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Multiple summing operators on C(K) 

David Pdrez-Garefa and  Ignacio Vi l lanueva( i )  

spaces 

Abstract .  In this paper, we characterize, for 1 <p<oc, the multiple (p, 1)-summing multi- 
linear operators on the product of C(K) spaces in terms of their representing polymeasures. As 
consequences, we obtain a new characterization of (p, 1)-summing linear operators on C(K) in 
terms of their representing measures and a new multilinear characterization of s spaces. We 
also solve a problem stated by M. S. Ramanujan and E. Schock, improve a result of H. P. Rosenthal 
and S. J. Szarek, and give new results about polymeasures. 

1. I n t r o d u c t i o n  a n d  n o t a t i o n  

Mot ivated  by the impor tance  of the theory of absolutely s u m m i n g  l inear op- 

erators, there have been some a t t emp t s  to generalize this concept  and the related 

results and  tools to the mul t i l inear  set t ing.  Most of the previous efforts in this di- 

rect ion use the following defini t ion of mul t i l inear  (q; Pi .... , p n ) - s u m m i n g  operator,  

for cer ta in  choices of q and  p~: 

A mul t i l inear  operator  T : X z  •  is called (q;Pi, ... ,p,~)-summing if 

there exists a cons tan t  K > O  such tha t  

- j = l  

for all choices of m E N and xal, ..., x j,,~ E X j .  
Tile interested reader can consul t  [9], [19] or [22] and tile references there in  to 

know more abou t  this class of operators.  

Recently, F. Bombal  and  both  authors  in [5] and  [24], and  M. C. Matos  in 

[20] have defined and s tudied the class of multiple summing multilinear operators, 
see Defini t ion 2.1 (a l though the origin of this class goes back to [27]). This  class 

extends the not ion  of p - summing  operator  to the mul t i l inear  se t t ing in a different 
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way, it behaves bet ter  in many ways than the previous definitions of p-summing 
multilinear operators, and seems to be the "right" generalization of the linear case 
for many applications. 

In particular, we prove in [5], [23], [24] and [25] several multilinear general- 
izations of Grothendieck's theorem and relations with nuclear and Hilber t-Schmidt  
multilinear operators that  extend and generalize classical linear results. It is easy to 
see that  this "good behavior" is not shared by the (q:Pl . . . . .  p,, )-summing operators 
defined as above. 

In this paper  we continue studying the nmltiple summing multilinear opera- 
tors. W'e give a simple characterization of the multiple 1-smnnfing operators and the 
multiple (p, 1)-summing operators on tile product of C ( K )  spaces ill terms of their 
representing polymeasure. As a particular case. we obtain a new characterization 
of (p, 1)-summing operators defined on C ( K )  spaces in terms of their representing 
measure. As an application we can prove the rather surprising Corollary 3.2. This 
corollary will be the main tool used in Proposition 3.4. where we improve a result 
of H. P. Rosenthal and S. J. Szarek. Another application of our results is Propo- 
sition 3.6. which gives a multilinear characterization of s  spaces related to the 
main result of [9]. 

Several results in this paper  (particularly Theorem 2.2 and Proposition 3.1) 
show that  the class of multiple p-summing multilinear operators is relatively ~'small". 
Thus, these results are especially surprising when compared with the Grothendieck 
type theorems given in [5] which show that  every multilinear operator from the prod- 
uct of s  spaces to an s space is multiple 2-summing, and that  every multilinear 
operator from the product of s spaces to a Hilbert space is nmltiple 1-summing. 

In addition, we use some results of [5] to establish Example 3.13, which solves a 
problem stated in [27], and also to give non-trivial new results about polymeasures 
(Corollaries 3.18 and 3.21). 

The notation and terminology used throughout the paper are standard in Ba- 
nach space theory, as for instance in [12]. This book is also our main reference 
for basic facts, definitions and unexplained notation throughout the paper. How- 

ever, before going any further, we shall establish some terminology: K will be the 
scalar field, which can be considered to be either the real or complex numbers; Xi 
and Y will always be Banach spaces; and s  Y) will denote the Banach space 
of bounded linear mappings from X to Y. For n>2 ,  s  . . . . .  X , ;  Y) will be the 
Banach space of all the continuous n-linear mappings from X~ x... x X~ into Y. 
When Y = K  we will omit it and, from now on. operator will mean linear or nmlti- 
linear continuous mapping. As usual, X~ ~ ... ~X~,  stands for the (completion of 

the) injective tensor product of the Banach spaces X,  . . . . .  X,, and X ~  . . . .  ~ X , ,  
will denote (the completion of) their projective tensor product. Given a Banach 
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space X,  B x  denotes its unit  ball. X* stands for its topological dual and a:* for the 
weak-star  topology in X*. 

Given X,  l _<p<oc  and a finite sequence (x/)i"_l c X .  we let 

{ 7 } 
For l<_p<_q<oc, we write II(q.p)(X: Y) for the Banach space of (q ,p)-summing 

operators  from X into Y. and 7"C(q.p)(T) stands for the (q ,p) -summing norm of 

TEII(q ,p) (X,Y) .  W h e n  q=p we have the p-sumnfing operators,  and the nota t ion 
will then be I Ip(X,  Y) and 7rp(T). 

