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Analyticity of the density
of electronic wavefunctions

Sgren Fournais, Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof
and Thomas Ostergaard Serensen

Abstract. We prove that the electronic densities of atomic and molecular eigenfunctions
are real analytic in R3 away from the nuclei.

1. Introduction and statement of the results

We consider an N-electron molecule with L fixed nuclei. The non-relativistic
Hamiltonian of the molecule is given by

H=Hy1(R,Z)

(1.1) al & VA ZiZy
:;<~Aj—;m:&|>+ 2 |1 T 2 [Ri—Ry|’

1<i<j<N 1<l<k<L

where R=(Ry, Ry, ..., R1)ER3L, R, #Ry for k#l. denote the positions of the L
nuclei whose positive charges are given by Z=(Z1, Zs..... Z1). The positions of the
N electrons are denoted by x=(z1, 29, ..., zx)ER*Y, where z; denotes the position
of the jth electron in R3. For shortness, we will sometimes write

(1.2) H=-A+V(x).

where A:Z;V:l A; is the 3N-dimensional Laplacian. and 1" is the Coulomb poten-
tial. It is a standard fact that H with domain W22(R3") is selfadjoint.
We consider eigenfunctions > of H, i.e.. solutions v€ L?(R?V) to the equation

(1.3) Hy=Fv.

with F€R. Since we describe electronic wave functions, and the electrons are Fer-
mions, 1 has to transform according to certain irreducible representations of the
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symmetric group &V. However. our results are independent of this condition and
we do not impose it.

Analyzing the spectrum of H and calculating (usually by some approximation
scheme) the eigenvalues F and the corresponding eigenfunction(s) ' is the central
theme of most of the investigations done by quantum chemists and physicists. For
the interpretation of these investigations the eigenfunction % is much too complex
being a function of 3N variables and hence the one-electron density 4(z) plays a
prominent role. It is defined by

(14 o) =3 [ ) s

where X;=(x1, ..., %j_1.2,2j41.....2y) and dX;=dx; ...dxrj; 1dTj41 ... dTN.

The mathematical analysis of H has mainly centered around the operator the-
oretical point of view, see for instance [7]. [9] and references therein. The fact that
(1.3) is an elliptic partial differential equation has not been exploited in such depth;
so many questions which are natural from a partial differential equations point of
view are not really understood. In particular, regularity questions concerning ¢
and 9 are natural and interesting. Note first that V' is singular in

(it )L o)1)

i=11=1 1<i<j<N

(1.5) Z:{XGRBN

and real analytic in R3¥\X. Hence by standard methods of elliptic partial differ-
ential equations, see for instance [5], v is real analytic in R3V\X. The first results
concerning the regularity of ¥» on all of R3" are due to Kato [6]. He showed that v
is Lipschitz continuous and first formulated the well-known cusp conditions, which
describe the behaviour of an eigenfunction near the points where two particles are
close to each other [6, Theorems II and IIb]. See also the important paper by
Simon [10] in which the Coulombic many-particle potential V' is identified as a spe-
cial member of the so called Kato class and some results concerning the regularity
of solutions of Schrédinger equations (equations of type (1.3) with general V') are
given.

Regularity results concerning the Coulombic case extending Kato’s result have
been obtained more recently in {4] and [3]: see also the more complete references
therein to other results concerning regularity.

There are now two related problems:

(i) Describe in more detail how the specific structure of the singularities in X
turn up in the non-analyticity of . Partial results can be found in the references
cited above.
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(i) Analyse the regularity properties of the one-electron density, defined in
(1.4), an object which has an immediate physical interpretation (see any textbook
on guantum mechanics, for instance [8]) and enters all approximation schemes in a
crucial way (Hartree-Fock, Thomas-Fermi, density functional theories etc.).

