zero section and for which d» is nondegenerate) then &*y is a 1-form
on N(A) vanishing on the diagonal. Moreover, the diagonal A is a Lagrange manifold
for the symplectic form k*(dv). By a deformation argument one shows that any two
symplectic forms near a manifold which is a Lagrange manifold with respect to both
forms are diffeomorphically equivalent. Applying this to & =dd and k*(dv) one sees that k
can be so chosen that
da = k*(dv)

hence

d(@—k*»)=0.
Since X is simply connected &—k*v is exact and we can take f=FKk*» to prove the
proposition.

(c) Let  be the exact symplectic mapping of the theorem, so that

pru—a=dh in U(jM). (4.1)
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Hence with o, =j%«
()" & — oy = j*dh = d(hoj).

With this mapping ¢y we associate a leaf-preserving mapping ¢: M—>M which will be
specified later. At this point we leave ¢ unspecified except to assume that ¢ is C-close to the
identity and ¢(p)€L,.

(d) With these mappings ¢, ¢ we define

wM—-ExX

by
u(p) = (Jop(p), woi(p)),
or

MU =jo@, Tau =poj.
Then p*8 is a one-form on M. The proof of the theorem will follow from

Prorosition 5. The form p*3 is exact. Moreover, ¢ can be chosen in such a way that
u*p vanishes only at points P for which jop(p) =woj(p). Thus if u*f=dF, the critical points,
say the maximum and the minimum, of F give the desired two solutions. As a matter of fact
the number of the solutions is at least equal to the category (in the sense of Liusternik-
Schnirelman) of M.

Proof. To show that u*f is exact we use Proposition 4 to write

WB = prnl o —prng a+d(fou) = (jo)* a—(yoj)* a+d(fou) =g oy —(poj)* a+d(fou)
= (@™ot — atpy) — (o)) o — oty) +dfopu).

By Proposition 3 and (4.1) we have
p*B = d(g —hoj +fop) = dF.

To study the zeroes of the form u*f we represent jop and yoj by vector fields on

j(M), defined by
jo(p) = exp, A(q); y(q) = exp, B(g)-
where g=j(p). Because of the smallness condition |A4|c:, |B|e: are small and we will
approximate u*8 by the linear approximation in 4, B. To formalize this we define the
mapping u.: M~ x X by m, u. =exp, (¢A(q)), 7wt =exp, (¢B(g)); ¢=7(p) and approximate
w8 by ;
% (/"':ﬁ) Is-o = cwﬂ;
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where W=(4, B) is a vector field in T(X x X) on j(M). We need the following formula:
For v€TM and V =(dj)v one has

LCyfB _lv=w(d—B,7). 4.2)
To prove (4.2) we use the identity

CwB = pa{(@py W +d(B W)}

and note that the second term vanishes, since § vanishes on the diagonal and the image

of uy=(4, ) lies on the diagonal. Hence

LwB =,u§(d') _IW)
or

LB _tv=a(W, duyv).
Since @ =nfw —a; 0w and 7ty pg =75 4y =4, dy, W =A, dmy W = B we have
Lyp _1v=w(4, (d)v) (B, (d)v) =w(d - B, V),

where V =(dj)v, as we wanted to show.

Now we fix the mapping ¢ defined in terms of A by requiring that (4 —B)(q).L
(dj(T, M), for ¢=4j(p), i.e. that A4 — B is orthogonal to the tangent space of the leaf.
Since ¢ is assumed to be leaf-preserving this fixes 4 and hence ¢ uniquely. (One could
have fixed by other choices, e.g. pick jogp(p) as the point on the leaf j(L,) closest to poj(p).)

Since supy w(X, V)=0 where V€(dj)TM implies that X €(dj(TM))» we conclude
that for X=4-B

sup (X, V)>c¢|4— B|

vi=1

where the norm is with respect to the chosen metric and ¢ is a positive constant.
We recall that for a point p at which (4 —B)oj=0 one has u(p)€A, hence u*f=0.

Therefore given 7>0 we can choose yoj so close to § that

|u*8 _Jv—w(d—B, V)| <q|A-B]||V|.
Hence
| #*Bll = sup p*f _1v> sup w(4~B, V)—n|A—B|
Ivi=1 1vl=1

>(c—n)|4-B|.

Hence, for 0 <5 <c¢ we conclude that u*f=0 at a point H implies 4 =B at ¢=j(p) and
hence p(g) = jog(p) €5(L;) which concludes the proof of Proposition 5, and of the theorem.
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We conclude with a remark which we owe to A. Weinstein: He observed that our
result can be derived from Theorem 4.4 of his paper [10] about the intersection of
Lagrange manifolds. We indicate his argument pointing out the connection to the above

proof: Let
M={p,q€M, q€L,; d(p, q) <6}

where d is an appropriate distance and § a positive constant. We imposed the smallness
restriction on the distance so that 7} is a manifold which is embedded in X x X. Clearly
dim M =2n. The main observation is that 7 is a Lagrange manifold with respect to the
symplectic structure @& in X x X. For this purpose we construct for given (p,q)EM a
leaf preserving diffeomorphism @ taking p into g=¢(p). Such a map can be constructed
by modifying an arbitrary C'-map near the identity taking p into ¢ to one which preserves
the leaves, as it was indicated in the proof of Proposition 3.

To show that M is a Lagrange manifold it suffices to show for fixed (p, ¢)€ T that

&L, 0)=0 forl, €T, M. (4.3)
Clearly, {=(&, n)€T,, M if and only if
n—QEE(T, M) with ®=dyp
Now we note that w(n, n')=w(#, 7"} if n—7, % —7 €(T,M)* hence
o, n') = o(®E, BE).

By Proposition 3 this expression agrees with w(g, &) hence w(&, &) —w(n,n')=0. This
proves the assertion (4.3).

Finally, the fact that 1 and A intersect “cleanly” in the terminology of [10] along
MNA={p, g€ M, p=q} follows from Proposition 5.

Now the Lagrange manifold ﬁ:{p, gEM x X, q=y(p)} is " close to A and by
Theorem 4.4 of [10] A n M is given by the zeros of a closed 1-form on A N} which is diffeo-
morphie to M. If y is exact symplectic this form is exact, and the set An'm given by the
critical points of a function on M. Since AN'M consists of the points (p, ¢)€M x X
with q=y(p)€L,, the proof is finished.
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