Let l<p_<oo  and A > I .  A Banach space X is said to be an s space if 

for every finite-dimensional subspace E c X  there exists another  finite-dimensional 
subspace F ,  with E C F C X  and such that  there exists an isomorphism v: F-+l ;  im F 

with Ilvll I I v - ~ l l < t .  W e  s a y  tha t  X is an L;p space if it is an s space for some 

A > I .  Clearly, Lp(#) is the basic example of an / ;p -space .  

ix. . .V~,~ ..... m,, denotes a nmlt i index sequence with Given n, ml ,  ..., Inn c m ,  ~ . ..... t,~ ]il . . . . .  i,,=1 
the index {j varying from 1 to mj ,  l < j _ < n .  

If  T: X1 x ... xX**-+Y is a multil inear operator ,  we write AB(T) :  X{* x ... x 
X~*-+Y** for its so-called Aron-Berne r  extension, which in general is not unique 
(see [3], or [8] and the references therein, for basic facts and different equivalent 

formulations of the Aron-Berne r  extension). 

Let E d be the Bore] a-a lgebra  of a compact  space Kj ,  l<_j_<n (or, in general. 

a a-a lgebra  defined on a set ftj).  A flmction 2.:E1 x . . . x E , ,  >Y is a (countably  

additive) polymeasuve if it is separately (countably)  additive. 

Given a polymeasure  7 :E1  x ... x E , , -+Y.  as in the case n = l .  its semivariation 
is defined as the set fimetion 

given by 

F1 ~n 

[[~/II(A1,... , A ~ ) = s u p  ... a1.~ ... ak,  ";.(; ~.~ . . . . .  A k , )  , 
k l - - ] .  /c,~ = 1  

where the suprenmm is taken over all the finite ~Zj-partitions gAd V'J of Aj.  
\ '{'3 d ] v j = ]  

l < j < n ,  and all the collections (a j ~r.j in the ul]it ball of the scalar field. 
- -  - -  ' \ k d J k  d 1 

Let us also recall tha t  its variation is defined as the set function 

v(3,.): z ,  •  • z , ,  ~ [o, + ~ ]  
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given by 

v(Q/)(A1, : A n )  sup  Z ~ A1 n . . . . . . .  If2,( k~, -.., Ak~)[[, 
k l= l  kn=l 

where the supremum is taken over all the finite Nj-parti t ions (M V'~ of Aj. \~ ~]r ) l c j : l  
l<_j<n. 

In general, given l_<p<vc,  we can define its p-variation as the set function 

given by 

Yp(W~):XlX.. .NX n ) [0,-~-OG] 

vp('~)(A1, ... ,An) = s u p  "'" Z II: '(A~ ' ' ' "  ' d'~k,~ )lIp 
\kl----1 k,~=l 

where the supremum is again taken over all the finite ~.j-partitions [4J ~r~ of Aj. \" lk j  ]kj =J. 
l<j<_n. 

If  3' has finite semivariation, an elementary integral f ( f t ,  f2,..., f,~)dy can 
be defined, where fj are bounded ~j -measurable  scalar functions, just taking the 
limit of the integrals of n-tuples of simple functions (with the obvious definition) 
uniformly converging to the fj's. 

If K1, ..., K s  are compact Hausdorff spaces, then every multilinear operator TE 
s  ..., C(K~);  Y) has a unique representing polymeasure ~/: E1 x ... x ETa--+ 

Y** with finite semivariation, in such a way that  

fn) =/(fl,-.., fn) d"/ for f j e  C(Kj), T ( f l , . . . ,  

and such that  for every y*EY*, Y*~2, is a separately regular countably additive 
scalar polymeasure. The idea behind this representation theorem can be easily 
described. 

Given a compact  Hausdorff space and its Borel a-algebra E, we write B(E)  for 
the completion under the supremmn norm of the space S(E) of the E-simple scalar 

valued functions. It  is well known that  C(K)~J~B(E)~+C(K) **, where ~J+ denotes 
isometric embedding. So. for the operator  T we consider its Aron Berner extension 
to the product  of the biduals AB(T) (which is unique in this case) and restrict it 

to ~]P: B ( r l )  x ... :x B(Y]~n)--+Y**. NOW we define 5'(AI,..., A,,)=T(XA,,..., XA,~). In 
fact, as for the case of C(K) spaces, simple reasonings yield an isometric isomor- 
phism between s ..., B ( Z , ) ;  Y) and bpm(Z~, ..., 12~, ;Y), the Banach space 
of the polymeasures with bounded semivariation defined on Z1 x ... • ~ with values 
in Y, endowed with the semivariation norm (see [6] and the references therein for 
more information about  polymeasures and the representation theorem). 
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2 .  D e f i n i t i o n  a n d  f i r s t  r e s u l t s  

We start  by recalling our definition. 

Definition 2.1. Let 1<pl ,  ... ,pT~<<_q<+oc. A multilinear operator T: X1 x ... x 
Xn--+ Y is multiple (q; Pl, ..., p~)-summing, if there exists a constant K > 0 such that.  
for every choice of sequences (xiJ)i~=l c X j  the following relation holds 

(1) ... [[T(Xll , . . .  , 5gY~, )[[q _<K H\xij]ij=lllpj. 
- - j = l  

In that  case, we define the multiple (q;Pz, ... ,P~)-summiTz9 norm of T by 

rC(q;p~ ..... p~)(T) = r a i n { K :  K satisfies (1)}. 