For the regularity questions concerning ¢ defined in {1.4) it suffices to consider
the (non-symmetrized) density o defined by

(1.6) g(x):/ |U(2, 2. ... o5 )* dra ... TN
R3N-3

It is not clear a priori that g is real analytic away from the nuclei since in (1.6)
one integrates over subsets of 3 where 1 is not analytic. In two recent papers (]1]
and [2]) the present authors have shown that o is smooth away from the positions of
the nuclei (or in the case of an atom, away from the origin). The natural question
is now whether ¢ is real analytic away from the nuclei. This will be answered
affirmatively in this paper. Of course in the proof of this result new difficulties
arise, in particular all the estimates have to be much more explicit.

Theorem 1.1. Let e L?(R3Y) satisfy the equation
Hy=FEv.

with EER and H given by (1.1). Let the density o be defined as in (1.6). Then o
is a real analytic function in R3\{R,,...,R.}.

Remark 1.2. (Atoms versus molecules) In order to keep notation simple, we
will only give the proof of Theorem 1.1 in the case of an atom. In this case we only
have one nucleus, which we place at the origin. so the potential V is given by

(1.7) V:—i£+ > .
— [z ;]

1<i<j<N

The necessary modifications for the molecular case were indicated in the proof of
the smoothness results in [1]. In the present proof of analyticity one has to make
similar changes when working with molecules.

Remark 1.3. (Density matrices) We get analogous results for the one-electron
density matrix 71 (z, ') and the two-electron density 92(x. '), which we will define
next. Let (z,2')€R®. Let %; and d%; be as defined after (1.4). and define

)A(; = (ml, s Lj—1, I/, Tj4ls-e-- l‘;\'),
)A(j_’k = (1171, s Lj 1, Ty Tjp1eeee < The1s .1}/. Thg1seee s l‘\)

d)A{ka :dJZl d$j#1 de+1 d.Tk,Idl'}‘-_,_l dl’\
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Then v; and g, are defined by

(1.8) (z.7) Z/M (%0 4%,
(1.9) (z,2) Z /3\ . U(X)e)|? d; k.

j.k=1
J#k

In order to describe the regularity of 41 and ¢, we introduce D={(z,z)€R%} and
=({Ry, ..., R} xRIHU(R*x{R,.....R.}) cRE.

Our method implies that ~; is real analytic on R%\.S and that g is real analytic
on R®\ (DUS).

Remark 1.4. In the case of an atom. c01151d91 the density ¢ in polar coordi-
nates (z=rw, r=|z|. w=xz/|x|€S?). and define o(r)= [q O(Tw)dw An important
question is for which k€N,

(1.10) (%)(0)

exists. An even more demanding question is whether §(r) is real analytic for r>0.
i.e., whether ¢ can be continued analytically beyond 0. The analysis of such ques-
tions show the intimate relation between the problems (i) and (ii). In [3] it was
shown that the derivatives in (1.10) exist for k<2. But the general problem re-
mains open.

Remark 1.5. (Generalisations) As will be seen from the proof, Theorem 1.1
can easily be generalised to many other potentials. We do not use any of the
special properties of Coulomb potentials. such as symmetry, homogeneity, etc. To
be precise, let

ZVJ Z Win(xj—ax)

7=1 J.k=1
K
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satisfy the following conditions:
(1) There exists C>0 such that for all u€W1-2(R3Y).

(111) |’V7.L||L2(R3A\’) SCIlu”“-LQ(Ra.\').

(2) There exists a constant L>0 (depending on =) such that for all «€N3. we
have

N l\v
(112) S 10V, li+ 3 107l < Lo+ alt
j=1 jk=1
iF#k

where the norms in (1.12) are in L>={({z€R3||z|>=}).

The first condition, (1.11), is a kind of relative boundedness assumption. The sec-
ond condition, (1.12), means that V is real analytic away from X (with a uniformity
at infinity). Theorem 1.1 remains true for any V satisfving these two assumptions.
For instance, replacing one or more of the Coulomb potentials in V' by the Yukawa
potential e~ /|z| (with a>0), we still get Theorem 1.1. But here we concen-
trate on the physically important case of Coulomb potentials and do not strive for
generality.