A multiple (q; p , . . . ,  p)-summing operator  will be called multiple (q, p)-summing, 
and we write 7r(q,p) for the associated norm. Moreover, a multiple (p,p)-summing 
operator will be called multiple p-summing and we write zrp for the associated norm. 

The c lass  l~Zq;pl ..... Pn) (X1,..., X~,; Y) of multiple (q; Pl, ..., Pn)-sunnning multilinear 
operators is easily seen to be a Banach space with its n o r m  7 r ( q : p  1 . . . . .  p,,). 

AS in the linear case, if there exists l < _ j < n  such that  pj >q, only the zero op- 
erator can satisfy (1). This i s  the reason to introduce the hypothesis 1<pl ,  ..., Pn <_ 
q<+oo .  Let us s tar t  showing the most  basic example of this class of operators. 
Let T:X1 x . . . x X n - + V  be a multilinear operator. Suppose that  T is continu- 
ous in the e topology and that  its linearization T : X I ~ . . . ~ X , ~ - - ~ Y  is (q,p)- 
summing. Then, it follows easily from the definitions that  T is multiple (q,p)- 

* , . . . ~  ~ de- summing. In particular, for any x j c X ;  the multilinear form x ~  x* 
fined by (x~|174 ,x~)=x~(xl) . . .x;(x~) is multiple (q,p)-summing for 
any l<_p<q<_oc. It  is probably worth mentioning that.  in general, multilinear 
forms need not be multiple p-sunmfing, as follows from Propositions 3.1 and [20]. 

Note that  in this definition we require the sum 

x~' )11 ~ 
i1=1 i,~=1 

to be controlled by the product I-Ij=l II(x@~ ' ~  " )ij=lllp~, whereas in the definition of 
(q; Pl, ..., Pn)-summing operators mentioned in the introduction and used previously 
by other authors, it is the "diagonal" sum 

IIT(z~, ..., x~')II qY/q 



158 D a v i d  P 6 r e z - G a r c l a  a n d  I g n a c i o  V i l l a n u e v a  

that  must be controlled by the same product.  
We show first the good behavior with respect to the extensions to the bidual 

that  our operators share with the (q.p)-summing linear operators. Recall that  
the Aron Berner extension of a multilinear operator is. in many ways, the natural  
generalization of the bitranspose of a linear operator. In that  sense, the notion of 
weakly compact linear operator extends to the notion of multilinear operator whose 
Aron Berner extension remains in the image space. Following exactly the steps 

given in the proof of [14, Theorem 2.2] we obtain the following result. 

T h e o r e m  2.2. Let T: Xz  x ... x X~-+  Y be a multiple p - summing  multilinear 

operator. Then its A r o n - B e r n e r  extension AB(T) belongs to s  ..., X~*; Y). 

We also have the following result which we will need later. 

T h e o r e m  2.3. Let 1<<_pl, ... , p,, <q< ~c. A m ,  ultilinear operator T: X1 x ... x 

X,~-+ Y is multiple (q;Pz, ..-,p~,)-s~mming i f  and only i f  its Aron Berner  extension 

is multiple (q; Pl , ..., Pn )-summing.  

Moreover, in that case 

rr(q;p ...... ~,~,) (T) = rr(q:p ...... p,, ) (AB(T)).  

The proof is obvious once we prove the following lemma. 

L e m m a  2.4. Let X be a Banach space, h E N  and l <_p< oc. Let (zi)i~ 1CX**. 
Then there exist a directed set f~ and nets i (x(~)(~f_~cX such that 

~i cc x~ > zi for  every l < i < n 

and such that 

II(z )  tlp <-II(~i)i=lllp IOF every a E ft. 

Pro@ According to [11, Proposition 8.1], we know that  the mapping given by 
m ~ rn (Yi)i=l }-~i=1 ei |  establishes, for every Banach space Y. an isometric isomor- 

phism between the Banach space of sequences of m vectors of Y, endowed with the 
norm II - I1~, and I ~ |  Moreover the following isometric embeddings hold: 

"~ ~-+ ( I"  ~ X ) **. lp @e X ~ It~ ~ @e X** , p -z 

Since ( z~ ) i~ lC l~ |  ( I ~ ' ~ X ) * * ,  there exist a directed set f~ and a net 

(w~)~ea c lp~ |  such that  

and I1 ' 11 
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TTZ 
Let x~ be such that w ~ = ~ i = l  eiCxia. We have that 

i m m II(x~)~=~ll; = tl~'~ II _< I1(~%=1 II; 

and that,  for every x* CX*, 

a E f 2  k = l  

[~ 
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The following proposition can be easily proved as {19. Proposition 2.5]. 

P r o p o s i t i o n  2.5. Let T: X l  X ... x Xn--+ Y be a multilinear operator, let 1<_ 
k<_n-1 and let Tk: X1 x ... x Xk ~ s  . . . . .  X~ :Y) be the associated k-linear 
operator. 

t f  
~: (Xx, . . .  Xk;  ~,)(X~+~ .... ,X ,~:Y)) .  Zk C II(q;p ...... Pk) ' (q:Pk'*l . . . . . .  

then 

T n eII(q;p 1 ..... p,)(X1 . X n : Y )  and ~(q ;P l  ..... P , , ) ( T )  <~'i" 1 k)(z~) , . . .  , _ _  ( q ; p  . . . .  , p .  �9 

We will see in Example 3.13 that,  in general, the converse implication is not 
true. Nevertheless, it follows from Proposition 3.1 and [19] that the converse is true 
when q=Pl . . . . .  p,~=l and all the Xj  are C(K)  spaces (or in general s  spaces), 
or when q=Px . . . . .  pn=2  and all the Xj  and Y are Hilbert spaces. 

We state the following composition theorem for reference purposes, its proof, 
which can be seen in [5], follows along the lines of [12, 2.22J. 

T h e o r e m  2.6. Let u3 EHq(Xj, Yj ) and T EH~ (Y~ ... . .  Y,, ; Z) and let l < r < + ~ c  
be such that 

1 1 1 

r p q 

Then S = T ( u l , . . . ,  u~) is multiple r-summing and 7r,.(S) <_~p(T) [Iy=z ZCq(Uj). 

3. T h e  m a i n  r e s u l t s  

Given two Banach spaces X and Y. we will denote by I ( X ,  Y )  the space of 
integral linear operators from X to Y. It is a Banach space with the integral norm 
I1" Ii~r,~ (see [13, p. 232] for the definitions). 
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A multi l inear opera tor  T E/2 '* (X1 ,  . . . .  X n ; Y )  is integral if there  exists a regular 
Y**-valued Borel  measure G of bounded variat ion on the product  B x ;  x...  x Bx~ 
such tha t  

f X* X* ... ; ! -., ... T(x l ,  x , , )= Xl(Xl) 3 2 r l ( x n ) d a (  1, , n) 
.I B x~ x...xBx~ 

for all (xl ,  ..., xn) ~ X 1  x ... x X n. The  space s (X1, ..., X , ;  Y) of integral multi l inear 
opera tors  is a Banach space with the norm Ilrllint=inf{v(G): G represents T as 
above}. These  operators  were defined in [30] (where they  are called G-integral),  
a l though the definition is just  a technical modification of a previous definition in [2]. 
In [30] it is proved tha t  a mult i l inear opera tor  T: X1 x ... x X ,  --+Y is integral if and 
only if its l inearization 2r is continuous in the e topology and T: XI@~ ... ~ X ~ - - + Y  
is an integral operator .  Moreover, in tha t  c a s e  [ [ T l l i n t  = IITllint. 

We can now prove the following result. 

P r o p o s i t i o n  3.1.  Let K1 .... , K,~ be compact Hausdmff  spaces, T: C( K1) x ... • 
C(K,)--+ Y be a multilinear operator and let ~ be its representing polymeasure. Then 
the following are equivalent: 

(i) T is multiple 1-summing; 
(ii) v(7) <ec ;  
(iii) T is integral; 

(iv) T1 e i l l ( C ( K 1 ) ,  I l l  ( C ( K 2 ) ,  . . . ,  I l l  ( C ( K , , - 1 ) ,  I l l  ( C ( / s  Y ) ) . . . ) ) .  

Moreover, in this case, all the norms coincide, i.e. 

7FI(T ) : v(~') : IITIlint = 71-1(7"1). 

Pro@ The  implication (i) ~ (ii) follows immediate ly  from Theorem 2.3 and 
A "~ the fact that ,  if (ft, E) is a measurable  space and ( ,i)i=l is a par t i t ion  of ft, then 

the sequence (XA{)iml c B ( E )  satisfies I1(xA,)72111~ <- 1. The  equivalence between 
(ii) and (iii) follows from [7, Corollary 4.2] and (iii) => (iv) is a consequence of [30, 
Proposi t ion 2.9]. Finally, (iv) ~ (i) follows from Proposi t ion 2.5. [] 

As an immedia te  consequence we obtain the following very surprising result. 

C o r o l l a r y  3.2.  Let Xj ,  Yj and Z be Banach spaces, l<<_j<n. Let ujE 
II2( X j ,  Yj) and T EII~(Y1, ..., Yn; Z).  Then S=  T(ul  .... , u , )  is integral and 

j = l  
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Pro@ It follows from the linear factorization theorem for 2-summing operators 
[12, Corollary 2.16] that  there exist compact spaces IQ and 2-summing operators 
by: C(Kj)-+Yj such that  uj =bjoi3, where ij: Xj~--~C(Kj) are isometric inclusions, 
l_<j<n.  Let us consider the operator R=T(bl ,  ..., bn)~s  ..., C(Kn);  Z). 
Applying Theorem 2.6 and Proposition 3.1 we get that R is integral. Our result 
follows suit. [] 

Remark 3.3. After the first version of this paper was written we have been able 
to prove that  the operator S in Corollary 3.2 is actually nuclear (see [25]). 

We can apply this corollary to prove a proposition that  improves one of the 
results in [29] (see the remark below). We will say that  a Banach space Y is a GT 
space, or that  Y satisfies Grothendieck's theorem, if every linear operator from Y to 
12 is 1-summing. According to Grothendieck's Theorem, Z;1 spaces are GT spaces, 
but there are several instances of GT spaces which are not s for example 
Lx /H  1 or the quotient of an L1 space by a subspace isomorphic to a Hilbert space 
(see [261). All the known examples of GT spaces have cotype 2. and it remains an 
open question whether this must always happen. 