Organisation of the paper. In Section 3 we present in Lemma 3.1 a result con-
cerning ‘partial analyticity’ of an eigenfunction v of H in the following sense: Upper
bounds to the L2-norms of certain directional derivatives of v of arbitrary order
|| are given. They show the right behaviour in |a| needed later on for the proof
of the analyticity of ¢ away from the origin. (The proof of Lemma 3.1 is given in
Appendix A.) We note that this kind of directional derivatives correspond, roughly
speaking, to ‘taking derivatives along singularities of the potential’, see Lemma A.3
and its proof, and compare also with [1] and [2]. Corollary 3.2 is an immediate
consequence of Lemma 3.1 and essential for the further steps in the proof of Theo-
rem 1.1.

In Section 4 we state and prove Proposition 4.1 which gives us the necessary
control on {(0%p)(x)| for |x|>e>0 and arbitrary a. Therefrom the analyticity of o
follows immediately. The key point of the proof of Proposition 4.1 is Lemma 4.3.
For its proof we use a suitable partition of unity of R3" and then proceed by a
similar construction as in [1} which together with Corollary 3.2 implies Lemma 4.3,
in particular (4.10). Once Lemma 4.3 is proved, Proposition 4.1 follows by easy
arguments.
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2. Basic facts and notation

Remember that for multiindices a=(a. ....aszy ) EN3M,

3

lal:Zaj.

Furthermore, we have the usual ordering on multiindices: For a={ay,....asn),
B=(b1, ..., bsar) we write a<3 if and only if a;<b; for all 5.

We will need one simple and standard combinatorical fact. We recall it here
for the reader’s convenience.

Proposition 2.1. Let a€N3M pe q multiindex. Then

> (5)-(3)

Proposition 2.1 will be used as follows. Use Leibniz’ rule to calculate

0°(fg) = “) 9% f)(9° 7).

9=3 (5)@ e

Then the number of terms where exactly b differentiations fall on f is given by ([‘;l).
In the following we shall work with certain directional derivatives. Let e, for

s€{1,2,3} denote the standard basis for R®. Let P be a (non-empty) subset of

{1,..., N}. We define the coordinate zp by

1
V1P| 22
We will now define 922, f for a function feC'(R*"). For the given P and s let
v=(v1,...,un) ER?*N with v;=0 for j¢ P, and v;=e,/\/[P| for j€P. Then we
define
I flx) =V f-v.

The definition of d%, then follows by iteration for any a€N? (that is. for a=
(a1, @z, a3), O, =(95L )1 (052)*2(0%2,)*#). One can clearly reformulate this defi-
nition in terms of Fourier transforms (multiplication by £% for suitably defined &p
in Fourier space). In the previous paper [1] we used a coordinate transformation to
describe these derivatives.
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3. Partial analyticity of atomic eigenfunctions
We will need a result on partial analyticity of the eigenfunctions of H.

Lemma 3.1. Let e L?(R3N) be an eigenfunction of H. Let the indez sets
Py, ..., Py C{l,..,N} satisfy P;#0 for all s€{1.....M}. Define for each s, Qs=
{L,...,N}\ Ps. Define also, for £>0,

(3.1) Up,(e) ={x€R™ | |z;| > ¢ and |z; —xx| >z for j€ Ps, and k€ Q,}.

Let
(3.2) Up,....py () =) Up.(2)-

Then there exist C and L (depending on ¢) such that for all multiindices, o=
(ay, ..., on ) EN3M we have

||‘9§:$1 -~-a§£i,¢||L2(prl ,,,,, Py () S crLll(jal+1)lel

The proof of Lemma 3.1 is similar to the standard proof that solutions to elliptic
equations with analytic coefficients are analytic (see [5. Section 7.5, pp. 177-180))
and will be given in Appendix A.

Let us introduce the following practical notation. For a multiindex a=

(a1, ...,ap)EN3M and given P, ..., Py as in Lemma 3.1, we define 02, and Up (=)
by
(3.3) O 26;1;,1 8;‘;; and Up(z)=Up, . p,(c).

We will need the result of Lemma 3.1 in a slightly different form for the proof
of Theorem 1.1. For later convenience, we state and prove this reformulation here.

Corollary 3.2. Let the notation and assumptions be as in Lemma 3.1 (using
(3.3)). Then there exist constants Cy and Ly such that

/ |02 |2 (x)] dx < Cy L (ja]+1) 1o
Up(e)
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Proof. By Leibniz’ rule. we have

(3.9 o, v = 3 () orever, v

3<a

Applying Cauchy—Schwarz’s inequality and Lemma 3.1 to both 852,,1;’1 and 07 B
n (3.4), we find, using Proposition 2.1 for the equality below,

ool ax ezl S (6) 1+ ol |3+ 1)1
Up(e) 3<a 3

o

ch*ﬂlz <|a|> (b+1)"(Ja| —b+ 1)l
gcQ(QL)ial(|a|+1)*° .

Thus, Corollary 3.2 holds with C;=C? and L;=2L. O

4. Differentiating the density

Fix an arbitrary €>0. We will always study o(x;) in the region {z1||z1|>¢<}.
We will prove the following estimate.

Proposition 4.1. Let £>0 be given. Then there exist constants C, L>0, such
that for all |z|>¢ and all «€N3, o satisfies

(4.1) (0% o(z)| < CLI*!(Ja]+ )10

Remark 4.2. 1t is clear that Proposition 4.1 implies Theorem 1.1.

Proof. Choose 1, x2€C>=(R?). satisfyving
x1+x2=1, x1=1on B(0.s/4N) and suppx; C B(0.g/2N),

and let further y; and x2 be radially symmetric functions. Using this partition of
unity and letting

M={(.k)e{l.....N}?*|j <k}
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we can write

Q(I1)=/R3N_3 [ (x)|? H (xi(zj—zr)+x2(z;—2r))dos ... dTN

1<j<k<N

(4.2) => Aw_g WP (x)pr(x)dra... dzx =D or(z1).

Icm IcMm

Equation (4.2) defines ¢ as

(4.3) ¢>1=< H Xl(xj_xk))( 1T Xz(fﬁj—Ik))-

(5.k)el (G.RYeM\T

We will prove that g;(z;) satisfies an estimate like (4.1) on {z;||z1|>¢} for all
ICM, namely

(4.4) [0%0r| < CLPI(jal+ 1)kl

The estimate (4.1) follows from (4.4) (with a different C'} since the sum in (4.2)
is finite.

The estimate (4.4) is a consequence of (4.10) (with 0=0;) in Lemma 4.3 below,
using a Sobolev imbedding theorem. Since we have not found an ideal reference we
include the following easy argument:

Let veC>=(R3) with v(z)=1 for |z|>= and v(z)=0 for |z|< 1. Let furthermore
F denote the Fourier transform. We get for a €N? and |z|>e,

P 0le)= (P o(e) =e [ s P10 00%0) dp
Therefore,
> L 2 d%0 1(R3
(45 9000 <) T | . g 10 Dt

We can estimate [|(1—A)?(v0%0)| 11 (rs) using (4.10) by,
(4.6)  (1-A)?(©8%0) |11 (re) < 1 LI (Jaf +4+1) 1914 < o LI (Ja] + 1)1,

for some constants ¢;, Ly, ¢z and L. Combining (4.5) and (4.6) yields (4.4).
Proving Lemma 4.3 therefore finishes the proof of Proposition 4.1. O
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Lemma 4.3. Let =>0 be given and let

(4.7) ¢= H fir(zj—2k).