P r o p o s i t i o n  3.4. For l<_j<n, let Xj be an s space, ~. a GT space with 
cotype 2 and uj: Xj-+ Yj a linear operator. Then, the operator 

~ | 1 7 4  ~ Y ~  . . . .  5~Y~ 

is well defined and continuous. 

Proof. By [7], it is sufficient to prove that,  for ever)' TEs ..., E~), the 
composition T(u~,...,u,~)Es It is shown in [5] that  T is multiple 
2-summing and, by [12, Theorem 11.14], uj is 2-summing for every j.  Therefore. 
an appeal to Corollary 3.2 finishes the proof. [] 

Remark 3.5. In [29], H. P. Rosenthal and S. J. Szarek mention that it would be 
desirable to determine pairs of (classes of) Banach spaces for which the conclusion 
of Proposition 3.4 holds. They obtained the result (in the case n=2) for s  and 
/21 spaces. In that  case, a direct proof can be given using induction. It is well 
known (see [15, Proposition 7] for a proof) that the projective tensor product of 
s spaces is an s space, and that the injective tensor product of s spaces is an 
Z;~ space. Therefore, all we have to do is to prove the case n=2 .  Let X1 and X2 
be s  spaces, let Y1 and Y2 be s spaces, and let uj: X j - - ~  be a linear operator, 
j = l ,  2. As in Proposition 3.4, we have to prove that S=T(uz,U2):  X1 • is 
integral for every TEs This is equivalent to prove that the associated 
linear operator $1: XI--~X~ is integral. Now. we have the decomposition S l = u ~  
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Tloul. By Grothendieck's theorem [12, Theorem 3.7]. u~ and ~ are 2-summing. 
Then, [12, Theorem 2.22] tells us that $1 is 1-summing and therefore integral [28, 
Theorem III.3]. 

It must be noticed that this argument gives also the case n = 2  of Proposi- 
tion 3.4. However, the general case cannot be obtained by this simple induction 
reasoning since GT and cotype 2 spaces are not stable under projective tensor prod- 
ucts. In fact, by [26, Theorem 10.6], there exists a GT space X with cotype 2 such 
that  X~)~X=X@~X.  By [16, Remark 1] and [12, Theorem 14.1], this implies that  
X@~X does not have finite cotype and therefore (see [26, Corollary 6.13] and [12, 
Theorem 14.5]) X ~ X  cannot be a GT space. 

Proposition 3.1 also allows us to give a new multilinear characterization of s162 
spaces. 

P r o p o s i t i o n  3.6. Given X1 ..... X,~ Banach spaces, the following are equiva- 
lent: 

(i) X1, ... ,X~ are s  spaces; 
(ii) for every Banach space Y and for every multiple l-summing n-linear op- 

erator T: X1 x ... x X,~-+Y, we have that T is integral. 

Pro@ To see that  (ii) implies (i) we consider an arbitrary Banach space Y and 
an arbitrary absolutely summing linear operator u: XI -+Y.  By [28. Theorem III.3], 
if we prove that  u is integral, we will obtain that X1 is an s  space (we rea- 
son identically for 2_< j < n). For 2 < j _< n we consider xj E Bx~ and xj E Bx7 such 
that  xj (x j) = 1. It is trivial that T =  u G x~ $... ~ x ;  : X1 x... x X,~ -+ Y is multiple 1- 

summing. Using the hypothesis, we have that T: X1 ~ .... ~X,~ --+Y is integral, and 
so is u=Tv,  where v: X1--+Xa~ ... ~.~X,, is given by v(x l )=x l  ~ . . .Zx , .  

To see that (i) implies (ii), we reason for the case n =2  (the general case can be 
obtained similarly by induction). Choose a bilinear operator T: X~ x X2--+Y, and 
let TI:X1--+s Y) be its associated linear operator. Using standard localization 
arguments we can deduce from Proposition 3.1 that.  if TEII~(X1,X2;Y) ,  then 
T~ ~III(X1,1-i~ (X~, Y)). Now, [28, Theorem III.3] tells us that T~ EI(X~, I(X2, Y))  
and, by [30], we can conclude that T is integral. [] 

Remark 3.7. Since 1-dominated multilinear operators (see [20] for definition 
and basic facts) are easily seen to be nmltiple 1-smmning, Theorem 3.6 is weaker 
in one direction and stronger in the other direction than the main result in [9]. 

Next we are going to prove our main result relating multiple (p, 1)-summing 
multilinear operators with the p-variation of their representing polymeasure. 
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T h e o r e m  3.8. Let (f~j,Ej),  1_<j<_n, be measurable spaces, let l_<p<~c and 
let Y be a Banaeh space. Consider a multilinear operator T: B(E1)x. . .  xB(En)--+ 
Y with representing polymeasure ~/ :ElX. . . •  Then T is multiple (p, 1)- 
summing if and only if Vp(~/)<oc. Moreover. in that case 

< 7r(p,1)(T) < ~" 2"(1-1/P)vv(7) in the real case, 
Vp(~) 

-- -- [ 2n(2-1/P)t 'p(2,  ) in  the  complex case. 

Pro@ Let us first suppose that T is multiple (p, 1)-summing and let us consider 
rj  

Eo-partiti~ (AJj)kj=l of ftj, l<_j<_n. For every p] 6B(Ej )*  with II/zjll_<1 we have 
r j  E~,= ,  I~j(A{,)I-< 1. Therefore 

�9 -. ~ II~(A~ 
\ k x = l  k ~ = l  

\ l / p  ( ~  rn i1 /p  
,...,A'~)II p) . . . .  ~ IIT(x.%, '" ,XAL)II  p 

\ k 1 = 1  k n = l  

_< ~(p,~)(T). 