1<j<k<N

where each f; is one of the functions x1. x2 and 9° X2, with es€N3, |es|=1.
(i) Let Py, ..., Py be subsets of {1.....N} satisfying that 1€ P; for j=1.....M
and

A
(4.8) (suppo)Nix||z:| >z} () Up, (41\')'

Jj=1

Then there exist constants C,L>0 (depending on =) such that for all multiindices
a=(ag, a1, ..., apn ) EN3M+3 e have

o0 [ | @ 0 (0000 o . o
R3N-3

Lr({z:1]|z1]>e})

<cLl(jal+1)lel,

(4.9)
(i) There exist constants C. L>0 (depending on =) such that for all c N3 we
have

<crll(al+1)e
L ({xller]><})

(4.10)

o / 6P (x)6(x) dz .. ey
R3A’V—

Proof. To a function ¢ as given in (4.7) we will associate P=P(¢)C{1,...,N}
satisfying 1€ P and such that

(4.11) (SUpp@)ﬁ{X\\$1\>5}CUP(o><;1%>'

We will now describe the map ¢~ P(0). We note that the following construction
is similar to the one from [1]. Define I=I(0)CM by

(J.k)€I(6) ifandonlyif fix € {x1.0% x2,0%X2,0%x2}.
In other words, (j,k)€I(¢) means precisely that f;x#x2. The set I{¢) generates

an equivalence relation on {1, .... N} and we define P(0) to be the equivalence class
of 1. Less abstractly, this means that
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(1) 1€P(¢);

(2) for j>2 we have j€ P(¢) if and only if there exists {j;,....Js} C{1..... N},
s< N, satisfying

(8) (Lj1)el(o);

(b) (jt> Je+1)€L(P) or (jea1,je)€l{0) for 1<t<s:

(©) (s J)EL(@) o (j,5) E1(6).

Notice that, since x1+x2=1, supp 9% y2Csuppx1. j=1,2.3. Therefore we get
(4.11) by the same elementary geometrical considerations (the triangle inequality)
as in [1].

In the proof we shall use P=P(¢) in order to replace the derivative dg° outside
the integral in the left-hand side of (4.9) by the derivative 93¢ inside the integral.
That will enable us to apply Corollary 3.2.

Let P=P(¢) according to our construction. We will prove the lemma recur-
sively in |P|. In the proof below we will freely interchange the order of differ-
entiation (in the distributional sense) and integration. This is permitted, due to
Corollary 3.2, which ensures that the derivatives of the functions in question be-
long to L*({z1||z1|>e} xR3¥—3). We will only prove part (i) of Lemma 4.3. The
changes necessary for the case (ii) are obvious and therefore omitted.

Step 1. The case |P|=N. In the case when P={1..... N} we make the change
of variables y;=z;—z; for j=2,... . N. Then we get z;,—zr=y; -y for j.k#L.
The point is that ¢ only depends on the differences x; —xy., and therefore, after the
change of variables, the only dependence on z; will be in |U|2, where we can apply
Corollary 3.2. Let us carry this out.

Denote y=(ya, ..., yn). Then we see that after the change of variables we have

o(x) =o(y)
for some function ¢. Explicitly, we see from (4.7) that
) N
Syz,yn) =[] Fialwi—y) TT frs(=90)-
1<j<k<N 5=2

Therefore,

/3N (o o [|?)(x)o(x) dza ... dzy
(4.12) “RC

=[O O P )O() .
R3N-3 1 AL
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From (4.12) we get by differentiation under the integral sign and change of coordi-
nates back to x:

P /R O, 02 P (X)0(x) daz . day
(4.13) :/ (omany L ony [ (1. 2y +y2. . w1 Fyn)oly) dy
R’3A’~
:/ (O2207L ..o ) (x)o(x) das ... dox.
R3N-3 TPy TPy

Notice the support conditions (4.11) and (4.8). We can now apply Corollary 3.2 to
get (4.9) in the case |P|=N

Step 2. The case |P|<N. Suppose that Lemma 4.3 holds under the additional
assumption |P|>K for some 0< K <N. We will prove the statement for |P|=

Define @={1,...,N}\P. Since |P|<N. @#0. Note that if j€P and k€@
then, by the definition of I(¢) and P=P(0). we have (j.k)¢I(0) and (k. j)¢I(0).
Therefore, if j <k we have f; x=x2 and if k<j we have fr ;=x2. So ¢ contains the
factor (remember that y, is rotationally symmetric. and in particular even)

orPQ= H xe(zj—ax)
jer
ke
and can be written as
QO=0pOQOPQ-
where

op= |1 fir(zi—z) and op= [] firlz;—e0)-
kP ikeQ
<k <k

We do the following change of variables for j>2:

{ zj—x; for je P\{1}.
y- =
’ x; for j€Q.
For convenience of notation we define y;=0. We clearly get for j.k€P or j, k€@,
that z; ~zp=y; —yx (also when either j=1 or k=1-—remember that 1€ P). Thus,
as in the case [P|=N, we can write op(x)=0p(y) and oo(x)=0q(y).
Write Z:(Zl, 294 ey ZN)ERBN with
I, Jj=1
zj=X{ x1+y;. jeP\{1}.
Zj. _] S Q
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Then
12 ,
/ (053, - 02 [0P)(x)0(x) daz ... day
R3N-3 AL

4.14 ) ~
( ) :/R3N—3(agél c’);’;‘,ﬁl Q'IL‘P)(Z)OP(}’) (H XQ(I1+yj—yk.)> OQ(y) dy.

jEP
ke@
Differentiation under the integral sign vields
; 2 .
Vi, (6;‘:}1)1 SN [V (x)o(x)dzs ... dey

R3N-3

= /R roa Ver02h 050 0P) (2)0p(y) (H xQ<.z-1+yj—yk>>&Q(y> dy

jeP
ke@
(4.15)  +)_ (@21 .02 [el)(=@)op(y)og(y)
. REN—3 CFP1 T TERA PlYJoQ
jep
keq@
X( H X2($1+yj'—yk')>(VX2)($1+yj—yk)d)’-
p
i’eQ

(7" K)#( k)

Let us explain roughly how we will proceed for higher derivatives with respect to x.
For each consecutive differentiation we will get terms as in (4.15). The term where
all differentiations fall on ¢/ can be differentiated again in a manner similar to {4.15).
If one differentiation falls on x» we stop differentiating that term under the integral
sign—Ileaving the rest of the differentiations outside the integral. The result of this
procedure is (4.16), the notation of which we will define below. The important
point is that when all derivatives fall on v», we can apply Corollary 3.2 to obtain
our conclusion. On the other hand a differentiation of y» will lead to a situation
with a larger |P|—so these terms can be handled by the induction hypothesis.
Let nseN®, |ns|=1, s=1.2,...,S. Define for te{l..... S}

t s
Ag=0, At:Zns. B, = Z ns and Bg=0.
s=1 s=t+1

Notice that the definition of B, depends on S, i.e.. B;=B;(S). We get the following
formula (4.16) from (4.15), using the procedure described above. by induction with
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respect to S:

8;113 (/ . (975, - O3 [v]?)(x)o(x) dza ... drx)
R3N-3 2

=/ (@fsagr . o3 [uP)(x)o(x) dr ... day
R3’\ —3

(4.16) 63' (Z /R @ oz P (@)er()e(y)
jeEP
keQ
X < H x2(z1 +‘yj'—yk')> (" x2)(T1+y; —Yk) dyz ... dyN>~
Veq
(37 k) R)

For S=1 the equation (4.16) reduces to (4.15). We will use (4.16) with S=|ag| and
Ag=ap. Consider the function

bk =0pdQ(@ x2)i—zx) ]  xelzy—z).
J'ep
k'eQ
(3" K )#(5.k)

By construction we have |P(¢;x)|>|P(0)|. Therefore. we get by the induction
hypothesis on |P| that

a2 /RSN73(8At o2 . aau 102 (x)0jk(x) dry ... dzx

L ({z,]||z1]|>e})
< CLP(p+1)P,

where p=|By|+|A;_1|+|an|+...4+|arr]=]a|—1. Furthermore, using Corollary 3.2
on the first term in the right-hand side of (4.16), we obtain

SCLP(p+1),

H / (07505 . 058 W) (x)o(x) dzs ... dzx
R2N-3 Lt ({aillz1]><})

with p:]ASI-i—]al[+...+|aM|:|a|.