We now prove the converse in the real case. the complex case follows easily 
considering real and imaginary parts. Using density, it is enough to check for 
sequences in S(E~). So, let (fJ ~"~J CS(Ej ) .  l < j < n .  There exist Ej-partitions ' ,d i j ) i j=l  , -- -- 

)kj=l of f~j,, l<j<_n, and real numbers aij j .kj such that 

rj 

f4=E a~j ,kj ;VA{j �9 
k j= l  

Cla im 1. The norm II(k~)~,=,N~ _ if  and only if Ilayll_<l, where ay: I~ j--+l~ '5 
is the operator defined by 

rrt2 

aj(ekj )= E a~,.k,eiJ" 
i t = 1 

j mj a.' Proof of the claim. Let us first suppose that ll(fis)i~=llll _1,  and consider 
rj r'j . _ "' A j and let = ~ k j = l  ck~ , (ck~)kj=l~Bz[-j For each 1-<kj<rj, choose ~kjE ~. pj 5wk. 

where 5~k , is the evaluation at wkj. Then pjEBB(Zr and 

rj 
Ilaj ((%)~,=1) II 

mj rj mj 

=E E ek a,' = E  L.j(f j)l-<l, 
ij 1 k3=I  i j= l  

which finishes this part of the proof. 
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For the  converse, suppose  tha t  ]]aj]] <_ l and choose pj ~B~(r~) . .  Clearly 

rj  

k j : l  

and we get 

rn:j my rj ) Aj  rj 
i j ,  k j  

i j : l  i j : l  k j = l  

which finishes the  proof  of the claim. 

We consider now the (non-linear) m a p p i n g  

F: c(l? 17 . . . . . . .  )x . . . •163  1 ,11 ")---+R 

defined by 

r ( c 1 ,  ' C n )  . . . .  E "'" E C1 . . . .  'A1 A'~ "'" i 1 .kl  "'" Ci,~ .k,~ ~ ~ kl  . . . .  r k,~ 
- -  i n = l  k l = l  k , , = l  

where ~j,kj  = (cj(ekj), e~j}. 
I t  is easy to see tha t  F is cont inuous and separa te ly  convex. Therefore,  its 

m a x i m u m  in the  compac t  set Bc(t~.l .l~1 ) • ... x Bc(~,,~ .C'" ) is a t t a ined  on the  p roduc t  

of ex t remal  points  (bl, ..., b~). 

C l a i m  2. I f  bjEextBE(t~.j.l~,~2) then, for every k j E { 1 , . . . , r j } ,  there exist 

--~J d ~ Obviously. i j (k j )  
, ' "  kj �9 �9 

and c~j are unique. 

�9 rrt j 
Proof of the claim. If there  is a k ~ such tha t  (~.~.o)i~=l is not of the form 

.ko)i~=l is not an ex t remal  point of  Bt~,,~. Consequently.  there  

rrlj . j . m j  ~ j _ _  1 j 1 Y f o r  a l l  exist two different sequences (yiJ)i j= l ,  [z,j )i j= l  E l~,,~ wi th  bi3A~ ~ --~Yij ~ ~ziy 
ij = l, ... , mj .  

By set t ing 

yJ { ~i~,kJ ' kjTs176 and z j I ~J,k~ ' k jT~k~ 
ij,kj = j kj o ij.~j : zj __ o Yij , = k j ,  tj ' kj -- k j ,  
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we have tha t  b j Z y j  1 J ij,kj ==2 Q.kj ~-2Zij.kj 
yJ 3 and tha t  ( ~j,kj)'q,k~, (z~.~)i~:~,~ eBc((,~.(, , j) .  

which finishes the proof  of the claim. 

So, we have 

... l i t  , . . . , f i l ) l l  ~ 
Zl l z~ 1 

= F ( a ~ ,  . . . ,  a~.)  

< F(bx,  ...,  ~,,) 

zl  1 

with 

for every ij, k 3, that  J �9 -J 

In conchtsion, bj is not  extremal,  

-~ -" :.(A~,I. i;o �9 . .  c,~ h , - .  = ,~ .  . . . .  

i o  = 1  {kl:il(Ivl)=il} { / %  : i , ,  ( k , , ) = i , ,  } 

. , .  , , ( , 4 <  . . . .  , & , , )  

/ , ~ = 1  k l="  ~ i l . o ( 1 )  k'~t~',,.o(,) 

U , , .  -- {~J: ij(a-0) - - i ,  a , d  40  = 1}. 

~3 - 1 } .  FJ = {ko. :i o.(k/) = i j  and :k, = Z j .  - . . 

and �9 the set of  mappings  from {1 . . . . .  n} to {+,  - } .  
J - 4 J . \Ve have that .  B j -- A j and by Bij. - ~ k .  cv.!j " k~ We note by i j . + - U k j e r ~ . +  k0 . . , . 

3 B? for each j ,  the sets B~ij.+ and ~, are all disjoint. So. 

"'" E lJT(f?~ .... ' f::~ )}IP 
tl----i in=l 

< . . .  . . .  