Thus the desired estimate holds for the individual terms on the right-hand side
n (4.16). Since the number of terms is bounded by c|a| this finishes the proof
of (4.9). O
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Appendix A. Proof of Lemma 3.1

In this appendix we will prove Lemma 3.1. For convenience define Hg=H — E,
with E being the eigenvalue corresponding to the eigenfunction ¢, i.e. ¥ satisfies
Hpgy=0. Recall the notation given in (3.3).

Let us start the proof by stating a well-known result explicitly. Since the
domain of Hg is known to be W22(R3V), we get the following result.

Lemma A.1. Let veW'2(R3N). Then ve W22(R3*V) if and only if Hgve
L*(R3N).  Purthermore, there exists a constant Ko>0 such that for all vE
W22(R3N)

[vllw22msny < Ko(l|HE| L2(ron) [0l L2 (m3vy)-

This follows from the fact that V is infinitesimally small (in the operator sense)
with respect to —A.

We now state and prove the estimate.

Lemma A.2. Let Py, ..., Pyrbe defined as in Lemma 3.1 and Up as in (3.3).
Then there ezists a constant Cy such that for all n. 1 €(0.1), all g€ N3V, o/ eN3M
with |aol+-]e/|<2 and all veW?2(Up (35+m)) we have the estimate

plooltle I||5O“’5§Z]pU||L2(Up(s/2+n+m))

(A1) SC’O(772||HEU||L2(UP(5/2+m))+ > U'jl||<9'3v||L2(Up(s/2+m)))-

BeN3Y
|8|<2

Furthermore, if the right-hand side of (A.1) is finite for all n.m >0 then

ve W”(Up(%s%—m)) for all n, > 0.

Proof. Since

1 1
UP(§5+77+771) - UP(§5+771):
the estimate is obviously true for |ag|+|a’|<2. Let ap€N®V and o e N3 with
lag|+]a’|=2. Choose o€ C=(R3N), 0<0<1, with ¢=1 on Up(3e+n+n) and
supp ¢ CUp (%5—1—7)1), satistying ||07 @] <C,n~ !, with C, independent of n and 7; .
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We can now estimate, using Lemma A.1 in the third inequality below

10°0 0%,V L2 (U (e 24 m+m ) < 102002, (00) || L2ro)
<cl|ovflyy22mavy
< C(|He(ov)llrzmey) +llovlL2msy))
< C(loHev| p2ms~)+ (Ao L2 rev)
+2[(Vo) Vol Lzmav) +lov] 2 gsv))

Gy
< C(llHEU||L2(L'p(z/2+m)) + ; HVUHL?(L‘p(s/%m))

2
+ P lellzap(r24m))

for some constants ¢, C, ¢; and ¢a. Inequality (A.1) follows by multiplying with ne.
The last statement of the lemma follows easily from Lemma A.1. [

Finally, we state and prove the properties of V7 that we need in the proof of
Lemma 3.1.

Lemma A.3. Let V be the Coulomb potential defined in (1.7).
(1) There exists Cy >0 such that for all ve WH2(R3Y) we have
(A.2) [(V=E)vllpzrsvyy < Cvllvllwazmay).

(2) There exists a constant Ly >0 (depending on =) such that for all aeN3M
with |a|>1, we have

+1
(A.3) 102, VIl (tp (/2 < LI al!.

Remark A.4. These are the only properties of V' that we need (together with
Lemmas A.1 and A.2). They are easily seen to hold (see the arguments in the proof
below) for potentials satisfying the general conditions in Remark 1.5.

Proof. The first property (A.2) is a consequence of Hardy’s inequality (see for
instance [9, Vol. II, p. 169]). To prove the second property (A.3) let Py be one of
the index sets defined in Lemma 3.1. Notice that

. 1 0 for j ¢ Ps,
Pzl | P12 00 ] |, forjeP.
and
N 1 _ 0 for j.k ¢ Ps or j. k€ Ps,
e lmg—an] | PTVR0R (2,  for JE P kP
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Therefore, (A.3) follows from the structure of V. the real analyticity of z+>|z| !
away from 0 and the definitions of Up(3¢) and 92,. O

Proof of Lemma 3.1. Notice that {A.3) trivially implies that for j.7>0. jn<l
and |a|>1 we have

fa's (o 1 —
(A4) NNV o (v e 205y < LT lall§ 100

We will prove that there exists L..>0. such that for all n€(0.1) and all jeN
with jn<1 we have, for all a€N3Y, ageN3V. |ag|<2 and |a|+|ag|<2+7,

al+|a ap Qo la]+]aol+1
(A.5) nle 19202 vl L2 gy S LT

Before proving (A.5), let us note that Lemma 3.1 follows easily from it. In fact, let
a€N3M |q|>1, and choose |ag|=0. n=2/(2]a|) and j=|a|. Then (A.5) becomes

la|
92 o
||a§‘pwllL2<Up<s>)SLW“(?) oo,

which is the statement of Lemma 3.1.

We now prove (A.5) by induction in j. For j=0.1, there is nothing to prove
since we know that Y€ W22(R3N). Let L, be sufficiently large for (A.5) to be true
for 7=0,1 and satisfying furthermore,

(A.6) Ly Zmax{QL‘,—.CO(1+ M 1) }

|3]<2
Here the sum is over all 3eN3» with |3|<2. Cj is the constant from Lemma A.2,
and Ly is the constant from (A.3).
Suppose that we have proved (A.5) for all j<jp and all n€(0.1) with jn<1.
We will prove that (A.5) holds for j=7j0+1 and all n€(0.1) with (jo+1)n<1.
Let |a|+]ao]<2+jo. Then clearly Lrp(%€+(j0+1)7])C[]P(%E‘}‘jon). There-
fore,

132002 W L2 (e 2 Gy < 01T, L2 (p (24 jom)

and the result holds by the induction hypothesis. So we only have to consider the
case |al+]ag|=2+7jo. Choose a decomposition a=a’'+a". with |a'|=2—]agl. i.e.,
with |&”|=3jg. Using Lemma A.2 with 1, =391 and v:a;;’,’u we find

7P 10%0 0%, ¥l L2 (W e 2+ Gor 1ym) < Co ("72”° I|HEOY UllL2(te (e /2450m)

(A7) + Y nitaten, U||L2(L'p(e/2+jon))> :
[3]<2
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Since Hpy)=0, we get

N0 | Hpd2, ¥l 2(tp (e j2tdom)

2. (i) (83, (V—E)d,v

~y<a'
B+y=a"

(A.8) 2o

L3(Up(c/2+jom))

We now use (A.4), the combinatorical result from Proposition 2.1 together with the
induction hypothesis, to estimate {A.8) as

Ia//l "
o4 " |O. | k41 ik MN—k+1
n +]0”HEagpW||L2(L’p(s/2+jon))SZ< k )Lv+ kgLl

k=1

"]

k+17la’|—k+1
<> LYTL

(A.9) —
"] 2[0“1 Ly ¥
o[+
<2y (1)
k=1 ;
<l

Here we used the assumption L, >2Ly from (A.6) in the last estimate.
Due to the induction hypothesis we can also estimate the other term in (A.7),

iol1a8aa’” . 48]+ 1
(A.10) 37 g |8802 G| v e prgomy < 3 LI AL
|B|<2 [8]<2

So using (A.9) and (A.10), we can estimate (A.7) as

| Co(1+X 51«2 1)
10085, | 2 (e 2+ oy S LT <—L—~ |
P

The last factor is <1, by the choice of L,. (see (A.6)). This finishes the proof of
(A.5) and therefore of Lemma 3.1. [
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