" i 1 = 1  i , ~ = 1  k E ~",~ E V ~  
�9 1 ~1 , o  {1j' ~,~ o , , n  

__ ~ I n 
_ . I I ~ , , ( B ~ . o m ,  . . .  , B ~ , , . o  

" i ~ = 1  i , ~ = 1  

m~ m. \ I / p  

�9 . .  I h ( S ~ , . o ( ~  . . . . .  B,,.o(,,~) } ) 
l i n = l 0 { ( } 

< 2~(1-1/'P)vv(7). [~ 

Using Theorems 2.3 and 3.8 and the comments  above about  polymeasures,  it 

is very easy to obtain  the C ( K )  version of Theorem 3.8. 
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T h e o r e m  3.9.  Let Kj  be compact Hausdorff spaces, Y a Banach space and 
T: C( K J  x ... • C( Kn )-+ Y be a multilinear operator with representing polymeasure 
~/: E1 x ... x E,~-+Y**. Then, T is multiple (p, 1)-summing if and only if vp(~/) < oo. 

Moreover, in this case, 

T~(~-l/P)vp(7) in the real ease, 
Vp ("( ) < 7r(p,1) (T) < 

-- -- ~ 2n(2-1/P)Vp(~/) in the complex case. 

Remark 3.10. The  case n = l  of Theorem 3.9 gives a new character izat ion of 

(p, 1)-summing linear operators  from C(K)  spaces in terms of their representing 

measure. 

As a corollary, we obtain a new proof  of a classical result ([21, p. 14]). 

C o r o l l a r y  3 .11.  Let K be a compact Hausdorff space, p>_l and Y be a Banach 
space. A linear operator T: C(K)--+ Y is (p, 1)-summing if and only if 

(2) sup IPT(ADIIP~/~: ( f / ) ~ l  E BC(K) with disjoint supports < oc. 

Proof. First of all, it should be noticed that ,  if (fi)im=l have disjoint supports ,  
f /  m then II( ) i = t l l ~ = m a x t < i < - ~  [[f~[[. So. bv Theorem 3.9. it is enough to see tha t  Vp('y) 

is less t han  or equal to (2), where 2/: g - + Y * *  is the representing measure  of T. The  

proof  of this fact for p = l  can be seen in [13, p. 163]. The general case can be 

obta ined with obvious modifications. [] 

Remark 3.12. The  constant  2 n(1-1/p) in the real case for Theorems 3.8 

and 3.9 is optimal.  To see this, we can consider T : l ~ x . . . x l ~ - - + R  given by 

T ( ( x l , y l ) ,  ... , (xn,y,~))=I-I j=l(yn-x~).  In  the complex case, however, we do not  

know (even in the case n = l )  what  the opt imal  constant  is. 

I t  is now a na tura l  question whether  we can obtain  a result similar to Propo-  

sition 3.1 for multiple (p, 1)-summing multil inear operators.  The answer is no and 

the clue is [5, Theorem 3.2] (see Theorem 3.17 below). 

Example 3.13. Let X,  Y and Z be infinite-dimensional L;~ spaces. Then  we 
have tha t  

I-[(2A) (X.. II(2,1 ) (Y, Z*)) ~ I1~2,1 ) (X, Y" Z*). 
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Proof. Using a version of Grothendieck's theorem ([12, Theorem 3.7]), we know 
that  II(2,1)(Y , Z*) is isomorphic to (Y |  Moreover, it follows from Dvoretzki's 
theorem that,  for any e>0,  Y*@eZ* contains the l~c's , ( l+e)-uniformly (see [16, 
Remark 1]). Since Y*@eZ* is isometrically embedded into (Y~ , ,Z)* ,  we get that 
(Y@~ Z)* contains the l~ 's ,  (1 + e)-uniformly (complemented). 

Let i n : l ~ - ~ ( Y |  *, p~:(Y|  be such that p ,  i n = I d ~ ,  llinll=l 
and Hp~ll_<2. Let X be an s space, then, for every h EN ,  we can consider 
projections R. :  X--~l 5 with IIR~II<~ and 7r(2,1)(R.)>V~. 

For every hEN,  we consider the operator Y . = i . R n : X - - - ~ ( Y ~ Z ) *  and its 
associated bilinear operator Tn: X x Y---~Z*. Since Z* is an s space, it has cotype 2. 
So, [5, Theorem 3.2] tells us that  there exists C > 0  such that,  for every h E N ,  

As 7r(2,1)(Rn)>_x/~, we have that  - 1 71"(2,1 ) ( r n )  =7r(2,1 ) (2 nRn)  k ~ V/~. This proves 
the non-equivalence of the corresponding norms, and. hence, the existence of an 
operator TEII~2,1)(X , Y; Z*) such that  its associated operator TI: X--~II(2,1)(K Z*) 
is not (2, 1)-summing. 

To give an explicit counterexample, let X=co,  Y = Z = I ~ .  Then (Y@~Z)* 
contains an isomorphic copy of co (see [1]), and we can consider T: X x Y--~Z* as 
the bilinear operator associated to TI:C0~-+(Y~Z)*.  [] 

Remark 3.14. In fact, if we use the multilinear version of Grothendieek's the- 
orem given in [5, Theorem 3.1] instead of [5, Theorem 3.2], we can prove, with the 
same argument, the existence of a multiple 2-summing bilinear operator T: X x Y--* 
Z such that  TI~II2(X,  II2(K Z)), solving a question stated in [27]. 

Now, we are going to extend, to the multilinear setting, another linear prop- 
erty that  extends the field of applications of the above results. First we need a 
proposition, whose proof follows immediately from the definitions. 

P r o p o s i t i o n  3.15. Let T:X1  x . . . x X n - - + Y  be a multilinear operator and let 
l_<pl, ... , pn <_ q < oc. The following are equivalent: 

(i) T is multiple (q;Pl, ... ,p,~)-summing; 

(ii) there exists a constant K > 0  such that for every ms, ... , m ~ c N  and every 
choice of sequences (x j V'~r c X j .  with fx j ~m5 i1~<1" 2<j<<n, we have that the 
associated linear operator 

S: X 1 -----ff l q  2 . . . .  " ( Y )  

given by 

S(Xl )  : ( t ( x l ,  x2,2' "'" ' x::~ ))~:~.:::)';m--~l 
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is (q, pl)-summing and it satisfies 

(3) 7r(q.m) (S) _< K. 

In this case, 7r(q:m ..... p , ) ( T ) = m i n { K : K  satisfies (3)} 

Proposition 3.16. Let l<_pl,. . . ,p,,<q<~c and let K1,... ,K,, be compact 
Hausdorff spaces. A multilinear operator T: C(K~) x...  x C(K, , ) -+Y is multiple 
(q, 1)-summing if and only if it is mvltiple (q: px ... . .  p,,)-summing. 

Pro@ We reason in the bilinear case, the reasonings being similar in the general 
case. Suppose T: C(Ka) x C(K2)--+Y is nmltiple (q, 1)-smmning. Then. for any se- 
quence (x/i)~1 i cC(K1)  such that II (~J,),~'Li lit -< 1. the operator S: C(K2)-+Iq(Y) 
defined as in Proposition 3.15 is (q, 1)-summing and satisfies 

(s) _< 

Let i: lqn(Y)--+lq(Y) be the natural inclusion. Applying [12, Theorem 10.9] to 
loS, and using the injectivity of the operator ideal of the (q,p) summing operators. 
we get that  S is (q, p2)-surnming and that 

7r(q.p2) (S) < I(~r(q.1)(T). 

[ 1 \ T r t l  where the constant /s does not depend on the choice of txil)il=l.  
Therefore, T is multiple (q: 1,p2)-smnming. \\'e choose now any sequence 

2 \rn.~ a.' < \Xi2]i2= 1 (  2 )m2 cC(K2) such that txi2),i2-1 p2_1 and reason similarlv.~ [] 

To end the paper, we are going to state some results concerning the p-variation 
of polymeasures. The starting point is [5, Theorem 3.2], which says the following. 

T h e o r e m  3.17. Let X j  be a Banach space for l <_j<_n and let Y be a cotype 
q space. Then, every multilinear operator T : X l x . . . x X , , - - + Y  is multiple (q, 1)- 
summing and 

(T) _< (Y)" IITII- 

where Cq(Y) i8 the cotype q constant of Y.  

Using this result, the proof of the following surprising corollary is trivial. 

Co ro l l a ry  3.18. Let Y be a cotype q space and 2.:Ei •215 be a poly- 
measure of bounded semivariation. Then t'q('~,)<_Cq(Y)"ll..ll. In particular, every 
scalar polymeasure of bounded semivariatwn has bounded 2-variation. 

Note that, in general, scalar polymeasures do not have bounded variation 
(see [7]). 
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We can improve the scalar case of the Iast two resuhs. To this end, we consider 
the following classical theorem (see [4], [10], [17], [18]). 

T h e o r e m  3.19. (Lit t lewood-Bohnenblust  Hille) I fT  is a continuous n-linear 
form on co, then 

(i1~1 s IT(elI ' e~ ) 12r~/(rt-I-1) ) ('n +1)/27~ ... < 2 ( ' - l ) / 2 1 1 T t l .  

�9 = i n = l  

This theorem allows us to prove the following result. 

C o r o l l a r y  3.20. Let Xi  .... ,Xn be Banaeh spaces. Every n-h~tear form 
T: X1 x ... x X,~--sK is multiple (2n/(n+l),  1)-summing and 

7r(2n/(n+l).l) (T) ~ 2 (n-1)/211TII. 

_ _ ~ ~ j ~ ' b  G X j  with I1(~{~)~,11~_<1. Proof. Consider, for l < j < n ,  sequences \Xij]ij= 1 
The operator uj: l~ j ~ Xj  given by uj (eij) =x4 satisfies 

j ,rnj ~ 

We can now apply Theorem 3.19 to the multilinear operator 

�9 m.1 mn S = T ( u i , . . . , u ~ ) . l ~  x . . . x l ~  - - -~K 

to obtain tha t  

( i ~ l r n r ,  \(n+l)/2n n 2n/(7~+i) E 1 (4, ,x o)l ) 

) IS(4,, e,,,)l ~'/('+') + '+"/~" . . . . . . .  , "  <2(,,-,)/211SlI<2(',-1)/211TII. [] 
in=l 

FinMly, we have the following result. 

C o r o l l a r y  3.21. Every scalar polymeasure 2~: Ei  x... x E . - -+K with bounded 
semivariation satisfies 

vN,v(,~.+~)('7) <_ 2u'-1)/Rlbll. 
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